

MaramaTatau: Extending a Domain Specific Visual Language Meta Tool with a

Declarative Constraint Mechanism

Na (Karen) Liu1, John Grundy1, 2 and John Hosking1
Department of Computer Science1 and Department of Electrical and Computer Engineering2,

University of Auckland, Private Bag 92019, Auckland, New Zealand
{karen | john-g | john }@cs.auckland.ac.nz

Abstract
It is increasingly common to use meta tools to specify and
generate domain specific visual language tools. A
common problem for such meta tools is the specification
of model level behaviours, such as constraints and
dependencies. These often need to be specified using
conventional code in the form of event handlers or the
like. We report our experience in integrating a declarative
constraint/dependency specification mechanism into a
domain specific visual language meta tool, focussing on
the tradeoffs we have made in the notational design and
environmental support used. The expressive power of the
mechanism developed is illustrated by a substantial case
study where we have redeveloped a complex visual tool
for architectural modelling, eliminating conventional
event handlers.

Keywords: visual constraint language, visual language
meta tool

1. Introduction
Brief on need for behavioural spec in meta tools, ways

of doing so

2. Background and Motivation
Elaborate on the above. Lit review
Introduce Marama/Pounamu. Talk briefly about

Kaitiaki and approach to solve constraint/behaviour at UI
level – need for model level equivalent. Examples of
existing code in MaramaMTE handlers or similar.

Come up with set of requirements focussing on how to
best incorporate a declarative constraint/dependency
mechanism into a domain specific visual language
metatool that allows:

simple specification consistent with but complementary to
the existing visual metaphor

simple debugging/visualisation consistent with the
metaphor
avoids the need to write java code/event handlers for
model level constraints/behaviour

3. MaramaTatau (our approach)
Introduce notation using whole part example
Talk about design decisions made
- sacrificed concreteness (split specification and

implementation more than say Forms 3) due to need to
support complex abstractions
- nevertheless a fairly straightforward relationship with
spreadsheet metaphor in terms of runtime behaviour

4. Case study
MaramaMTE example

5. Implementation
Details of implementation – use of OCL package.

Details of architecture

6. Discussion and Evaluation
Elaborate more on tradeoffs/design decision tying

back to Cog Dimensions
Elaborate on case study as a demonstrate by example

evaluation. Talk about amount of code reduction,
increased code visibility, etc

Indicate need to do end user evaluation

7. Conclusions and future work
Mention fits in with broader generalisation of event

management – to come

Acknowledgements
FRST

References
[1]

jgrundy
2007 IEEE Symposium on Visual Languages and Human-Centric Computing, USA, Sept 23-27 2007, © IEEE 2007

jgrundy

