
Automatic Diagram Layout Support for the
Marama Meta-toolset

Pei Shan Yap and John Hosking
Department of Computer Science

University of Auckland
Auckland, New Zealand

john@cs.auckland.ac.nz

John Grundy
Centre for Computing and Engineering Software Systems

Swinburne University of Technology
Melbourne, Australia

jgrundy@swin.edu.au

Abstract— Automatic layout can be a crucial support
feature for complex diagramming tools. Adding suitable
layout algorithms to diagramming tools is a complex task
and meta-tools should incorporate these for reuse. We
present MaramaALM, a generalised set of automatic layout
mechanisms. This has been incorporated in the Eclipse-
based Marama meta-toolset to support automatic layout in
Marama diagrams. It provides an easy-to-use mechanism
for tool developers to add such layouts to their generated
tools. We describe our motivation for MaramaALM, our
approach to its implementation and an example case study
of using these tool extensions.

Keywords– meta-tools, user interface design, automatic
layout, code generation

I. INTRODUCTION
Automated or automatic layout is defined as “the use

of a computer program to automate either all or part of
the layout process” [9]. As visual domain models are
increasingly complex, automated support for diagram
layout is often essential to improve the effectiveness and
efficiency of the modelling processes and resultant
diagrams [9], [14], [1]. Although there are different
approaches towards the utilization of such automation
support, their underlying aims are analogous: to improve
tool usability and diagram aesthetics.

We have developed the Marama meta-toolset to
support specification and generation of complex multi-
view diagramming tools using the Eclipse platform [7].
Marama allows automatic diagram layout algorithms to
be developed but only using low-level coding or visual
event-based modelling meta-tools. The former requires
detailed API knowledge and is time-consuming and
complex. The later is quite restricted and still requires
detailed knowledge of Marama diagram rendering
mechanisms. We were interested in determining whether
automatic layout support could be better provided.

II. MOTIVATION AND RELATED WORK
Complex diagramming tools often need layout

facilities to aid model visualization. Many use a
hierarchy represented by trees e.g. a horizontal tree
organising top-level business units. Some use force-
directed layout for node and link diagrams e.g. a display
of related document relevance for a semantic wiki. We
wanted modellers of complex diagrams to be able to use
automatic layout support in our Marama-generated [7]
diagramming tools. However, in order to achieve a
satisfactory level of aesthetic value in the visualization,
manual arrangement of elements often consumes too

much time and effort. Furthermore, when there is a high
level of viscosity [6] in the modelling, a change of one
element may require a reorganization of the layout.

However, to realise such layout features usually
requires considerable development effort by tool
developers. Almost any non-trivial layout algorithm
requires developers to write complex code. We wanted to
provide Marama tool designers with meta-tool support to
quickly and easily add automatic layout support to their
Marama-specified diagramming tools. Our past
experience indicates that the implementation process of
the layout features in Marama is very time-consuming,
involving low-level Java coding for each feature [8].

There are a large variety of low-level layout
algorithms [5]. In the domain of tree drawing, earlier
works such as [15] and [16] have contributed to the tidy
renderings of “narrow” tree structures, while more recent
work focuses on algorithms that minimize edge
crossings. In the domain of force-directed layout
drawing, one of the earlier is the spring-based force-
directed layout algorithm [3], followed by a technique
that uses a simluated annealing approach to determine the
termination of the algorithm when the layout achieves an
optimal level of aesthetics [4].

The traditional approach to provide automatic layout
support is by textual specification, followed by the
execution of some layout algorithm. Layout-by-Example
is a notational approach suggested in [16] to specify
automatic layout of diagrams using the concept of fuzzy
theory. In this approach, a layout is generated based on
the layout rules that are applied explicitly or extracted
automatically from the stereotypes of diagram layout.
These stereotypes are specified by a fuzzy visual
language. Layout by interactive example is a
complementary approach using interaction to specify
layout constraints [2], [11], [16]. Constraint hypergraph
grammars [12] are used to specify the synthetic structure
and layout requirements of diagram in a consistent way.
In this approach, the automatic layout support is able to
accommodate user-defined adjustments. Visual
specification of diagram layout has been carried out in
other meta-tools, using interaction to build up layout
constraint rules [10]. Kaitiaki allows tool developers to
specify event handling using visual specifications [7].
These include event filtering, tool state querying and
action invocation. Tool developers can compose handlers
from a high-level view and incorporate them into the
diagramming environment.

jgrundy
2011 IEEE Symposium on Visual Languages and Human-Centric Computing, Pittsburgh, USA, Sept 18-22 2011 © IEEE 2011

jgrundy

III. THE MARAMAALM APPROACH
Marama is a set of Eclipse-based meta-tools that

facilitates rapid specification and construction of domain-
specific visual language (DSVL) modelling tools [7].
There are two types of Marama user: specification tool
and modelling tool users. Specification tool users are
modelling tool designers who design and develop their
software tools using facilities provided by Marama.
Modelling tool users perform tasks using the Marama-
generated software tools. The current Marama approach
allows customisation of layout primitives using Marama
event handlers i.e. plug-in Java code, the Kaitiaki visual
event handler specification tool [8], or the use of textual
Object Constraint Language (OCL) behaviour constraints
[8]. Using these facilities to build complex diagram
layout is challenging and time-consuming, even for
experienced Marama specification tool users.

Figure 1. High-level architecture of MaramaALM.

Our primary goal was to provide an automatic layout
mechanism for Marama that benefits both modelling and
specification tool users. This mechanism will provide
overall layout management from the viewpoint of a tool
user and a tool designer. In the modelling domain, we
wanted to offer better ways for Marama tool users to
manage their model layouts. In the specification domain,
a more accessible approach is desired for the tool
designers to specify and generate layout support for their

modelling tools. We have developed Marama Automatic
Layout Manager (MaramaALM) to achieve this
goal.MaramaALM comprises two main components:
Layout Indicator and Behaviour Generator. The layout
specification process begins with the Layout Indicator,
followed by the Behaviour Generator. Figure 1 illustrates
the addition of MaramaALM support into the Marama
meta-toolset. The layout indicator augments the Marama
Shape Designer allowing a specification tool user to
annotate shape types that will need to have automatic
layout algorithms applied to them. Currently we support
the annotation of shapes to allow them to participate in
force-directed layout and tree layout. The behaviour
generator augments the Marama View Designer to allow
specification of multiple tree or force-directed layout
behaviours on elements of a diagram. It generates
infrastructure for the resultant tool to realise the layouts.

The Layout Indicator operates at the shape level in
the Shape Designer. It allows meta-modellers to drag and
drop a special notation, LayoutManager icons, onto
shapes. These specify the desired layout support for these
annotated shapes. Figure 2 (a) shows an example of such
layoutManager annotations (green octagons) on a
Marama shape designer specification. The Marama tool
developer has indicated these shapes will participate in a
tree layout algorithm (nodes and edges). A shape can be
either a tree node or a force-directed node, determined by
the node type indicated on the LayoutManager
annotation. When generating the target tool, a number of
necessary properties are assigned to the specified shapes
in the underlying Marama tool XML representation. This
ensures that their layout behaviours are reflected in the
generated modelling environment.

The Behaviour Generator functions in the View
Designer. A special notation named ViewLayoutManager
is provided to customize each desired layout mechanism.
It allows the tool designer to indicate the layout support
type and connectors between automatically laid out
shapes to be used in the diagram type. The tool designer
selects a Generate Tree Visual Handler or Generate
Force-directed Visual Handler menu item, depending on
the specified ViewLayoutManager, as in Figure 2 (b).
MaramaALM retrieves the relevant layout specification
files and Java-based event handlers to implement the
layout from an existing repository and allocates them to
the Marama tool specification folders.

Figure 2. (a) LayoutManager visual annotations added to shapes; and (b) View Designer layout event handler specification.

In our prototype of MaramaALM we have
incorporated the choice of tree or force-directed layout
behaviours and functionalities to provide an effective yet
easy-to-use layout management for modelling tool users.
The tree layout mechanism is useful for information
visualisations that aim to highlight a hierarchical
structure. It comprises layout support including
automatic node attachments, tree style switching,
collapsible or expandable subtrees, detachable subtrees
and dynamic resizing. Layout switching can be activated
using a menu triggered event handler. The descendent
nodes of a tree are switched from being aligned vertically
to horizontal alignment by level. Elision can be activated
via a menu triggered event handler.

The force-directed layout mechanism is useful to
prevent node overlapping, maintain node proximity and
highlight visibility of clusters in the modelling space.
Unlike the tree layout, it supports acyclic graphs and any
information visualization that does not have a strong
hierarchical structure. This mechanism improves the
aesthetic value of an initial graph by promoting overall
layout symmetry. It provides optional automatic node
attachments, layout optimization through node
redistribution, an emphasis mechanism and dynamic
node resizing. The behaviour emphasis mechanism can
be activated using the menu triggered event handler when
pointing to a target node. The directly connected nodes of
the selected target node are now enlarged and brought
closer to the focal point, whereas the rest of other non-
directly connected nodes are pushed apart to create an
effect of focus and context. We have implemented one
force-directed layout and horizontal and vertical tree
layout algorithms in MaramaALM to date.

IV. CASE STUDY
The Web Evaluation Planner (WEP) is a Marama-

generated tool to assist Web developers in measuring the
usability of their Web applications. It comprises a
Process Scheduler and a Goal-Question-Metric Builder
that utilize both the MaramaALM tree and force-directed
layouts to enhance modelling. In a GQM model, the
breakdown of a goal into several questions and a
refinement of one question into several metrics, form a
top-to-bottom tree structure. Goal-Question-Metric
Builder offers a tree mechanism to support this
presentation. It includes a force-directed layout to assist
outlining of the entity-attribute-metric relationships.

The tool building process begins with the meta-model
specification of entities and associations for WEP. Then
WEP visual notations are created in the Shape Designer
to represent the underlying entities and associations. For
the Process Management view type, tree layout support is
chosen. In order to generate the tree behaviours for the
target tool, the modeller drags and drops the
ViewLayoutManager notation into the view type
specification diagram and specifies the desired layout
and connector types in a property sheet. For the GQM
view type, both the tree and the force-directed layout are
required. MaramaALM generates event handlers to
enable these in the WEP tool.

Figure 3 (a) shows the sequence of activities that are
to be performed in order to measure a health-related Web
site. The root Health Web Site Measurement is

decomposed into 5 main steps: Determine Project CMM
level, Identify GQM Goal, Collect Data, Analyse Data
and Document Results. The main step Identify GQM
Goal is then further divided into 5 substeps: Identify
Entities, Identify Attributes, Identify Metrics, Build
GQM tree and Associate Entity-GQM tree Collect Data
and Document Results also have subgoals. The plan can
be represented in two different styles of tree.
MaramaALM related descendent nodes into a vertical
form in the first style and horizontal form in the second.
Web developers can switch between tree styles using the
Switch Tree Style option. Figure 3 (b) shows the tree in
horizontal layout automatically arranged by the tool.

The Goal-Question-Metric builder is used to
generate GQM trees, specifying the measurement areas
of the application components to support the evaluation
steps such as Identify GQM Goal mentioned above.
Figure 4 (a) shows a GQM tree and its associated set of
application entities, attributes and metrics. A goal is
refined into several defined questions and the
decomposition is portrayed in a tree structure, whereas
the application entities, attributes and metrics are created
as a mind map of the evaluation modules. To achieve a
more symmetric presentation, the force-directed layout
optimization process is activated, shown in Figure 4 (b).

V. EVALUATION
We used the Cognitive Dimensions framework [6]

to analyse the properties of our MaramaALM
specification and diagram layout features. MaramaALM
significantly reduces the effort of both modellers and tool
designers by providing a generalised automatic
mechanism to facilitate layout management. It offers a
terse notation with simple abstractions (low abstraction
gradient) and low viscosity by encapsulating the low-
level implementations into a generalised component that
can be easily applied to any Marama-generated tools. It
also assists in reducing viscosity problems in the
generated modelling tools by providing automatic layout
in those tools. The tool-designers can change the
involved shapes and connector in one place and this
modification will be reflected throughout the whole
mechanism (relatively low hidden dependencies when
modelling). In the modelling environment, the modellers
can easily add, change or delete the shapes and
connectors in the provided structure.

However, our approach comes with some trade-offs.
These include some hidden dependency issues and
premature commitment problems for specification tool
users. During the specification process, the use of Shape
Designer and View Designer is inseparable. Each
depends on the another to generate necessary properties
and manage shape-entity mappings in order for
MaramaALM to function properly, hence from one view
there is a hidden dependency to the other. Some layout
features are highly associated and cannot be isolated.
Premature commitment is required, as meta-modellers
need to decide which shapes and connectors are to be
included during specification. MaramaALM achieves a
relatively high level of closeness of mapping,
consistency, and visibility while keeping hard mental
operations and error proneness to a minimum.

Figure 3. (a) MaramaWEP vertical tree layout and (b) MaramaWEP horizontal tree layout.

Figure 4. (a) MaramaWEP Goal-Question-Metric view with force-directed layout and (b) with optimized layout.

VI. SUMMARY
We have successfully incorporated an automatic layout

generator into the Marama meta-toolset. Using the tree and
force-directed layout features, modellers can much more easily
produce an aesthetically pleasing layout. MaramaALM
significantly reduces the effort of both modellers and meta-
modellers by providing a generalised automatic mechanism to
facilitate layout management. It offers simple abstractions and
low viscosity but comes with trade-offs of hidden dependency
and premature commitment. MaramaALM greatly reduces the
effort of the tool developers in specifying such features for
their tools. Future enhancements include implementing
different algorithms for the tree and force-directed layout, and
extending the tree layout modes. Further research on how to
provide a formal mechanism to support secondary notations
during the layout specification process would be useful.

ACKNOWLEDGMENT
Support from the New Zealand Foundation for Research,
Science and Technology is gratefully acknowledged.

REFERENCES
[1] Barone, R., Cheng, P. C.-H., Representations for Problem Solving: On

the Benefits of Integrated Structure. 8th Int.Conf. on Information
Visualisation, pp. 575-580, 2004.

[2] Dwyer, T., Marriott, K., Wybrow, W. Interactive, Constraint-based
Layout of Engineering Diagrams. Volume 13: Layout of (Software)
Engineering Diagrams 2008, Electronic Communications of the EASST.

[3] Eades, P. A heuristic for graph drawing, In Congressus Numerantium,
vol. 42, pp. 149-160, 1984.

[4] Fruchterman, T. M. J and Reingold, E. M., Graph drawing by force
directed placement. Software: Practice and Experience, vol. 2, no. 11,
pp. 1129-1162, 1991.

[5] Graham, M. and Kennedy, J. A Survey of Multiple Tree Visualisation.
Information Visualization 2010 9:235.

[6] Green, T.R.G. & Petre, M. Usability analysis of visual programming
environments: a ‘cognitive dimensions’ framework. JVLC 1996 (7).

[7] Grundy, J.C., Hosking, J.G., Liu, K., Huh, J., Marama: an Eclipse meta-
toolset for generating multi-view environments, ICSE 2008, 819-822.

[8] Liu, N., Grundy, J.C., Hosking, J.G. A Visual Language and
Environment for Specifying User Interface Event Handling in Design
Tools, 8th Australasian User Interface Conf. pp. 87-94. 2007.

[9] Lok, S. and Feiner, S., A Survey of Automated Layout Techniques for
Information Presentations, SmartGraphics, pp. 61-68, 2001.

[10] Maier, S. and Minas, M. A Static Layout Algorithm for DiaMeta.
ECEASST 10, 2008.

[11] Maier, S. And Minas, M. Interactive diagram layout. CHI Extended
Abstracts 2010: 4111-4116.

[12] Minas, M. & Viehstaedt, G., Specification of Diagram Editors Providing
Layout Adjustment with Minimal Change, IEEE Symp. Visual
Languages, pp. 324-329, 1993.

[13] Purchase, H. C., Allder, J., and Carrington, User Preference of Graph
Layout Aesthetics: A UML Study. Graph Drawing 2000.

[14] Purchase, H.C., Metrics for Graph Drawing Aesthetics, Journal of Visual
Languages & Computing, vol. 13, no. 5, pp. 501-516, Oct. 2002.

[15] Reingold, E. M. and Tilford, J. S., Tidier drawings of trees, IEEE
Transactions Software Engineering, vol. 7, no. 2, pp. 223–228, 1981.

[16] Sugihara, K. et al., Layout-by-example: A Fuzzy Visual Language for
Specifying Stereotypes of Diagram Layout, IEEE WS on Visual
Languages , pp. 88-94, 1992.

