
Generating Reusable Visual Notations using Model
Transformation

Iman Avazpour
Centre for Computing and
Engineering Software and

Systems (SUCCESS)
Swinburne University of

Technology
Hawthorn 3122, VIC,

Australia
iavazpour@swin.edu.au

John C. Grundy
Centre for Computing and
Engineering Software and

Systems (SUCCESS)
Swinburne University of

Technology
Hawthorn 3122, VIC,

Australia
jgrundy@swin.edu.au

Hai L. Vu
Centre for Advanced
Internet Architecture

(CAIA)
Swinburne University of

Technology
Hawthorn, Victoria 3122,

Australia
hvu@swin.edu.au

ABSTRACT
Visual notations are a key aspect of visual languages.
They provide a direct mapping between the intended
information and set of graphical symbols. Visual no-
tations are most often implemented using the low level
syntax of programming languages which is time con-
suming, error prone, difficult to maintain and hardly
human-centric. In this paper we describe an alterna-
tive approach to generating visual notations using by-
example model transformations. In our new approach,
a semantic mapping between model and view is imple-
mented using model transformations. The notations
resulting from this approach can be reused by map-
ping varieties of input data to their model and can be
composed into different visualisations. Our approach
is implemented in the CONVErT framework and has
been applied to many visualisation examples. Two case
studies for visualising statistical charts and visualisa-
tion of traffic data are presented in this paper. A de-
tailed user study of our approach for reusing notations
and generating visualisations has been provided that
shows good reusability and general acceptance of the
novel approach.

INTRODUCTION
Using complex information in a visual format is more
acceptable and effective for human beings in many cir-
cumstances, as visual representations use fuller capa-
bilities of our powerful human visual system. They are
particularly effective for graph-based models or models
with well-known and understood visual representations
[1]. Visual notations are a key part of visualisations.
They are an essential component in supporting interac-
tions with the visualisation. Generating these notation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VINCI 2014, August 5–8, 2014, Sydney, Australia.
Copyright 2014 ACM 978-1-4503-2765-7...$10.00

visualisations using programming languages has always
been time consuming, error prone and difficult. It is
also hardly a human-centric approach, requiring often
detailed technical knowledge and a large distance be-
tween specification (in code) and visual notations.

This paper describes a new approach that allows users
to generate complex visualisations using a drag and
drop, visual and interactive approach which is much
more human-centric. In our new approach a variety of
visualisations can be imported or designed to be used
as a notation’s view representation. Our new approach
uses model transformations as the basis of implement-
ing the mapping between notation’s intended informa-
tion (that we call the notation’s model) and the view.
Once notations are defined, elements of input files to be
visualised are mapped to notation’s model using rule
based transformations. These rule based transforma-
tions allow use of functions and conditions to provide
high flexibility for mapping wide varieties of inputs to a
notation’s model, and hence improve reusability of de-
fined notations. Composition of these notations is used
to generate full model visualisations. Once a visualisa-
tion is generated for one example set of data, another
data set conforming to the same meta-model can be vi-
sualised by reusing the defined visualisation. This ap-
proach is implemented in our CONcrete Visual assistEd
Transformation (CONVErT) framework1.

This paper is organised as follows. The next section
provides a brief overview of closely related work. Sec-
tion three describes our approach followed by two case
studies in section four. Section five provides details of
our user study evaluation and section six provides a dis-
cussion. Finally section seven concludes the paper and
provides key areas of future work.

RELATED WORK
One early approach to reuse notations for visualisa-
tion was provided by Humphrey [2]. He introduced
Relational Visualisation Notation (RVN) for generating

1sites.google.com/site/swinmosaic/projects/convert

multi-dimensional visualisations. RVN is composed of
three parts: semantic data models, graphics relations
and design diagrams. The graphics relations provide
binding between diagrams and informations using alge-
braic expressions. Design diagrams are directed, acyclic
graphs that combine source relations to produce output
graph relations. They combine multiple information
and graphic relation into a visualisation design speci-
fication.

Cerno-II is a visualisation system capable of construct-
ing graphical views of the execution state of object-
oriented programs [3]. It uses display specification lan-
guage to design new representations for displays. Each
descriptor in this language is a functional expression
specifying the general format of a type of display (boxes,
lines, etc.). A specialisation of Cerno-II for user inter-
face component construction was provided in Skin [4].
Skin provides a visual functional language using icons
and connectors. Visualisations are then formed by con-
necting these icons using connectors. Our approach is
similar to these approaches, in that, the basis of nota-
tion design is on set of shapes defining the view, data
descriptions (model), and mapping correspondences be-
tween them. However, these correspondences in our ap-
proach are provided using model transformations.

Ernst et al. provide visualisations for software appli-
cation landscapes (software map) [5]. For each clus-
ter map of the system, they have identified a seman-
tic model and a symbol model and proposed to use
transformations to link the gap between semantic model
(the data to be visualised) and symbolic model (visu-
alisation) [5]. The approach provided by de Lara et
al. also uses model transformations for manipulation
of visual notations [6]. In their approach,syntax of no-
tations is provided by meta models. Using these meta
models, Domain Specific Visual Languages (DSVL) are
defined and their manipulations are implemented using
graph transformations [6]. The approach presented by
Costagliola et al. also makes use of grammars for no-
tation and visualisation design [7]. In their approach
diagramic notations are modelled using eXtended po-
sitional Grammars (XPG). XPG is used for modelling
both visual and textual notations. In their approach,
visual notations are treated as visual languages where
sentences are formed using set of visual symbols [7].
The Graphical Modelling Framework2 (GMF) of Eclipse
platform also helps modellers define a mapping from
model elements to notational elements . In GMF how-
ever, data model, notation model and mapping model
are all defined by meta-models and abstractions.

We take a different approach for notation generation.
In our approach, an existing visualisation is imported
and its visual fragments are used to create notations.
This will allow designers of visual languages and visual-
isations in general to adopt and use any visual design to
suit their needs. The links between model and graph-

2http://www.eclipse.org/modeling/gmp/

ics and shapes (view) of the notations are provided by
mappings implemented using model transformations.
Once notations are defined, our approach allows us to
use model transformations to map multiple input data
to notation’s model. A key difference of our approach
with current approaches is that by adding this transfor-
mation step, it is possible to reuse the once generated
notations for varieties of different inputs and domain.
Whereas in current approaches, the visualisations are
generated once for specific types of inputs. Also, using
by-example transformation allows our approach to in-
corporate user’s domain knowledge in the visualisations
process and hence provide a more user centric visuali-
sation procedure. Similar to some current approaches,
we use meta models for defining the syntax of visual-
isations. In our approach however, these meta-models
are automatically reverse engineered from examples or
defined in the background by the framework when users
are composing notations.

CONVErT framework that is used for implementation
of this approach, has been developed for generating
model transformations using concrete visualisations. The
visualisations in CONVErT however were limited to set
of predefined notations. Using the approach presented
in this paper, we demonstrate how reusable visual nota-
tions can be integrated into by-example transformation
of CONVErT to expand its visualisation and transfor-
mation capability. More specifically, we seek to address
following key contributions:

1. Can we reuse already existing visual notational ele-
ment designs to generate new visual notations?

2. Can we effectively define correspondence links be-
tween data and visual notation following a by-example
and user-centric approach?

3. Can these customised visual notation definitions be
composed and linked together to generate more com-
plex and complete visualisations?

4. Can concrete model visualisations be effectively gen-
erated using a visual and interactive by-example ap-
proach?

5. Can we reuse already defined visual notations for gen-
erating visualisations for different input models?

APPROACH
Our approach to generating visualisations is outlined in
Figure 1. We use three different artefacts: 1. renderable
visual materials or visualisations (Figure 1.1 and 1.8),
2. the file underlying each visualisation or visualisation
file, and 3. input file to be visualised (Figure 1.5). As
the figure demonstrates, our model visualisation proce-
dure starts by reusing an already existing visualisation
(Figure 1.1). We assume a designer has designed the
shapes to be used in the visualisation, in this case a
house. The visualisation designer, who is also our tar-
get end user of the visualisation, splits the visual design
into different visual views depending on application of

the visualisation. For example, in Figure 1 the house
has been split into four views: roof, door, surrounding
walls and window (Figure 1.2). The collection of these
parts defines a house’s visualisation.

Figure 1. Visualisation procedure.

The next step in the visualisation procedure is to gen-
erate reusable visual notations from each view. Visual
(or indeed textual) notations in our approach are repre-
sented by a collection of shapes, text and graphics that
define the view of the notation (provided separately by
a designer). A data part specifies what is to be repre-
sented by the notation (the model). model needs to be
mapped to the view ; therefore, a direct mapping speci-
fication between them should be provided. In our visu-
alisation procedure, user defines these mappings by pro-
viding model element correspondences to the view using
annotations (Figure 1.3). This mapping transformation
generates the view from a model by using the original
view as a template and translating user-provided an-
notations to model transformation correspondences. If
the model changes the view, and hence the visualisa-
tion, can be refreshed to reflect the changes. For ex-
ample if the values of bars in a bar chart are changed
refreshing the visualisation will result in running the
mapping transformations again and hence updating the
bar height. The resulting notation is saved in a notation
repository to be (re)used for generating visualisations
(Figure 1.4).

Notations in the repository can be reused by mapping
elements of different inputs to their model elements.
These mappings are provided using rule based model
transformations. To visualise an input file using pre-
defined notations, elements of input files are mapped
to elements of the visual notation’s model (Figure 1.5).
This step defines how each part of the input file is to
be represented using notational elements. Different in-
puts can be mapped to each notation that allows the
notations to be reused for multiple visualisations. For
example, bar notation of a bar chart could be mapped
to sales data or population records or temperature list-
ings. Once inputs are mapped, the already mapped
notations (we call them customised notations) will be
saved in a repository (Figure 1.6).

A visualisation is generated by composing customised
notations (Figure 1.7). This composition allows a vi-
sualisation file’s meta-model to be generated from the
models embedded in each notation. The notation- em-
bedded models here play the role of meta-model’s vi-

sual vocabulary. Using the meta-model resulting from
the composition, a transformation is generated to trans-
form the input file to the visualisation file resulting from
composition. This visualisation file is then transformed
to visualisations using the mapping transformations em-
bedded in notations. For example in Figure 1, applying
the transformation on the input file has resulted in the
visualisation marked by 8.

This new visualisation approach has been implemented
in CONVErT tool for generating interactive visuali-
sations. CONVErT was initially developed for model
transformation using concrete visualisations [8]. The
visualisation approach presented in this paper provides
better flexibility in domain and types of visualisations
that can be supported in model transformation tasks.
On the other hand, by-example transformation and in-
teraction mechanisms implemented in CONVErT frame-
work helped us better incorporate user-centric drag and
drop approach in the visualisation process. Also, the
transformations used to transform input files to visuali-
sation file use the transformation code generator and en-
gine of CONVErT. To better understand this approach,
the following section provides case studies from some
exemplar application domains.

USAGE EXAMPLES
This section provides two case studies demonstrating
the usage of our approach. The first is a simple ex-
ample that demonstrates visualising input data as a
bar chart. This data can represent various domains
from sales records to report generation. Our second
case study demonstrates a more complex visualisation
of traffic data using 3D shapes and animation.

Case study 1: Generating a reusable bar chart visualisa-
tion
Let’s assume a bar chart visualisation has been designed
by a designer similar to Figure 2(a). Our intention is to
reuse this design, generate reusable notations, and use
them to visualise an input file representing records of a
user study.

(a) Bar chart. (b) Chart view. (c) Bar view.

Figure 2. Bar chart visualisation design.

To generate notations for our bar chart, the design can
be split into two views. A view for chart (Figure 2(b))
and a view for bars (Figure 2(c)). Two notations will
be generated from these views. The various semantic
constructs that these notations represent should be pro-
vided as a notation’s model. In a bar chart visualisation
similar to Figure 2(a), bars represent values of a certain

category by visually depicting that value in the view
using their length. Since multiple bars may exist in a
bar chart, each bar is also accompanied by a name for
the value it represents. Therefore a bar’s model should
specify the value and the name of the bar as in Listing
1. Similarly, since the chart notation needs to provide a
name for the chart, and a name representing scale ele-
ment, it’s model should provide two names as in Listing
2.

Listing 1. Bar’s model
<HorizontalBar>

<Value>50</Value>
<Name>name</Name>

</HorizontalBar>

Listing 2. Bar chart’s
model
<HorizontalBarchart>

<Name>chart name</Name>
<ScaleName>scale name</Scale...
<Bars>bars</Bars>

</HorizontalBarchart>

As a rule of thumb in specifying notation models, vari-
able characteristics of a notation should be specified by
its model. In this example, the bar’s length and name
represent variables to be defined based on (to be visu-
alised) input data. If colour of the notations was also
dependant on values of the input, a colour should also
have been specified in bar notation’s model. Here bar
notation uses default red colour provided by the de-
signer. In this paper, we present these model elements
by XML and views are provided via Windows Presen-
tation Foundation (WPF) and eXtensible Application
Markup Language (XAML) [9]. As a result, our target
visualisations are also XAML and WPF based visuali-
sations. However, the approach can be adopted to use
other technologies as well.

Notations can incorporate, or host, other notations (e.g.
a bar chart visualisation will incorporate multiple bar
visualisations). To clearly define the position which no-
tations are to be placed in a host notation, a placeholder
should be provided in the host notation’s model. For ex-
ample, in listing 2, a “Bars” element is provided as a
placeholder specifying that the bar chart may include
multiple bars. These placeholders specify the linking
and inclusions of a notation in another.

The mapping between model and view in our approach
is a transformation which transforms the domain values
defined in the model into the view. Any updates to the
model will be applied to the view by the mapping, which
itself is created by user-provided annotations in the view
(See Figure 1.3). These annotations define correspon-
dence relationships between model and view and include
one-to-one, and one-to-many and iterative correspon-
dence relations. To specify these correspondences, a
simple annotation scripting language is used in our ap-
proach. This consists of a linkto=“element” for specify-
ing one-to-one correspondences, and callfor=“element”
for specifying one-to-many correspondences. For exam-
ple in the bar chart notation, the name of bar chart and
the scale name should be annotated by “linkto” as in
Listing 3. The placeholder for bars should be annotated
in the view where bar notations are to be inserted. In
this case, bar notations should be inserted as children

of a StackPanel element in the design. As a result, call-
for=“bars” has been annotated in the StackPanel in
Listing 3.

Listing 3. Char notation’s view annotation
<DockPanel xmlns=”http://schem...” Background=”White”>
<TextBlock ... DockPanel.Dock=”Top” Margin=”5”>
<TextBlock.Text linkto=”Name”>Name</TextBlock.Text>
</TextBlock>
<TextBlock ... DockPanel.Dock=”Bottom” Margin=”5”>
<TextBlock.Text linkto=”ScaleName”>Scale</TextBlock..>
</TextBlock>
<StackPanel>
<StackPanel Orientation=”Horizontal”>
<Border BorderBrush=”Black” BorderThickness=”0,0,2,0”>
<Label>
<Label.Background>White</Label.Background>
</Label>
</Border>
<Label Width=”50”/>
</StackPanel>
<StackPanel callfor=”Bars”>
</StackPanel>
</StackPanel>
</DockPane>

Annotated views are read by the transformation code
generator in CONVErT and a mapping transformation
script is generated for each view. In this transformation
script linkto annotations are translated to value fetch
scripts and callfor annotations are translated to call for
templates. As a result, when the mapping transforma-
tion script of bar chart notation is executed, it will fetch
and copy the values provided to its model for the names
to their corresponding TextBlocks in the view. It will
also register a declarative call for templates to be ap-
plied on the data provided to the “Bars” element of bar
chart notation’s model.

The mapping transformation is designed in a way that
can wrap each notation in a predefined interaction logic.
This is done in the transformation code generator that
translates the annotations. In this example the code
generator is configured to wrap notations with drag and
drop, and right click event handlers. As a result the no-
tations generated can be dragged and dropped on a can-
vas or other notations to perform different tasks. Also
right clicking on each notation reveals its model ele-
ments. This interaction can be altered according to ap-
plication of notations. For example, one could provide
events to right click on a notation and receive additional
information regarding its data. The events to be per-
formed in this wrapping are implemented in event han-
dling mechanism of WPF. If alternative visualisation
mechanisms are being used, the wrapping can be altered
to use other event handling mechanisms. Examples of
these wrapping mechanism have been used in CON-
VErT framework for model transformation where drag-
ging and dropping notations performed model transfor-
mation tasks (e.g. see [10, 11]).

Step two involves transforming example input data to
the specified notational elements. This step is used to
provide the system with information in order to cre-
ate transformation rules for transforming specific parts
of input models to the notation’s model data. Input

data is shown using a tree layout provided by CON-
VErT framework by default. Elements of input can be
dragged and dropped on elements of notation model to
generate the transformation from input to notation’s
model. Figure 3 demonstrates how elements of input
can be mapped to elements of both chart and bar nota-
tions using drag and drop. In this example, the input to
be visualised represents the values of a Likert based user
study. Each Likert point is mapped to a bar with its
Name and Percentage representing Name and Value of
the bar (see Figure 3(b)). Similarly, “EvaluationData-
Point” element is mapped to bar chart notation with its
Name and Category representing Name and ScaleName
of the chart (see Figure 3(a)). Note that “Bars” element
placeholder is shown with different colour to separate it
from other elements of chart notation’s model.

(a) Mapping EvaluationDataPoint to chart notation.

(b) Mapping LikertPoint elements to bar notation.

Figure 3. Mapping input elements to notations.

The defined customised notations are saved in reposi-
tory. These customised notations represent a transfor-
mation rule that transforms portions of input to no-
tation’s model (and its reverse where possible). As a
result, a notation can be reused to create multiple cus-
tomised notations for different inputs. Here for exam-
ple, a transformation rule will be generated to trans-
form each “LikertPoint” element to a bar’s model, and a
transformation for transforming “EvaluationDataPoint”
to chart’s model.

Once input data to notation transformation is complete,
the defined customised notations need to be composed
to generate a meta-model for the visualisation file and
a complete input to visualisation file transformation.
An example of composing chart and bar notations to
generate bar chart visualisation is provided in Figure
4. Linking a notation to a placeholder in another no-
tation presents the dragging notation’s model to the
placeholder element of host notations. This will spec-
ify that model of the dragging notation is to be copied
inside placeholder element of host notation. Since each
customised notation also includes a transformation rule

for transforming a portion of input data to the nota-
tion’s model, this linking will also provide background
logic so that the host notation knows that the trans-
formation rule provided by the notation being dragged
inside it should be called. This is in order to effect
the embedded input file to notation’s model transfor-
mation and results in scheduling of input element-to-
visual notation transformation rules. In our example,
the bar customised notation’s model is to be included
in the “Bars” element placeholder of the chart notation,
specifying that the chart may contain set of bars. This
composition generates a grammar for bar chart where
multiple bars can be provided inside the chart.

Figure 4. Composing notations to create a visualisation
for a bar chart. Arrows are provided by framework to
trace notation composition.

Linking a notation to a start element will define the
parent notation and hence the top-most (first to be
run) transformation rule for the completed model trans-
formation specification. This tells the transformation
scheduler to start generating input file to visualisation
file’s transformation code from the rule linked to this
start element. For example in figure 4, the transfor-
mation rule associated to chart customised notation
(transforming EvaluationDataPoint to chart notation’s
model) is the first rule to be called. It then calls the
transformation rule associated with the bar notation
accordingly to transform LikertPoint elements to bar
notation Models. Meta-models resulting from composi-
tion are also used for model validation purposes. The re-
sulting visualisation file of this composition is provided
in Listing 4. Note how model part of bar notations are
copied into the Bars element of chart notation’s model
(due to space limitation, only one bar notations’ model
is shown).

Listing 4. Resulting visualisation file of the composition
in Figure 4
<HorizontalBarchart>

<Name>Q1</Name>
<ScaleName>Frequency</ScaleName>
<Bars>

<HorizontalBar>
<Value>30</Value>
<Name>1</Name>

</HorizontalBar>
...

</Bars>
</HorizontalBarchart>

To render visual elements the visualisation file needs to
be transformed into a renderable visualisation. This
rendering in our approach reuses the model to view
mapping transformation of notations available in the
notation repository. When a visualisation file is to be
rendered (as visualisation), it is checked against the

mapping transformations of the notations in the nota-
tion repository. A visitor pattern is used to search the
visualisation file for constructs similar to model part of
notations where those model to view mapping transfor-
mations could be applied. The mapping transforma-
tions of the matching notations will be returned by this
visitor. From these retrieved transformations, a trans-
formation script is generated to transform the visual-
isation file into renderable visualisations (in this case
XAML graphics). This transformation script is exe-
cuted using the transformation engine of CONVErT
and the resulting XAML code will be rendered in the
framework or can be exported as browser based visual-
isation. For example, the resulting bar chart visualisa-
tion of the visualisation file in Listing 4 is depicted on
Figure 5.

Figure 5. Resulting bar chart visualisation.

As stated above, user can interact with the notations
of this visualisation. For example, they can drag each
bar into other notations or other canvases. The next
section provides a more complex example using 3D vi-
sualisations.

Case study 2: Visualising traffic data
Traffic congestion is an ongoing issue for modern cities
around the globe and it is important to understand how
congestions form, monitor and promptly take action
against them. Analysis of congestion requires consider-
able knowledge of the network and is largely still based
on the operator’s past experience in dealing with local
traffic. In this case study, we provide a visualisation
that enables the tracking of congestion through both
temporal and spatial dimensions by displaying the num-
ber of cars passing a number of intersections (referred to
as volume data) for set of particular intersections over
time in a 3D map. This visualisation will help to better
monitor traffic volume and congestion.

Similar to our first case study, we assume a designer
has generated a visualisation of Melbourne CBD as in
Figure 6(b). This visualisation is inspired by the 3D vi-
sualisation of USA’s population over time introduced by
Petzold [12] (See Figure 6(a)). It demonstrates popula-
tion of each point of interest on a map using 3D bars. A
slider is provided to navigate the visualisation to depict
data for different years. The 3D visualisation provided
by our designer exhibits similar features. It provides a
slider bar to navigate between multiple frames where
each frame demonstrates a traffic volume record at cer-
tain time. It also provides a 3D rendering of Melbourne

CBD for each frame and a 3D bar. Our intention is to
adopt this visualisation for generating a time-lapse of
traffic volume in Melbourne CBD for four intersections.

To generate the required notations from the provided
visualisation, we propose breaking it into three nota-
tions: 3D bar, map overview for a specific time, and
a map host to review multiple congestion records on
maps for different time frames as in Figure 7. The com-
bination of these three views is used to generate the
complete visualisation.

(a) Map host. (b) Map. (c) 3D bar.

Figure 7. Traffic visualisation notation views.

Given the views in Figure 7, the required model data to
be represented by them is provided in Listings 5 to 7.
Map host of Figure 7(a) provides a description of the
visualisation and a horizontally laid out list that em-
beds visual elements inside it. We intend to put Map
views for each time frame in this list and as a result, the
linked slider would provide navigation between frames.
The Map host notation’s model will then have to include
multiple other notations (in this case maps). Therefore
the map host notation’s model in Listing 5 provides a
placeholder for visuals and a description. Map nota-
tion provides a description for the map and will include
multiple bars depending on the provided data. As a
result its model should include the description and a
placeholder for bars. Listing 7 provides map notation’s
model. 3D bars to be laid out on the map take a value
to be represented by their height, a colour, and longi-
tude and latitude to specify their position on the map.
3D bar notation’s model is provided in Listing 6.

Listing 5. Host’s
model
<VisualizationHost>
<Description>desc</De...
<Visuals>maps</Visuals>

</VisualizationHost>

Listing 6. 3D Bar’s
model
<CubeData>
<Colour>Blue</Colour>
<Longitude>−37.814790</Lon...
<Latitude>144.969018</Latit...
<Value>10</Value>

</CubeData>

Listing 7. Map’s model
<MapData>
<MapDescription>Desc</MapDescription>
<TDBars>bars</TDBars>

</MapData>

To link these Models to their view, correspondence links
between elements of view and model should be anno-
tated in the view. In this example, elements of the
bar’s model are in one to one relationship with their
corresponding view elements. As a result they should
be annotated by linkto annotations (not provided here
due to space limitation). A map may include multiple
bars, as a result, callfor annotation should be provided
in its view to reflect the one to many relationship be-

(a) Visualisation of USA population. (b) Traffic visualisation provided by a designer

Figure 6. Samples of 3D visualisations.

tween the map and the bars. Map description, should
be viewed on top of the map, therefore the linkto an-
notation is provided to link the description provided by
map model to the text block representing the descrip-
tion on top of the map. Listing 8 presents annotated
view of our map notation. Similar to the map notation,
map host notation includes multiple maps. It therefore
represents one to many relationship between the host
and multiple maps (“visuals”) to be inserted inside it
using a callfor annotation. It also has a description that
allows the visualisation description to be displayed on
top, this description should be provided by linkto an-
notation similar to Map notation.

Listing 8. Map’s annotated view (Some details have been
omitted to save space)
<DockPanel ...>

<TextBlock DockPanel.Dock=”Top” ...>
<TextBlock.Text linkto=”MapDescription”>desc</Text...>

</TextBlock>
<Canvas DockPanel.Dock=”Bottom”>

<Viewport3D Canvas.Left=”0” Canvas.Top=”0”...>
<Viewport3D.Camera>

<PerspectiveCamera FarPlaneDistance=”200”.../>
</Viewport3D.Camera>
<ModelVisual3D>

<ModelVisual3D.Content>
<DirectionalLight Color=”White” Direction=”...”/>

</ModelVisual3D.Content>
</ModelVisual3D>
<Viewport2DVisual3D>

<Viewport2DVisual3D.Material>
<DiffuseMaterial>

<DiffuseMaterial.Brush>
<ImageBrush>

<ImageBrush.ImageSource>MelbBing.bmp</I...>
</ImageBrush>

</DiffuseMaterial.Brush>
</DiffuseMaterial>

</Viewport2DVisual3D.Material>
<Viewport2DVisual3D.Geometry>

<MeshGeometry3D Positions=”−55,0,−30 −55,0,...”/>
</Viewport2DVisual3D.Geometry>

</Viewport2DVisual3D>
</Viewport3D>
<Canvas callfor=”TDBars”>
</Canvas>

</Canvas>
</DockPanel>

Using these annotations, the required model to view
mapping transformation for each notation is generated
by the transformation code generator of our CONVErT
framework. These notations will be saved in a notation
repository and can be reused by mapping different input
data to their model elements. In this example, we are
assuming a traffic data file is provided which includes
the volume data records of four intersections in Mel-

bourne CBD. This data is provided using traffic sensors
positioned in these intersections which record volume
data for each five minutes. Using the transformation
generation mechanism available in CONVErT, we can
map these data records to our recently generated nota-
tions by drag and dropping each element on correspond-
ing notation element. In this example, we map each
junction data to a bar representing its traffic volume as
in Figure 8. The colour of the bar is calculated based on
a threshold value. If traffic volume is more than or equal
to 20 cars per five minutes, the bar should be red to
indicate a warning, and blue otherwise. These colours
are generated using the transformation conditions avail-
able in CONVErT framework. These conditions can
be customised to suite every application. Similar to
conditions, transformation functions are also available
in CONVErT in case more complex correspondences
needed to be defined, for example many-to-many, arith-
metic, and string processing functions (for more infor-
mation on these conditions and functions and how these
transformations are generated, please refer to [13]).

(a) Mapping elements to condition and notation.

(b) Mapping colours to condition.

Figure 8. Mapping input data to 3D bar’s notation. Ar-
rows depict drag and drop.

Each record element of the input data is to be mapped
to a Map notation, with its time linked to Map’s de-
scription as in Figure 9(a). The traffic data element
will be mapped to our Map host notation where its de-
scription if linked to host’s description (see figure 9(b)).

Saving the above specified mapping will result in gen-

(a) Mapping Record element to Map notation.

(b) Mapping TrafficData element to Map host notation.

Figure 9. Mapping input data to notations. Arrows
depict drag and drop.

eration of customised notations. Similar to our first
case study, these notations can be composed to gener-
ate the meta-model for visualisation file according to
their placeholders (see Figure 10). This composition
results in a transformation from the input file to the
visualisation file confirming to the composition’s meta-
model.

Figure 10. Composing notations to create a 3D map
visualisation.

The visualisation file resulting from this transforma-
tion will be transformed to a renderable visualisation
by reusing the model to view mapping transformations
available in the notations of notation repository. The
result of rendering the generated visualisation file is pre-
sented in Figure 11. Sliding the slider will result in an
animated visualisation of how traffic volume changes
over time. In Figure 11 the displayed frame represents
traffic volume at 12:35 pm. It is interesting to note that
if the input file is changed while conforming to the same
meta-model (for example if data for other junctions is
added to the input file), the same transformation can
be used to generate updated visualisations.This is due
to the fact that transformation rules for performing the
input to visualisation procedure are already defined.

EVALUATION
The evaluation of our approach is divided to two parts.
First, capability testing using the case study visualisa-
tions to show the effectiveness and applicability of the

Figure 11. Resulting visualisation of traffic data.

approach. Second, a user study to test usefulness of
the approach and to examine how users react to such
by-example drag and drop visualisation. This section
provides the details of our user study.

For this study, 19 users were recruited (including 4 con-
trols for instrument testing). Users were selected from
software engineering staff and students and were as-
signed into two groups. A 10 minute screencast was
provided to participants which described CONVErT
framework’s user interface and the visualisation gener-
ation procedure. Participants were then asked to per-
form a set of given visualisation tasks following think-
aloud approach. The experiment setup comprised a
laptop with an attached mouse. Screen captures were
taken during the process and a matching questionnaire
with 21 visualisation related questions was handed to
each participant at the end of the experiment. This
questionnaire was designed using 5-point Likert scale
(ranging from strongly disagree to strongly agree) and
provided dedicated spaces to leave comments and op-
tional feedback.

Participants were asked to choose between two exper-
iments: one group would test application of our ap-
proach for business domain and the other group would
evaluate the approach in software engineering domain.
They were then asked to create a visualisation with
CONVErT. Both groups had the same settings but used
different input models and visualisations. Our rationale
for this was to test research questions 1, 2 and 5.

The first group were given an input file representing
business sales data and were asked to create a bar chart
visualisation of their sales data. The second group were
given a class diagram data (XML) and asked to generate
a class diagram visualisation. Task description hard
copies which were handed to the participants did not
describe instructional steps. Instead, they included the
input file names and their locations, and a snapshot of
the desired final visualisation result. Users had to come
up with steps required to get similar results. They were
allowed to ask questions from the instructor if they had
trouble understanding those steps. Our rationale for
this was to test research questions 3 and 4.

Our first group consisted of ten participants (8 male, 2
female). The second group consisted of 5 participants (3
male, 2 female). In response to demographic questions
D.4:”How familiar are you with data visualisation?”,

the participants had following options: VF: Very fa-
miliar, SF: Somewhat familiar, HH: Had heard of it,
and NF: Not familiar. The frequency of responses are
provided in Table 1.

Table 1. Partial participant demographics.

Question VF SF HH NF

D.4 2 9 2 2

Table 2. Sample questions of our user study question-
naire

Question

Q.1 I found it easy to visualise the given data as

a bar chart/class diagram.

Q.2 I learned to use the tool quickly.

Q.3 In general I found the tool to be easy to use

for visualisation activities.

Table 2 demonstrates a selection of three key questions
from our questionnaire targeted at ease of use and un-
derstandability of the approach and toolset. We have
assigned scores of 1 (for perfect negative) to 5 (perfect
positive) to each Likert point. Frequency of responses
to sample questions based on these arrangements are
summarised in Figure 12. Full results can be found
in CONVErT’s website1.Note that the visualisations of
Figure 12 are generated with a modified version of bar
chart visualisation in our first case study.

(a) Q1. (b) Q2. (c) Q3.

Figure 12. Frequency (%) of answers to questions in
Table 2.

As the user study demonstrates, users of both groups
positively liked the visualisation approach and the ma-
jority of participants (60% strongly agree and 27% agree)
agree that learning the tool was easy. However, we
should note that since this user study was to evalu-
ate usability of the notations and comprehension of our
approach in visualisation, users were provided with pre-
defined notations. Given that users were required to an-
notate views to generate notations, we would anticipate
to have slightly different results, since users would have
to have basic understanding of XAML representations
to understand the elements of visual views.

DISCUSSION
The two very different case studies provided above demon-
strated how a separately designed visualisation can be
reused to generate reusable visual notations. Although
the visualisations used XAML and WPF as proof of
concept technologies, we believe the approach presented

here can be used with other technologies with minor al-
terations. And hence, they address our first key contri-
bution. The case studies also partially address our sec-
ond to forth contributions on effectiveness of our visual-
isation approach with regards to mapping input data to
the designed notations, composing the customised nota-
tions and generating concrete visualisations. These con-
tributions are further investigated with our user study
which tries to examine user experience with the new
visualisation approach.

Considering that the mapping between input data and
visual notations are performed using rule based model
transformations, any data could have been used for in-
put to visual notation transformation step. For exam-
ple, the traffic data of second case study could have been
mapped to our bar chart visualisation of case study one
to form visual analytics charts. This addresses our fifth
contribution on reusing already defined visual notations
for generating visualisations for different input models.

There are certain threats to validity of our user study re-
sults with regards to participant number and affiliation.
Our participants were mostly recruited from staff and
students of Swinburne university and therefore their af-
filiation might have introduced bias in their responses
to the questionnaire. As the demographics of Table 1
demonstrates, our users were mostly familiar with at
least one visualisation technique (11 out of 15). This
could have affected the results of our visualisation eval-
uation. Also, with current number of participants, sta-
tistically significant and more generalisable inferences
cannot be made. Hence, this user study is a work in
progress and we will update our online results as we
recruit more participants.

CONCLUSIONS AND FUTURE WORK
We have presented a new approach for generating vi-
sual notations and forming concrete visualisations. This
approach allows reusable notations to be created from
visual designs and provides a platform for linking va-
rieties of input data to these notations. By composing
these notations a meta-model for final visualisation and
a transformation from an input file to visualisation is
generated. This approach has been implemented in our
CONVErT framework and applied on multiple visual-
isation applications. We have evaluated our approach
and its tool support in a user study and the results pro-
vide general acceptance of the approach and the use of
drag and drop for visualisation generation.

The approach provided here might be seen as an alter-
native to the Model View View Model (MVVM) pro-
vided in WPF. However, our approach does not limit
use of MVVM since the MVVM can be still used in the
provided views. As a result, the framework provides
both MVVM and transformation-based MVC. For ex-
ample in our second case study visualistion, process-
ing of longitude and latitude of bars is done in their
MVVM in a way that each bar checks the registered

coordinates of its parent (the map) and positions itself
accordingly. Similarly, other external technolgies can be
integrated into notations as an extenssion. For exam-
ple live refreshment of visualisations or external layout
mechanism [14].

We are also working on extensions of current approach
to be able to customise and define interaction during
notation generation. These interactions could include
zoom-in and zoom-out functionalities, or provide drill-
down or hide/show visual elements, or to embed fur-
ther data relations in the visualisations. An example is
where a pie chart has been visualised representing per-
centage of people who voted for certain product. By
clicking on a pie piece in this visualisation, it would be
possible to show what percentage of them were male
and what percentage were female.

It is common in visualisation community to assume the
data to be visualised is pristine and satisfies certain for-
matting and quality required [15]. However, it is not of-
ten the case and our visualisation approach is not an ex-
ception. For example in the case study above, we have
assumed that the input data is always complete and
the records are sorted according to their representative
time. We are working on data wrangling and cleaning
approaches to catch data inconsistency and flaws before
visualisation. Similar functionality can however be pro-
vided using the transformation facilities within current
version of the CONVErT framework.

Acknowledgment
This work is partially supported by an ARC Discovery
Project and ARC Future Fellowship. Support for the
first author from Swinburne University of Technology
is gratefully acknowledged.

REFERENCES
1. D. L. Moody, “The physics of notations: Toward a

scientific basis for constructing visual notations in
software engineering,” IEEE Transactions on
Software Engineering, vol. 35, no. 6, pp. 756–779,
2009.

2. M. C. Humphrey, “Creating reusable visualizations
with the relational visualization notation,” in
Proceedings of the Conference on Visualization
’00, ser. VIS ’00. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2000, pp. 53–60.

3. S. Fenwick, J. Hosking, and M. Warwick, “A
Visualisation System for Object-Oriented
Programs,” in Technology of object-oriented
languages and systems TOOLS 15, C. Mingins and
B. Meyer, Eds. Sydney, Australia: Prentice Hall,
1994, pp. 93–103.

4. J. Hosking, S. Fenwick, W. Mugridge, and
J. Grundy, “Cover yourself with Skin,” Software
Verification Research Centre Department of
Computer Science The University of Queensland,
Queensland 4072 Australia, Tech. Rep. 94, 1994.

5. A. M. Ernst, J. Lankes, C. M. Schweda,
A. Wittenburg, and E. Denert-Stiftungslehrstuhl,
“Using model transformation for generating
visualizations from repository contents,” Technical
report, Technische Universität München, Munich,
Tech. Rep., 2006.

6. J. de Lara and H. Vangheluwe, “Defining visual
notations and their manipulation through
meta-modelling and graph transformation,”
Journal of Visual Languages and Computing,
vol. 15, no. 34, pp. 309 – 330, 2004,
domain-Specific Modeling with Visual Languages.

7. G. Costagliola, V. Deufemia, and G. Polese, “A
framework for modeling and implementing visual
notations with applications to software
engineering,” ACM Transactions on Software
Engineering and Methodology, vol. 13, no. 4, pp.
431–487, Oct. 2004.

8. I. Avazpour and J. Grundy, “CONVErT: A
framework for complex model visualisation and
transformation,” in 2012 IEEE Symposium on
Visual Languages and Human-Centric Computing
(VL-HCC), 2012, pp. 237–238.

9. L. MacVittie, XAML in a Nutshell. O’Reilly
Media, Inc., 2006.

10. I. Avazpour, J. Grundy, and L. Grunske, “Tool
support for automatic model transformation
specification using concrete visualisations,” in
2013 IEEE/ACM International Conference on
Automated Software Engineering (ASE), Nov
2013, pp. 718–721.

11. I. Avazpour and J. Grundy, “Using concrete visual
notations as first class citizens for model
transformation specification,” in 2013 IEEE
Symposium on Visual Languages and
Human-Centric Computing (VL-HCC), Sept 2013,
pp. 87–90.

12. C. Petzold, 3D Programming for Windows R©.
O’Reilly, 2010.

13. I. Avazpour, “Towards user-centric concrete model
transformation,” Ph.D. dissertation, Swinburne
University of Technology, 2014.

14. I. Avazpour, U. Rüegg, and J. Grundy,
“CONVErT meets KIELER: Integrating advanced
layout algorithms into by-example visualisations,”
in 2014 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL-HCC), 2014.

15. S. Kandel, J. Heer, C. Plaisant, J. Kennedy,
F. van Ham, N. H. Riche, C. Weaver, B. Lee,
D. Brodbeck, and P. Buono, “Research directions
in data wrangling: Visuatizations and
transformations for usable and credible data,”
Information Visualization, vol. 10, no. 4, pp.
271–288, Oct. 2011.

