
Proceedings of the 1993 IEEE Symposium on Visual Languages, Bergen, Norway, IEEE CS Press, pp. 220-224

 © 1993 IEEE. Personal use of this material is permitted. However, permission to
 reprint/republish this material for advertising or promotional purposes or for creating new
 collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

 component of this work in other works must be obtained from the IEEE.

Constructing Multi-View Editing Environments Using MViews

John C. Grundy and John G. Hosking

Department of Computer Science
University of Auckland, New Zealand

email: john@cs.auckland.ac.nz

MViews abstracts out common features of multi-view
editing environments that support integrated textual and
graphical programming. It provides a conceptual model
and reusable object-oriented framework for constructing
such environments. Multiple views of a base document are
supported with consistency automatically maintained
between each of the views. MViews has been used to
construct a visual and textual programming and program
visualisation environment for object-oriented systems.
Other applications of MViews under development include
entity-relationship and dataflow diagrammers with
detailed descriptions programmed with text.

1. Introduction

In this paper we describe MViews, a model and
framework for supporting the construction of visual
programming environments. MViews includes a multiple
view with consistency model and free interchange
between textual and graphical modes of programming.
Visual programming environments for particular tasks,
such as object-oriented programming, are constructed by
specialising MViews classes.

The advantages of MViews for visual language
implementation include its representation of programs and
program views as graphs. This allows graph-based
languages, typical of visual languages [2], to be
represented naturally and graph-based semantics to be
represented in the same manner. For multi-view editing,
the text/graphics consistency model produces a novel and
flexible method for integrating high-level graphical
programming and low-level textual programming. The use
of a reusable object-oriented framework, rather than an
environment generator, produces a very flexible set of
building-blocks for constructing environments.

The paper begins with a description of the MViews
conceptual model. This is followed by discussion of SPE,
a specialisation of MViews, providing a programming
environment for an object-oriented Prolog. An overview
of the MViews framework and its implementation is

presented and the paper concludes with a discussion of
current and future work.

2. Multiple view support

Requirements

Visual programming environments that support
multiple views require several facilities:
• A graph-based, abstract and flexible program structure

and semantics representation [1, 2].
• Textual and graphical view support, as visual

programming is typically useful for high-level detail
while text is typically useful for low-level detail [9,
11, 13].

• View editing strategies most programmers prefer,
such as interactively editing graphics and free-editing
text, rather than structure-editing [15].

• An efficient view change propagation mechanism so
all views are made consistent after one view is
updated. This should support incremental view
updates and visual indication of changes that
environments cannot automatically carry out [5, 11].

• An undo/redo facility [12] and modification history
for program components.

• Program persistency and support for tool integration
and extensibility [11].

Existing systems

Smalltalk’s Model-View-Controller (MVC) [7]
provides a framework where views of a model object are
sent “update yourself” messages when the model changes.
This often requires a view to redisplay itself whenever its
model changes as only an indication of change is
propagated [5]. MVC does not directly support
incremental view updating nor efficient recalculation of
semantic attributes.

Unidraw [14] provides a damage algorithm for
incremental view updating and commands implement
undo/redo. It does not directly support textual views
(except a simple export facility) nor modification
histories.

PECAN [12] and GARDEN [13] provide flexible
program representations, program persistency and
undo/redo. They use an MVC-like update model,
however, and do not support modification histories or
visual change indication.

Generated environments like Dora [11],
Mjølner/ORM [10], and LOGGIE [2] provide structure-
oriented editing for views of a program. This editing style
has yet to gain wide acceptance among programmers [15].

The ItemList [5] provides incremental view
updating, similar view and program representation, and
undo/redo. It does not provide a natural way of
representing visual program structure or semantics,
however, nor generic editing mechanisms for view
manipulation.

3. MViews architecture

MViews was designed to satisfy the above
requirements. A central database holds all information
relating to program structure, semantics and different
views of a program. Tools communicate via this database
and tools for a specific environment, such as text or
graphic editors, are either specialised from generic
MViews tools, built using the framework, or existing tools
reused, such as compilers and run-time systems.

Conceptual foundations

MViews represents programs and views as collections
of directed graphs, called program graphs. Program graph
components are elements (graph nodes) or relationships
between components (labelled graph edges) and both can
have named attribute values. As this representation is
graph-based, it can represent visual as well as textual
languages [1, 2]. A base view is used to group program
graphs that comprise a shared, canonical representation of
a program.

Subset views are program graphs representing a subset
of the base program graph and its components. This
allows views of a program to be represented and
manipulated in the same manner as the program.

Each subset view is rendered either graphically or
textually using a display view. Display view components
render subset view components and include icons, glue
and text forms (sequential text).

Operations modify a program graph and include
component addition and deletion, relationship establishing
and dissolving, attribute updating, and view manipulation.

Propagation and recording of change

MViews program graphs are dependency graphs.
Every component has zero or more related components
that may be affected by a change to itself, called
dependent components . An operation applied to a
component informs these dependents of a change using an
update record. All operations generate update records,
which are, conceptually, lists of values describing the
change. For example, an update_attribute(Name,

NewValue) operation on a component Comp will generate
the update record <Comp, update_attribute, Name,
OldValue, NewValue>. Dependent components interpret
update records and modify themselves if necessary,
possibly generating further update records.

A component may store update records (using a list
attribute) to provide a modification history. Update
records may also be stored to support undo/redo by
sending them back to their generating components for
reversal. Update records can also be used to drive data-
driven semantics recalculation and support lazy,
incremental view updating.

Dependent components know the exact change to their
parent, unlike MVC, and thus can make more efficient and
precise responses [5]. This also allows more flexible and
efficient re-computation after change than data-driven
attribute recalculation. Our program graph approach
provides a comparable representation to abstract syntax
trees but supports graph-based program structures and
semantics.

4. The Snart Programming Environment

The first application of MViews has been in the
development of the Snart Programming Environment
(SPE) for Snart, an object-oriented Prolog [9].

An overview of SPE

SPE supports multiple textual and graphical views of a
Snart program sharing common information. This allows
the construction of many views, each focussing on
different aspects of the program, reducing the cognitive
load in understanding a program. Consistency
management is employed to maintain data integrity
between all views sharing information.

Graphical views are interactively-edited using a
palette of tools, menus and dialogues and textual views are
free-edited and parsed. This differs from comparable
approaches [2, 11] employing restrictive structure-oriented
editing [15].

Figure 1 shows SPE editing a simple drawing
program. One graphical view shows major inheritance and
aggregation hierarchies, the other client-supplier
relationships between drawing_window and figure classes.
One textual view shows the class interface for
drawing_window and the other the hide method for figure.

Programmers typically use graphical views for
analysis and design and for static program visualisation.
These views provide class icons with feature names and
generalisation, association, and client-supplier
relationships. View composition and layout are under the
complete control of a programmer.

Textual views are typically used to implement
methods and specify additional class interface details.
Arbitrary documentation of program components can also
be added using textual views. After parsing textual views
the Snart compiler is used to generate Snart code.

Figure 1. The Snart Programming Environment.

Programmers need to locate information easily from a
large number of views and base data. SPE's approach is to
use views themselves in a hypertext-like fashion as the
basis for browsing, with Prograph-style click-points [4] on
icons. Menus are used for textual views for similar view
and program browsing facilities.

Programmers can construct additional views for the
sole purpose of program browsing, based on information
expanded from the base view via dialogues.

Managing change in SPE

MViews provides basic change propagation facilities
based on update records which are used by SPE. Some
changes to graphical views, such as a feature rename, are
applied directly to the view. Other changes, such as
deletion of a relationship cause affected components to be
highlighted in a different colour (eg red for a deleted
feature).

Changes are not immediately made to textual views.
Rather, a readable rendering of an update record is
inserted into the view and a programmer can accept,
implement, or reject the update.

For example, from Figure 1 the first update record in
the drawing_window view indicates that the gfigures feature
has been renamed to figures in another view. The
programmer can:
• accept the change and have SPE modify the text

(changing gfigures to figures)
• implement the change manually

• reject the change, causing it to be undone
In some cases, such as the addition of client-supplier

glue in a graphical view, it is not possible to automatically
update a textual view. Such an example is shown in the
figure::hide view of Figure 1. For this change SPE cannot
infer the appropriate modification to hide and the
programmer must change the method text.

Update records may also be used to inform users of
errors and to document changes via “user defined”
updates. A compilation error and user-defined update are
shown in the drawing_window class definition in Figure 1.

One important consequence of the update record
approach to consistency management is that the collection
of update records for a component provides a modification
history which SPE permits to be browsed and modified.

Runtime support

Programs can be run and debugged from within SPE.
A rudimentary visual debugger allows object data to be
displayed and navigated between using graphical object
views.

MViews can also be used to produce animations of
executing Snart programs. Snart provides a dynamic
object tracing mechanism where individual objects and
some of an object’s features can be spied. MViews uses
this to produce update records equating to object method
calls and attribute assignment which can be used to drive
an animation.

Fig. 2. Program visualisation in SPE.

For example, Figure 2 shows an animation of a sorting
algorithm, a tally graph showing method calls to an object,
and an object data view. Sort animation detects
compare/swap method calls on a sorting object. The tally
graph is a subset view of a hashtable which counts another
object’s message receipts. Both use the same display view
(in this case a bar graph). We are extending SPE’s
visualisation capabilities to include graphical inter-object
references, similar to [6], and to support control flow
visualisation.

5. Design and implementation

To produce a reusable implementation for MViews a
programming environment generator with its own
specification language [2, 10] or a specialisable object-
oriented framework [14] could be implemented. Many
aspects of an interactive environment, such as good editor
interfaces, require specialisation and fine-tuning on
difficult to provide with a generator. For these reasons a
framework approach was chosen.

The MViews architecture

A collection of abstract classes provide a framework
for MViews-based environments. Different kinds of
MViews components are modelled as a class hierarchy,
operations are implemented as method calls and attributes
and relationships as objects.

Base program component classes hold program
structure and semantics data and relationships connect
these components. Basic component operation methods
can be augmented with more complex operations in sub-
classes Subclassing can also over-ride default method
implementations to provide application-specific language
semantics and constraints. Update records are propagated
and stored as objects with attribute values describing the
update.

Subset component classes support the same operations
and update propagation mechanism as base components

with extra methods for view support. Subset views record
subset component updates for undo/redo and interface to
display views and external systems.

Textual and graphical display views group renderings
of subset view components as icons, glue or text forms.
Display views and components are defined as
specialisations of subset views and components.

Graphical views use interactive editing of graphical
icons and glue. The built-in MViews text editor is used to
free-edit textual views. Textual views are parsed, using
application- specific parsers, to update MViews base
components.

A Snart implementation of MViews

MViews has been implemented in Snart and this
provides a reusable framework of Snart classes.
Components and relationships are implemented as Snart
classes, attributes stored as Snart object attributes, and
operations implemented by Snart methods.

Systems such as SPE are constructed by appropriately
specialising these framework classes. For example, a
base_class is specialised from base_component, a
c l a s s _ i c o n from g r a p h i c _ i c o n , and a
class_code_view from textual_view. Environments
define their own attributes, relationships and operation
methods but reuse MViews’ multiple views, consistency
management and persistency systems.

The IspelM framework and SPE

Development of SPE was a two step process. Firstly
IspelM, a framework which supports programming
environments for object-oriented languages (i.e. is
language independent and reusable for different
languages), was specialised from MViews. Further
specialisation tailored IspelM for programming in Snart
producing SPE. IspelM defines classes specialised from
MViews which implement:
• Object-oriented program representation including

class and feature components, and generalisation and
client-supplier relationships.

• Graphical display views and components for
describing and manipulating class relationships with
most methods for interactive editing inherited from
MViews classes.

• Textual display views and text form classes with text
form management, editing, and parsing and unparsing
primitives inherited from MViews classes.
SPE specialises IspelM to support development of

Snart programs. SPE classes define Snart-specific parsers
and unparsers for textual display views, saving and
loading support for Prolog code, and an interface to the
existing Snart compiler and run-time system.

Experience with MViews systems

The development of SPE and IspelM was
considerably easier when compared with Ispel, which was
implemented without framework support [8]. A program
visualisation system, an entity-relationship modeller and a
dataflow diagrammer are currently under development

using MViews. These support multiple textual and
graphical views of quite diverse visual programming
languages and related textual information. Preliminary
results suggest development of these systems is greatly
simplified by using the MViews model and framework.

Systems which support multi-view editing allow
programmers to describe information using the most
convenient representation and level of abstraction [3]. Use
of multiple textual and graphical views in SPE
demonstrates the need for visual indication of view
changes and the ability to automatically apply these
changes. Together with component change histories, this
provides a novel solution to integrating low-level textual
programming with high-level visual programming and
graphical program visualisation. Use of SPE indicates the
MViews approach shows great promise for integrating
these textual and graphical paradigms [9].

6. Summary and current and future research

We have described MViews which supports: program
structure and semantics representation as program graphs;
multiple textual and graphical views; consistency
management via update record propagation; update record
storage for undo/redo and modification histories; generic
routines for component persistency; and a consistent user
interface with external tool interfacing. MViews has been
reused in the development of IspelM, an environment for
object-oriented programming. SPE, a specialisation of
IspelM, supports textual and graphical manipulation of
Snart programs. MViews provides abstractions and a
framework so new environments can support multi-view
editing by simply reusing MViews.

Other applications of MViews currently under
development include: visual debugging using diagrams to
illustrate object references; a dataflow programming tool,
similar to Prograph [4], which can be integrated with
textual views allowing a mixture of textual and dataflow
programming in SPE; and an entity-relationship
diagramming tool with textual relational schema.

Future applications for MViews include:
• Specialisations of IspelM for object-oriented

languages other than Snart
• Better IspelM support for analysis and design.
• Recording of update records in groups with arbitrary

undo/redo to support flexible version control. With
configuration management this could be used to
support distributed multi-user software development.

Acknowledgments

The financial assistance of the University of Auckland
Research Committee is gratefully acknowledged. John
Grundy is supported by IBM, William Georgetti and New
Zealand Universities Postgraduate Scholarships.

References

[1] Arefi, F., Hughes, C.E., and Workman, D.A. (1990):
Automatically Generating Visual Syntax-Directed Editors,
In CACM, 33 (3), 1990, 349-360.

[2] Backlund, B., Hagsand, O., Pehrson, B. (1990): Generation
of Visual Language-oriented Design Environments, In
Journal of Visual Languages and Computing 1 (4), 1990,
33-354.

[3] Brown, M.H. (1991): Zeus: A System for Algorithm
Animation and Multi-View Editing, In Proc of IEEE
Symposium on Visual Languages, 1991, 4-9.

[4] Cox, P.T., Giles, F.R., Pietrzykowski T. (1990): Prograph:
a step towards liberating programming from textual
conditioning, In Proceedings of 1990 IEEE Workshop on
Visual Languages, 1990, 150-156.

[5] Dannenberg, R.B. (1990): A Structure for Efficient Update,
Incremental Redisplay and Undo in Graphical Editors, In
Software-Practice and Experience, 20 (2), 1990, 109-132.

[6] Fenwick, S., and Hosking, J.G. (1993): Visual Debugging
of Object-Oriented Systems, Departmental Report #65,
Computer Science Department, University of Auckland.

[7] Goldberg, A. and Robson, D. (1984): Smalltalk-80: The
Language and its Implementation, Addison-Wesley,
Reading MA., 1984.

[8] Grundy, J.C., Hosking, J.G., and Hamer, J. (1991): A
Visual Programming Environment for Object-Oriented
Languages, In Proc TOOLS 5, Prentice-Hall, 1991, 129-
138.

[9] Grundy, J.C., and Hosking, J.G. (1992): MViews: A
Framework for Developing Visual Programming
Environments, In Proc TOOLS Pacific ‘93, Prentice-Hall.

[10] Magnusson, B., Bengtsson, M., Dahlin, L., Fries, G.,
Gustavsson, A., Hedin, G., Minor, S., Oscarsson, D.,
Taube, M. 1990: An Overview of the Mjølner/ORM
Environment, In Proc TOOLS '90, Prentice-Hall.

[11] Ratcliffe, M., Wang, C., Gautier, R.J., Whittle, B.R.
(1992): Dora - a structure oriented environment generator,
In Software Engineering Journal, 7 (3), 1992, 184-190.

[12] Reiss, S.P. (1985): PECAN: Program Development
Systems that Support Multiple Views, In I E E E
Transactions on Software Engineering, 11 (3), 1985, 276-
285.

[13] Reiss, S.P. (1986): GARDEN Tools: Support for Graphical
Programming, In Lecture Notes in Computer Science #244,
Springer-Verlag, 1986, 59-72.

[14] Vlissides, J.M., Linton M.A. (1989): Unidraw: A
framework for building domain-specific editors. In Proc
ACM SIGGRAPH Symposium on User Interface Software
and Technology, November 1989, 158-167.

[15] Welsh, J., Broom, B., Kiong, D. (1991): A Design
Rationale for a Language-based Editor, Software - Practice
and Experience, 21 (9), 1991, 923-948.

