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ABSTRACT 
We describe challenges in visualising event-based system 
specification and execution and illustrate how we address these 
from our experience developing a set of notations and tools, the 
Marama meta-tool platform. 

1.  INTRODUCTION 
The event-driven software paradigm is widely used due to its 
flexibility for constructing dynamic system interactions. Event-
driven systems feature publish/subscribe relationships between 
software components and loosely-coupled system behaviours [10]. 
Such systems incorporate events, conditions (“filters”), and 
action(s) which may modify system state. The OMG, Microsoft 
and Sun all advocate event-driven systems in their architectures 
and technologies. Some examples of event-driven systems are: 
• Workflow management systems, where process-related 

events cause rules to fire the enactment of process stages; 
• Database systems, where events trigger relational queries to 

execute and maintain integrity; 
• Distributed computing, where distributed user actions are 

events to which the applications react; 
• Graphics and modelling frameworks, where event-based 

interaction data are captured and event handlers are used to 
realise model/view level constraints; 

• Software tools, where events support data mappings, import/ 
export/code generation, and tool integration/extension [26].  

Despite their ubiquity specifying and understanding the execution 
of event-driven systems can be very difficult due to their complex 
behaviours. Appropriate visualisation support can help mitigate 
abstraction and facilitate end user specifications. Approaches for 
specifying event-handling include scripting, Event-Condition-
Action (ECA) rules, and spreadsheets. Current approaches require 
users to master a programming language and API, which is 
unsuitable for non-programmer end users. Visual event-based 
authoring approaches minimise design and implementation effort 
and improve understandability [2, 5, 7, 9, 11].  

We have identified a set of issues from our research in specifying 
and visualising event-based systems, particularly for non-
programmer end users. These include lack of: suitable visual 
descriptions of event-based architectures; appropriate abstractions 
and separation of concerns; context-aware navigation; and runtime 
visualisation reusing design-level abstractions. We have used 
several domain-specific visual languages with different visual 
metaphors (Spreadsheet, Event-Query-Filter-Action (EQFA) and 
Tool Abstraction (TA) [8]) to support event integration 
specification and visualisation of event propagation. After 
surveying key related work in the following section we elaborate 

on each of our identified issues and illustrate our experience in 
coping with them in a variety of ways. 

2.  RELATED WORK 
There has been much recent research looking at visualisation 
support for event-based specifications. However many approaches 
have focussed on visualising structures with few tackling the 
visualisation of event-based dynamic behaviours.  

Approaches to visualise event-based behaviours include 
declarative rules (Rule Graph [20] and Reaction RuleML [22]), 
functions (Haskell [12]) and constraints (MIC [16], MetaEdit+ 
[25]), states (Petri Net [19], Event and Time Graph [1], UML 
State Diagram [21]) and flows (e.g. BPEL4WS[14], Biopera [23] 
and UML Activity Diagram [21]), and program-by-demonstration 
(PBD) (KidSim [24] and Alice [3]). Declarative semantics of rule 
/constraint-based techniques allow users to ignore implementation 
details and concentrate on high level relationships. Many such 
approaches use textual rule-based languages unsuitable for end 
users, and complex behaviour specification/visualisation is often 
suppressed. State-based approaches allow easy analysis of runtime 
changes, but sacrifice system structural details. State-based 
approaches convey many low level details, but for highly 
concurrent systems with many states raise scalability issues [15]. 
Flows can represent inter-state dependencies and activities based 
on execution sequence or conditions supporting inter-component 
communication, but suppress structural and behavioural details. 
Also, “Cobweb and Labyrinth problems appear quickly” when 
modelling a complex system. Users must “deal with very complex 
diagrams or many cross-diagram implicit relationships” [18]. PBD 
approaches focus on dynamic behavioural changes and 
visualisations; but are generally limited in specification power [6].  

A hybrid visual/textual approach providing the advantages of the 
above approaches could more effectively specify and visualise 
event-based systems. We [10] have developed a toolset with such 
a focus but this needs refinement and improvement. Several 
outstanding issues exist in this domain are as yet unsolved.  

3.  ISSUES  
To facilitate better understanding, easier construction and 
modification of event-based systems, the following issues in both 
static and dynamic visualisation need to be addressed: 
• Suitable visual description of event-based architecture the 

system metamodel) is needed, with the right level of 
abstraction and separation of concerns. 

• Structural information can often be visualised using graphical 
notations, but behavioural attempts usually fail due to an 
inappropriate visual metaphor. An expressive visual language 
mapping closely to the event-based domain is needed. 
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• Event-based behaviour specifications can’t be isolated from 
structure or cognitive dimensions [7] issues of consistency, 
visibility, hidden dependency, or juxtaposability  will arise. 

• Navigation mechanisms are needed to allow users to focus on 
portions of the specification, but without losing global 
context, and minimise diagram clutter and permit scalability. 

• Dynamic visualisation of behaviour execution should reuse 
design-level abstractions annotated with runtime event 
propagation, dataflow and invocation sequence. 

We have explored these issues via the Marama meta-toolset, a set 
of Eclipse-based plug-ins providing visual specification languages 
for domain-specific visual language tools. These include 
specification of metamodels, visual diagram elements and editors, 
event handling behaviour specifications, code generation and 
model transformation support, and design critic authoring [11]. 
Being highly event-based, it is a useful platform to explore issues 
in event-based system visualisation. Marama target end-users 
include non-programmers necessitating accessible metaphors and 
tools. 

4.  VISUAL METAPHORS 
Appropriately chosen metaphors are important for mapping a 
specification onto a user’s domain knowledge. In Marama we 
chose a spreadsheet metaphor to specify model-level 
dependencies and constraints, an ECA-based one for view-level 
event handlers, and a TA (Tool Abstraction) metaphor to describe 
event-based tool architecture and multi-view dependency and 
consistency. The different metaphors are integrated via a common 
model and unified user interface representation. Multiple 
specification views can be navigated from one to another. 

4.1 Formula construction metaphor 
Marama uses extended entity relationship (EER) notation for 
metamodel specification comprising entities, relationships, 
attributes, cardinalities. We extended this with declarative 
constraint/dependency specifications. We were attracted to 
formulae but wished to minimise cognitive dimensions tradeoffs 
(hidden dependency and visibility issues between constraint and 
metamodel specifications). We designed a spreadsheet-like 
approach to visually construct formulae to specify model level 
structural constraints. We chose OCL as the primary notation as 
OCL expressions are relatively compact; OCL has primitives for 
common constraint expression needs; OCL is a standardised 
language; and the quality of OCL implementation is increasing. 

Formula construction can be done textually, via the OCL view or 
“visually” by direct manipulation of the metamodel view to 
automatically construct entity, path, and attribute references and 
function calls. Clicking on an attribute places an appropriate 
reference to it into the formula. Clicking on a relationship and 
then an attribute generates a path reference. Functions selected 
from the OCL view are inserted as function calls in the formula. A 
difference from the spreadsheet approach is that only certain 
elements are semantically sensible at each stage of editing 
whereas in spreadsheets, almost any cell may be referenced.   

Figure 1 shows a Marama metamodel for a simple aggregate 
system modeller, comprising Whole and Part entities (1), both 
generalising to a Type entity and related by a Whole_Part 
relationship (2). Entities have typed attributes, such “name”, 
“area”, and “volume”. The formula construction view (3) allows 
OCL formulae to be selected, viewed and edited. A list of 

available OCL functions (4) is used for formula construction. The 
formula shown “self.parts->collect(cost*(1.0+ 
markup))->sum()” specifies that the “price” of a whole is the 
sum of the products of its parts’ “cost” and “markup” values. 
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Figure 1. Visual formula construction. 
Also shown in the visual metamodel view are circular annotations 
(5) on attributes where an OCL formula has been defined to 
calculate a value or provide an invariant. Each attribute of Whole 
has such a formula. Annotations are highlighted if formulae are 
incorrect. Dependency link annotations provide more detail about 
a selected formula by connecting it to other elements used in the 
formula. For example the formula for “price” of a Whole is 
selected. Dependency links show the price is dependent on the 
“cost” and “markup” attributes of the Parts connected to the 
Whole by the Whole_Part relationship. Entities and connection 
paths directly accessible when constructing a formula (Whole, 
Type, Whole_Part) have grey outline borders around them (6). 

We have carefully defined interaction between the two views to 
enhance visibility and mitigate hidden dependency issues: 
• OCL and EER editors are juxtaposed improving visibility. 
• Simple annotation of the model elements indicates formulae 

related to them are present and semantically correct/incorrect.  
• Formulae can be selected from either view so constraints can 

be readily navigated to/accessed. 
• The dependency links permit more detailed understanding of 

a formula. The annotations are modified dynamically during 
editing for consistency. Dependencies are made visible only 
if a constraint is selected to minimise scalability issues and 
support task focus. The approach is similar to spreadsheet 
dependency links but applied to graphical modelling.  

4.2 Event handler specification 
Marama provides a visual “Event-Query-Filter-Action (EQFA)” 
notation to express event handling. Complex event handlers can 
be built up in parts (via sub-views) and queries, filters and actions 
parameterised and reused. End users select an event type of 
interest; add queries on the event and Marama tool state (usually 
diagram content or model objects that triggered the event); specify 
conditional or iterative filtering of the event/tool state data; and 
then state-changing actions to perform on target tool state objects.  
The approach is based on our Serendipity [9] event language.  



The language design focuses on modularity and explicitly 
representing data propagation. We have avoided abstract control 
structures and used a dataflow paradigm to reduce cognitive load. 
Key visual constructs are events, filters, tool objects, queries on a 
tool’s state, state changing actions plus iteration over collections 
of objects, and dataflow input and output ports and connectors. A 
single event or a set of events is the starting point. From this data 
flows out (event type, affected object(s), property values changed 
etc). Queries, filters and actions are parameterized via data 
propagated through inputs. Queries retrieve elements from a 
model repository and output data elements; filters apply pattern-
matching to input data, passing matching data on as outputs; 
actions execute operations which may modify incoming data, 
display information, or generate new events.  

(a) 

(b) 

 

Figure 2. Event handler specification (a) and its runtime 
execution effect (b). 

Queries and actions trigger when input data are available (data 
push). If there are no input parameters, queries and actions trigger 
when parameters to a subsequent flow element have values (pull). 
We predefined a set of primitives for these constructs providing 
operations useful for diagram manipulation. These involve 
collecting, filtering, locating or creating elements, property 
setting, relocating/alignment, and connection. Multiple flows are 
supported. Concrete end user domain icons are also incorporated 
into the visual specification of event handling as placeholders for 
Marama tool state, to annotate and mitigate the abstraction, 
making the language more readable. Figure 2 is an event handler 
aligning diagram shapes (a) and its runtime execution (b). The 
handler responds to a Marama “shapeAdded” event, filters on 
“TableShape”, and aligns a new “TableShape” to existing ones 
queried from the diagram. Event handlers register availability in 
metamodels using annotations similar to formula icons.  

As our target user group are inexperienced programmers, we have 

chosen a low-to-medium abstraction gradient based on iconic 
constructs and data flow between them. The abstractions support 
query/action composition allowing users to specify Marama data 
and state changing actions as discrete, linked building blocks. The 
abstractions require hard mental operations but are mitigated by 
concrete end user domain objects. We are experimenting with 
elision techniques to allow concrete icons and abstract event 
handler elements to be collapsed into a single meaningful icon. 
The dataflow metaphor used to compose event specification 
building blocks seems to map well onto users’ cognitive 
perception of the metaphor. The current approach has reasonable 
visibility and juxtaposability. Information for each element of an 
event handler is readily accessible. The event handler specification 
can be juxtaposed with the modelling view that triggers its 
execution. However, it still has viscosity problems; the user 
typically has to rearrange the diagram to insert elements. 

4.3 Event-based architecture specification 
We chose to use the TA (Tool Abstraction) [8] metaphor, and 
have provided a view, we call the “event propagation view”, to 
describe event-based tool architecture. This aims to mitigate 
multi-view dependency and consistency issue.  

TA is a message propagation-centric metaphor describing 
connections between “toolies” (behaviour encapsulations which 
respond to events to carry out system functions) and “abstract data 
structures” (ADSs: data encapsulations which respond to events to 
store/retrieve/modify data) which are instances of “abstract data 
types” (ADTs: typed operations/messages/events). Connection of 
toolies to other toolies and ADSs is via typed ports. TA supports 
data, control and event flow relationships in a homogeneous way, 
allowing a focus on architecture level abstractions and describing 
separated concerns include tool specific events, event generators 
and receivers, and responding behaviours such as event handlers. 

Figure 3 shows user-defined events and their notifications among 
various Marama event handling toolies and structural components 
defining that when an “ArchitectureDiagram” instance is deleted 
from a model project, all mapped view data are deleted from other 
views, and all mapped model data are deleted from the model, so 
that the views and the model are still synchronised with consistent 
data. Three Marama structural components are involved:  
• diagram – the deleted diagram of a model  
• views – all the views of the model  
• modelProject – the tool’s model instance  

A condition filters out diagrams other than “ArchitectureDiagram” 
instances. The “processDiagramData” toolie generates a “diagram 
Deleted” event to be propagated to the “deleteMappedViewData” 
and “deleteMappedModelData” toolies, which define the event 
handling responses. Further “viewUpdated” and “modelUpdated” 
events propagate from the respective toolies to the “views” and 
“modelProject” data structures indicating the toolies’ responses 
generate side effects on the shared data structures. The “views” 
and “modelProject” data structures are “synchronised” with each 
other via the propagation of the “synchronised” action event. 

The primitives supporting the TA paradigm represent a range of 
tool abstraction components and links which provides a higher 
level of abstraction than the prior visual formula and event handler 
specifications. This aims to facilitate easier understanding of 
event-based architectures rather than lower-level elements in an 
event-based system, as supported by the previous two approaches. 



 
Figure 3. Event-based architecture specification 

4.4 Higher level description of the metaphors  
With multiple visual languages at different abstraction levels 
being used in Marama for event-based system construction, hard 
mental operations are introduced as a trade-off for specification 
flexibility. Users need to decide which visual language to use at a 
particular modelling stage. Our evaluation results [17] show that 
despite our emphasis on accessibility Marama presents a steep 
learning curve. Therefore, there is a need for a description and 
guidelines for these metaphors, from which users can better make 
choices about their specification approaches. 

As a result, we have generalised the three metaphoric languages to 
a canonical event handling model to enable integration, reuse and 
framework evolution. We aim to develop a higher level visual 
notation based on this model to use as a description language for 
event-based specifications, to facilitate better understanding of our 
predefined vocabularies, and to allow users to describe their own 
extensions (e.g. to more easily define new event metaphors). This 
description must not only include a high level behaviour model, 
but also critics and layout mechanisms, to provide guidelines for 
specification and verification, and automation to ease the burden 
of use. We also plan to provide software process support, mainly 
aiming at deriving design-level components from users’ 
requirements authoring but also to guide the design process.  

We will employ program-by-demonstration techniques to allow 
users to play pre-recorded macros to learn the event-based visual 
languages and their modelling procedures, and to specify their 
own domain systems following demonstrated examples or 
patterns. In addition to the current procedure of generating DSVL 
environments from meta-level structural and behavioural 
specifications, we wish to also allow the users to demonstrate the 
intent of their DSVL tools and automatically generate the 
specifications (both structural and behavioural) reversely from 
that, with further refinement allowed via round-trip engineering.  

5.  CONTEXTUAL NAVIGATION 
We have designed several “contextual highlight” techniques 
including show/hide, collapse/expand, zoomable and fisheye 
views, and partition and sub-view generation for managing size 
and complexity of both structural and behavioural specifications. 
The formula dependency links described earlier, are an example of 
show/hide, with dependency links only visible for a currently 
selected formula. As another example users can selectively 
display a series of semantically connected constructs as in EML’s 

process overlays [18] (Figure 4), where multiple  processes are 
defined in the same diagram but one is selected to be shown at a 
time. 

 
Figure 4. Process overlays in EML 

Collapse/expand was originally introduced in EML’s [18] trees, 
where a tree node can be collapsed/expanded with adjusted 
visualisation (e.g. re-rendering of overlays on the collapsed tree). 
We plan to apply this to the Marama metamodel, extended/ 
adapted with features of our Visual Wiki work [13]. Our aim is to 
provide better visualisation support when a Marama metamodel 
becomes large. Figure 5 shows the design. Two diagrams are 
used: the left for navigation and the right for detailed display. At 
left, entities have a labelled node notation and relationships are 
elided and replaced by links between entities. Companion nodes to 
an entity include shapes used to display the entity, views 
containing a representation of it, and formulae and handlers that 
apply to it. Nodes further from the centre scale down in size, but 
expand when navigated to becoming the new central node in the 
diagram. The selection of a node, which can be an entity, shape, 
view, formula or handler, triggers its corresponding detailed 
specification to be displayed in a synchronised view (right).  

To manage scale, zooming functions are provided with a Marama 
diagram (Figure 6  a). The “zoom in/out” functions zoom in/out 
the entire diagram by predefined scaling factors, with the “Radar” 
zoom view (Figure 6 b) indicating visible items inside the screen 
boundary and those outside of the boundary. “Zoom fit” provides 
a best fit view and “selection zoom” allows user to select an area 
of the diagram and zoom to that. 

Fisheye view or “distortion based display” functionality is also 
supported. The benefit is that a local context is presented against a 
global context, thus allowing the user’s point of interest to be 
focused on without losing the extensive surrounding information. 
Figure 6 c shows a fisheye view of an EML [18] tree structure. 
The mouse pointer is the default Focal Point. The degree of 
interest (DOI) of the certain part of the tree structure is based on 
the Distance of Focus. A shorter distance will lead to higher value 
of DOI, thus, the shape will be represented in a bigger size. The 
longer distance brings lower value of DOI, which leads to the 
smaller size of the shapes. As the mouse moves, the DOI value 

Process p1 is selected to show. 



and shape size of the tree nodes is recalculated dynamically. 

 
Figure 5. Semantic navigation of tool specifications 

 
Figure 6. Zoomable and fisheye views in Marama 

Though various contextual navigations are supported in the base 
diagram, users are also able to partition by element selection with 
regeneration and display in a sub-view. Marama supports cohesive 
consistency between multiple views, and the generated sub-view 
can again function as a base view for further partitions.  

We are experimenting with automatic layout techniques which 
will be useful to improve the user’s ability to show/hide, 
collapse/expand, or juxtapose parts of a specification, and thus to 
manage size, complexity and visibility more effectively. These are 
based on end user specifications at a high level, with the focus on 
indicating which visual components are to be affected and how.  

6.  VISUAL DEBUGGING 
A consequence of introducing new visual languages to specify and 
generate event handlers in Marama is the need to support 
incremental development and debugging using these languages. 
Event propagation can become very complex so tool support for 
tracing and visualising event propagations and their effects is 
needed. Such visualisations need to incorporate both the static 
dependency structure and dynamic event handling behaviour. 
Event-based system executions are highly time related, and many 
phenomena may occur in a very short time making real-time 
visualisations ineffective [4]. Step-by-step visualisation that is 
interactively controlled by the user is thus required. 

Marama’s visualisation of dynamic event handling behaviour uses 
a model-view-controller approach which reuses event handler 
specification views by dynamically annotating modelling elements 
with colours and state information in response to events. A central 
repository stores runtime information which can be retrieved and 
manipulated by controller code for presentation in views. A 
specialised debugging and inspection tool (visual debugger) 

allows execution state of event-based systems to be queried, 
visualised and dynamically modified. It provides a common user 
interface connecting the model-level constraint and view-level 
event handling specifications with an underlying debug model.  

 

Figure 7. Visual debugging formulae (a) followed by a view 
event handler (b). 

Figure 7 shows the visualisation of runtime interpreted formulae 
(a) and an event handler (b) on a Marama model. The metamodel 
view and the event handler specification views are respectively 
juxtaposed with the runtime Marama model view for parallel 
visualisation of dependency evaluation or event handling in the 
running model instance’s context. A traditional “debug and step 
into” metaphor is used for step-by-step visualisation. Affected 
runtime model elements are annotated (yellow background) to 
indicate application of the formula/handler (left), while the 
formula/handler node and dependency links are annotated 
similarly in the specifications showing invocation status (right). 
Detailed information is presented in textual form (bottom). Run-
time monitoring of Marama for performance analysis could also 
potentially be supported via the visual debugging sub-system.  

We are currently working on representing visual debugging at a 
higher abstraction level, to better enable users to query both the 
static model and dynamic execution state. A visual query language 
will provide users with a means to specify query intent and 
generate results. Sensible display of queried results in a 
diagrammatic form using layout mechanisms is also being 
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addressed. More advanced query support is being planned to 
query of multiple end user tools for reusable specifications. From 
that, a semantic knowledge base with structured metamodel, 
model and transformation information is needed so that reasoning 
and pattern mining can be effectively performed. 

7.  SUMMARY 
We have described general issues involved in visualising event-
based information models, including abstraction and visual 
metaphor, hidden dependency, consistency and step-by-step 
visualisation. We have addressed these from our own experience 
in developing a set of notations and tools, from which we have 
generalised a canonical representation to enable the specification 
and visualisation of general purpose event-based systems. The 
generalised framework includes the following components and 
provides reuse via both inheritance and composition:  
• Structural components, e.g. entity, relationship, attribute, 

role, cardinalities, event, model, view 
• Behavioural components, e.g. query, filter, action, formula, 

and various event notification schemes such as broadcast, 
subscribe-notify, listen-before and listen-after. 

• Layout, e.g. for shapes: containment, on border, enclosure, 
horizontal/vertical alignment, show/hide, and 
collapse/expand; for connectors: straight/curved/angled 
routing and show/hide; and overall: horizontal/vertical tree, 
top-down/left-right process start/end, zooming/fisheye and 
view juxtaposition. 

• Runtime, e.g. focus/highlight  

Our future work directions include a higher level description of 
our visual event handling metaphors, automatic layout support and 
query-based runtime visualisation. 
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