
A Domain-Specific Visual Language for Report Writing
Using Microsoft DSL Tools

Ruskin Dantra1, John Grundy2 and John Hosking3

Prism New Zealand1, Dept. of Electrical and Computer Engineering2 and Dept. of Computer Science3
University of Auckland
Auckland, New Zealand

ruskin.dantra@gmail.com1, {john-g2, john3}@cs.auckland.ac.nz

Abstract

Many domain specific textual languages have been
developed for generating complex reports. These are
challenging for novice users to learn, understand and
use. We describe our work developing the prototype of
a new visual language tool for a company to augment
their textual report writing language. We describe key
motivations for our visual language tool solution, its
architecture, design and development using Microsoft
DSL tools, and its evaluation by end-users.

1. Introduction

Enterprise tasks and processes tend to be
complicated and require considerable end-user training
and support. Writing reporting scripts to query
databases and display the extracted information is a
good example of this. Industrial databases are complex
and hold large amounts of data, the majority of which
is irrelevant to the user. They also have unfriendly
features such as arcane table naming, implicit
relationships and cascading associations [1].

While there are many existing report writer
approaches [2] [1] [3] [4], these are typically low level
in their approach. Generic reporting tools often do not
cater for the exact needs of an end-user for a particular
enterprise database. This forces an enterprise
(organization) to introduce their own proprietary
textual domain specific languages (DSLs) which
require significant programming ability on behalf of
the report designers. Issues in using such languages
include arcane syntax, hidden dependencies and a lack
of support tools making the languages difficult for
novice users thus decreasing their productively [1] [5]
[6].

This paper describes the development of a visual
domain specific visual language (DSVL) and an
environment that assists end-users to rapidly design
and implement reports sourced from an enterprise
system and its database for the printing and graphics
art industry. This is done by creating a meta-modeling

framework which also in turn assists developers to
modify and add new elements to this reporting
language.

The language and environment replaces an
existing textual domain specific language providing a
more accessible and productive approach to report
writing for novice and intermediate end-users. Our
contributions are two-fold: the design, prototyping and
evaluation of a visual report writer language and
support tool; and as an example of industrial usage of a
domain-specific visual language and meta-tool
development approach.

We begin by describing the domain of the target
enterprise system and its existing textual report writing
language. During the description we will also highlight
its inherent issues which motivated our new approach.
This is followed by a description of our new DSVL,
environment and framework. Following this is case
study of its use to clearly demonstrate the
improvements a given DSVL has over its textual
counterpart.

We then describe the details of the DSVL
implementation, using Microsoft DSL Tools [7]. We
then describe the evaluation methods and present its
results. The paper concludes with a brief set of
conclusions and possible future work.

2. Background and Motivation

Prism WIN is a fully integrated and configurable
enterprise Management Information System (MIS) for
the printing and graphics arts industry [8]. Prism WIN
has a number of integrated modules for estimation,
inventory management, production management,
financial reconciliation, sales ordering and processing
and facilities management. The Prism report writer
language (RWL) is an interpreted textual DSL that
allows Prism WIN end-users to write powerful data
mining queries and present the results graphically as
reports [9].

Figure 1 shows a textual RWL script for a report
that extracts the customers from a Prism database and

John Grundy
In Proceedings of the 2009 IEEE Symposium on Visual Languages and Human-Centgric Computing, Corvallis, OR, USA
© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.�

prints out their active jobs, i.e. those that are beyond
quoting.

1. Code CASE_STUDY_1
2. Type Standard
3. Access STSR
4.
5. Scan RM
6. Print RM_CUST + RM_NAME;
7. Print “All Jobs For ” + RM_NAME;
8. Scan QM
9. Choose (QM_CUST_CODE, MATCH, RM_CUST)
10. Choose(QM_QUOTE_JOB, MATCH, QMM_JOB)
11.
12. Print QM_JOB_NUM + QM_TITLE;
13. End
14. End
15. Print StandarReportFooter;

Figure 1. RWL script example

Lines 1 to 3 are the header definition

(ControlLine), which provide metadata for searching
and indexing this particular report through the Prism
WIN MIS. Line 5 is a Scan. This loops through the
specified Prism WIN database view (RM), printing out
customer information. This is followed by an inner
Scan which loops through the QM database view
selecting active jobs for the current customer in the
outer Scan and prints out information for each
customer-job record. A Scan can be simply seen as a
Select statement within the Structured Query Language
(SQL) and the Choose statements allow two Scans to
be joined (inner join). For this example the first
Choose joins the RM and QM views and the second
Choose only selects Jobs (not quotes).

The Scan is followed by a standard footer which
simply prints any arbitrary (configurable) text after the
end of the report.

RWL also has variables, including clumps which
are aggregates of arbitrary objects (such as database
columns and/or other variables), report headers and
footers and many inbuilt functions. Prism has also
developed an IDE for RWL, Prism Scribe.

This provides wizard support for common
templates, libraries of metadata, functions and code
snippets, syntax colouring and completion. This IDE
is, however, all hard coded in VB6 making syntax and
environment changes difficult.

As the current IDE was incompatible with
Microsoft Vista and changes were also desired to
extend RWL’s functionality, Prism was motivated to
explore alternative approaches to report specification.
In particular, Prism wished to explore a more model
driven approach, based on a comprehensive meta-
model for RWL specification and a compatible DSVL
and environment for model driven report specification.

Therefore the key enterprise requirements arising
are to allow end-users to query their complex database
schema to mine information and to allow the end-user

to lay this information out as they need. Secondary
requirement was also to allow developers to roll out
new reporting features with ease. These enterprise
requirements were translated to the following technical
requirements:

• An extensible meta-model that correctly
represents an abstraction of RWL and its
semantics

• An extensible DSVL and environment that
allows end-users to easily specify and test
Prism reports. This should use an end-user
accessible metaphor, validate RWL semantics
and constraints, provide simple access to
required database meta-data, support
versioning and test cases and afford
modularity and scalability

• A code generator that generates RWL reports
from DSVL specifications

• Delivery using a widely used platform, such
as Microsoft Visual Studio or Eclipse

Many report writing tools have been developed.

These include Crystal Reports [10], Visual FoxPro
report writer [3], Eclipse business intelligence tools,
and Visual Studio report designer [11]. These
approaches use a combination of wizard-driven
templates and/or textual domain-specific visual
languages. Some, such as Crystal reports, provide a
limited visual report layout designer and wizards to set
up data sources. However most are generally designed
for programmers or experienced data modellers and
being general-purpose are not Prism-specific tools.
Moreover Prism RWL offers integrated support with
the Prism WIN MIS which other report writing
languages may offer with a strenuous API or not offer
one at all.

A range of other approaches have been developed
to provide more end-user friendly report writing tools.
FastReport Studio [12] provides visual layout and
visual query specification for any ODBC source. As
mentioned earlier this is also another general purpose
solution and not specific to Prism. Customization is
likely to be difficult and the software itself is intended
for end-users with some programming knowledge.
Report Sharp Shooter [13] provides a visual layout
designer, report wizard, reusable templates with
cascading structures, an accessible DOM-based model,
preview and export. It is also intended for
programmers.

FoxQ [5] uses a form-based approach to
specifying XQuery XML document queries, allowing
high-level authoring of reports. This is intended for
document processing rather than database query and
reporting [5].

A number of visual query languages have been
developed, some with reporting capabilities. GQL [14]

provides a general purpose graphical query language,
though not oriented to business reporting.

A WebMLbased visual language tool [15]
provides GIS-oriented database querying and reporting
though not business oriented reporting. HyperFlow
[16] provides general purpose end-user oriented
information analysis support with a visual query
metaphor.

IViz uses a dataflow visual language to synthesize
complex graphic reports from data [17]. Co-ordinated
Queries [4] and web server page generators [6] provide
visual abstractions for specifying both queries and
contents of reports. Neither is oriented towards
business reporting per se and neither to Prism specific
databases.

3. Our Approach

We determined that we would need to design a
domain-specific visual reporting language for Prism
and build a prototype tool to support it. The
extensibility requirements, however, meant that we had
two target end-user groups to consider: Prism
developers who would maintain and extend the meta-
model, DSVL and environment; and end-user report
authors. Our approach involved four core steps:

1. Designing a visual RWL meta-model,
providing a representation of the core
modelling elements and inter-relationships of
the textual RWL

2. Specifying RWL constraints on the meta-
model: this provides the main semantics of the
language

3. Exposing the meta-model to report authors via
a visual language: this involved designing a
suitable visual language oriented towards end-
user report writer authoring and building a
visual modelling tool using this language to
populate instances of the meta-model while
adhering to its constraints

4. Designing and deploying code generators to
generate textual RWL script from the visual
RWL model: we decided to generate textual
RWL scripts from our DSVL so that we could
leverage the existing complex Prism report
generation engine.

Several approaches were possible: (a) a

WYSIWYG report designer that allows end-users to
manipulate something close to the final appearance of
their report, like MS Word for documents; (b) an
abstract representation of report layout e.g. broken into
headers/body/footers; (c) a visual representation of
Prism textual report script elements but making explicit
their relationships; or (d) a dataflow-like language
describing data sourcing, transformation and output.

As mentioned before all of these approaches have
trade-offs in terms of ease of use, closeness of mapping
to the problem domain, expressiveness, scalability and
ease of implementation.

Conceptually a WYSIWYG approach is appealing
[5]. However, as reports have complex repeating
groups, database queries and formulaic translations of
data for output, providing such an approach limits
expressiveness and is very challenging to implement.
Abstract report layout e.g. as header/footer/body/group
bands, is quite common [11] [3] [13]. However, this
approach suffers from introducing many hidden
dependencies and can be very “viscous” i.e. hard for
end-users to change report designs. The dataflow
metaphor appears attractive and has been used in a
number of visualization and/or reporting-oriented
approaches [17] [18]. However these rapidly become
very complex as queries and transformations grow.
After surveying target end-users with mock-up design
examples we chose to use option (c) above: developing
a new visual language based on existing Prism textual
report scripting language constructs, analogous to [14]
[4]. This provides existing reporting abstractions with
most dependencies made explicit via relationships;
grouping of hierarchical constructs; and database
element and report element constructs explicitly linked.
We also borrowed the “banding” concepts from
approach (b) but use the “swim lane” metaphor from
activity diagrams to realize this. We found this easier
and more convenient for end-users than rigid report
bands and layout.

We tried two variations of approach (c), which are
shown in Figure 2 and

Figure 3 below.

Figure 2. Approach one

Figure 3 shows an outline of the approach we took.

The approach shown in Figure 2 was discarded in the
early design stages due to the overhead of

implementing a whole new user interface to accentuate
the RWL meta-model as Microsoft DSL Tools already
offered an integrated shell to host visual languages. A
trade-off had to be made between flexibility and a rich
user interface experience which was offered by our
first approach against rapid prototyping which was
offered by the second.

Figure 3. Approach two

Therefore our approach (shown in
Figure 3) comprised of three core phases, each

phase mapped to one or more steps enlisted earlier in
this section.

1. Design the meta-model of the RWL
representing as much information as possible
(mapped to Step 1)

2. Constraints which cannot be represented using
the meta-model were encoded within a rules
engine via code (mapped to Step 2) [9]
E.g. Mandatory fields within a meta-model
 element;
 Scan must be mapped to a database view

3. Developed a formal visual notation and tool
for our meta-model which can be used by end-
users. The tool will be used to generate the
required RWL script from the corresponding
visual RWL model (mapped to Step 3 and 4)

4. Usage Example

We briefly illustrate end-user report specification
using our visual RWL tool. Initially the user creates a
new report or opens an existing report. Figure 4 shows
the end-user interface while beginning design of a new
Prism report. A palette (1) provides available report
elements, including header, body, footer, variables,
control lines, scans, pages, comments, literals,
functions, clumps, etc. We chose to use a set of “swim
lanes” (2) to group report elements into key sections
including Header, Body, Footer, and Variables, note

that the orientation of the swim lanes can be easily
altered if needed. A property sheet (3) provides
context-sensitive element properties for editing. For
example, the properties for the ControlLine1 element
(4) are shown.

Figure 4. Visual report writer tool user interface

In this example the user has added a header and
body element by drag-and-drop from the tool palette,
an initial ControlLine to the header and initial Scan to
the body of the report. Properties may be set when an
element is added or later when selected by the user.

One of the more complex report elements
supported by the Prism report writer language is the
“Scan”, or query from a Prism database table. In
Figure 6 a Scan element is added by the user to query a
Prism database table for data items to add to the report.
The user needs drags-and-drops the Scan from the
palette (Figure 4 (1)) onto the canvas and then selects
the table on which to perform the Scan. This can be
followed by adding any conditional statements
(Choose) which can be done by a context menu (Figure
6 left) followed by selecting the conditions (Figure 6
right). Other report elements can be added using a
similar approach of drag-and-drop; link to existing
elements; or specify properties. The tool enforces
underlying RWL meta-model semantic constraints e.g.
you cannot add clump outside a scan; you cannot add a
scan to a header; and so on.

1

4

3

2

Figure 6. Adding and specifying a Scan

The user continues to add report elements and
evolve the design: e.g. report footer; page
header/footer; print statements, further scans; scan
elements; literals and so on.

For example, in Figure 5 (left) the report has been
extended to include two print statements (that generate
report body content); Scans (selections) from the Prism
RM and QM tables (middle); table field items to
appear on the printed form. Sequencing can be
specified for report items to enforce ordering of printed
items on the final report (Figure 5 (left), arrowhead
going from ControlLine to Scan). Figure 5 (middle)
also shows how two Scans can be automatically joined
on their mapping column automatically. This join is
configurable by the user after it is added; Figure 5
(right).

To manage complexity of reports elision and
additional visual report writer diagrams are supported.
The user can collapse/expand items and their sub-items
on the report. They can also create additional diagrams
to specify parts of the report and package these via
parameterization for reuse. Figure 5 (middle) (and
Figure 6 (left)) shows an example of a collapsed Print
statement. The user can generate a textual Prism report
script from the visual report writer language. Figure 7
shows the Prism report script generated from the
example in Figure 6. This report script can then be run
by Prism report engine against the Prism ERP database

to generate a report to a file. The resulting report file is
then opened and report content shown to the user.

Figure 7. Generated textual RWL report

5. Architecture and Implementation

Prism’s requirements motivated a model-driven
engineering approach to the visual tool development
allowing us to capture the existing textual RWL
concepts and rapidly prototype a tool [19] [20]. We
chose to use the Microsoft Domain-Specific Language
(DSL) tools platform to design and build our prototype
[21] [7]. Other meta-tool platforms, such as MetaEdit+
[22], Eclipse GMF and our own Marama Eclipse-based
platform [23] were possible choices. We chose to use
Microsoft DSL tools as Prism desired a Microsoft-
based solution and we believed it provided a suitable
platform for robust visual report writer delivery to end-
users. To realise our visual report writer prototype we
followed the process outlined in Section 3:
• Meta-model development: we built and refactored

over time a large meta-model to capture all of the
commonly-used Prism textual reporting language
elements and many of the more obscure ones.
Part of this meta-model is shown in Figure 8. We
designed our meta-model to be as extensible as
possible; one of the major attractions of the DSL
tools approach is that Prism developers can

Figure 5. Design evolution while designing the report

extend this meta-model to add new visual report
writer features easily.

Figure 8. RWL meta-model

• Specify constraints on the meta-model: we used
the DSL tools constraint specification facilities to
constrain the semantics of our visual reporting
tool. We also used where necessary C# functions
and custom property sheets and choosers. These
allowed us to implement e.g. meta-data querying
facilities to the existing Prism database. This
ensures end-users only use valid tables, fields and
types in their reports.

• Visual report writing language: we used the DSL
tools facilities to specify visual forms of meta-
model elements and relationships i.e. icons and
connectors to represent meta-model elements in
the visual report writer diagrams. Each meta-
model element has a visual form, as shown by the
examples in Figure 8 (right). We used DSL tools
visual editor constraints to provide layout
capabilities including swim lanes, collapsing and
expanding, and automatic layout of sub-items for
nested elements such as the Print and Scan model
elements.

• Code generator: we wanted to use the existing
Prism reporting engine to actually interpret and
run reports specified in our visual report writing
language. The easiest way to achieve this was to
generate textual report script and run it via the
Prism reporting engine. We used the T4
templating engine within the DSL tools to
synthesise textual report scripts from the report
model and show the user the result which can
then be importing and run via the Prism MIS.

6. Evaluation

We undertook two complementary evaluations of
our solution. The first was a continuous design
evaluation. This used the Cognitive Dimensions (CD)
framework [23] during each design iteration of the

DSVL and environment to evaluate the tradeoffs made
and inform the next iteration. The second was a pair of
end-user evaluations using a combination of tool
familiarization and a survey instrument.

The CD evaluation at the final iteration gave the
following results. The underlying “inner join” (Choose
statements) based nature of report specification
requirements naturally leads to hard mental operations,
particularly for the non-programmer. We mitigated
these by using layout (including automatic layout) in a
first class way (rather than as secondary notation),
annotation mechanisms to emphasize both the
sequential and hierarchical nature of some aspects of
the specification and context sensitive helpers. This
approach emphasizes the report logic over the final
report layout (more conventional report designers
emphasize the latter) which is a tradeoff of
concreteness of the final report versus a better
closeness of mapping to the information access
requirements for the data constituting the report. The
latter was chosen to emphasize as Prism felt this was
the area where most report specification errors
occurred. The auto layout mechanisms also assist in
reducing viscosity. Simple refactoring support, such as
variable renaming, also reduces viscosity.

The DSVL uses a fairly terse set of simple color
coded shapes with iconic annotations (e.g. a printer
icon) as its basic notation. These are sufficient to cover
the high level constructs needed, with a more verbose
set of textual elaborations for lower level functions, for
example, for reusable functions and meta-data links to
the underlying Prism database. To mitigate the
diffuseness and potential error proneness of these,
features such as semantic checks that prevent elements
and functions being used in inappropriate places are
provided. This and the application of other syntactic
and semantic constraints led to the almost complete
elimination of spelling errors and other minor syntactic
mistakes also reducing error proneness. Features, such
as elision, support high level visibility and DSVL code
juxtaposition at the expense of creating hidden
dependencies to the elided code. This tradeoff was
considered worthwhile to allow users to better obtain
an overview of the report structure. Mechanisms such
as co-selection of elements where other dependencies
arose (e.g. specification/use of variables) served to
reduce other types of hidden dependencies.

The two user evaluations targeted different end-
user bases: 1) Prism RWL developers, i.e. those
expected to maintain and extend the RWL meta-model
(code base) and 2) End-users, i.e. those people
regularly writing report specifications. For the
developers, our focus was on the understandability and
extensibility of the meta-model and associated visual
notation, while for report authors our focus was on the
usability of the prototype visual report specification

environment. Six developers and five end-users, all
Prism employees, took part in these evaluations. The
relatively small numbers meant qualitative information
was sought. In both cases a brief tutorial was provided
and the users then performed specified tasks and
completed a survey.

Prism developers were asked to make a minor and
a comparatively major modification to the meta-model
using the newly developed meta-model. They were
requested to record their steps and also respond to
some close ended questions which were then analyzed
to determine the expressiveness and usability of the
meta-model.

The end-users were asked to design two reports
using the newly developed visual language using the
RWL modeling tool. They were also requested to
record their steps and respond to some close ended
questions which were then analyzed to determine the
usability of the visual notation and the tool.

Developers were very positive about the meta-
model used to capture the range of RWL concepts.
They reported it made understanding and changing the
meta-model much easier even for those who had little
experience with the RWL semantics. Changing the
meta-model and performing two extension tasks (part
of our developer survey) also helped developers
understand the meta-model and how the various
constructs were related better. The meta-model helped
end-users avoid making mistakes and also made it
easier for the developer to define constraints as
opposed to defining constraints in an arbitrary text
based form. Developers found that linking visual
elements and properties to the meta-model provides a
consistent way to ensure semantically correct report
models were created. Our model-driven approach [20]
was seen as a good basis for generating other code if
need be; such as configuration scripts.

However developers did perceive that meta-model
scalability and navigation would be problematic as the
model grew in size. There is a large learning curve
involved with Microsoft DSL Tools and inexperience
with model-driven development meant that the
fundamental Model Driven Engineering (MDE)
concept of generating code via transforming templates
was not always intuitive to Prism developers.

Target report author end-users were particularly
positive about the support the visual report writer
language and tool provided for validation while
designing Prism reports; they saw this as greatly saving
time and effort. They found the Prism database
browser for meta-data linking helped determine the
current field or table to use accurately. The tool
prevented report authors from making spelling
mistakes and allowed them to obtain a clear overview
of the database and its tables without understanding
intimate details of its structure. Visually designing a

Prism report, based on existing Prism RWL concepts,
allowed report authors to clearly visualize the report
script and its logical flow. Participants noted that other
report tools, whether focused on concrete or abstract
end report layout, do not provide as good a control
flow and element relationship visualization as our
prototype. Large report changes are well-supported by
the visual tool compared to textual RWL and other
report tools.

However report authors found making trivial
changes difficult using the visual notation. A small
change such as adding a space in a line specification
requires a number of steps as opposed to doing it
textually. This confirms high viscosity at low levels of
detail. There is also no synchronized view between the
visual notation and the generated textual RWL script-
concreteness. This results in poor juxtaposibility. Many
end-users found the Visual Studio Shell (Experimental
Hive) hosting the DSVL difficult to use. The visual
notation was felt to be primarily suitable for novice and
intermediate report designers as it does not allow a
high degree of customization when compared to
textually designing a report. Due to this reason expert
report designers felt they would be constrained by the
features of the tool and this may hamper their
productivity.

Overall the Prism report developers found the
model-driven approach to designing and building the
visual report designer prototype very promising. Prism
plans to further explore this approach for a deliverable
visual report designer and to inform further
development of the textual report scripting language
and engine.

Novice and intermediate report designers found
the visual reporting language and prototype support
tool effective for increasing productivity and accuracy
of report writing. Expert report users are not so well
supported by the visual tool in its current form.

Future enhancements include adding incremental
report generation and running, showing report
designers the intermediate results of their evolving
report design via progressive evaluation. A
complementary WYSIWYG view showing report
bands, literals and database content more closely
matching the final report would not replace our
existing visual notation but augment it. A visual
debugger using the visual report authoring language to
step through a running report would similarly aid
complex report authoring and debugging.

7. Summary

We have developed a prototype visual report
writing language and support tool using Microsoft
Visual Studio DSL Tools for a commercial company in
the print industry. This tool complements the existing

proprietary textual reporting language and engine for
authoring custom enterprise system reports. Features of
our approach include the use of model-driven
development via meta-model, constraints, visual
notation and code generators to realize the prototype
visual language tool and enable much easier meta-
model and visual language extension. Evaluations of
both the model-driven engineering approach for visual
languages and our prototype visual report designer
language and tool suggest both are promising.

8. References

[1] P. Panos and R. Weaver, "Factors Affecting the
Acceptance of a Report Writer Software Application
Within Two Social Service Agencies," Journal of
Technology in Human Services, vol. 19(4), 2002.

[2] D. Atkins, T. Ball, G. Burns, and K. Cox, "Mawl: a
domain-specific language for form-based services," in
IEEE Transactions on Software Engineering, vol. 25
(3), May/June 1999.

[3] C. Pountney, The Visual FoxPro Report Writer.
Hentzenwerke, 2002.

[4] C. Weaver, "Coordinated Queries: A Domain Specific
Language for Exploratory Development of Multiview
Visualizations," in IEEE Symposium on Visual
Languages and Human-centric Computing, Herrsching
am Ammersee, Germany, September 2008.

[5] R. Abraham, "FoXQ - XQuery by Forms," in 2003
IEEE Symposia on Human Centric Computing
Languages and Environments, Auckland, New Zealand,
October 2003.

[6] Taguchi, Mitsuhisa, and T. Tokuda, "A Visual
Approach for Generating Server Page Type Web
Applications Based on Template Method," in IEEE
Symposium on Visual/Multimedia Software
Engineering, Auckland, October 2003.

[7] Microsoft. (2007) Microsoft. [Online].
http://msdn.microsoft.com/en-
us/library/bb126327(vs.80,printer).aspx

[8] Prism Group. (2008) Prism - Better information. Better
business. [Online]. http://www.prism-world.com/

[9] Prism Group, Prism WIN - Report Writer Handbook.
Auckland, 2005.

[10] M. Gunderloy. (2004, Jan.) A review of Crystal Reports
V10 Advanced Developer Edition and MetaEdit+ 4.0,
Application Development Tools. Internet.

[11] Microsoft. (2008) Defining a Report Layout (Visual
Studio Report Designer). World Wide Web.

[12] Fast Reports Inc. (2009, Apr.) FastReport Studio.

[Online]. http://fast-report.com
[13] Perpetuum Software. Report Sharp Shooter. [Online].

http://www.perpetuumsoft.com
[14] Papantonakis, Anthony, and P. J. H. King, "Syntax and

Semantics of Gql, a Graphical Query Language,"
Journal of Visual Languages and Computing, vol.
Special Issue on Visual Query Systems, Mar. 1995.

[15] S. Di Martino, et al., "A WebML-based Visual
Language for the Development of Web GIS
Applications," in IEEE Symposium on Visual Languages
and Human-centric Computing, Coeur d'Alene, Idaho,
USA, 23-27 September 2007.

[16] D. Dotan and R. Pinter, "HyperFlow: an Integrated
Visual Query and Dataflow Language for End-User
Information Analysis," in VLHCC05, Dallas, Texas,
September 2005.

[17] M. C. Humphrey, "A graphical notation for the design
of information visualizations," International Journal of
Human Computer Studies, vol. 50, no. 2, pp. 145-192,
1999.

[18] A. Leff and J. Rayfield, "Relational Blocks: A Visual
Dataflow Language for Relational Web-Applications,"
in IEEE Symposium on Visual Languages and Human-
centric Computing, Coeur d'Alene, Idaho, USA, 23-27
September 2007.

[19] M. Afonson, R. Vogel, and J. Teixeira, "From Code
Centric to Model Centric Software Engineering:
Practical case study of MDD infusion in a Systems
Integration Company," in Proceedings of the Fourth
Workshop on Model-Based Development of Computer-
Based Systems and Third International Workshop on
Model-Based Methodologies for Pervaisve and
Embedded Software, 2006.

[20] S. Beydeda, M. Book, and V. Gruhn, Model-Driven
Software Development, . Springer, 2005.

[21] S. Cook, G. Jones, S. Ken, and A. C. Wills, Domain-
Specific Development with Visual Studio DSL Tools.
Boston: Addison-Wesley, 2007.

[22] MetaCase. (2008) MetaEdit+ Modeler - Supports your
modeling language. [Online].
http://www.metacase.com/mep/

[23] T. R. G. Green and M. Petre, "Usability analysis of
visual programming environments: a ‘cognitive
dimensions’ framework," Journal of Visual Languages
and Computing, vol. 7, pp. 131-174, 1997.

[24] J. C. Grundy, J. G. Hosking, K. Liu, and J. Huh,
"Marama: an Eclipse meta-toolset for generating multi-
view environments," in ICSE08, Leipzig, May 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

