
Visual Modelling of Complex Business Processes with Trees, Overlays and
Distortion-based Displays

Lei Li1, John Hosking1 and John Grundy1,2

1Department of Computer Science and 2Department of Electrical and Computer Engineering
University of Auckland, New Zealand

{L.Li, john, john-g}@cs.auckland.ac.nz
Abstract

Current approaches to modelling complex business
processes fail to scale to large organizations. Key
issues are cobweb and labyrinth problems exhibited by
conventional box and line metaphors and large
numbers of hidden dependencies introduced by
compartment-based modularity. We have been
developing a new approach, Enterprise Modelling
Language, based on trees, overlays and fish-eye
viewers to overcome these shortcomings of existing
workflow notations. EML utilizes several visual
metaphors to enhance the representation, navigation
and management of large organizational hierarchies
and process flows. We describe a prototype support
tool, MaramaEML, that provides support for multiple
visual notations including the Business Process
Modelling Notation (BPMN), the EML tree-based,
multi-layer hierarchical representation, fisheye
zooming capabilities, automatic BPEL code
generation, and inter-notation mapping. We describe
our experiences using EML to model large business
processes and initial evaluation results.

1. Introduction

Business process modelling integrates typical
business practices, processes and information flows,
data stores and system functions. A vast number of
visual technologies have been applied in the business
process modelling domain to capture graphical
representations of the major processes, flows and data
stores [11]. Examples include Entity-relationship
models [19], Data Flow Diagrams [4], Aspect-oriented
Modelling [2], Flowchart Models [17], Form Chart
Approaches [8], Scenarios[10], Use Cases [6],
Constraint Based Languages [11] and Integration
Definition for Functional and workflow Modelling
[21]. Despite their different visual approaches, most of
these modelling technologies and their notations rely
on the use of process flow or “workflow” structure to
describe the business processes. Using workflow
approaches, business processes are modelled as stages,
tasks and links to represent the operational aspects.

They focus on how systems are structured, who and
how perform business tasks, what the process ordering
is, how to manage information transformation, how to
track the tasks, etc.

While providing a generally accepted metaphor for
process modelling, these workflow-based visual
modelling methodologies present their own set of
problems. These include lack of an efficient way to
reduce the complexity and enhance the scalability of
large business diagrams, “cobweb” and “labyrinth”
layouts in large processes, requiring long term memory
use for multi-view support; introducing many hidden
dependencies; lack of multiple levels of abstraction
support; and most of them only emphasize process
modelling, missing the ability to model system
functional architecture [2][11][14][17].

Our early research into dialogue notations for user
interfaces [15][16] showed that a tree structure is a
very effective visual method to represent hierarchical
relationships and existence of dependencies in
complex flow-based systems. Thus we have developed
a novel tree based visual notation called Enterprise
Modelling Language (EML) to address and mitigate
the shortcomings of current workflow-based notations.
A support tool, MaramaEML, has been developed to
provide facilities such as fisheye zooming, multilayer
navigation, automatic layout, code generation and
notation integration. Our goals are to offer a clear,
concise and compact tree overlay notation to mitigate
the cobweb problem, to provide a software tool
improving business process modelling with EML, and
to support integration of EML with other process
modelling notations.

2. Motivation

We were asked to model a large university
enrolment system as part of a process improvement
exercise. This is a complex enterprise system that
involves dynamic collaborations among five
distinguished parties: Student, Enrolment Office,
Department, Finance Office and StudyLink (the New
Zealand government’s student loan agency).

jgru001
Text Box
In Proceedings of the 2007 IEEE Symposium on Visual Languages and Human-Centgric Computing, USA, Sept 23-27© 2007 IEEE. Personal use of this material is permitted. However, permission toreprint/republish this material for advertising or promotional purposes or for creating newcollective works for resale or redistribution to servers or lists, or to reuse any copyrightedcomponent of this work in other works must be obtained from the IEEE.

Figure 1. Part of a BPMN specification of the Enrolment System.

The main functional requirements are: (1) Students
will use this system to search the course database and
apply for enrolment in target courses; if their
application is approved, they need to apply for a loan
from StudyLink; (2) After receiving student
applications, the Enrolment Office checks the
academic conditions with academic Department staff
and then informs Students of the results; (3)
Department staff check the course enrollment
conditions and make the final decision (approve or
reject); (4) For an approved enrolment application, the
Finance Office tracks fee payment and informs the
Enrolment Office and Department of any changes. If a
Student applies for a loan, the Finance Office also
needs to confirm the student information with
StudyLink. (5) StudyLink investigates the student
information with the university and then approves (or
declines) the loan application.

A conventional Business Process Modelling
Notation (BPMN) diagram capturing some of this
enrolment process is shown in figure 1. This illustrates
the use of process stages, “swim lanes”, process flow,
etc. when modelling a process. Unfortunately as the
process definition grows, the user must create either
massively complex and unwieldy diagrams or “drill
down” into sub-stages, introducing hidden
dependencies and complex navigation [10][11][21].

What we require is an enterprise modelling tool that
includes a visual language that:
a) can efficiently model distributed complex systems

and related collaborations
b) can present multi-level abstraction to assist

different process specifications
c) is easy to understand by both business and

technology participators
d) addresses the problem of modelling over-complex

diagrams among distributed parties
e) can be integrated effectively with other modelling

technologies
f) supports automatic generation from visual models

to industry standard code e.g. BPEL scripts

We have evaluated various visual modelling
languages and support tools to model such a system.
We found that most existing modelling languages and
tools only solve limited design issues. General purpose
modelling languages like UML and Petri Nets [4][6]
have a well-established set of modelling notations and
constructs. Though they are sufficiently expressive to
model business scenarios, they are difficult for a
business user to learn and use (fails items c and e
above). Domain specific languages like Web
Transition Diagrams (WTD) and T-Web systems [13]
are very easy to understand but are limited to the scope
of service level composition and modelling. They are
not efficient in presenting multi-level abstractions of
business processes (fail item b). Business oriented
frameworks like ARIS and TOVE [1][10] are based on
generic and reusable enterprise data model technology.
They also provide a holistic view of process design,
but focus too much on technical processes and efficient
software implementation. Hence, they can result in
ambiguity of the models as extra programming
knowledge is required (fails items a, c, d). Some
efficient modelling languages like BPMN, BioOpera,
Formchart and ZenFlow [3][5][7][8] use simple
notations to represent processes and also provide
support tools to automatically generate industry
standard code like BPML and BPEL4WS [5]. They all
use workflow-based box and line methods to describe
the system. Severe cobweb and labyrinth problems
appear quickly using this type of notation to model the
enrolment system [14]. Multi-view tool support has
been applied in many such systems to mitigate this
problem but this increases hidden dependencies and
requires long term memory to retain the mental
mappings between views (fails item d).

Our earlier work [15][16] on modelling complex
user interfaces and their behaviour with visual
dialogue notations demonstrated a tree-based overlay
structure can effectively mitigate these complexity
problems.

Figure 2. University Enrollment Service Structure.

They are familiar abstractions to manage complex
hierarchical data for business modellers and business
people; can be easily collapsed and expanded for
scalability; can be rapidly navigated; and can be over-
laid by cross-cutting flows and concern
representations.

3. Enterprise Modelling Language

To meet the requirements of section 2, we have
developed EML and a support tool, MaramaEML.
EML’s main features include a tree-based modelling
representation, service collapse, elide and expand
functions; three layers of flow integration (Process
Flow, Exception Flow and Trigger Flow); iteration and
component reuse modelling; data and condition
encapsulation; exclusive and concurrent choice; and
synchronizing merge/split.
3.1 Tree Layout

EML uses a tree layout to represent the basic
structure of a service. Figure 2 shows a complex, fully-
expanded overview of an EML tree modelling the
university enrolment service. The student service,
university service, and StudyLink are sub-services
(represented as ovals) of the university enrolment
service. The university service includes five embedded
services (enrolment office, finance office, credit check,
department and communication). The rectangle shapes

represent atomic operations inside the service. The
StudyLink service also includes a detailed four layer
sub-service structure.

Even in this complex model the EML diagram still
provides a clear structural view. In an EML-modelled
enterprise system, major services are represented as
separate trees. In order to mitigate the complexity of
the diagram, we use symbols inside each service to
identify the elision level of the service visualisation. A
minus (-) symbol indicates all activities in the service
have been expanded (e.g. all the services in figure 1).
A plus (+) symbol indicates that part or all of the sub-
tasks (services) are elided (e.g. Loan Payback service,
Student Account Management service and Credit
Check Service in figure 3). Every notation in the
diagram can be elided and expanded to give users
freedom to control the diagram size. Each tree element
has a set of detailed properties e.g. service type, status,
input, output, loop, condition, rule etc.
3.2 Process Flow (Overlay)

A fundamental part of business process modelling is
the representation of flow between stages. In EML
each business process is represented as an overlay on
the basic tree structure or an orchestration between
different service trees. In a process layer, users have
the choice to display a single process or collaboration
of multiple processes.

Figure 3. Using EML overlays to model the Enrol in a Course process.

By modelling a business process as an overlay on
the service tree, the designer is given a clear overview
of both system architecture and process concurrently.
Processes can be elided mitigating the cobweb problem
common in existing flow-based visual notations.

For example P1.1 to P1.17 in Figure 3 shows the
Enrol in a Course process on the University Enrolment
Service tree. The process starts with a process name
followed by a process flow (blue arrow) representing
the sequence. Each flow has a sequence number; for a
complex process, users can use this to model
concurrency / synchronization. Outline borders of
operations or services used are bold to identify the
track. Data is bound to a process flow to flow in or out
of operations. In this process, the student uses Search
Course DB to select the suitable course and Applies
Enrolment. The enrolment officer Receives Application
and checks this student’s Academic Records with the
Department. As soon as the Department Reports the
student’s record and Approves the course Application,
the enrolment officer will Check other Related
Conditions and ask the finance officer to Request the
Payment. The student then Applies Loan and
StudyLink Checks University Payment information
with the Finance Office and decides if it Approves or
Declines the Loan. If the university receives payment
from StudyLink, the finance officer confirms the
enrolment and Sends the Invoice to the student.
3.3 Service Reuse

EML supports service reuse to reduce structure
complexity and increase modelling efficiency. A
reusable component is represented in a separate tree.

The user pre-defines its structure and saves it in a
library. Reusable components have a unique name for
future usage. The user can easily attach a reusable
component to any branch of an EML tree. In Figure 2
we define a Communication Service as a reusable
component (at the left bottom), reused by the
University Service and StudyLink Service.
3.4 Dependency / Internal Exception (Overlay)

It is important to know if a specific event occurs or
condition met. Events and conditions are referred to as
dependency relationships. In some cases, we can also
treat internal (system) exceptions as triggers. An EML
trigger layer can be used to solve dependency
problems. T1 in Figure 3 shows how dependency
information can be passed from one part of a process
to another if a normal process flow is insufficient. The
red (lighter grey) single arrowhead trigger connector
(T1) represents the dependency. In above example,
when the Finance Office Requests the Payment from
the student, they also need to Check student’s Credit.
If the student has a scholarship, the request payment
amount may be changed. The user can define the
trigger conditions as attributes at each end of the
connecter to control the dependency. The start and end
point of a trigger can be a service, operation or
process. Since EML uses a multi-layer structure, users
can choose to combine the trigger and process layers
(as in Figure 3) or separate them, using different views
to reduce complexity.
3.5 Iteration

EML supports specification of process iteration at

different levels. (1) A single activity loop is
represented as a dashed outline border. Attributes
control the iteration (e.g. loop times, start and complete
conditions, input/output data etc.). Check Other
Conditions in Figure 3 is a single activity loop
example. After the department approves the course
enrolment application based on academic record, the
enrolment office use this function to repeat all the
other related conditions (e.g. available seats in class,
test time impact, tutorial group assign etc). (2) Loops
of two operations, use a dashed line with two
arrowheads. Process P1.13 in Figure 3 shows iteration
of the Check University Payment and Confirm with
StudyLink operations. When StudyLink received the
student loan application, they need to check all course
related information with the university (e.g. student
status, course fee amounts, start and end date etc.). The
process loops until a termination condition is met (all
the information has been confirm). (3) If a loop
involves more than three operations, a single
arrowhead dashed line guides direction, linking
different operations or services in a closed circuit.
3.6 Exception Handling (Overlay)

EML’s exception overlay is used to model errors in
transactions. A failure handling notation (question
mark in the middle of an operation or service) specifies
a transaction failure. Users can set up a start condition
to discriminate different kinds of failures and activate
appropriate exception handlers. An exception handling
layer is constructed to model transaction error handling
in detail. For example, Figure 3 shows the Enrol a
Course process with two exception handlers overlaid.
When the Department staff check the student’s
academic record, an error handler is added to the
operation (question mark in Report Student Records).
If the student’s previous academic record doesn’t
satisfy the course prerequisite, it will decline the
application and drive the exception handler to carry out
an alternative process (negotiate an alternative course
with the student). A second exception hander is on the
Check University Payment operation. If the student
loan application cannot be fully confirmed by the
Finance Office, the alternative is to Decline Loan
Application and Inform the Student. Two green
connectors (E1.1~E1.2) represent the exception flow.
3.7 Exclusive and Multiple Choices

A diamond shape in Figure 3 (attached to the
boundary of Check Other Condition) is used to express
a conditional flow. If the other course related
conditions (e.g. an exam clash with another course)
cannot be fully satisfied (Fail), it informs the student
to Modify Enrolment. Symbol C1 is an annotation used

to describe the flow execution condition. Here, it may
be a possible non-clash exam time table for the student
to reference. If the student Passes the checking, the
enrolment officer will then Approve the Application.

4. MaramaEML

We have developed an integrated design
environment, MaramaEML for creating EML
specifications. This IDE provides a platform for:
efficient EML visual model creation, inspection,
editing, and storage, model driven code generation,
and integration with other diagram types. We
summarise MaramaEML’s major features here. Figure
4 (a) shows a screen dump of a MaramaEML model in
use with a typical EML tree plus a process overlay.
Diagram selection options are in (c). The user can use
normal or marquee selection, tablet based diagram
sketching or zooming to control EML diagrams.
MaramaEML shapes toolbars in (d) and (e) provide
options relating to the construction and editing of EML
tree. Detailed information is entered in the Properties
window (f). Elision and expansion are triggered via
popup menus (g) or the +/- elision buttons. Collapse
this service node and Expand this service node
functions are available for the user to elide or expand a
service node. The user can also select Show/Hide EML
Process/ Exception/Trigger Flow functions to view or
hide overlays. When a Show/Hide Flow function is
selected, a detailed flow list is brought to the screen for
further selection (h). By double clicking the process
names in this list, the user can choose to view one (or
more) appointed process or all of them. Similar
operations apply to the Exception and Trigger Flows.

Due to the complexity of business processes, a
single modelling notation is insufficient to satisfy all
modelling needs. Using integrated visual modelling
business process structures representing different
aspects can be built and maintained graphically.

For instance, in EML, the data are bound to the
process flows via textual properties to reduce diagram
complexity. However, sometimes a user requires this
kind of information to be presented in the diagram.
BPMN diagrams represent the internal data through
data flow sequence well, but this kind of flow-based
approach easily causes diagram cobweb problems. The
ideal solution is to provide the user access to both
diagram types. Our MaramaEML support tool includes
concurrent BPMN, EML and Form Chart views.

Figure shows a multi-view collaboration screen
dump with an EML view (a) and BPMN view (b) to
model same process (Enquire Course Information). In

Figure 4. Using EML and BPMN Views to model the same business process.

the EML view the user can obtain a clear process
sequence while they can also see the data
transformation in the BPMN view.

In order to enhance EML diagram navigation a
distortion-based fisheye zooming function has been
developed. Figure 5 shows an EML fisheye view
screen dump (a). The user draws a “fisheye area”
(dashed line square). Components in this area (b) are
represented at normal size (Finance Office Sub-tree),
while the rest are distorted with the degree of
shrinkage increasing with distance from the fisheye
area.

To support code generation and process model
validation we have integrated a BPEL code generator
and LTSA engine into MaramaEML. In Figure 5 the
EML process layer has been compiled to BPEL
executable code automatically (c). Code is generated
by model dependency analysis and translation to
structured activity constructs. We have integrated an
LTSA engine to verify the correctness of the generated
BPEL (Business Process Execution Language) code.
The LTSA engine compiles EML output (BPEL) and
shows the results in (e). If there are no compilation
errors, an LTS diagram (Labelled Transition System)
is shown (d).

We used our Marama and Pounamu meta-tools to
develop MaramaEML [12][18]. We specified the EML
domain-specific visual language notation and meta-
model and generated Eclipse-based editors from these

to realise the basic support environment. The tree
layout, overlays and distortion-based displays are all
implemented as complex visual event handlers. The
integration of EML with BPMN notation, code
generation of BPEL, and LSTA engine integration are
implemented as event-driven, model-level data updates.

5. Evaluation
We conducted two evaluations of MaramaEML: the

first an extensive cognitive dimensions analysis [20];
the second a task-based end-user evaluation. We
summarise these evaluations below.
5.1 Cognitive Dimensions Evaluation

Consistency (similar semantics are expressed in
similar syntactic forms): The EML underlying
structural tree provides a consistent framework on
which similar semantic operations (standard process
flow, triggers and exceptions) are overlaid using
similar syntactic forms (flow, distinguished by colour).

Visibility (ability to view components easily): In
MaramaEML different modelling notation views can
be juxtaposed. The fisheye viewer supports a high
degree of visibility within EML views, even for very
large diagrams.

Premature commitment (constraint on the order of
doing things): The user has considerable freedom to
model a business process using any EML, BPMN and
Form-Chart notation. In the EML view, the user can
freely traverse through the tree structure view and the

b

d

a

e

c

Figure 5. MaramaEML Fisheye Zooming and LTSA generation to validate process flows.

business process, triggers and transaction layer, or
even integrate them together. However the user needs
to define the business tree structure first and then
construct process overlays.

Hidden dependencies (important links between
entities are not visible): Although by default some
dependencies are hidden, e.g. data bound to the
process flows, and trigger and exception flows are
normally not shown in a process layer, most are readily
accessible via property sheets. The propriety window
and multi-language modelling support can represent
these kinds of abstraction with MaramaEML tool
support. It is possible to show all the dependencies in
the same layer if required.

Error proneness (the notation invites mistakes and
the system gives little protection): The EML notation
is simple, well-defined with high level business
modelling graphical representations. MaramaEML
enforces connectivity constraints and provides design
feedback to users on correctness of notational usage.

Abstraction (types and availability of abstraction
mechanisms): EML is a high level process modelling
language but the metaphors it uses are very business-
oriented and tailored for the enterprise domain, and the
layout is very easy for the user to understand providing
minimal abstraction gradient for the target end-users.

Secondary notation (extra information in means
other than formal syntax): In EML, we integrate
different shapes, colours and text descriptions together

to convey information. Sketch annotations can also be
added to diagrams to convey extra information.

Closeness of mapping (closeness of representation to
domain): EML uses a tree metaphor to represent the
service construction. This hierarchical structure is a
natural way to model business structure and users are
familiar with using it to model complex organizational
hierarchies. Business processes are constructed using a
flow-based overlay metaphor on top of the tree
structure providing good closeness of mapping to
process sequencing. The elision techniques mean that
users can focus on one process at a time minimising
their cognitive load.

Diffuseness (verbosity of language): EML uses quite
a small set of language elements so it is quite terse and
hence easy to learn.

Hard mental operations (high demand on cognitive
resources): In EML, different states and components of
a business process are well discriminated through the
use of the tree-based hierarchy, process overlay,
dependency trigger and different layers of exception
handlers. The complexity of a business process has
been successfully reduced in the EML multi-layer
structure through its elision and overly techniques.
5.2 Task Based End-user Evaluation
 We used several Computer Science research students
to carry out a task-based end-user evaluation of EML
and MaramaEML. The objective was to assess how

easy it is to learn to use EML and its support tool and
how efficiently it can solve the diagram complexity
problem. EML and MaramaEML were briefly
introduced to the students and they were then asked to
perform several predefined modelling tasks. The tasks
were divided into simple, medium and complex levels,
and they were asked to repeat the same task in two
different environments (pen and paper based EML
modelling and software tool-based integrated EML and
BPMN modelling).
 Feedback suggested EML and MaramaEML are very
straightforward to use and understand. The users feel
the tree overlay method is greatly favoured for
reducing the complexity of business processes
compared to using only conventional BPMN views.
They found it very valuable to have a tree overlay
based modelling language as a supplement to
overcome the shortcomings of exiting business process
notations. The multi-view collaboration is a useful
approach to enhance the modelling strength. The
fisheye zooming function is quite easy to use and
increases the navigation ability evidently.

Several limitations and potential improvements
have been identified in our evaluations. These include
a need for more detailed mapping traceability,
unresponsive computer speed in the software tool
(when zooming a large, complex diagram), and a need
for better control of information hiding. We are also
planning a larger evaluation with business end-users.

6. Summary
We have described EML a novel business process

modelling language based on tree hierarchy and
overlay metaphors. Complex business architectures are
represented as service trees and business processes are
modelled as process overlay sequences on the service
trees. By combining these two mechanisms EML gives
users a clear overview of a whole enterprise system
with business processes modelled by overlays on the
same view. An integrated support tool for EML has
been developed using the Eclipse based Marama
framework. It integrates EML with existing business
notations, BPMN and Form-Charts, to provide high-
level business service modelling. A distortion-based
fisheye zooming function enhances complex diagram
navigation ability. MaramaEML can also automatically
generate BPEL code from the graphical representations
and map it to LTSAS for validation.

References
[1] A. Goel, Enterprise Integration --- EAI vs. SOA vs.

ESB, Infosys Technologies White Paper, 2006
[2] A. Gokhale, and J. Gray, “An Integrated Aspect-

Oriented Model-Driven Development Toolsuite for

Distributed Real-Time and Embedded Systems”, Proc.
6th IWSAOM, Chicago, 2005

[3] A. Martinez, M. Patino, etc, “ZenFlow: A Visual Web
Service Composition Tool for BPEL4WS”, Proc of
VL/HCC'05, Dallas, 2005, P181~P188

[4] A. Schnieders, F. Puhlmann, and M. Weske, Process
Modelling Techniques, PESOA Report No. 01/2004
Hasso Plattner Institute, 2004

[5] BPMI, http://www.ebpml.org/bpml.htm, 2006
[6] C. Marshall, Enterprise Modelling with UML.

Designing Successful Software Through Business
Analysis, Addison Wesley, 2000

[7] C. Pautasso, and G. Alonso, “Visual Composition of
Web Services”, Proc. of VL/HCC'03, Auckland, 2003,
p92~p99

[8] D. Draheim and G. Weber, Form-Oriented Analysis,
Springer-Verlag Berlin Heidelberg, 2005

[9] E. Guerra, P. Diaz, and J. Lara, “A Formal Approach to
the Generation of Visual Language Environments
Supporting Multiple Views”, Proc. VL/HCC'05,
Dallas, TX, 2005, p284 ~ p286

[10] F. Buschmann, R. Meunier, and H. Rohnert, etc,
Pattern-Oriented Software Architecture. John Wiley
and Sons, 1996

[11] H.E. Eriksson, and M. Penker, Business modelling with
UML: business patterns at work, Wiley, 2000

[12] J.C. Grundy, J.G. Hosking, N. Zhu, and N. Liu,
“Generating Domain-Specific Visual Language Editors
from High-level Tool Specifications”, Proc ASE06
Japan, 2006, p24 ~ p28

[13] J. Kornkamol, S. Tetsuya, and T. Takehiro, “A Visual
Approach to Development of Web Services
Providers/Requestors”, Proc. of VL/HCC'03,
Auckland, 2003, p251~p253

[14] J. Recker, M. Indulska, M. Rosemann, and P. Green,
“How good is BPMN really? Insights from Theory and
practice.” Proc 14th ECIS, Goeteborg, 2006

[15] L. Li, C.H.E Phillips, and C.J. Scogings, “Automatic
Generation of Graphical Dialogue Model from
Delphi”, Proc of APCHI2004, Rotorua, 2004,
p221~p230

[16] L. Li, The Automatic Generation and Execution of
Lean Cuisine+ Specifications, MSc thesis, Massey
University, New Zealand, 2003

[17] L. Urbas, L. Nekarsova, and S. Leuchter, “State chart
visualization of the control flow within an ACT-R/PM
user model”, In Proc. 4th Int. workshop on Task
models and diagrams, Poland, 2005, p43~p48.

[18] N.P. Zhu, J.C. Grundy, and J.G. Hosking, “Pounamu: a
meta-tool for multi-view visual language environment
construction”, Proc VL/HCC’04, Rome, p254 ~ p256

[19] P. Chen, “Entity-relationship modelling: historical
events, future trends and lessons learned”, Software
Pioneers, Springer, New York, 2002, p296 ~ p310

[20] T. Green, and M. Burnett, etc, “Cognitive Walkthrough
to Improve the Design of a Visual Programming
Experiment”, Proc VL2000, 2000 P172~P179.

[21] V.O. Pinci, and R.M. Shapiro, “Work Flow Analysis”,
Proc. of the 25th CWS, LA, USA, 1993, P1122~P1130

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

