
Visualising Event-based Information Models: Issues and
Experiences

Karen Li, John Grundy, John Hosking, Lei Li
Departments of Computer Science and Electrical and Computer Engineering,

University of Auckland, Private Bag 92019, Auckland, New Zealand
{karen, john-g, john, l.li}@cs.auckland.ac.nz

ABSTRACT
We describe challenges in visualising event-based system
specification and execution and illustrate how we address these
from our experience developing a set of notations and tools, the
Marama meta-tool platform.

1. INTRODUCTION
The event-driven software paradigm is widely used due to its
flexibility for constructing dynamic system interactions. Event-
driven systems feature publish/subscribe relationships between
software components and loosely-coupled system behaviours [10].
Such systems incorporate events, conditions (“filters”), and
action(s) which may modify system state. The OMG, Microsoft
and Sun all advocate event-driven systems in their architectures
and technologies. Some examples of event-driven systems are:
• Workflow management systems, where process-related

events cause rules to fire the enactment of process stages;
• Database systems, where events trigger relational queries to

execute and maintain integrity;
• Distributed computing, where distributed user actions are

events to which the applications react;
• Graphics and modelling frameworks, where event-based

interaction data are captured and event handlers are used to
realise model/view level constraints;

• Software tools, where events support data mappings, import/
export/code generation, and tool integration/extension [26].

Despite their ubiquity specifying and understanding the execution
of event-driven systems can be very difficult due to their complex
behaviours. Appropriate visualisation support can help mitigate
abstraction and facilitate end user specifications. Approaches for
specifying event-handling include scripting, Event-Condition-
Action (ECA) rules, and spreadsheets. Current approaches require
users to master a programming language and API, which is
unsuitable for non-programmer end users. Visual event-based
authoring approaches minimise design and implementation effort
and improve understandability [2, 5, 7, 9, 11].

We have identified a set of issues from our research in specifying
and visualising event-based systems, particularly for non-
programmer end users. These include lack of: suitable visual
descriptions of event-based architectures; appropriate abstractions
and separation of concerns; context-aware navigation; and runtime
visualisation reusing design-level abstractions. We have used
several domain-specific visual languages with different visual
metaphors (Spreadsheet, Event-Query-Filter-Action (EQFA) and
Tool Abstraction (TA) [8]) to support event integration
specification and visualisation of event propagation. After
surveying key related work in the following section we elaborate

on each of our identified issues and illustrate our experience in
coping with them in a variety of ways.

2. RELATED WORK
There has been much recent research looking at visualisation
support for event-based specifications. However many approaches
have focussed on visualising structures with few tackling the
visualisation of event-based dynamic behaviours.

Approaches to visualise event-based behaviours include
declarative rules (Rule Graph [20] and Reaction RuleML [22]),
functions (Haskell [12]) and constraints (MIC [16], MetaEdit+
[25]), states (Petri Net [19], Event and Time Graph [1], UML
State Diagram [21]) and flows (e.g. BPEL4WS[14], Biopera [23]
and UML Activity Diagram [21]), and program-by-demonstration
(PBD) (KidSim [24] and Alice [3]). Declarative semantics of rule
/constraint-based techniques allow users to ignore implementation
details and concentrate on high level relationships. Many such
approaches use textual rule-based languages unsuitable for end
users, and complex behaviour specification/visualisation is often
suppressed. State-based approaches allow easy analysis of runtime
changes, but sacrifice system structural details. State-based
approaches convey many low level details, but for highly
concurrent systems with many states raise scalability issues [15].
Flows can represent inter-state dependencies and activities based
on execution sequence or conditions supporting inter-component
communication, but suppress structural and behavioural details.
Also, “Cobweb and Labyrinth problems appear quickly” when
modelling a complex system. Users must “deal with very complex
diagrams or many cross-diagram implicit relationships” [18]. PBD
approaches focus on dynamic behavioural changes and
visualisations; but are generally limited in specification power [6].

A hybrid visual/textual approach providing the advantages of the
above approaches could more effectively specify and visualise
event-based systems. We [10] have developed a toolset with such
a focus but this needs refinement and improvement. Several
outstanding issues exist in this domain are as yet unsolved.

3. ISSUES
To facilitate better understanding, easier construction and
modification of event-based systems, the following issues in both
static and dynamic visualisation need to be addressed:
• Suitable visual description of event-based architecture the

system metamodel) is needed, with the right level of
abstraction and separation of concerns.

• Structural information can often be visualised using graphical
notations, but behavioural attempts usually fail due to an
inappropriate visual metaphor. An expressive visual language
mapping closely to the event-based domain is needed.

jgrundy
In Proceedings of Visual Analytics in Software Engineering, Workshop at 2009 IEEE/ACM Automated Software Engineering Conference, Auckland, New Zealand, 16 Nov 2009.

• Event-based behaviour specifications can’t be isolated from
structure or cognitive dimensions [7] issues of consistency,
visibility, hidden dependency, or juxtaposability will arise.

• Navigation mechanisms are needed to allow users to focus on
portions of the specification, but without losing global
context, and minimise diagram clutter and permit scalability.

• Dynamic visualisation of behaviour execution should reuse
design-level abstractions annotated with runtime event
propagation, dataflow and invocation sequence.

We have explored these issues via the Marama meta-toolset, a set
of Eclipse-based plug-ins providing visual specification languages
for domain-specific visual language tools. These include
specification of metamodels, visual diagram elements and editors,
event handling behaviour specifications, code generation and
model transformation support, and design critic authoring [11].
Being highly event-based, it is a useful platform to explore issues
in event-based system visualisation. Marama target end-users
include non-programmers necessitating accessible metaphors and
tools.

4. VISUAL METAPHORS
Appropriately chosen metaphors are important for mapping a
specification onto a user’s domain knowledge. In Marama we
chose a spreadsheet metaphor to specify model-level
dependencies and constraints, an ECA-based one for view-level
event handlers, and a TA (Tool Abstraction) metaphor to describe
event-based tool architecture and multi-view dependency and
consistency. The different metaphors are integrated via a common
model and unified user interface representation. Multiple
specification views can be navigated from one to another.

4.1 Formula construction metaphor
Marama uses extended entity relationship (EER) notation for
metamodel specification comprising entities, relationships,
attributes, cardinalities. We extended this with declarative
constraint/dependency specifications. We were attracted to
formulae but wished to minimise cognitive dimensions tradeoffs
(hidden dependency and visibility issues between constraint and
metamodel specifications). We designed a spreadsheet-like
approach to visually construct formulae to specify model level
structural constraints. We chose OCL as the primary notation as
OCL expressions are relatively compact; OCL has primitives for
common constraint expression needs; OCL is a standardised
language; and the quality of OCL implementation is increasing.

Formula construction can be done textually, via the OCL view or
“visually” by direct manipulation of the metamodel view to
automatically construct entity, path, and attribute references and
function calls. Clicking on an attribute places an appropriate
reference to it into the formula. Clicking on a relationship and
then an attribute generates a path reference. Functions selected
from the OCL view are inserted as function calls in the formula. A
difference from the spreadsheet approach is that only certain
elements are semantically sensible at each stage of editing
whereas in spreadsheets, almost any cell may be referenced.

Figure 1 shows a Marama metamodel for a simple aggregate
system modeller, comprising Whole and Part entities (1), both
generalising to a Type entity and related by a Whole_Part
relationship (2). Entities have typed attributes, such “name”,
“area”, and “volume”. The formula construction view (3) allows
OCL formulae to be selected, viewed and edited. A list of

available OCL functions (4) is used for formula construction. The
formula shown “self.parts->collect(cost*(1.0+
markup))->sum()” specifies that the “price” of a whole is the
sum of the products of its parts’ “cost” and “markup” values.

5

4

1

2

3

6

Figure 1. Visual formula construction.
Also shown in the visual metamodel view are circular annotations
(5) on attributes where an OCL formula has been defined to
calculate a value or provide an invariant. Each attribute of Whole
has such a formula. Annotations are highlighted if formulae are
incorrect. Dependency link annotations provide more detail about
a selected formula by connecting it to other elements used in the
formula. For example the formula for “price” of a Whole is
selected. Dependency links show the price is dependent on the
“cost” and “markup” attributes of the Parts connected to the
Whole by the Whole_Part relationship. Entities and connection
paths directly accessible when constructing a formula (Whole,
Type, Whole_Part) have grey outline borders around them (6).

We have carefully defined interaction between the two views to
enhance visibility and mitigate hidden dependency issues:
• OCL and EER editors are juxtaposed improving visibility.
• Simple annotation of the model elements indicates formulae

related to them are present and semantically correct/incorrect.
• Formulae can be selected from either view so constraints can

be readily navigated to/accessed.
• The dependency links permit more detailed understanding of

a formula. The annotations are modified dynamically during
editing for consistency. Dependencies are made visible only
if a constraint is selected to minimise scalability issues and
support task focus. The approach is similar to spreadsheet
dependency links but applied to graphical modelling.

4.2 Event handler specification
Marama provides a visual “Event-Query-Filter-Action (EQFA)”
notation to express event handling. Complex event handlers can
be built up in parts (via sub-views) and queries, filters and actions
parameterised and reused. End users select an event type of
interest; add queries on the event and Marama tool state (usually
diagram content or model objects that triggered the event); specify
conditional or iterative filtering of the event/tool state data; and
then state-changing actions to perform on target tool state objects.
The approach is based on our Serendipity [9] event language.

The language design focuses on modularity and explicitly
representing data propagation. We have avoided abstract control
structures and used a dataflow paradigm to reduce cognitive load.
Key visual constructs are events, filters, tool objects, queries on a
tool’s state, state changing actions plus iteration over collections
of objects, and dataflow input and output ports and connectors. A
single event or a set of events is the starting point. From this data
flows out (event type, affected object(s), property values changed
etc). Queries, filters and actions are parameterized via data
propagated through inputs. Queries retrieve elements from a
model repository and output data elements; filters apply pattern-
matching to input data, passing matching data on as outputs;
actions execute operations which may modify incoming data,
display information, or generate new events.

(a)

(b)

Figure 2. Event handler specification (a) and its runtime
execution effect (b).

Queries and actions trigger when input data are available (data
push). If there are no input parameters, queries and actions trigger
when parameters to a subsequent flow element have values (pull).
We predefined a set of primitives for these constructs providing
operations useful for diagram manipulation. These involve
collecting, filtering, locating or creating elements, property
setting, relocating/alignment, and connection. Multiple flows are
supported. Concrete end user domain icons are also incorporated
into the visual specification of event handling as placeholders for
Marama tool state, to annotate and mitigate the abstraction,
making the language more readable. Figure 2 is an event handler
aligning diagram shapes (a) and its runtime execution (b). The
handler responds to a Marama “shapeAdded” event, filters on
“TableShape”, and aligns a new “TableShape” to existing ones
queried from the diagram. Event handlers register availability in
metamodels using annotations similar to formula icons.

As our target user group are inexperienced programmers, we have

chosen a low-to-medium abstraction gradient based on iconic
constructs and data flow between them. The abstractions support
query/action composition allowing users to specify Marama data
and state changing actions as discrete, linked building blocks. The
abstractions require hard mental operations but are mitigated by
concrete end user domain objects. We are experimenting with
elision techniques to allow concrete icons and abstract event
handler elements to be collapsed into a single meaningful icon.
The dataflow metaphor used to compose event specification
building blocks seems to map well onto users’ cognitive
perception of the metaphor. The current approach has reasonable
visibility and juxtaposability. Information for each element of an
event handler is readily accessible. The event handler specification
can be juxtaposed with the modelling view that triggers its
execution. However, it still has viscosity problems; the user
typically has to rearrange the diagram to insert elements.

4.3 Event-based architecture specification
We chose to use the TA (Tool Abstraction) [8] metaphor, and
have provided a view, we call the “event propagation view”, to
describe event-based tool architecture. This aims to mitigate
multi-view dependency and consistency issue.

TA is a message propagation-centric metaphor describing
connections between “toolies” (behaviour encapsulations which
respond to events to carry out system functions) and “abstract data
structures” (ADSs: data encapsulations which respond to events to
store/retrieve/modify data) which are instances of “abstract data
types” (ADTs: typed operations/messages/events). Connection of
toolies to other toolies and ADSs is via typed ports. TA supports
data, control and event flow relationships in a homogeneous way,
allowing a focus on architecture level abstractions and describing
separated concerns include tool specific events, event generators
and receivers, and responding behaviours such as event handlers.

Figure 3 shows user-defined events and their notifications among
various Marama event handling toolies and structural components
defining that when an “ArchitectureDiagram” instance is deleted
from a model project, all mapped view data are deleted from other
views, and all mapped model data are deleted from the model, so
that the views and the model are still synchronised with consistent
data. Three Marama structural components are involved:
• diagram – the deleted diagram of a model
• views – all the views of the model
• modelProject – the tool’s model instance

A condition filters out diagrams other than “ArchitectureDiagram”
instances. The “processDiagramData” toolie generates a “diagram
Deleted” event to be propagated to the “deleteMappedViewData”
and “deleteMappedModelData” toolies, which define the event
handling responses. Further “viewUpdated” and “modelUpdated”
events propagate from the respective toolies to the “views” and
“modelProject” data structures indicating the toolies’ responses
generate side effects on the shared data structures. The “views”
and “modelProject” data structures are “synchronised” with each
other via the propagation of the “synchronised” action event.

The primitives supporting the TA paradigm represent a range of
tool abstraction components and links which provides a higher
level of abstraction than the prior visual formula and event handler
specifications. This aims to facilitate easier understanding of
event-based architectures rather than lower-level elements in an
event-based system, as supported by the previous two approaches.

Figure 3. Event-based architecture specification

4.4 Higher level description of the metaphors
With multiple visual languages at different abstraction levels
being used in Marama for event-based system construction, hard
mental operations are introduced as a trade-off for specification
flexibility. Users need to decide which visual language to use at a
particular modelling stage. Our evaluation results [17] show that
despite our emphasis on accessibility Marama presents a steep
learning curve. Therefore, there is a need for a description and
guidelines for these metaphors, from which users can better make
choices about their specification approaches.

As a result, we have generalised the three metaphoric languages to
a canonical event handling model to enable integration, reuse and
framework evolution. We aim to develop a higher level visual
notation based on this model to use as a description language for
event-based specifications, to facilitate better understanding of our
predefined vocabularies, and to allow users to describe their own
extensions (e.g. to more easily define new event metaphors). This
description must not only include a high level behaviour model,
but also critics and layout mechanisms, to provide guidelines for
specification and verification, and automation to ease the burden
of use. We also plan to provide software process support, mainly
aiming at deriving design-level components from users’
requirements authoring but also to guide the design process.

We will employ program-by-demonstration techniques to allow
users to play pre-recorded macros to learn the event-based visual
languages and their modelling procedures, and to specify their
own domain systems following demonstrated examples or
patterns. In addition to the current procedure of generating DSVL
environments from meta-level structural and behavioural
specifications, we wish to also allow the users to demonstrate the
intent of their DSVL tools and automatically generate the
specifications (both structural and behavioural) reversely from
that, with further refinement allowed via round-trip engineering.

5. CONTEXTUAL NAVIGATION
We have designed several “contextual highlight” techniques
including show/hide, collapse/expand, zoomable and fisheye
views, and partition and sub-view generation for managing size
and complexity of both structural and behavioural specifications.
The formula dependency links described earlier, are an example of
show/hide, with dependency links only visible for a currently
selected formula. As another example users can selectively
display a series of semantically connected constructs as in EML’s

process overlays [18] (Figure 4), where multiple processes are
defined in the same diagram but one is selected to be shown at a
time.

Figure 4. Process overlays in EML

Collapse/expand was originally introduced in EML’s [18] trees,
where a tree node can be collapsed/expanded with adjusted
visualisation (e.g. re-rendering of overlays on the collapsed tree).
We plan to apply this to the Marama metamodel, extended/
adapted with features of our Visual Wiki work [13]. Our aim is to
provide better visualisation support when a Marama metamodel
becomes large. Figure 5 shows the design. Two diagrams are
used: the left for navigation and the right for detailed display. At
left, entities have a labelled node notation and relationships are
elided and replaced by links between entities. Companion nodes to
an entity include shapes used to display the entity, views
containing a representation of it, and formulae and handlers that
apply to it. Nodes further from the centre scale down in size, but
expand when navigated to becoming the new central node in the
diagram. The selection of a node, which can be an entity, shape,
view, formula or handler, triggers its corresponding detailed
specification to be displayed in a synchronised view (right).

To manage scale, zooming functions are provided with a Marama
diagram (Figure 6 a). The “zoom in/out” functions zoom in/out
the entire diagram by predefined scaling factors, with the “Radar”
zoom view (Figure 6 b) indicating visible items inside the screen
boundary and those outside of the boundary. “Zoom fit” provides
a best fit view and “selection zoom” allows user to select an area
of the diagram and zoom to that.

Fisheye view or “distortion based display” functionality is also
supported. The benefit is that a local context is presented against a
global context, thus allowing the user’s point of interest to be
focused on without losing the extensive surrounding information.
Figure 6 c shows a fisheye view of an EML [18] tree structure.
The mouse pointer is the default Focal Point. The degree of
interest (DOI) of the certain part of the tree structure is based on
the Distance of Focus. A shorter distance will lead to higher value
of DOI, thus, the shape will be represented in a bigger size. The
longer distance brings lower value of DOI, which leads to the
smaller size of the shapes. As the mouse moves, the DOI value

Process p1 is selected to show.

and shape size of the tree nodes is recalculated dynamically.

Figure 5. Semantic navigation of tool specifications

Figure 6. Zoomable and fisheye views in Marama

Though various contextual navigations are supported in the base
diagram, users are also able to partition by element selection with
regeneration and display in a sub-view. Marama supports cohesive
consistency between multiple views, and the generated sub-view
can again function as a base view for further partitions.

We are experimenting with automatic layout techniques which
will be useful to improve the user’s ability to show/hide,
collapse/expand, or juxtapose parts of a specification, and thus to
manage size, complexity and visibility more effectively. These are
based on end user specifications at a high level, with the focus on
indicating which visual components are to be affected and how.

6. VISUAL DEBUGGING
A consequence of introducing new visual languages to specify and
generate event handlers in Marama is the need to support
incremental development and debugging using these languages.
Event propagation can become very complex so tool support for
tracing and visualising event propagations and their effects is
needed. Such visualisations need to incorporate both the static
dependency structure and dynamic event handling behaviour.
Event-based system executions are highly time related, and many
phenomena may occur in a very short time making real-time
visualisations ineffective [4]. Step-by-step visualisation that is
interactively controlled by the user is thus required.

Marama’s visualisation of dynamic event handling behaviour uses
a model-view-controller approach which reuses event handler
specification views by dynamically annotating modelling elements
with colours and state information in response to events. A central
repository stores runtime information which can be retrieved and
manipulated by controller code for presentation in views. A
specialised debugging and inspection tool (visual debugger)

allows execution state of event-based systems to be queried,
visualised and dynamically modified. It provides a common user
interface connecting the model-level constraint and view-level
event handling specifications with an underlying debug model.

Figure 7. Visual debugging formulae (a) followed by a view
event handler (b).

Figure 7 shows the visualisation of runtime interpreted formulae
(a) and an event handler (b) on a Marama model. The metamodel
view and the event handler specification views are respectively
juxtaposed with the runtime Marama model view for parallel
visualisation of dependency evaluation or event handling in the
running model instance’s context. A traditional “debug and step
into” metaphor is used for step-by-step visualisation. Affected
runtime model elements are annotated (yellow background) to
indicate application of the formula/handler (left), while the
formula/handler node and dependency links are annotated
similarly in the specifications showing invocation status (right).
Detailed information is presented in textual form (bottom). Run-
time monitoring of Marama for performance analysis could also
potentially be supported via the visual debugging sub-system.

We are currently working on representing visual debugging at a
higher abstraction level, to better enable users to query both the
static model and dynamic execution state. A visual query language
will provide users with a means to specify query intent and
generate results. Sensible display of queried results in a
diagrammatic form using layout mechanisms is also being

Entity2

View2

Shape1

Entity1
View1

View1

View2

Entity1

Attribute1

Attribute2

Attribute3

Formula1
Handler1

Details View

Click to expand
related entities

Navigation View

(a)

(b)

(a)

(b)

(c)

addressed. More advanced query support is being planned to
query of multiple end user tools for reusable specifications. From
that, a semantic knowledge base with structured metamodel,
model and transformation information is needed so that reasoning
and pattern mining can be effectively performed.

7. SUMMARY
We have described general issues involved in visualising event-
based information models, including abstraction and visual
metaphor, hidden dependency, consistency and step-by-step
visualisation. We have addressed these from our own experience
in developing a set of notations and tools, from which we have
generalised a canonical representation to enable the specification
and visualisation of general purpose event-based systems. The
generalised framework includes the following components and
provides reuse via both inheritance and composition:
• Structural components, e.g. entity, relationship, attribute,

role, cardinalities, event, model, view
• Behavioural components, e.g. query, filter, action, formula,

and various event notification schemes such as broadcast,
subscribe-notify, listen-before and listen-after.

• Layout, e.g. for shapes: containment, on border, enclosure,
horizontal/vertical alignment, show/hide, and
collapse/expand; for connectors: straight/curved/angled
routing and show/hide; and overall: horizontal/vertical tree,
top-down/left-right process start/end, zooming/fisheye and
view juxtaposition.

• Runtime, e.g. focus/highlight

Our future work directions include a higher level description of
our visual event handling metaphors, automatic layout support and
query-based runtime visualisation.

8. REFERENCES
[1] Berndtsson, B., J. Mellin, and U. Hogberg, Visualization of

the Composite Event Detection Process, in the 1999
International Workshop on User Interfaces to Data Intensive
Systems. 1999, IEEE CS Press. p. 118-127.

[2] Burnett, M., et al., Forms/3: A first-order visual language to
explore the boundaries of the spreadsheet paradigm. Journal
of Functional Programming, 2001. 11(2): p. 155-206.

[3] Conway, M., et al., Alice: Lessons Learned from Building a
3D System for Novices, in the SIGCHI conference on Human
factors in computing systems. 2000. p. 486-493.

[4] Coupaye, T., C.L. Roncancio, and C. Bruley, A Visualization
Service for Event-Based Systems, in 15emes Journees Bases
de Donnees Avancees, BDA. 1999.

[5] Cox, P.T., et al., Experiences with Visual Programming in a
Specific Domain - Visual Language Challenge ’96, in the
1997 IEEE Symposium on Visual Languages. 1997.

[6] Cypher, A., Watch What I Do: Programming by
Demonstration. 1993: The MIT Press.

[7] Green, T.R.G. and M. Petre, Usability analysis of visual
programming environments: a 'cognitive dimensions'
framework. JVLC, 1996. 7: p. 131-174.

[8] Grundy, J.C. and J.G. Hosking, ViTABaL: A Visual
Language Supporting Design by Tool Abstraction, in the
1995 IEEE Symposium on Visual Languages. 1995, IEEE CS
Press: Darmsdart, Germany. p. 53-60.

[9] Grundy, J.C. and J.G. Hosking, Serendipity: integrated
environment support for process modelling, enactment and

work coordination. Automated Software Engineering:
Special Issue on Process Technology, 1998. 5(1): p. 27-60.

[10] Grundy, J.C., J.G. Hosking, and W.B. Mugridge, Visualising
Event-based Software Systems: Issues and Experiences, in
SoftVis97. 1997: Adelaide, Australia.

[11] Grundy, J.C., et al., Generating Domain-Specific Visual
Language Editors from High-level Tool Specifications, in the
21st IEEE/ACM International Conference on Automated
Software Engineering. 2006: Tokyo, Japan. p. 25-36.

[12] Haskell. [cited 2007]; Available from:
http://www.haskell.org/

[13] Hirsch, C., J. Hosking, and J. Grundy, Interactive
Visualization Tools for Exploring the Semantic Graph of
Large Knowledge Spaces, in Workshop on Visual Interfaces
to the Social and the Semantic Web (VISSW2009), IUI2009.
2009: Sanibel Island, Florida, USA.

[14] IBM. Specification: Business Process Execution Language
for Web Services Version 1.1. [cited 2003]; Available from:
http://www.ibm.com/developerworks/library/ws-bpel/.

[15] Kraemer, F.A. and P. Herrmann, Transforming
Collaborative Service Specifications into Efficiently
Executable State Machines, in GT-VMT 2007. 2007.

[16] Ledeczi, A., et al., Composing Domain-Specific Design
Environments. Computer, 2001: p. 44-51.

[17] Li, K.N.L., Visual languages for event integration
specification in Computer Science. 2007, University of
Auckland: Auckland.

[18] Li, L., J.C. Grundy, and J.G. Hosking, EML: A Tree
Overlay-based Visual Language for Business Process
Modelling, in ICEIS. 2007: Portugal.

[19] Li, X., W.B. Mugridge, and J.G. Hosking, A Petri Net-based
Visual Language for Specifying GUIs, in the 1997 IEEE
Symposium on Visual Languages. 1997: Isle of Capri, Italy.

[20] Matskin, M. and D. Montesi, Visual Rule Language for
Active Database Modelling. Information Modelling and
Knowledge Bases IX, 1998: p. 160-175.

[21] OMG. UML Superstructure. [cited 2009]; Available from:
http://www.omg.org/spec/UML/2.2/Superstructure/PDF.

[22] Paschke, A., ECA-LP / ECA-RuleML: A Homogeneous
Event-Condition-Action Logic Programming Language, in
RuleML’06. 2006: Athens, Georgia, USA.

[23] Pautasso, C. and G. Alonso, Visual Composition of Web
Services, in IEEE HCC’03. 2003: Auckland, New Zealand.

[24] Smith, D.C., A. Cypher, and J. Spohrer, KidSim:
programming agents without a programming language.
Communications of the ACM, 1995. 37(7): p. 54 - 67.

[25] Tolvanen, J., OOPSLA demonstrations chair's welcome:
MetaEdit+: integrated modeling and metamodeling
environment for domain-specific languages, Companion to
the 21st ACM. 2006.

[26] Zhu, N., et al., Pounamu: a meta-tool for exploratory
domain-specific visual language tool development. Journal
of Systems and Software, 2007. 80 (8).

