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Abstract 
It is increasingly common to use metatools to specify 
and generate domain specific visual language tools. A 
common problem for such metatools is specification of 
model level behaviours, such as constraints and 
dependencies. These often need to be specified using 
conventional code in the form of event handlers or the 
like. We report our experience in integrating a 
declarative constraint/dependency specification 
mechanism into a domain specific visual language 
metatool, focussing on the tradeoffs we have made in 
the notational design and environmental support used. 
The expressive power of the mechanism developed is 
illustrated by a substantial case study where we have 
redeveloped a complex visual tool for architectural 
modelling, eliminating conventional event handlers. 
 
Keywords: visual constraint language, visual language 
metatool 

1. Introduction 
It is increasingly common to use metatools to 

specify and generate domain specific visual design 
tools. Examples of such metatools include MetaEdit+ 
[12], GME [1], Eclipse GMF [8], and Microsoft DSL 
Tools [2] together with our own Pounamu1 [20] and 
Eclipse-based Marama2 [10] toolsets. High-level visual 
specifications of tool meta-models and visual language 
notations allow end users to modify aspects of their 
tools such as appearance of icons and composition of 
views and meta-models.  

However, an area that commonly proves difficult 
for meta-tool designers is the specification of model 
level behaviours, such as constraints, dependencies, 
element initialisations, calculations, etc. Most 
approaches for model behaviour specifications use 
conventional code in the form of event handlers or 
constraint expressions. For example, Pounamu uses 
Java-based event handlers, GMF and GME use textual 
OCL [18] expressions, and MetaEdit+ uses a 
combination of constraint wizards and external code 

                                                           
1 Pounamu is the Maori word for greenstone jade 
2Marama is Maori for moon, an Eclipse generator  

snippets. The difficulty with all of these approaches is 
that the resulting behavioural specifications are not 
strongly integrated with the visual meta-model, 
resulting in a variety of, in cognitive dimensions [7] 
terms, hidden dependency, consistency, juxtaposability 
and visibility issues. 

In this paper we describe MaramaTatau 3 , an 
extension to our Marama metatool set, which provides 
the ability to specify behavioural extensions to Marama 
meta-models. Although, like GMF and GME, the 
behaviours have an OCL formula basis, we have 
attempted in the environment design to mitigate the 
hidden dependency, consistency and visibility issues 
noted above. In the following section we motivate and 
background our work in more detail. We then describe 
our new approach, using a simple example to illustrate. 
A more detailed case study follows, showing the 
reengineering of a previously developed tool, in the 
process eliminating complex handler code. We discuss 
the implications of our work then summarise the 
results achieved and proposing further work. 

2. Background and Motivation 
In our prior work, we have developed a variety of 

frameworks and metatools to support specification and 
implementation of multiple view, multiple notation 
domain specific visual language environments 
[11][20]. In each of these platforms we have struggled 
to find an appropriate means of specifying behaviour, 
despite having used a variety of approaches. One, used 
in our JViews framework [11] and Pounamu metatool, 
was escape to code with conventional code accessing 
tool data structures via an API. This mechanism, also 
used by MetaEdit+ and DSL Tools, while very 
powerful is also problematic, requiring much repetitive 
coding and thorough end user knowledge of the 
metatool API. It also has significant hidden 
dependency, visibility and juxtaposability problems 
due to the differing abstraction levels involved. 

A second approach, used in our BuildByWire tool 
[17], adopts a concrete visual specification of interface 
component constraints for use in our JViews 

                                                           
3 Tatau is the Maori word for “add up” or calculate 
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framework. This works well for shape and editor 
constraint specification. Kaitiaki [13] uses a dataflow 
metaphor to specify view level behaviour-oriented 
constraints for our Pounamu metatool. This is more 
abstract than BuildByWire, but uses exemplars of user 
interface components to make the specifications more 
concrete.  These two metaphors do not, however, 
extend well for model level constraints and 
dependencies due to the lack of user interface 
exemplars to “concretise” the model level 
specifications, and the awkwardness of expressing 
calculations, common in model level constraints, using 
these metaphors. 

An increasingly common approach is to express 
model level constraints as declarative formulae. 
MetaEdit+ uses a combination of wizards to define 
such constraints and natural language rendering to 
visualise them. GME and GMF both use OCL 
expressions to specify constraints and dependencies. 
These latter have the advantage of using a standardised 
and compact notation (OCL) familiar to modellers. 
These approaches are more successful than “escape to 
code”, but still involve a large notational and semantic 
separation between the textual constraint formula and 
the visually specified metamodel. GME attempts to 
bridge this gap by annotating visual model elements to 
indicate constraints apply to them, but editing and 
understanding a constraint still presents significant 
hidden dependency and consistency issues. 

Formulaic constraints and dependencies are 
common in spreadsheets [5][15]. Spreadsheet formulae 
permit declarative specification of system behaviours 
and automatic evaluation of them. A highly concrete 
metaphor is used, however, with the grid structure 
reused for both formula programming and execution, 
providing good preservation of the end user’s mental 
map of the application. This approach is thus not 
immediately adaptable to the domain of metamodellers 
as there is necessarily a separation between the 
metamodel specification and its end user realisation as 
a set of view editors in a generated application. 
However, approaches such as ClassSheets [5] and 
Forms/3’s prototype approach [15] provide some 
indication of how aspects of this metaphor could be 
adapted to suit the metamodelling domain. Of 
particular interest are hidden dependency mitigation 
approaches, such as dependency link views, and the 
ease of formula construction afforded. 

We have recently developed Marama, a new 
metatool platform. Marama has evolved from our 
standalone Pounamu tool, but is implemented as a set 
of Eclipse plugins, leveraging Eclipse EMF [4] and 
GEF [6] frameworks. As part of this redevelopment, 
we took the opportunity to address Pounamu’s 
difficulties in expressing model-level constraints and 

dependencies. Both Pounamu and Marama adopt an 
extended entity relationship (EER) model as the 
metamodel specification mechanism. The EER model 
contains definitions of a set of entities, relationships, 
and attributes.  We saw a possibility to extend this 
simple representation with declarative 
constraint/dependency specifications. We were 
attracted to a formulaic approach but wanted to 
minimise/mitigate the cognitive dimensions tradeoffs 
involved. This led to the following set of requirements 
for the constraint representation mechanism: 
• Aim for target end users who are programming 

literate and familiar with modelling concepts 
• Ability to represent model level constraints, 

dependency calculations, and initialisations 
• A compact representation 
• Use of a standardised notation familiar to the 

target end users for accessibility of use  
• Ability to minimise/mitigate hidden dependency 

and visibility issues between the constraint 
specification and the visual meta model 
specification 

• Ability to rapidly compose constraints 
• Ability to simply visualize execution behaviour 

In the next section, we introduce MaramaTatau, 
our approach to implementing these requirements. 

3. MaramaTatau 
MaramaTatau is strongly focussed on structural 

constraints. The primary notation for constraint 
representation in MaramaTatau is declarative OCL 
expressions, a representation chosen for the following 
reasons: 
• OCL expressions are relatively compact (certainly 

in comparison to Java event handler code). 
• OCL is specifically designed as a language to 

express model level constraints. It thus has 
primitives for common constraint expression 
needs, e.g. navigation of relationships, set and list 
manipulation (including aggregation), and 
common calculation operations of various types 
(arithmetic, string, boolean). 

• While designed for OO metamodels, OCL is 
equally applicable to Marama’s EER metamodels. 

• OCL is a standardised language, likely to be 
familiar to our intended end users. 

• The quality of OCL implementations is increasing. 
 
Providing an OCL expression editor, similar to 

those in GME and GMF, covers the first four 
requirements of the previous section. What 
differentiates our approach, however, is the way we 
address the other requirements. Our approach is to 
combine the advantages of the textual OCL formulae 



with the ease of formula construction afforded by 
spreadsheets, together with a lightweight, yet robust 
mechanism to mitigate hidden dependencies. 

Figure 1 shows the Marama metamodel editor with 
MaramaTatau extensions. The metamodel shown is for 
a simple aggregate system modeller, comprising 
wholes and parts, represented by the Whole and Part 
entities (1), both generalising to a Type entity and 
related by a Whole_Part relationship (2). The entities 
have typed attributes, such as name, area, and volume. 
Below is the formula construction view (3). This 
allows OCL formulae to be selected, viewed and 
edited. A list of available OCL functions (4) is used for 
formula construction. The formula shown 
“self.parts-> collect( cost * (1.0 + 
markup))->sum()” specifies that the price attribute 
of a whole is calculated by adding the products of its 
parts’ cost and markup values. 
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Figure 1. MaramaTatau visual notation 
 
Also shown in the visual metamodel view are 

various annotations (5) indicating the presence of 
constraints. Coloured circles placed on attributes or 
entities indicate that an OCL formula has been defined 
to respectively calculate their value or provide an 
invariant constraint over them. All of the attributes of 
the Whole entity have such formulae, as do the volume 
and big attributes of Part. The annotation is coloured 
differently (red) if its formula is semantically incorrect. 
Dependency link annotations provide more detailed 
information about a selected formula by connecting its 
annotation to other elements used in the formula. For 
example the formula for the price of a Whole entity is 
selected (selection handles showing). The dependency 
links show that the price formula is dependent on the 
cost and markup attributes of the Parts connected to the 
Whole by the Whole_Part relationship. Entities and 

connection paths that are directly accessible when 
constructing a formula (Whole, Type, Whole_Part) 
have grey outline borders around them (6, see below). 

We have carefully defined the interaction between 
the two views to enhance visibility and minimise or 
mitigate hidden dependency issues. Visibility and 
hidden dependency issues are addressed by the 
following mechanism: 
• The OCL and metamodel editors are juxtaposed 
together to improve visibility 
•  Simple annotation of the model elements 
indicates formulae related to them are present and 
whether they are semantically correct. This is similar to 
the GME constraint annotations.  
• Formulae can be selected via either the metamodel 
view annotation or from a selection list in the OCL 
view. This means constraints can be navigated 
to/accessed from either view. Selection in one view 
causes selection in the other. 
• The dependency link annotations in the metamodel 
view provide, at a glance, more detailed understanding 
of attributes and entities used in the formula.  This 
visualisation extends beyond that of GME, providing a 
more detailed, constraint specific understanding of 
dependencies involved. The annotations are modified 
dynamically as formulae are edited maintaining 
consistency between the views. The extra annotations 
are deliberately made visible only when a constraint is 
selected to minimise clutter, permit scalability, and 
provide task focussed information to the end user. This 
approach is similar to dependency visualisations 
provided in some spreadsheets, linking cells with 
formulae to those they depend on, but applied to a 
graphical modelling metaphor rather than a spreadsheet 
grid. Coloured dependency links and textual element 
references – as done in some spreadsheets – is a 
straightforward extension to provide even finer-grained 
indication of dependencies. 

The rapid composition requirement is addressed by 
several techniques, adapted from common spreadsheet 
use. These assist with hidden dependency and visibility 
issues. Formula construction can be done either 
textually, via the OCL view, suitable for those highly 
OCL fluent, or “visually” via direct manipulation of 
the metamodel view and function selection list to 
automatically construct entity, path, and attribute 
references and function calls. Clicking on attributes in 
the metamodel view places an appropriate reference to 
that attribute into the formula. Path references are 
constructed by clicking on the relationship and then an 
attribute in the entity referenced by that relationship. A 
function selected from the list in the OCL view is 
inserted as a function call into the formula being 
edited, similar to formula selection in spreadsheets. 
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Figure 2. (1) Model instantiation view and (2) model instance view. 
 
A difference from spreadsheet formula construction 

is that when constructing a formula, only certain 
elements are semantically sensible at a particular stage 
of editing whereas in spreadsheets, any cell may be 
referenced (circular references excepted).  For 
example, clicking on a Part attribute, without first 
constructing a relationship reference via Whole_Part, 
does not make sense. To guide users, grey border 
highlighting indicates entities and relationship links 
valid to select at a given point in formula construction. 
Should a semantically incorrect formula be 
constructed, the annotation change in the metamodel 
view provides immediate visual feedback of the error. 

Another area of departure from the spreadsheet 
metaphor is in model instantiation. In spreadsheet 
based systems the metaphor used is both very concrete 
and live. The very nature of metatools, where an 
abstract conceptual metamodel is defined necessarily 
separately from the views of that model means 
concreteness must be sacrificed, and hence there is an 
additional set of hidden dependencies and visibility 
issues, between the metamodel definitions (including 
the OCL formulae) and the model instances, created. In 
designing MaramaTatau’s runtime implementation we 
have introduced several mechanisms to mitigate these 
hidden dependency issues. Liveness, however, is 
already well supported in Marama. Unlike almost all 
other similar metatools, Marama tool definitions can be 
modified on the fly, with changes immediately 
reflected in any open tool instances.  

Figure 2 (1) shows a modelling tool based on the 
Whole Part metamodel used to edit an example model 
(the icons and connector forms, and view-model 
mappings are defined separately using other Marama 
metatools). When such a model instance is being 
manipulated (entities and relationships created, 

property values edited) relevant formulae are 
interpreted and the derived values assigned to their 
contextual model entity/relationship properties. For 
example the parts list in the whole1 Whole entity, 
represented as a multi-line list in the visual modelling 
view, has value [part1,part2] constructed using a 
formula that collects the name of each linked part into 
a new list. Properties with values defined by formulae 
are not editable by the end user. Clicking on a formula 
in the formula tree window at the bottom right causes 
properties calculated by that formula to be highlighted 
in the property window to its left. 

In Figure 2 (1), only a single Whole Part view is 
shown. Marama supports specification of tools with 
multiple views and multiple notations; each view being 
mapped to a common underlying model (specified 
using the metamodel tools). To allow end users to 
visualise the shared model, a model instance view is 
provided. Figure 2 (2) shows an example of this view 
for the Whole Part model. The topmost view contains 
all entity and relationship types defined in the 
metamodel view. The same element representation is 
used as in the metamodel specification to 
minimise/mitigate hidden dependency issues between 
the metamodel specification and model instance view. 
Note that we have chosen not to replicate exactly the 
same view because a Marama metamodel can itself be 
specified across multiple metamodel views. The model 
instance view depicts the union of meta elements in all 
such views, so does not follow exactly the same layout. 
This is an area we are still experimenting with. An 
alternate approach is to provide a set of model instance 
views, one for each metamodel specification view. 

The table view at the bottom of Figure 2 (2) is a 
spreadsheet like representation of all instances of the 
element type selected in the top view; the Whole entity 



in the view shown. Each row details attribute values 
for an instance of the selected entity. These rows may 
be expanded, as shown for the first element, to provide 
details of other elements associated with the chosen 
element via relationships. In the example shown the 
two Parts associated with the first of the Whole 
elements are detailed. This view, thus provides a rapid 
understanding of model elements and related values.  

Formulae for calculated attributes are shown by 
tooltip when the mouse hovers over such an attribute 
value (as for price in Figure 2 (2)). This mitigates the 
hidden dependency between the concrete value and its 
OCL formula. Further mitigation is provided by a 
formula debugger view (Figure 3). This provides a 
dynamic, textual visualisation of formula execution, 
concurrent with changes occurring in the visual views 
(providing good visibility of behavioural changes). 
These two features together satisfy the final 
requirement: to simply visualize execution behaviour. 

 
Figure 3. Formula debug view 

4. Case study 
The previous section introduced the notational features 
of MaramaTatau plus environment support 
mechanisms to mitigate hidden dependency and 
visibility issues. To evaluate the scalability and utility 
of the approach we present a larger case study 
reengineering a previously developed Marama tool to 
replace “escape to code” behavioural specifications 
with MaramaTatau constraints.  

 
Figure 4. A MaramaMTE architecture view 

MaramaMTE [9] is a complex visual tool for 
software architecture design and performance test-bed 

generation. It provides a number of notational views, 
including a structural architecture view and a pageflow 
view for specifying abstract user interface behaviour, 
all linked to a common underlying model. Figure 4 is a 
screen dump of MaramaMTE in use, with a structural 
architecture view describing a three-tier client-server 
architecture for a travel planning system shown. 

In its original form, the implementation of 
MaramaMTE required a substantial number of java-
based event handlers to implement various calculations 
and constraints. Consider remote objects, the 
rectangular icons containing other icons representing 
services they provide. For example the bookingService 
remoteObject has associated a confirmSeat service. 
These remote services have an id attribute which is the 
concatenation of the name of the remote object and the 
name of the service (eg bookingService.confirmSeat). 
The handler code implementing this simple constraint 
is substantial. Part of it is shown in Figure 5. Much of 
the code involved is repetitive or formulaic, 
manipulating Marama data structures via its API to 
access attribute values, calculate values, and assign 
results. 

Figure 5. Handler code implementing constraint 
 

The screen dump in the centre of Figure 6 shows a 
major portion of the metamodel for the reengineered 
MaramaMTE. A number of formulae have been 
defined to calculate various attribute values. Below an 
expanded view of the formulae list shows OCL 
expressions for each constraint defined. Above an 
expanded view of part of the metamodel shows the 
Service and Remote Object entities and the relationship 
between them plus an OCL formula for the service id 
(formula 8 in the list at the bottom). This expression 
replaces the complex handler code in Figure 5. This 
specification is not only much more compact, it is also 
much easier for the end user to understand and reuse.  



self.object.name.concat('.').concat(name

 
Figure 6. MaramaMTE model behaviour specification  

A range of other constraint expressions are shown 
in the formula list at the bottom. The first of these is an 
id calculation for service requests similar to the remote 
object service id formula. The next two initialise 
attributes representing the types of middleware 
supported by the test bed generator. These are used in 
the modeller to constrain the combo-box values 
selectable by the end user. Those for the remoteObject 
and remoteService attributes of Request are moderately 
complex conditional expressions, which involve 
tracing a series of relationship paths to derive the 
names of the remote object and remote service 
invoking the request. These are thus derived attributes, 
caching values for more convenient use. 

As mentioned in the previous section, formulae can 
also be placed on entities to specify entity invariant 
constraints. In Figure 7 (a) we have extended the 
MaramaMTE metamodel with a constraint specifying 
that every service instance must serve at least one 
service request. This is expressed as a constraint on the 
Service entity, with OCL expression “self. 
requests->size()<>0”, shown in the overlay. 

When this formula evaluates false for a service, e.g. 
the cancelBooking service of the bookingService 
remote object in Figure 7 (b), a constraint violation 
error is generated. In this case a problem marker is 

generated in the Eclipse Problems view (shown below) 
to provide the user details of the constraint violation. In 
this case, to solve the identified error, the user needs to 
add a request entity for the identified service. When 
this is done, the constraint evaluates to true and the 
constraint error is removed from the Problems view. 

Feedback from the developers of the original and 
reengineered MaramaMTE applications has been very 
positive. Combined together the attribute calculation 
and invariant constraint formulae were more than 
adequate to eliminate all event handlers implementing 
model level constraints in MaramaMTE. The 
developers felt that the compactness and accessibility 
of the constraint notation and its environmental support 
had made the application as a whole much more easily 
understood and maintained. The notational mechanism 
also proved to be highly scalable, being unobtrusive 
when the tool designer’s focus was on understanding 
metamodel structure, but providing ready ability to 
focus in and obtain more detailed information about 
particular constraints without losing the metamodel 
context they are situated in. The runtime support has 
proven more than adequate to allow tool users to 
comprehend the calculations being undertaken and for 
the tool designer to quickly debug constraints defined.  



(a) 

(b) 

  
Figure 7. Using formulae to constrain entities 

5. Implementation 
Figure 8 shows a high-level architecture view of the 
Marama meta-tool and Marama Eclipse plug-ins. 
Marama uses Eclipse’s GEF and EMF frameworks for 
view and model representations respectively [10]. 
Marama’s development was bootstrapped from our 
earlier Pounamu metatool [20]. Originally, we 
developed a modeller capable of reading Pounamu tool 
definitions and generating Eclipse plugin 
implementations. The Marama metatools (to the left in 
Figure 8) were then initially defined using Pounamu 
and refined within Marama itself, including 
implementation of the MaramaTatau formula definition 
extensions to the metamodel designer. 

Marama tool specifications are represented in XML 
format saved to tool projects (1) as hierarchically 
organised directories or ZIP archives. MaramaTatau 
formulae are stored as XML tags together with other 
metamodel elements. Users of Marama locate a desired 
existing Marama project to open or request a project be 
created via the standard Eclipse resource browser (2). 
When a project is re-opened or created in Marama, the 
corresponding Marama tool specification files are read 

and loaded into DOM objects (3). These are parsed to 
provide an in-memory representation of the Marama 
tool configuration. This tool configuration is used to 
configure an EMF-based in-memory model of both 
model and view (diagram) data (the names and 
properties of all entities, associations, formulae, shapes 
and connectors). Formulae on the user model are 
transformed to OCL representations on the Marama 
EMF model instance (4). This process is hidden from 
the user. To realise MaramaTatau we integrated the 
EMF OCL [3] framework to implement a dynamic 
compiler and interpreter for MaramaTatau OCL 
specifications. The tool configuration is also used to 
produce the editing controls of Marama GEF-based 
diagram editors (i.e. the allowable shapes and 
connectors, their renderings, editable attributes, etc). 
When a diagram is opened, Marama configures a GEF 
editor and renders the diagram (5). As Marama view or 
model data is updated, events are sent and interpreted 
into EMF object requests and updates, including 
triggering and executing relevant compiled OCL 
expressions (6). Marama uses EMF’s XMI save and 
load support to store modelling project data (7) [10].  
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Figure 8. Implementation of MaramaTatau

6. Evaluation 
The case study has demonstrated that the approach 

we have developed is both effective and scalable, and 
amply meets the requirements we established for it. 
Informal feedback from the case study developers has 
been positive. For additional feedback, we have used a 
focus group approach, presenting and demonstrating 
case studies to a small group (less than 10 participants) 
of experienced modellers, to gather qualitative 
feedback on the MaramaTatau visual notation and 
environment. Participants found MaramaTatau to be 
easy to understand and efficient to use to manage 
constraints and dependencies. We are in the process of 
performing a much more substantial evaluation 
(approximately 100 participants), similar to the one we 
undertook for our Pounamu tool [20], of the complete 
Marama environment, including MaramaTatau. Results 
of this will be presented in due course, but we have 
been sufficiently encouraged by our informal 
evaluations to include MaramaTatau in the publicly 
released version of our Marama tool [16]. 

In developing MaramaTatau, our focus has been on 
providing a compact and accessible constraint 
representation for Marama, while minimising hidden 
dependency, juxtaposability and visibility issues. To 
understand other tradeoffs that we have made to 
achieve our primary aims, it is useful to also evaluate 
MaramaTatau against other cognitive dimensions.  

The visual abstractions introduced are visual iconic 
constructs and data dependency links between them. 

This is quite a terse (low diffuseness) extension to the 
existing metamodel notation and the abstractions are 
quite low level, providing a simple overview of 
constraints and dependencies, and hence have low 
abstraction gradient. 

Error proneness has been reduced significantly. 
The existing Marama Java-based Marama event 
handler designer is very error-prone for both novice 
and experienced users due to its reliance on API 
knowledge and Java coding together with the 
numerous hidden dependencies with the visual 
metamodel. MaramaTatau reduces error proneness by 
avoiding API details and directly using concepts 
visible in the metamodel.  

The verbosity (high diffuseness) of the textual 
OCL, due to its many built in functions, does, 
however, present similar opportunities for error as does 
API mastery. The verbosity also introduces some 
degree of hard mental operations as users must 
remember what function is appropriate for a given 
purpose. However, the relative familiarity of OCL with 
the target end user group mitigates this and also means 
good closeness of mapping for them. The compact 
nature of the representation, point and click 
construction, and automatic construction of the visual 
model annotations, means viscosity is low. 

MaramaTatau allows progressive evaluation of a 
constraint specification via Marama’s live update 
mechanism. Modifications to formulae take effect 
immediately after re-registration in an end user tool. A 



visual debugger allows users to step through a 
formula’s interpretation using the same abstraction 
level as they were developed in. By contrast, java event 
handlers require conventional java debuggers and a 
good knowledge of Marama’s internal structure. 

The MaramaTatau entity invariant formulae 
mechanism provides a rudimentary form of design 
critic [19]. In current work we are extending this 
approach to provide a more general critic authoring 
mechanism integrated with our Marama toolset. We 
are also currently generalising MaramaTatau together 
with two other event handling specification approaches 
we have developed, ViTABaL-WS [14] and Kaitiaki 
[13], into a generic event handling framework. 
ViTABaL-WS provides a visual language for the 
design and construction of tool abstraction action-
event-based architecture. Kaitiaki provides an 
extensible event-query-filter-action language for 
responding to propagated events. The generalisation of 
these three approaches within the Marama metatool 
framework will provide wider-ranging support for 
event-based system design and construction. One 
element of this is to extend the OCL expression 
language with higher-order function capabilities to 
provide enhanced expressability. 

7. Summary 
We have described an approach for 

constraint/dependency specification in a domain-
specific visual language meta-tool. This borrows much 
from techniques used to support the spreadsheet 
metaphor, but in a situation with less concreteness. The 
innovation lies in combining well known technologies 
in the form of OCL and spreadsheet interfaces in a 
simple novel way drawing strength from both while 
mitigating their weaknesses. MaramaTatau augments 
the Marama meta-tool’s meta-model designers, 
allowing tool developers to specify formulae over 
meta-models, combined with a one-way constraint 
system to compute values during tool usage. This 
allows for much simpler specification of dependency 
and constraint handling within Marama tools, 
compared to both the textual event handlers and 
Kaitiaki visual event handlers. The approach has some 
similarity to ClassSheets [5], but avoids the grid 
structure of that approach, and provides more 
mitigation of hidden dependencies. It considerably 
extends the visual metamodel annotation mechanism 
plus OCL expression of GME, providing many 
additional hidden dependency mitigations. Early 
developer feedback is very positive.  
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