
Inking in the IDE: Experiences with Pen-based Design and Annotation

Beryl Plimmer1, John Grundy1, 2, John Hosking1 and Richard Priest1

1Department of Computer Science and 2Department of Electrical and Computer Engineering
University of Auckland, Private Bag 92019

Auckland, New Zealand
{beryl@cs, john-g@cs, john@cs, rpri032@ec}.auckland.ac.nz

Abstract

Hand-drawn designs and annotations are a common,
human-centric approach frequently used during software
design and code inspection. We describe our research
experiences of adding support for hand-drawn design and
annotation to three Integrated Development Environments
(IDEs): a software design tool; a user interface design
tool; and a programming tool. The aim of this work is to
provide users with more natural interaction techniques
seamlessly integrated into their IDEs through the use of
hand-drawn diagrams, layouts and code mark-ups.

1 Introduction

When designing software, it is very common for
software developers to use sketching and annotation as an
aid to the process. Examples include hand drawn and hand
annotated UML diagrams, sketched user interface designs,
and hand annotations on code printouts. Such sketches and
annotations form an important part in the exploration of
alternative designs, formalization of the designs, and
communication of issues between collaborating designers.
Evidence suggests that hand sketching results in superior
designs, with collaborating designers more prepared to
critique and modify sketches than with more formalized
artifacts such as screen mockups [3],[7],[17].

There has been considerable work in the area of pen
based sketch input of designs, with support for
formalization of sketches into design artifacts. One of the
earliest, SILK [11], allows software designers to sketch an
interface using an electronic pad and stylus. SILK
recognizes widgets and other interface elements as soon as
they are drawn using Rubine’s single stroke gesture
recognition algorithm [21] and can transform sketches into
standard Motif widgets. Denim [13] provides a similar
approach for web interface design while Knight [5] and
SUMLOW [4] support UML diagram sketching. However,
while these systems support sketching and sketch
formalization, they typically lack close integration with
other development tools. Pen and ink annotation on paper
documents is a natural way to record comments and offers
many advantages over keyboard and text based annotations

[14], [15], [1]. Yet, computerization allows additional
support for sharing, storage, transmission and manipulation
of both the original document and the annotations [10], [1].
Others have developed tools for dynamic documents such
as web pages where the ink must be anchored to specific
words or sections of the document and reflow with
document changes [1], [8]. User evaluations we have
undertaken on our standalone design sketch system,
SUMLOW [4] showed that sketched designs are very
useful during early phase UML diagramming and when
collaboratively reviewing and revising designs. Similarly
PenMarked [19] user studies demonstrated that annotating
code to mark programming assignments works well when
ink annotations are computerized. These studies have
affirmed to us that preserving sketch content and having it
formalized and adding pen-based code annotation support
are both appropriate and useful during software design and
review. However, both studies indicated that better
integration with an IDE was essential.

Our thesis is that only with such integration will the
reported benefits of sketching and annotation have
practical impact. This is due to the overhead of importing
from and exporting to (if possible) standalone tools, which
are generally research prototypes that are difficult to
evaluate on real development problems. Another impetus
is the non-linear nature of modern software designs and
code which makes paper-based annotation less viable than
previously. For example, Fagan [6] showed the advantages
of code review in 1976, yet it is still not widely practiced.
Similarly, collaborative reviews of UML designs have
been shown to be beneficial [9], but this is poorly
supported in current tools. Our sub-thesis is that the ability
to informally annotate documents is central to the software
review process, but is poorly supported in current IDEs.

2 Motivation

Consider a software development team collaborating over
the development of a software component. Figure 1 shows
three examples of their collaborations: (a) a sketched UML
design for the component on paper; (b) some sketched
screen layout designs on a whiteboard; and (c) code
printouts with annotations used to support code
review/critiquing and planning for changes.

jgrundy
IEEE Symposium on Visual Languages and Human-Centric Computing, Brighton, UK, 4-8 Sept 2006, © IEEE 2006

jgrundy

a b c

Figure 1. Human-centric sketching and annotation with whiteboards, pen and paper.

These sketched designs, annotations, revisions and
comments are a very natural, human-centric approach
regularly used on these artifacts of the software lifecycle.
However, in each case here, the design decisions have
been made separately from the software tools that the
designers are using to actually develop the software. This
makes it both difficult to reconcile decisions made with the
evolving software artifact and to formally record them.
Sharing paper designs and annotations with those not
present is difficult.

Ideally it is desirable to support design sketches and
their formalizations and code annotations and their
resolution within the IDE. This means they are raised to
first-class objects and are maintained with the rest of the
software artifact, including retention via versioning
support, maintenance through artifact modification,
sharing via distributed collaboration technologies etc.
However, no existing widely used IDE provides such
comprehensive sketching and annotation support.

Abstracting from our motivating example we assert the
following requirements for supporting “inking” (as a
generic term for pen-based sketch/annotation) in an IDE:
x enabling “pen”-based input of content e.g. via a

mouse, tablet PC, and/or e-whiteboard

x capturing such pen-based input into the IDE in a
SEAMLESS way

x support for formalization of the sketched content e.g.
into design diagrams or code review issues

x the ability to link the sketched content to e.g. code
files/lines, or design diagram/elements. This needs to
be trainable and customizable to allow new types of
artifact to be incorporated as the IDE is upgraded

x support for consistency so that changes to the
design/code in the IDE imply that the ink is changed
and vice-versa

x accurate recognition of ink content
x ink is treated as first-class objects in the IDE, ie it can

be saved, loaded, kept with IDE content and versioned

3 Three Exemplars

To explore realization of these requirements our approach
has been to develop three exemplars with the aim to
generalize from then, following the Three Examples
pattern of the Evolving Frameworks Pattern Language
[20]. Each exemplar adds plug-in ink support to an
existing, commonly used IDE.

1

2

3

Figure 2. Sketching user interface designs in FreeForm.

3.1 FreeForm

Freeform is a sketch tool for user interface design
[16],[17]. It is tightly integrated into the Visual Basic IDE
and accessed from the VB tool bar. User interface forms
can be sketched, executed (as sketches), recognized and
beautified before conversion into a VB form. The sketch
space Figure 2 (1) is an unconstrained canvas. Here the
user can explore UI design ideas much as they would on
paper. The storyboard shows thumbnails of each sketch
page and facilitates the establishment of navigation links
between forms. In execute mode (2) designers can ‘play
computer’ filling the form and following links between
forms. Once satisfied with the design, the recognition
engine and beautifier are used to convert the sketch to a
VB form (3). The effectiveness of an integrated sketch
design tool is dependent on reliable recognition and
appropriate beautification. Freeform has a three phase
recognition engine. First, ink strokes (both drawing and
writing) are recognized using a modified Rubine’s
algorithm [21]. The libraries of basic shapes and characters
used for this pattern matching are exposed to the user so
that they can modify them. Second, characters are
combined into words and matched against a small
vocabulary of common UI words. The last phase is the
recognition of UI components. This is achieved by
application of adjacency rules such as a contains b, or a is
beside b, for example a radio button might be defined as ‘a
small circle with a word beside it’. As with the shape
library, the rule base is exposed to the user who can add or
change both components and rules.

Recognition results are superimposed on the sketch. At
this point the user can correct any mis-recognition. When

the user clicks ‘create form’ a new form is created in the
VB project and components are ‘beautified’ and placed on
it. Beautification includes aligning components to a grid
and standardizing sizes. The user can move between VB
forms and sketches, regenerating forms as required.

3.2 MaramaSketch

MaramaSketch is an extension to Marama, an Eclipse
IDE plug-in to support diagram editor generation and
realization. Marama provides conventional CASE tool
diagramming support via drag-and-drop within a form, a
tool palette, and diagram content manipulation.
MaramaSketch allows a user to instead sketch a Marama
diagram with mouse or Tablet PC stylus and have the
diagram symbols recognized and on-demand converted
into Marama computer-drawn content.

Figure 3 shows examples of MaramaSketch in use for
the MaramaMTE software architecture design tool.
MaramaSketch provides a canvas (centre, 1) where the
user can sketch diagram content, as shown for a simple
web-based system architecture design. At left and top are
standard Eclipse IDE file browser and menus. At right is
the MaramaSketch recognition control panel (which can be
hidden if not required). The user has the option of having
sketched content being recognized on user request or to
have them immediately recognized and converted into
beautified MaramaMTE architecture symbols as they are
drawn. In (2) some symbols and text have been recognized
and converted to architecture diagram symbols and textual
property values, while the customer service has not yet
been converted. The user has asked for both sketched
content and MaramaMTE symbols to be shown here.

1

2

3

4

Figure 3. Sketching a software architecture design in MaramaMTE.

In (3) the user has asked for ink to be hidden, the
recognized MaramaMTE architecture diagram notation
symbols only showing. In (4) the user is showing both
sketched and computer-drawn content and annotating the
diagram to discuss possible revisions with others.

MaramaSketch provides an overlay to standard
Marama diagramming tools, allowing ink sketches to be
on-request or immediately recognized and converted to
appropriate Marama diagram elements. Key design
principles of MaramaSketch were to permit the user to
choose when symbols are recognized and converted to
Marama beautified symbols and (like Freeform) to allow
training on-the-fly of the recognizer. The user may request
only sketch, only Marama symbol, or both be displayed, or
selectively show/hide ink and symbol. The user may elect
to have newly drawn sketches immediately beautified to
Marama symbols or do this on request for selected ink.
Changes to sketched ink e.g. resize or move or delete are
immediately reflected in the associated recognized
Marama symbol, and vice-versa. The result is a very
flexible, user-controlled morphing between sketch and
Marama symbols seamlessly integrated into the IDE.

3.3 RichCodeAnnotation

RCA is a tool developed as a VisualStudio .NET IDE
plug-in to support inking over dynamically changing code
files [19]. This tool allows the user to note issues found in
the code file within the digital document using coloured
ink annotations, much like marking up a paper code
printout with pen. When the user wishes to mark a portion
of code, they can bring up the code file’s associated ‘Ink’
window. The ink window is an exact replica of its
corresponding code counter-part, however you can ink
over this window (Figure 4). When the user makes an
annotation, it is automatically attached to a line along with
its ‘ink bookmark’ in the margin of the ink window with
an initial severity rating of medium (orange). Our current
implementation links the ink to the line closest to the start-
point of a new annotation. If the annotation was attached to
the wrong line, the user can drag the ‘ink bookmark’ to the
correct line. The user can then alter the severity to low
(green), high (red) or simply keep it as medium. The user
can switch between the normal and annotated view of the
code via the window tabs or project explorer. As lines are
added or removed from the code, existing ink annotations
in the ink window dynamically move with the line they are
attached to. Ink files are saved and loaded automatically
with a project.

Ink annotation of documents aids understanding of the
document for both the annotator and subsequent reader of
the document. RCA aids code reviewers in analyzing other
programmers’ work and sending them feedback. Markers
in an academic environment can also use this tool, as their
job is similar to that of a code reviewer; they can annotate
a student’s work to provide formative feedback. Likewise

teachers may use it in demonstrations to highlight and
describe portions of code, these annotations can then be
saved and made available to students for future reference.

Figure 4. Annotating code in Visual Studio.

4 Discussion

. Pen-based computing platforms such as PDAs, Tablet
PCs and large-screen E-whiteboards have become
relatively commonplace. However few current applications
– especially IDEs – running on such hardware make much
if any use of ink. Even ink content for Microsoft Word on
the Tablet PC provides only limited recognition of shapes
and text and treats such content rather differently to
standard keyboard and mouse interactions. In contrast our
three exemplars illustrate the possibilities for human-
centric interaction using fully-integrated ink sketch and
annotation content within a variety of IDEs

Ideally users should be able to add pen-based ink
content within their IDEs as seamlessly as they use a
mouse to add and manipulate design diagrams and a
keyboard to enter and modify program code. Users should
be able to move between pen-based interaction and
mouse/keyboard interaction seamlessly, and ink content be
treated the same as other IDE content from mouse or
keyboard. Recognition of ink content and creation and
manipulation of standard design diagram elements and
program code fragments or code annotations should be
supported either eagerly or lazily, depending on user
preference and the task at hand.

In order to make this a reality, IDE developers need to
support the creation and manipulation of IDE content from
a variety of sources – not just pen-based ink but also
speech, still image, video and other tactile devices. Non-
mouse/keyboard device content and any interactions with
other IDE content should be supported with extensible
control and configuration. With pen-based ink and pen-
based content manipulation user preferences and software
development tasks are important to consider and provide

mechanisms for which to adapt. Ink in the IDE should
allow progressive recognition and formalization of pen-
based content where appropriate and close association of
ink with other mouse/keyboard content. Ultimately ink
content should be treated as first-class within the
environment, allowing, for example, ink to be associated
just as readily with other ink content, for example ink
annotation of FreeForm and MaramaSketch sketched
designs and notes on comments in RichCodeAnnotation.

Visual programming in general lends itself well to ink-
based creation and manipulation as demonstrated in the
MaramaSketch and FreeForm design environments. Visual
language IDE developers could also consider use of ink to
support human-centric creation and manipulation of
content. As with existing IDEs challenges include
appropriate integration of ink with computer-drawn
diagrams, use of high quality recognition algorithms, and
appropriate timing of recognition and beautification of ink.
A further consideration is the need to integrate inking into
execution, permitting, for example, annotation of sketches
by the environment executing the program or software
system derived from the sketch to allow users to visualize
execution behavior using the same “formalism” as used to
specify the program (as advocated in the Language Tools
pattern of Evolving Frameworks Pattern Language [20]).

Our experiences demonstrate that current ink
recognition algorithms require considerable further
research and development to enable efficient and effective
ink usage within a range of IDEs. Configuration of
recognition of ink to ensure appropriate eager vs lazy
recognition of ink is essential to ensure both user
preferences and IDE task are well-supported.

5 Summary

We have developed three exemplar plug-ins to
Integrated Development Environments demonstrating the
effectiveness of pen-based content creation and
manipulation. These domains include software design
diagramming, user interface design and code review
supported by annotation. Plug-ins have been successfully
developed for the Visual Basic, Eclipse and Visual Studio
IDEs. Lessons from this work include the need for more
open IDEs to allow pen-based content creation and
management, more effective and configurable recognition
algorithms, and flexibility in configuring and using pen-
based ink in the IDE to improve human-centric interaction.
Using pen-based interaction in combination with other
human-centric techniques, such as speech and gesture
recognition, may further enhance the human-centric
features of Integrated Development Environments.

References

[1] Bargeron, D. and T. Moscovich. Reflowing digital ink
annotations. Proc Chi03. ACM: p. 385 - 393.

[2] Brush, A.B., et al. Robust annotation positioning in digital
documents. Proc Sigchi'2001, ACM: p. 285-292.

[3] Black, A., Visible planning on paper and on screen: The
impact of working medium on decision-making by novice
graphic designers. Behaviour and information technology,
1990. 9(4): p. 283-296.

[4] Chen, Q., Grundy, J.C. and Hosking, J.G. An E-whiteboard
Application to Support Early Design-Stage Sketching of
UML Diagrams, Proc HCC’2003, IEEE, 219-226.

[5] Damm, C.H., K.M. Hansen, and M. Thomsen. Tool support
for cooperative object-oriented design: Gesture based
modelling on and electronic whiteboard. Proc Chi 2000.
2000: ACM: p. 518-525.

[6] M. E. Fagan, Design and Code Inspections to Reduce
Errors in Program Development, IBM System Journal, vol.
15 (3), 1976

[7] Goel, V., Sketches of thought. 1995, Cambridge,
Massachusetts: The MIT Press.

[8] G. Golovchinsky, L. Denoue, “Moving Markup:
Repositioning Freeform Annotations, 2002

[9] P. Grünbacher, M. Halling and S. Biffl, An Empirical Study
on Groupware Support for Software Inspection Meetings,
Proc. 18th IEEE International Conference on Automated
Software Engineering, Montreal, 2003.

[10] A. Huang, T. W. Doeppner, U. C. Readers, Ad-hoc
Collaborative Document Annotation on a Tablet PC, 2003

[11] Landay, J. and B. Myers. Interactive sketching for the early
stages of user interface design. Proc Chi '95. ACM: p. 43-
50.

[12] Landay, J. and B. Myers, Sketching Interfaces: Toward
more human interface design. Computer, 2001. 34(3): p.
56-64.

[13] Lin, J., Newman, M.W., Hong, J.I. and Landay, J. A.
Denim: Finding a tighter fit between tools and practice for
web design, Proceedings of CHI’2000, ACM Press, pp.
510-517

[14] C. C. Marshall, Annotation: from paper books to the digital
library, 1997

[15] C. C. Marshall, Reading and Interactivity in the Digital
Library: Creating an experience that transcends paper, Proc
CLIR/Kanazawa Institute of Technology Roundtable,
Kanazawa, Japan, July 3-4, 2003, pp. 5.4.1-20.

[16] Plimmer, B.E. and M. Apperley. Software for Students to
Sketch Interface Designs. proc Interact. 2003. Zurich: p.
73-80.

[17] Plimmer, B.E. and M. Apperley. INTERACTING with
sketched interface designs: an evaluation study. proc
SigChi 2004. 2004. Vienna: ACM: p. 1337-1340.

[18] Plimmer, B.E. and J. Grundy. Beautifying sketch-based
design tool content: issues and experiences. Proc AUIC
2005. CRPIT, pp. 31-38.

[19] Plimmer, B. and Mason, R. A Pen-based Paperless
Environment for Annotating and Marking Student
Assignments, Proc. Of the 6th Australasian User Interface
Conference, CRPI, Hobart, Australia, Jan 2006.

[20] Roberts, D., Johnson, R., Evolving Frameworks a pattern
language for developing object-oriented frameworks,
http://st-www.cs.uiuc.edu/users/ droberts/evolve.html

[21] Rubine, D. Combining gestures and direct manipulation.
proc CHI '92. 1992: p. 659-660.

