
In Proceedings of 2007 IEEE Symposium on Visual Languages and Human-Centric Computing, © IEEE.

MaramaTatau: Extending a Domain Specific Visual Language Meta Tool with a
Declarative Constraint Mechanism

Na (Karen) Liu1, John Hosking1 and John Grundy1, 2

Department of Computer Science1 and Department of Electrical and Computer Engineering2,
University of Auckland, Private Bag 92019, Auckland, New Zealand

{karen | john-g | john }@cs.auckland.ac.nz

Abstract
It is increasingly common to use metatools to specify
and generate domain specific visual language tools. A
common problem for such metatools is specification of
model level behaviours, such as constraints and
dependencies. These often need to be specified using
conventional code in the form of event handlers or the
like. We report our experience in integrating a
declarative constraint/dependency specification
mechanism into a domain specific visual language
metatool, focussing on the tradeoffs we have made in
the notational design and environmental support used.
The expressive power of the mechanism developed is
illustrated by a substantial case study where we have
redeveloped a complex visual tool for architectural
modelling, eliminating conventional event handlers.

Keywords: visual constraint language, visual language
metatool

1. Introduction
It is increasingly common to use metatools to

specify and generate domain specific visual design
tools. Examples of such metatools include MetaEdit+
[12], GME [1], Eclipse GMF [8], and Microsoft DSL
Tools [2] together with our own Pounamu1 [20] and
Eclipse-based Marama2 [10] toolsets. High-level visual
specifications of tool meta-models and visual language
notations allow end users to modify aspects of their
tools such as appearance of icons and composition of
views and meta-models.

However, an area that commonly proves difficult
for meta-tool designers is the specification of model
level behaviours, such as constraints, dependencies,
element initialisations, calculations, etc. Most
approaches for model behaviour specifications use
conventional code in the form of event handlers or
constraint expressions. For example, Pounamu uses
Java-based event handlers, GMF and GME use textual
OCL [18] expressions, and MetaEdit+ uses a
combination of constraint wizards and external code

1 Pounamu is the Maori word for greenstone jade
2Marama is Maori for moon, an Eclipse generator

snippets. The difficulty with all of these approaches is
that the resulting behavioural specifications are not
strongly integrated with the visual meta-model,
resulting in a variety of, in cognitive dimensions [7]
terms, hidden dependency, consistency, juxtaposability
and visibility issues.

In this paper we describe MaramaTatau 3 , an
extension to our Marama metatool set, which provides
the ability to specify behavioural extensions to Marama
meta-models. Although, like GMF and GME, the
behaviours have an OCL formula basis, we have
attempted in the environment design to mitigate the
hidden dependency, consistency and visibility issues
noted above. In the following section we motivate and
background our work in more detail. We then describe
our new approach, using a simple example to illustrate.
A more detailed case study follows, showing the
reengineering of a previously developed tool, in the
process eliminating complex handler code. We discuss
the implications of our work then summarise the
results achieved and proposing further work.

2. Background and Motivation
In our prior work, we have developed a variety of

frameworks and metatools to support specification and
implementation of multiple view, multiple notation
domain specific visual language environments
[11][20]. In each of these platforms we have struggled
to find an appropriate means of specifying behaviour,
despite having used a variety of approaches. One, used
in our JViews framework [11] and Pounamu metatool,
was escape to code with conventional code accessing
tool data structures via an API. This mechanism, also
used by MetaEdit+ and DSL Tools, while very
powerful is also problematic, requiring much repetitive
coding and thorough end user knowledge of the
metatool API. It also has significant hidden
dependency, visibility and juxtaposability problems
due to the differing abstraction levels involved.

A second approach, used in our BuildByWire tool
[17], adopts a concrete visual specification of interface
component constraints for use in our JViews

3 Tatau is the Maori word for “add up” or calculate

jgru001
Text Box
In Proceedings of the 2007 IEEE Symposium on Visual Languages and Human-Centgric Computing, USA, Sept 23-27© 2007 IEEE. Personal use of this material is permitted. However, permission toreprint/republish this material for advertising or promotional purposes or for creating newcollective works for resale or redistribution to servers or lists, or to reuse any copyrightedcomponent of this work in other works must be obtained from the IEEE.

framework. This works well for shape and editor
constraint specification. Kaitiaki [13] uses a dataflow
metaphor to specify view level behaviour-oriented
constraints for our Pounamu metatool. This is more
abstract than BuildByWire, but uses exemplars of user
interface components to make the specifications more
concrete. These two metaphors do not, however,
extend well for model level constraints and
dependencies due to the lack of user interface
exemplars to “concretise” the model level
specifications, and the awkwardness of expressing
calculations, common in model level constraints, using
these metaphors.

An increasingly common approach is to express
model level constraints as declarative formulae.
MetaEdit+ uses a combination of wizards to define
such constraints and natural language rendering to
visualise them. GME and GMF both use OCL
expressions to specify constraints and dependencies.
These latter have the advantage of using a standardised
and compact notation (OCL) familiar to modellers.
These approaches are more successful than “escape to
code”, but still involve a large notational and semantic
separation between the textual constraint formula and
the visually specified metamodel. GME attempts to
bridge this gap by annotating visual model elements to
indicate constraints apply to them, but editing and
understanding a constraint still presents significant
hidden dependency and consistency issues.

Formulaic constraints and dependencies are
common in spreadsheets [5][15]. Spreadsheet formulae
permit declarative specification of system behaviours
and automatic evaluation of them. A highly concrete
metaphor is used, however, with the grid structure
reused for both formula programming and execution,
providing good preservation of the end user’s mental
map of the application. This approach is thus not
immediately adaptable to the domain of metamodellers
as there is necessarily a separation between the
metamodel specification and its end user realisation as
a set of view editors in a generated application.
However, approaches such as ClassSheets [5] and
Forms/3’s prototype approach [15] provide some
indication of how aspects of this metaphor could be
adapted to suit the metamodelling domain. Of
particular interest are hidden dependency mitigation
approaches, such as dependency link views, and the
ease of formula construction afforded.

We have recently developed Marama, a new
metatool platform. Marama has evolved from our
standalone Pounamu tool, but is implemented as a set
of Eclipse plugins, leveraging Eclipse EMF [4] and
GEF [6] frameworks. As part of this redevelopment,
we took the opportunity to address Pounamu’s
difficulties in expressing model-level constraints and

dependencies. Both Pounamu and Marama adopt an
extended entity relationship (EER) model as the
metamodel specification mechanism. The EER model
contains definitions of a set of entities, relationships,
and attributes. We saw a possibility to extend this
simple representation with declarative
constraint/dependency specifications. We were
attracted to a formulaic approach but wanted to
minimise/mitigate the cognitive dimensions tradeoffs
involved. This led to the following set of requirements
for the constraint representation mechanism:
• Aim for target end users who are programming

literate and familiar with modelling concepts
• Ability to represent model level constraints,

dependency calculations, and initialisations
• A compact representation
• Use of a standardised notation familiar to the

target end users for accessibility of use
• Ability to minimise/mitigate hidden dependency

and visibility issues between the constraint
specification and the visual meta model
specification

• Ability to rapidly compose constraints
• Ability to simply visualize execution behaviour

In the next section, we introduce MaramaTatau,
our approach to implementing these requirements.

3. MaramaTatau
MaramaTatau is strongly focussed on structural

constraints. The primary notation for constraint
representation in MaramaTatau is declarative OCL
expressions, a representation chosen for the following
reasons:
• OCL expressions are relatively compact (certainly

in comparison to Java event handler code).
• OCL is specifically designed as a language to

express model level constraints. It thus has
primitives for common constraint expression
needs, e.g. navigation of relationships, set and list
manipulation (including aggregation), and
common calculation operations of various types
(arithmetic, string, boolean).

• While designed for OO metamodels, OCL is
equally applicable to Marama’s EER metamodels.

• OCL is a standardised language, likely to be
familiar to our intended end users.

• The quality of OCL implementations is increasing.

Providing an OCL expression editor, similar to

those in GME and GMF, covers the first four
requirements of the previous section. What
differentiates our approach, however, is the way we
address the other requirements. Our approach is to
combine the advantages of the textual OCL formulae

with the ease of formula construction afforded by
spreadsheets, together with a lightweight, yet robust
mechanism to mitigate hidden dependencies.

Figure 1 shows the Marama metamodel editor with
MaramaTatau extensions. The metamodel shown is for
a simple aggregate system modeller, comprising
wholes and parts, represented by the Whole and Part
entities (1), both generalising to a Type entity and
related by a Whole_Part relationship (2). The entities
have typed attributes, such as name, area, and volume.
Below is the formula construction view (3). This
allows OCL formulae to be selected, viewed and
edited. A list of available OCL functions (4) is used for
formula construction. The formula shown
“self.parts-> collect(cost * (1.0 +
markup))->sum()” specifies that the price attribute
of a whole is calculated by adding the products of its
parts’ cost and markup values.

5

4

1

2

3

6

Figure 1. MaramaTatau visual notation

Also shown in the visual metamodel view are

various annotations (5) indicating the presence of
constraints. Coloured circles placed on attributes or
entities indicate that an OCL formula has been defined
to respectively calculate their value or provide an
invariant constraint over them. All of the attributes of
the Whole entity have such formulae, as do the volume
and big attributes of Part. The annotation is coloured
differently (red) if its formula is semantically incorrect.
Dependency link annotations provide more detailed
information about a selected formula by connecting its
annotation to other elements used in the formula. For
example the formula for the price of a Whole entity is
selected (selection handles showing). The dependency
links show that the price formula is dependent on the
cost and markup attributes of the Parts connected to the
Whole by the Whole_Part relationship. Entities and

connection paths that are directly accessible when
constructing a formula (Whole, Type, Whole_Part)
have grey outline borders around them (6, see below).

We have carefully defined the interaction between
the two views to enhance visibility and minimise or
mitigate hidden dependency issues. Visibility and
hidden dependency issues are addressed by the
following mechanism:
• The OCL and metamodel editors are juxtaposed
together to improve visibility
• Simple annotation of the model elements
indicates formulae related to them are present and
whether they are semantically correct. This is similar to
the GME constraint annotations.
• Formulae can be selected via either the metamodel
view annotation or from a selection list in the OCL
view. This means constraints can be navigated
to/accessed from either view. Selection in one view
causes selection in the other.
• The dependency link annotations in the metamodel
view provide, at a glance, more detailed understanding
of attributes and entities used in the formula. This
visualisation extends beyond that of GME, providing a
more detailed, constraint specific understanding of
dependencies involved. The annotations are modified
dynamically as formulae are edited maintaining
consistency between the views. The extra annotations
are deliberately made visible only when a constraint is
selected to minimise clutter, permit scalability, and
provide task focussed information to the end user. This
approach is similar to dependency visualisations
provided in some spreadsheets, linking cells with
formulae to those they depend on, but applied to a
graphical modelling metaphor rather than a spreadsheet
grid. Coloured dependency links and textual element
references – as done in some spreadsheets – is a
straightforward extension to provide even finer-grained
indication of dependencies.

The rapid composition requirement is addressed by
several techniques, adapted from common spreadsheet
use. These assist with hidden dependency and visibility
issues. Formula construction can be done either
textually, via the OCL view, suitable for those highly
OCL fluent, or “visually” via direct manipulation of
the metamodel view and function selection list to
automatically construct entity, path, and attribute
references and function calls. Clicking on attributes in
the metamodel view places an appropriate reference to
that attribute into the formula. Path references are
constructed by clicking on the relationship and then an
attribute in the entity referenced by that relationship. A
function selected from the list in the OCL view is
inserted as a function call into the formula being
edited, similar to formula selection in spreadsheets.

1

2

Figure 2. (1) Model instantiation view and (2) model instance view.

A difference from spreadsheet formula construction

is that when constructing a formula, only certain
elements are semantically sensible at a particular stage
of editing whereas in spreadsheets, any cell may be
referenced (circular references excepted). For
example, clicking on a Part attribute, without first
constructing a relationship reference via Whole_Part,
does not make sense. To guide users, grey border
highlighting indicates entities and relationship links
valid to select at a given point in formula construction.
Should a semantically incorrect formula be
constructed, the annotation change in the metamodel
view provides immediate visual feedback of the error.

Another area of departure from the spreadsheet
metaphor is in model instantiation. In spreadsheet
based systems the metaphor used is both very concrete
and live. The very nature of metatools, where an
abstract conceptual metamodel is defined necessarily
separately from the views of that model means
concreteness must be sacrificed, and hence there is an
additional set of hidden dependencies and visibility
issues, between the metamodel definitions (including
the OCL formulae) and the model instances, created. In
designing MaramaTatau’s runtime implementation we
have introduced several mechanisms to mitigate these
hidden dependency issues. Liveness, however, is
already well supported in Marama. Unlike almost all
other similar metatools, Marama tool definitions can be
modified on the fly, with changes immediately
reflected in any open tool instances.

Figure 2 (1) shows a modelling tool based on the
Whole Part metamodel used to edit an example model
(the icons and connector forms, and view-model
mappings are defined separately using other Marama
metatools). When such a model instance is being
manipulated (entities and relationships created,

property values edited) relevant formulae are
interpreted and the derived values assigned to their
contextual model entity/relationship properties. For
example the parts list in the whole1 Whole entity,
represented as a multi-line list in the visual modelling
view, has value [part1,part2] constructed using a
formula that collects the name of each linked part into
a new list. Properties with values defined by formulae
are not editable by the end user. Clicking on a formula
in the formula tree window at the bottom right causes
properties calculated by that formula to be highlighted
in the property window to its left.

In Figure 2 (1), only a single Whole Part view is
shown. Marama supports specification of tools with
multiple views and multiple notations; each view being
mapped to a common underlying model (specified
using the metamodel tools). To allow end users to
visualise the shared model, a model instance view is
provided. Figure 2 (2) shows an example of this view
for the Whole Part model. The topmost view contains
all entity and relationship types defined in the
metamodel view. The same element representation is
used as in the metamodel specification to
minimise/mitigate hidden dependency issues between
the metamodel specification and model instance view.
Note that we have chosen not to replicate exactly the
same view because a Marama metamodel can itself be
specified across multiple metamodel views. The model
instance view depicts the union of meta elements in all
such views, so does not follow exactly the same layout.
This is an area we are still experimenting with. An
alternate approach is to provide a set of model instance
views, one for each metamodel specification view.

The table view at the bottom of Figure 2 (2) is a
spreadsheet like representation of all instances of the
element type selected in the top view; the Whole entity

in the view shown. Each row details attribute values
for an instance of the selected entity. These rows may
be expanded, as shown for the first element, to provide
details of other elements associated with the chosen
element via relationships. In the example shown the
two Parts associated with the first of the Whole
elements are detailed. This view, thus provides a rapid
understanding of model elements and related values.

Formulae for calculated attributes are shown by
tooltip when the mouse hovers over such an attribute
value (as for price in Figure 2 (2)). This mitigates the
hidden dependency between the concrete value and its
OCL formula. Further mitigation is provided by a
formula debugger view (Figure 3). This provides a
dynamic, textual visualisation of formula execution,
concurrent with changes occurring in the visual views
(providing good visibility of behavioural changes).
These two features together satisfy the final
requirement: to simply visualize execution behaviour.

Figure 3. Formula debug view

4. Case study
The previous section introduced the notational features
of MaramaTatau plus environment support
mechanisms to mitigate hidden dependency and
visibility issues. To evaluate the scalability and utility
of the approach we present a larger case study
reengineering a previously developed Marama tool to
replace “escape to code” behavioural specifications
with MaramaTatau constraints.

Figure 4. A MaramaMTE architecture view

MaramaMTE [9] is a complex visual tool for
software architecture design and performance test-bed

generation. It provides a number of notational views,
including a structural architecture view and a pageflow
view for specifying abstract user interface behaviour,
all linked to a common underlying model. Figure 4 is a
screen dump of MaramaMTE in use, with a structural
architecture view describing a three-tier client-server
architecture for a travel planning system shown.

In its original form, the implementation of
MaramaMTE required a substantial number of java-
based event handlers to implement various calculations
and constraints. Consider remote objects, the
rectangular icons containing other icons representing
services they provide. For example the bookingService
remoteObject has associated a confirmSeat service.
These remote services have an id attribute which is the
concatenation of the name of the remote object and the
name of the service (eg bookingService.confirmSeat).
The handler code implementing this simple constraint
is substantial. Part of it is shown in Figure 5. Much of
the code involved is repetitive or formulaic,
manipulating Marama data structures via its API to
access attribute values, calculate values, and assign
results.

Figure 5. Handler code implementing constraint

The screen dump in the centre of Figure 6 shows a
major portion of the metamodel for the reengineered
MaramaMTE. A number of formulae have been
defined to calculate various attribute values. Below an
expanded view of the formulae list shows OCL
expressions for each constraint defined. Above an
expanded view of part of the metamodel shows the
Service and Remote Object entities and the relationship
between them plus an OCL formula for the service id
(formula 8 in the list at the bottom). This expression
replaces the complex handler code in Figure 5. This
specification is not only much more compact, it is also
much easier for the end user to understand and reuse.

self.object.name.concat('.').concat(name

Figure 6. MaramaMTE model behaviour specification

A range of other constraint expressions are shown
in the formula list at the bottom. The first of these is an
id calculation for service requests similar to the remote
object service id formula. The next two initialise
attributes representing the types of middleware
supported by the test bed generator. These are used in
the modeller to constrain the combo-box values
selectable by the end user. Those for the remoteObject
and remoteService attributes of Request are moderately
complex conditional expressions, which involve
tracing a series of relationship paths to derive the
names of the remote object and remote service
invoking the request. These are thus derived attributes,
caching values for more convenient use.

As mentioned in the previous section, formulae can
also be placed on entities to specify entity invariant
constraints. In Figure 7 (a) we have extended the
MaramaMTE metamodel with a constraint specifying
that every service instance must serve at least one
service request. This is expressed as a constraint on the
Service entity, with OCL expression “self.
requests->size()<>0”, shown in the overlay.

When this formula evaluates false for a service, e.g.
the cancelBooking service of the bookingService
remote object in Figure 7 (b), a constraint violation
error is generated. In this case a problem marker is

generated in the Eclipse Problems view (shown below)
to provide the user details of the constraint violation. In
this case, to solve the identified error, the user needs to
add a request entity for the identified service. When
this is done, the constraint evaluates to true and the
constraint error is removed from the Problems view.

Feedback from the developers of the original and
reengineered MaramaMTE applications has been very
positive. Combined together the attribute calculation
and invariant constraint formulae were more than
adequate to eliminate all event handlers implementing
model level constraints in MaramaMTE. The
developers felt that the compactness and accessibility
of the constraint notation and its environmental support
had made the application as a whole much more easily
understood and maintained. The notational mechanism
also proved to be highly scalable, being unobtrusive
when the tool designer’s focus was on understanding
metamodel structure, but providing ready ability to
focus in and obtain more detailed information about
particular constraints without losing the metamodel
context they are situated in. The runtime support has
proven more than adequate to allow tool users to
comprehend the calculations being undertaken and for
the tool designer to quickly debug constraints defined.

(a)

(b)

Figure 7. Using formulae to constrain entities

5. Implementation
Figure 8 shows a high-level architecture view of the
Marama meta-tool and Marama Eclipse plug-ins.
Marama uses Eclipse’s GEF and EMF frameworks for
view and model representations respectively [10].
Marama’s development was bootstrapped from our
earlier Pounamu metatool [20]. Originally, we
developed a modeller capable of reading Pounamu tool
definitions and generating Eclipse plugin
implementations. The Marama metatools (to the left in
Figure 8) were then initially defined using Pounamu
and refined within Marama itself, including
implementation of the MaramaTatau formula definition
extensions to the metamodel designer.

Marama tool specifications are represented in XML
format saved to tool projects (1) as hierarchically
organised directories or ZIP archives. MaramaTatau
formulae are stored as XML tags together with other
metamodel elements. Users of Marama locate a desired
existing Marama project to open or request a project be
created via the standard Eclipse resource browser (2).
When a project is re-opened or created in Marama, the
corresponding Marama tool specification files are read

and loaded into DOM objects (3). These are parsed to
provide an in-memory representation of the Marama
tool configuration. This tool configuration is used to
configure an EMF-based in-memory model of both
model and view (diagram) data (the names and
properties of all entities, associations, formulae, shapes
and connectors). Formulae on the user model are
transformed to OCL representations on the Marama
EMF model instance (4). This process is hidden from
the user. To realise MaramaTatau we integrated the
EMF OCL [3] framework to implement a dynamic
compiler and interpreter for MaramaTatau OCL
specifications. The tool configuration is also used to
produce the editing controls of Marama GEF-based
diagram editors (i.e. the allowable shapes and
connectors, their renderings, editable attributes, etc).
When a diagram is opened, Marama configures a GEF
editor and renders the diagram (5). As Marama view or
model data is updated, events are sent and interpreted
into EMF object requests and updates, including
triggering and executing relevant compiled OCL
expressions (6). Marama uses EMF’s XMI save and
load support to store modelling project data (7) [10].

Eclipse IDE

Marama Meta-tool
Application

Specification Tools

Shape Designer

Meta-model
Designer

View Designer

Tool Specifcations
– XML documents

Tool specification
projects (XML)

Marama Plug-in
(GEF Editor)

Eclipse IDE
resource

management

Marama save files - Eclipse
workspace files (XMI)

Marama Plug-in
(EMF Model)

(2)

Adapter API

(3)
(5)

(7)(1)

Tool
config.
held in
DOMs

EMF OCL Plug-
in (OCL

Interpreter)

Event handler objects

(6)(4)

Figure 8. Implementation of MaramaTatau

6. Evaluation
The case study has demonstrated that the approach

we have developed is both effective and scalable, and
amply meets the requirements we established for it.
Informal feedback from the case study developers has
been positive. For additional feedback, we have used a
focus group approach, presenting and demonstrating
case studies to a small group (less than 10 participants)
of experienced modellers, to gather qualitative
feedback on the MaramaTatau visual notation and
environment. Participants found MaramaTatau to be
easy to understand and efficient to use to manage
constraints and dependencies. We are in the process of
performing a much more substantial evaluation
(approximately 100 participants), similar to the one we
undertook for our Pounamu tool [20], of the complete
Marama environment, including MaramaTatau. Results
of this will be presented in due course, but we have
been sufficiently encouraged by our informal
evaluations to include MaramaTatau in the publicly
released version of our Marama tool [16].

In developing MaramaTatau, our focus has been on
providing a compact and accessible constraint
representation for Marama, while minimising hidden
dependency, juxtaposability and visibility issues. To
understand other tradeoffs that we have made to
achieve our primary aims, it is useful to also evaluate
MaramaTatau against other cognitive dimensions.

The visual abstractions introduced are visual iconic
constructs and data dependency links between them.

This is quite a terse (low diffuseness) extension to the
existing metamodel notation and the abstractions are
quite low level, providing a simple overview of
constraints and dependencies, and hence have low
abstraction gradient.

Error proneness has been reduced significantly.
The existing Marama Java-based Marama event
handler designer is very error-prone for both novice
and experienced users due to its reliance on API
knowledge and Java coding together with the
numerous hidden dependencies with the visual
metamodel. MaramaTatau reduces error proneness by
avoiding API details and directly using concepts
visible in the metamodel.

The verbosity (high diffuseness) of the textual
OCL, due to its many built in functions, does,
however, present similar opportunities for error as does
API mastery. The verbosity also introduces some
degree of hard mental operations as users must
remember what function is appropriate for a given
purpose. However, the relative familiarity of OCL with
the target end user group mitigates this and also means
good closeness of mapping for them. The compact
nature of the representation, point and click
construction, and automatic construction of the visual
model annotations, means viscosity is low.

MaramaTatau allows progressive evaluation of a
constraint specification via Marama’s live update
mechanism. Modifications to formulae take effect
immediately after re-registration in an end user tool. A

visual debugger allows users to step through a
formula’s interpretation using the same abstraction
level as they were developed in. By contrast, java event
handlers require conventional java debuggers and a
good knowledge of Marama’s internal structure.

The MaramaTatau entity invariant formulae
mechanism provides a rudimentary form of design
critic [19]. In current work we are extending this
approach to provide a more general critic authoring
mechanism integrated with our Marama toolset. We
are also currently generalising MaramaTatau together
with two other event handling specification approaches
we have developed, ViTABaL-WS [14] and Kaitiaki
[13], into a generic event handling framework.
ViTABaL-WS provides a visual language for the
design and construction of tool abstraction action-
event-based architecture. Kaitiaki provides an
extensible event-query-filter-action language for
responding to propagated events. The generalisation of
these three approaches within the Marama metatool
framework will provide wider-ranging support for
event-based system design and construction. One
element of this is to extend the OCL expression
language with higher-order function capabilities to
provide enhanced expressability.

7. Summary
We have described an approach for

constraint/dependency specification in a domain-
specific visual language meta-tool. This borrows much
from techniques used to support the spreadsheet
metaphor, but in a situation with less concreteness. The
innovation lies in combining well known technologies
in the form of OCL and spreadsheet interfaces in a
simple novel way drawing strength from both while
mitigating their weaknesses. MaramaTatau augments
the Marama meta-tool’s meta-model designers,
allowing tool developers to specify formulae over
meta-models, combined with a one-way constraint
system to compute values during tool usage. This
allows for much simpler specification of dependency
and constraint handling within Marama tools,
compared to both the textual event handlers and
Kaitiaki visual event handlers. The approach has some
similarity to ClassSheets [5], but avoids the grid
structure of that approach, and provides more
mitigation of hidden dependencies. It considerably
extends the visual metamodel annotation mechanism
plus OCL expression of GME, providing many
additional hidden dependency mitigations. Early
developer feedback is very positive.

8. References
[1] A. Ledeczi., M. Maroti, A. Bakay, G. Karsai, J. Garrett,

C. Thomason, G. Nordstrom, J. Sprinkle, and P.

Volgyesi. The Generic Modeling Environment. In Proc.
Workshop on Intelligent Signal Processing. 2001

[2] DSL Tools, http://msdn2.microsoft.com/en-
us/vstudio/aa718368.aspx

[3] Eclipse EMF OCL plug-in,
http://www.eclipse.org/modeling/mdt/downloads/?proje
ct=ocl

[4] EMF, http://www.eclipse.org/modeling/emf/
[5] Engels, G. and Erwig M., "ClassSheets: Automatic

Generation of Spreadsheet Applications from Object-
Oriented Specifications", 20th IEEE/ACM Int. Conf. on
Automated Software Engineering, 124-133, 2005

[6] GEF, http://www.eclipse.org/gef/
[7] Green, T. R. G. & Petre, M. (1996) Usability analysis of

visual programming environments: a 'cognitive
dimensions' framework. J. Visual Languages and
Computing, 7, 131-174

[8] GMF, http://www.eclipse.org/gmf
[9] Grundy, J.C., Hosking, J.G., Li, L. And Liu, N.

Performance engineering of service compositions, ICSE
2006 Workshop on Service-oriented Software
Engineering, Shanghai, May 2006

[10] Grundy, J.C., Hosking, J.G., Zhu, N. and Liu, N.
Generating Domain-Specific Visual Language Editors
from High-level Tool Specifications, Proc. of 2006
IEEE/ACM ASE, Tokyo, 24-28 Sept 2006, IEEE.

[11] Grundy, J.C., Mugridge, W.B., and Hosking, J.G. Static
and Dynamic Visualisation of Software Architectures
for Component-based Systems, Proc. of the 10th
International Conference on Software Engineering and
Knowledge Engineering, San Francisco, June 18-20
1998, KSI Press, pp. 426-433

[12] Kelly, S., Lyytinen, K., and Rossi, M., MetaEdit+: A
Fully configurable Multi-User and Multi-Tool CASE
Environment, Proc. of CAiSE'96, LNCS 1080, 1996.

[13] Liu, N., Hosking, J.G. and Grundy, J.C. A Visual
Language and Environment for Specifying Design Tool
Event Handling, Proc. of VL/HCC’2005, Dallas, 2005.

[14] Liu, N., Grundy, J.C. and Hosking, J.G. A Visual
Language and Environment for Composing Web
Services, Proc. of 2005 IEEE/ACM ASE, Long Beach
CA, Nov 7-11 2005.

[15] M. Burnett, J. Atwood, R. Djang, H. Gottfried, J.
Reichwein, and S. Yang. Forms/3: A first-order visual
language to explore the boundaries of the spreadsheet
paradigm. Journal of Functional Programming,
11(2):155--206, March 2001

[16] Marama, http://www.cs.auckland.ac.nz/Nikau/marama/
[17] Mugridge, W.B., Hosking, J.G. and Grundy, J.C. Drag-

throughs and attachment regions in BuildByWire, Proc.
of OZCHI'98, Adelaide, Australia, Dec 1-4 1998, IEEE
CS Press, pp. 320-327

[18] OCL, http://www.omg.org/docs/ptc/03-10-14.pdf
[19] Robbins, J.E. and Redmiles D.F. Software architecture

critics in the Argo design environment, J Knowledge-
Based Systems 11 (1998) 47-60.

[20] Zhu, N., Grundy, J.C., Hosking, J.G., Liu, N., Cao, S.
and Mehra, A. Pounamu: a meta-tool for exploratory
domain-specific visual language tool development,
Journal of Systems and Software, Elsevier, in press.

