Working Paper Series
ISSN 1170-487X

Notes:
An Experiment in CSCW

by: Mark Apperley, Simon Gianoutsos,
John Grundy, Gordon Paynter,
Steve Reeves, John Venable

Working Paper 96/9
April 1996

© 1996Mark Apperley, Simon Gianoutsos, John Grundy,
Gordon Paynter, Steve Reeves, John Venable
Department of Computer Science
The University of Waikato
Private Bag 3105
Hamilton, New Zealand

Notes: An Experiment in CSCW

Mark Apperley, Simon Gianoutsos, John Grundy
Gordon Paynter, Steve Reeves
John Venable

Department of Computer Science
University of Waikato
HAMILTON
New Zealand

Abstract

Computer Supported Co-operative Work (CSCW) systems are complex, yet no
computer-based tools of any sophistication exist to support their development.
Since several people often need to work together on the same project
simultaneously, the computer system often proves to be a bottleneck. CSCW tools
are a means of allowing several users to work towards their goal. Systems
development is essentially a team process, yet support for CSCW on these systems
in its infancy.

The aim of this report is to record the building and experimental use of two
prototype systems. These systems were developed for two main reasons: to
explore the usefulness of two different environments for building CSCW systems;
to experiment with some ideas that had arisen from group discussions on particular
artefacts—notes—and see both how they could be implemented and how useful
they were in practice.

1 Introduction

This report has been produced as one of the outputs of the FoRST funded project “Improved
Computer Supported Collaborative Work Systems” conducted within the Department of
Computer Science at the University of Waikato.

The initial idea of notes (which we seem to have come back to, see section 5) was to provide at
least the sort of facility of use that yellow sticky notes provide in the world of paper. So, notes
could be left anywhere on any document, they could be added to with other notes and they
could be specially treated by sending them to named people. See section 2.3.1 for more on this.

The report has a simple structure: each of the two environments and systems produced within
them is described (sections two and three) and then they are compared and contrasted in section
four. A simpler system, designed in the light of experience with the earlier work, is presented in
section five.

The example chosen as a target application to which the note was applied was an editor for
entity-relationship (ER) diagrams.

2 A Groupkit-based editor

This section contains an overview of the Multi-User ER Diagram Editor (called “Muer”) . Muer
was written using GroupKit 3.0 [Roseman et al. 1996], Tcl 7.3 [Ousterhout 1994], Tk 3.6
[Ousterhout 1994], and Tcl-DP 3.2 [Smith et al. 1993].

2.1 Overview

The rest of this section contains an overview of the functionality of Muer. In section 2.2 an
outline of the Muer’s diagram editing functionality is given. That is followed by an overview of
the communication and collaboration facilities added to Muer in section 2.3, and a description,
justification, and evaluation of each of the “groupware” features in section 2.4.

1

']ED“%_ er diagram editor (file manager) SI——————D2|
File Show Windows : _ (o NPT Qullabnratibn Help !
 pointer 1A
entity 14
i relation
attribute
connect
delete
1 new note

it
b
?é
i

TR

info

myself

exit

inv-line

TP

inv-line 1:1 |

T

PC i
invoice-lir —__descﬁpﬁuﬁ;
ost

Figure 2.1: The main screen

2.2 ER diagram editing features

Muer was written as a single user ER diagram editor, to which group awareness was
subsequently added. The original interface was loosely based on the MViews ER prototype
[Venable and Grundy 1995], the main differences arising in the differing uses of icons. Like
MViews ER, the Muer editor interface consists of a main screen with a set of buttons on the left
hand side and menu bars available at the top. The “pointer”, “entity”, “relationship”,
“connector”, “attribute”, and “delete” buttons shown in figure 2.1 are the same as tools in
MViews ER.

The pointer tool is used to move and select objects in the ER diagram. Entity, relationship,
connector, and attribute tools are used to create the objects of their respective types, and to
rename those objects when they already exist. The delete tool, as it name suggests, is used to
toggle a delete flag and remove the objects from the view.

The basic interface differs from MViews ER in three major ways. Firstly, only one diagram
view, the main screen, is included in the model (though other “views” of the individual objects
are described later). Secondly, there is no equivalent to the MViews ER “Hide” tool, though
the “Show” menu allows the user to selectively display classes. Finally, the pointer tool’s
move operation in Muer uses a “Click-Motion-Click” operation to approximate the dragging in
MViews ER.

2.3 Communication and collaboration overview

The step in turning Muer into a “groupware” program was to change it from a diagram editor
into a collaborative diagram editor. The GroupKit libraries were used to allow several people to
join a Muer conference at once. One of GroupKit’s design goals was to make this kind of
change simple and straightforward, and the change presented no problem.

2.3.1 Notes

Although Muer had a significant collaborative component, there were still no inherent
communication tools. After much discussion, the CSCW group proposed a system of note-
taking, messaging and dialogue capture to allow communication between users. The basis of
the note system is a simple text form that can be attached to objects as notes and sent to people
as messages. Because people are objects too, Muer combines the concepts of notes and
messages, and the terms are interchangeable throughout this document (though it has been
suggested that there should be an explicit differentiation, even if it is only in the mind of the
user).

Each note has several properties, including a sender, subject, list of recipients, date, urgency
settings, kind, and text. The kind of note defaults to one of a range of categories that were
expected to occur often. These include questions, answers and comments for gaining and
providing information; explanations, examples, and change notices to be used as
documentation; requests for action, cancellation, counters, agreements, and completion notices
for coordinating work; and the junk mail category for mail that isn’t strictly necessary. In
addition, the user can enter a category of their own. The test users used a couple of other

EEE

categories, including “to-do item”, “test”, and “statement of action”.

Notes are arranged into threads. When a new note is created, it becomes the first note in its
own thread. When a note is replied to, the reply is considered part of the same thread as the
original note. Notes can only be replies to a single other note, though any number of other
objects, including threads, can be added to the list of objects that a note is attached to.

2.3.2 Performance issues '

As research software, and incomplete research software at that, Muer was never intended to be
100% reliable. Experimentation with new features was the first goal. As a result, the operation
of the program is not completely reliable: for example, one user crashed twice while creating the
diagram, and at another point both users were asked to leave the conference and rejoin it to
avoid a probable repetition. However, the nature of groupware provides a safety net in these
cases: people continuously leave and rejoin conferences during normal use. Therefore, under
most circumstances, the user can crash but then rejoin a conference without any major loss of
work.

This is possible because there are two types of process that can connect to a Muer conference.
The first person to join a conference becomes the “file manager”. The file manager process is
responsible for most of the file operations such as loading and saving documents, and for
ensuring that all the participants in a conference have all the object information (particularly
participants who are joining a conference while work is still in progress). Most of the
additional functionality is transparent to the user of the file manager process, and it can be used
to edit the diagram in the same way as any other process. The only visible differences are the
title of the Muer window (as shown in figure 2.1) and the options under the “File” menu
(described in section 2.4.1).

If you wish to use Muer for an important task, it is advisable to create a file manager process
that will not be used to edit the diagram by any of the participants. Initially, this program
should be used to save the diagram under a suitable name, and subsequently the other users can
make the file manager save the diagram with the “Request Master Save” option in the “File”
menu. The other users can use the “Save Local Copy” option to store additional copies of the
diagram. Should any of the users have an error that forces them to leave the conference, they
can rejoin and the file manager, and hence the diagram, will, remain intact.

Although Muer ran quite quickly on small examples (i.e. less than 30 objects) it proved to be far
too slow to use practically with diagrams as large as the one built in the test, which had 93

3

objects. Operations that take a particularly long time are those that involve iteration through all
the objects, such as creating listboxes and refreshing the screen. Muer will need to be radically
revised before it can be used for diagrams of any size. File operations in Tcl-Tk take a very
long time, though this does not usually interfere with the normal running of Muer. Network
operations for machines that connected from other domains on the Internet took a long time to
connect to the process and to make and receive updates.

The speed issues can be best addressed by rebuilding parts of Muer in C, by abandoning
environments (GroupKit’s shared data structures, which seem to be inefficient, though this
unconfirmed) in favour of direct remote procedure calls, and by reducing the amount of
network traffic caused by redundant remote procedure calls and environment updates.

2.4 Communication and collaboration features

This Section describes the individual communication and collaboration features added to Muer.
Each sub-section describes a particular window and the features that are present on it. Where
there are features that appear in more than one window a reference to the explanation will
normally be given.

2.4.1 The Main View

Most of the functionality of the main Muer screen (shown in figure 2.1) is described in section
2. This section describes the communication and collaboration features that appear in this
window.

2.4.1.1 Note Flags

Every object created can have notes attached, and each object has an associated “flag” that tells
the user about any notes that are attached. This flag can have one of five states described
below. If there are notes attached to a visible object then the flag is displayed in the form of a
small icon, intended to represent a “sticky label”, attached to the object’s icon (or attached to the
top left of the screen, for notes attached to the main view).

The note flags were implemented in order to let the user know that there were notes attached to
each object. Although they served this purpose quite well (except for those occasions when
MacX, the X terminal emulator lost its colourmap). Unfortunately, every user thought that the
note icon was separate from the icon of the object it was attached to, and tried to get to the note
information by clicking or double-clicking on the note flag. A second flaw is that the flags
convey some information, but not enough. They give no idea of the number of notes attached
to an object, nor how recently they have arrived. Finally, it is a little unclear what the note flag
represents: the users tended to see it as representing the notes, when in fact it contained status
information about the object the notes were addressed to. This distinction is described in
section 2.4.4.

Flag | Meaning Icon
0 | No notes are attached None
1 | Read, non-urgent notes are attached | Yellow note, gold border
2 New, non-urgent notes are attached Yellow note, red border
3 | Read, urgent notes are attached Violet note, gold border
4 | New, urgent notes are attached Violet note, red border

Table 2.1: Note flags and their meanings

2.4.1.2 Buttons
There are several buttons on the left of the screen that do not have an equivalent in MViews ER.
These are (with the exception of the “exit” button) used to access collaborative features.

The “new note” button is used to send notes. When it is selected, clicking on any part of the
diagram will bring up the dialogue in section 2.4.5, allowing the user to send a note. It was
included to allow messages to be sent quickly and easily. One user suggested that a “New
Message” (and possibly “Urgent New Note”) button be added as well, so that messages could
be sent to other users in a similar manner. This would allow messages to be sent to users more

4

quickly, reduce the amount of adding and removing required in the “To” field of the message,
and would persuade the user that there was a difference between a note attached to an object for
other users to see and a message sent directly to a person (although in the implementation no
such distinction exists).

The “info” button is used to view the information about the object. Clicking on this button and
then an object (or the background) brings up the dialogue described in section 2.4.4. Users
complained that they were continually having to do this in order to see the notes attached to an
object and desired an easier way to look straight at the notes attached to an object. (Had they
but know, there is a partial solution: the Shift-Click operation will perform the same function as
the “info” button in any mode without changing the mode.)

The “myself” button brings up a window identical to that in section 2.4.4 but the object
described in the window is the user. This button was intended to allow the user to view
messages to themselves. (Users requested that this window always be open, and updated when
new messages arrive. This functionality is, in fact provided by opening this window and
choosing “show new” option from the “List Type” menu.)

2.4.1.3 Menus

There are five menus on the main screen. The “File” menu contains different options for the file
manager it does for the other users. The file manager has the “New” option that clears the
diagram and all the data, and the “Save Master Copy” option, which saves a copy of a diagram.
Other users have the option of choosing “Request Master Save” from the file menu, which is
equivalent to the file master choosing “Save Master Copy”. Other members of the conference
may save local copies of the diagram if they want to with the “Save Local Copy” option. All the
“Save” options will automatically save the diagram if it has a filename (so that users can request
a master save without requiring the file master to give any input), and the menu allows users to
choose “Save As” equivalents that always prompt for a filename before saving. All the users
have an “Exit” option that allows them to leave the conference. However, when the file master
quits, all the other members of the conference are first forced to exit.

The “Show” menu allows the user to choose whether each class of object should be displayed
in the view. The user can also use this menu to suppress the display of notes, new notes,
urgent notes, or new, urgent notes. These options were designed to allow the users to filter out
the notes and objects that were not important, but were not used. The “Mark All Notes Read”
option is included in this menu to reset the user’s flags if they should be forced to leave and
rejoin the conference.

The “Windows”™ menu allows the user to view other windows (these can loosely be described
as similar to other views in MViews ER) that display the object information in other ways.
These are the “View All Objects” window described in section 2.4.2, the “View all Notes”
window described in section 2.4.3, and a “View Notes to Self” window that is the same as the
one found by clicking on the “myself” button.

The “Collaboration” menu is a GroupKit default, and contains an option that lets the user
examine low-level information about each of the participants, such as what machine they are
connected from.

The “Help” menu is also a GroupKit default, with information about GroupKit. I have added a
brief “About Muer” option, and an “ER Revision History” screen.

2.4.2 The “View All Objects” window

The “View All Objects” window, shown in figure 2.2, is dominated by a scrolling list
containing all the (selected) objects. The object id, type, name, and creator are listed. At the
top is a summary of the number of objects listed, and the number that exist in total. Double-
clicking on an object in the list allows the user to view that object in a separate window. This
window is intended to let the user view and access all the objects that have been created,
including those that were subsequently deleted. Users felt that some way was needed to reduce
the complexity of the list.

== piew all ohjects S——"—————————11)7|

There are 93 objects (85 of which are displayed).

0 (view): Main Screen (gordon paynter) . A
1 (person): gordon paynter ()
2 (person): jgrundy ()

3 (entity): customer (jgrundy) |
| 4 (thread) explanation: "customer explanation” (jgrundy)
| 5 (person): mark apperiey ()

6 (undefined): object6 ()

7 (undefined): object7 ()

| 8 (relationship): acc-of (jgrundy)

| 9 (entity): account (jyrundy)

10 (connector): acc (jgrundy)

11 (connector): cust (jyrundy)

2 ____ |12 (thread) question: "acc-of" (mark apperey) i
| View.... | 13 (relationship): trans-of (jgrundy)
| |~ Al Objects :g Ec“:';e‘;wtgl "“"; 09(;“"'*12) '
11 : entity): saction (jgrun

| | # Mon-Deleted Ojects| | 1¢ (connector): acc (jgrundy) }'
[« Deleted Ojects | 17 (thread) explanation: "account explanation” (jgrundy) |
i 18 (note) answer: "acc-of" {jgrundy) '
f 19 (undefined): object19 ()

j | 20 (thread) to-do item: "transaction modifications” (jgrundy)
f 21 (note) comment: "acc-of" (mark apperiey)

| 22 (undefined): object22 ()

23 (undefined): object23 ()

| 24 (note) to-do item: "transaction modifications" (jgrundy)

| 25 (undefined): object25 ()

| 26 (note) com nt: "acc-of" (jgrundy)
| 27 (relationship): inv-of (jgrundy)

| 28 (connector): inv (jgrundy)

— e e e re———

Undelete

—_—

View : Delete

1 Dismiss

Figure 2.2: The "View All Objects" window

2.4.2.1 The “View...."” radiobuttons

To the left of the object list are a set of three radiobuttons (only one button of a set of
radiobuttons may be selected at any time) that filter the list slightly. The “All Objects” button
puts all the objects into the main list, the “Non-Deleted Objects” button puts the non-deleted
objects in a list, and the “Deleted Objects” button puts only those objects that have been deleted
in the list.

2.4.2.2 Buttons

The remaining buttons are used to manipulate individual objects. The “View” button is
functionally equivalent to double-clicking on an entry. When it is pressed, any objects that are
selected in the listbox are displayed. (Notes are displayed in “View Note” windows, and all
other objects in “Object Information” windows.)

The “Delete” and “Undelete” buttons, as their names suggest, delete objects, and recover
deleted objects. When an object is deleted, a flag is toggled and no data is lost, making it easy
to recover.

]E]:]_.__—_——-————-————_ view all notes

There are 27 notes (27 of which are displayed). '

View Style urgent request for action 88: tran-rec (mark apperiey) A
1 = urgent question 81: Main Screen (mark apperey)]
| | Threaded list answer 79: UPC (mark apperiey) i
+~ Ordered list urgent question 78: UPC (jgrundy)
' New note list explanation 77: invoice-line (mark apperiey)

. - | urgent statement of action 71: jyrundy (jgrund
1 S L urgent explanation 66: account ggrungy(;g 7
v List of threads comment 55: invoice-line (jgrundy)
Vi comment 76: invoice-line (jgrundy)
Show notes of kind | | question 54: Main Screen (jgrundy)
|# question explanation 50: balance (jgrundy)
' test 36: jgrundy (jgrundy)

1 W answer - Ugn i
explanation 35: invoice explanation (mark apperey)
e comment 43: invoice explanation (jgrundy)
| M explanation urgent comment 56: invoice explanation {mark apperey) .
‘M example counter 34: invoice (mark apperey) l

11 ent ch i : i i
| /W change notice urgent change notice 33: account work being done (jgrundy)

, urgent request for action 32: invoice (jyrundy)

W request for action | | gR stion 31: jgrundy (jgrundy)

| W cancellation urgent to-do item 20: transaction modifications (jgrundy)
to-do item 24: transaction modifications (jgrundy)

M counter : : ;
explanation 17: account explanation (jgrundy)
M agreement urgent question 12: acc-of (mark apperiey)
| @ completion notice | answer 18: acc-of (jgrundy)
® junk mail urgent comment 21: acc-of (mark apperey)
comment 26: acc-of (jgrundy)
11| Moo . explanation 4: customer explanation (jgrundy)

[Show deleted notes| view Hote | New Note | Reply | Mark Read | Undelete | Delete |

Dismiss

Figure 2.3: The "View All Notes" window

2.4.3 The “View All Notes” window

The “View All Notes” window is similar to the “View All Objects” window, but only notes are
displayed. It contains a scrolling list with an entry for each note that includes its deletion status,
urgency, type, id, subject, and sender. The purpose of this screen is to let the user search all
the notes for a desired piece of information. Users felt that this list was also too complex and
that better visualisation techniques were possible. They approved of the topmost string that
states how many notes there are and how many are displayed.

2.4.3.1 The “View Style” radiobuttons

These radiobuttons provide several different ways of setting which notes will be included in the
main list. The “Threaded list” option, shown in figure 2.3, groups the notes by thread and puts
replies below and indented from their parents. This view was intended as a simple way to
show note structure. The “Ordered list” option puts every note in order of id and therefore in
chronological order so that the user can search for a note from around a certain date and time.

The “New note list” and “Urgent list” list new and urgent notes respectively in id order, letting
the user catch up with their reading or deal with the important notes. The “List of Threads”
only lists the first note in each thread, rather all the replies to that note. The users used the
“Threaded List” and “New note list” options.

2.4.3.2 The “Show Notes of Kind” checkbuttons

The buttons on the lower left hand side are used to filter the list of notes based on note kind.
This allows the user to, for example, only search for examples, or only look for questions and
answers. The “Show deleted notes” button is the exception. When selected, it puts deleted
notes into the listing.

2.4.2.3 Buttons

The “New Note” button invokes the “New Note” window described in section 2.4.5. The
remaining buttons in this view act on the selected notes in the listbox. The “View Note” button
will display the selected notes as in section 2.4.7, and the “Reply” button invokes the Reply To
Note described in section 2.4.6. The Users indicated they used these buttons. The “Mark
Read”, “Undelete”, and “Delete” buttons were not used in the trial.

2.4.4 The object information window

Most of the information about an object can be displayed in a window such as the one in figure
2.4. This window was originally intended as a simple listing of the notes addressed to each
object, but grew into a general-purpose display and editor.

SE=E==————————— ohject § HE|
Details of relation:\.p number 8: [acc-of
T]""i}a'é_ﬁi_ﬁﬁégﬁnh?%é:b - (markapperiey) .. y
answer: acc-of (jyrundy)
. urgent comment: acc-of (mark apperiey)
interest in new messages: comment: acc-of (jgrundy) |
-~ lgnore new messages | ;
-~ Flag as new | |
+ Fag with incoming flags |
..~ Fag as urgent i
+~ Flag as urgent & inform me | _ e R oM v
New Hote | View Hote | Reply | Remove i Followups | List Type |
Dismiss :
o

Figure 2.4: The "Object Information" window

2.4.4.1 The name field

At the top of the window is a string introducing the type of the object and displaying its name.
The name is in an editable field so that the user can change it (this functionality is also available
from the main screen, and this window was meant to eventually replace that as well). Users did
not use this field.

2.4.4.2 The interest and urgency buttons

Because each user will be interested in various objects to different degrees, provision has been
made for a user to register interest (or disinterest) in an object. This is primarily achieved
through the use of the urgency flag. The flag does not report on the presence of notes, urgent
or otherwise, attached to the object, it reports that something associated with that object urgently
requires the user’s attention.

For example, if a user has nothing to do with a certain part of the diagram, urgent notes attached
in that part of the diagram are unlikely to seem urgent to that particular user. Alternatively, if a
user is in the middle of important work on an object, any note, no matter how trivial the sender
might think it, will seem urgent to the user. Also, a thread that was considered urgent a day ago
may not be at all urgent to the user now. In any of these cases, the urgency of the notes sent to
the object does not have the same effect on the urgency of the note.

It is for this reason that the urgency flag was separated from the notes and made part of the
object. In the top left of the object information window is an urgency flag checkbutton. When

the object is urgent the checkbutton is active, and when it is not, the checkbutton is inactive.
The user can toggle the flag by clicking on the button.

However, the flags were designed to alert the user to the presence of notes. The “Interest in
new messages” radiobuttons allow the user to register a certain amount of interest in an object,
and each time a new note arrives the urgency flag will be set (or otherwise) based on the
urgency of the message (as set by the sender) and the interest the user has in the object (as set
by the recipient). The default setting is to “Flag with incoming flags”. This means that when a
new message arrives, the urgency flag is set to true if the new note is urgent, but not otherwise.
In other words, the urgency flag is set entirely based on the user’s decision. In Figure 4, the
user has the interest set to “Flag with incoming flags”, and has received an urgent message in
the past. However, the urgency flag is not currently set, indicating that the user turned it off
manually.

Four other interest levels are available. “Ignore new messages” prevents the objects note flag
from changing when new notes are attached. When a new note is attached to an object and has
an interest level of “Flag as new”, the object is flagged as having new messages but the urgency
level does not change, even if the new note is urgent. The “Flag as urgent” treats all new notes
as urgent, and flags the object’s flag as such. “Flag as urgent & inform me” does the same and
in addition will pop up a (non-modal) dialogue informing the user that the note has arrived, and
lists the subject, sender, and kind.

Of these options, the users only ever changed the default to “Flag as urgent & Inform me”.

2.4.4.3 Buttons

The buttons associated with the list box have similar functions to the buttons on the “Show all
Notes™ screen. “New Note” attaches a new note to this object (the new note may be attached to
other objects as well through the “New Note” window in section 2.4.5). “View Note” displays
all the notes highlighted on the listbox, and “Remove” deletes all of the highlighted notes. The
“Reply” button can be used to reply to a single selected note, and the “followups” button is used
to display the object information field of the selected note. As in the similar listings, “View
Note”, “New Note”, and “Reply” were the most used buttons.

The “List Type” button is used to change the way the notes are displayed in the note listing.
When it is pressed, a drop down menu is displayed with the option “New Notes” which lists
the unread notes on the object; “Urgent Notes” which lists the urgent notes to the object; “Full
Note List” which lists the notes in chronological order; “List of Threads” which lists the first
note in each thread; and “Threaded List” which gives the notes grouped by thread and indented
to show their place in the hierarchical structure (see figure 2.4). The “List Type” button seems
to have been overlooked by the users, who did not use it but still requested some way to show a
list of the new notes as they arrived, which is exactly what the “New Notes” setting does.

Their overlooking the button is probably because it is inconsistently placed compared to the
other, similar lists.

2.4.5 The “Create New Note” window

The “Create New Note” window, shown in figure 2.5, is generated whenever a new note is
created. Much of the note information is found by the system and does not need to be entered
(though it will sometimes be changed) by the user. Users reported that they used all the
features in this window.

2.4.5.1 Fields

The “To” field contains a list of objects (including people) to whom this message is attached or
addressed. The contents of the field can only be changed through the use of the “Add” and
“Remove” buttons to the right of the field. These buttons generate drop-down menus and let
the user choose which objects they wish to add to (or remove from) the “To” field from an
ordered list of objects. However, the “Add” menu proved unmanageable with more than 50
objects: it takes too long to load, and is so long that many of the entries are lost off the bottom
of the screen.

The “Sender” and “Date” fields cannot be altered directly by the user, though this was not
evident to look at them. The formatting of the date field could be improved.

The urgency of the note, as described in the “Urgency” field, is split into three parts. This is
the result of a conscious design decision to move away from the ambiguous idea of “urgency
levels” and replace them with a set of specific options that the sender can use to show the
receiver how urgent the note is. The options are setting the urgency flag (12 of the 28 messages
were flagged), informing the most suitable recipient of the notes presence, and setting a time
limit for responses (it is intended that some way of formalising the time limit be built into the
program). The window for setting these options is shown in figure 2.6. These concepts are
broadly based on Flores’ idea of a communication coordinator.

If the user chooses to inform the most suitable recipient about the note, the program decides
who is most likely to be able to help (based on the people in the “To” field and the creators of
the other objects in the “To” field). The user is told who the message will be sent to in a
window like that in figure 2.7, and the best recipient will be alerted with a window similar to
the one in figure 2.8. The recipient sees the sender, subject, and time limit (if any), and is
given the options of ignoring the message, referring it on to someone more suitable (from a
drop-down menu), viewing it, or putting a decision off for a certain amount of time. The
options are designed to minimise the interruption to the recipients, while making the recipient
aware of the urgency of the sender’s message.

S[[E==——————— New note 93 =i —"—"—————11
to: | tran-rec Remuve! Add

!
| sender: | gordon paynter.?
date: | 14:40, December 21, 1995

urgency: | The note is in no way urgent. Change !
i kind: |question Change |

subject: itran-rec

Deliver _j Cancel Lk

Figure 2.5: The "New Note" Window

10

[

T
[l

urgency settings for note 94 =

‘-’ES,E The note is urgent.

Yes, | Interupt the best recipient.

Yes, iﬁl would like a response within

iﬂ hours

Figure 2.6: The "Urgency Settings" window

HE=——= alert ———15|

jgrundy (6) was
judged the person
most likely to be
able to help you with
this note and is being
interupted.

okay
B

Figure 2.7: An "Alert" window

]
W

new message from gordon paynter ===Hg|

gordon paynter would like a response to this question
within 3 hours if possible.

subject: Altering the attributes of acc-of
sent to: acc-of, jyrundy
seen by: gordon paynter

what action will you take?
lghore i View g Refer...

Put off until 10 minutes| from Mow.

&

Figure 2.8: The "Best Recipient" window

11

The “Kind” field lets the user choose a note kind from a set of the options described in the
overview. If the user is starting a thread (that is, sending a new note that is not in reply to
another note) the options available are “question”, “request for action”, “explanation”,
“example”, “change notice”, “comment”, “junk mail”, and “other”. The user can simply type in
their own category if none of these seem suitable. If the note is a reply, then the set of replies is
limited to the options listed in table 2.2. This conversation system is also derived from Flores’

work.

message type Suggested response types

question answer, comment

answer question, comment

comment comment

request for action counter, agreement, cancellation, completion notice
counter counter, agreement, cancellation, completion notice
agreement counter, agreement, cancellation, completion notice
cancellation counter, agreement, cancellation, completion notice
completion notice counter

explanation explanation, comment

example example, comment

change notice comment

junk mail junk mail

other all options available

Table 2.2: Suggested reply kinds

The users used 28 notes. Of these, 24 were from the formal lists, and five were typed by hand.
The kinds entered by hand were “test”, “to-do item” (twice, though one was a reply to the other
and defaulted to this value), and “statement of change” (which was a warning of changes about
to be made). A breakdown of the number of messages is shown in table 2.3. Eight of the 13
available types were used, which is quite satisfactory given the size of the example. Adding
“statement of proposed change” and “to-do item™ to the types of note should be considered.

message type number of | number of | number of

uses threads followups
question 6 6 0
answer 2 1 1
comment 6 1 5
request for action) 2 0
counter 1 1 0
agreement 0 0 0
cancellation 0 0 0
completion notice 0 0 0
explanation 6 6 0
change notice 1 1 0
example 0 0 0
junk mail 0 0 0
other f 3 1

Table 2.3: Use of message types

The “Subject” field is a simple text field that can be edited by hand. It defaults to the name of
the first object on the “To” list, and almost always requires changes. Extensions to the available
bindings to this field (and many of the others) are necessary. Particularly useful would be
arrow keys for movement and sensitivity to mouse selections.

2.4.5.2 Text
The main part of the window is the text editing area. This area requires many further bindings
(like the Subject field), and a scrollbar.

12

2.4.5.3 Buttons

The “Deliver” button attaches the note to the appropriate places and performs the requisite
notifications. The note can be cancelled with the “Cancel” button.

o =Ilhaplg to note 26 —e—=—p=
- g Creating areply to note 26

What kind of reply will you make?l
comment Change |

1
1

! H do you want to reply? !
% Follovwup in the thread v

~~ Reply directly to sender (jgrundy)

.~ Update or Replace (not implemented) i

y | What should be done with the original text
4% Discard

~ Include

+ Include gquoted (not implemented)

Create the reply
Cancel -

=

L

Figure 2.9: The "Reply To Note" window

2.4.6 The “Reply To Note” Window

Whenever the user decides to reply to a note and presses a “Reply” button , the “Reply To
Note” window is generated. After leaving this window, the user generally goes straight into the
“New Note” window and actually creates the reply. The “Reply To Note” is simply used by the
user to set options and defaults for the reply. An example is given in figure 2.9.

The users said that replies should have the same urgency as their parents, though this was not
implemented.

2.4.6.1 The kind field

The kind field works identically to the kind field on the “New Note” screen. It defaults to an
appropriate kind that can be changed by the user. This value is the default for the “New Note”
window when that window is invoked.

2.4.6.2 The how radiobuttons

The method of reply is chosen with the middle set of radiobuttons. The users’ options are to
perform a standard followup (that will be attached to all the objects on the “To” list of the
original note), reply to the sender (and not to any other objects or people on the “To” list), or to
“Replace” the current note. The last option is for use with notes such as explanations that are

13

intended for use as documentation. When an object is changed and the user chan ges the
documentation with this option , the old documentation is deleted when the new documentation
is created. (The deleted documentation is still viewable from the “View All Notes” window.)
This final option has not been implemented.

2.4.6.3 The original text buttons

The bottom set of buttons are used to set the default text in the “New Note” window. The
options are to discard the text, include the text as it appears for later editing, and to include the
text but quote it (as is done in email and Usenet postings). The third option has not been
included, to the extreme annoyance of the users.

2.4.6.4 Buttons
The “Create the reply” button is used to pass the defaults from this window on to the “New
Note™ window. The “Cancel” button cancels the reply before this action takes place.

2.4.7 The “View Note” Window

The “View Note” window, as the name suggests, is used to view notes that have already been
sent. These notes are not static: some of their settings can be altered even after the user has sent
them. An example is given in figure 2.10.

EOE=————liewnote 2| =————"7F}
to: |acc-of, thread 12 Remove | Add |
sender: | mark apperey " - |
date: | Thu Dec 21 09:54:03 NZDT 1995
kind: | comment

subject: lacr-of

Are you suggesting a separate dialogue thread dissociated fr
om objects?

Mark

——
—

=Y = gy |

W Urgent? Reply Show Info Show Thread | Delete

Dismiss
—_—lTk

Figure 2.10: The "View Note" window

=

2.4.7.1 Fields

The “To”, “Sender”, “Date”, “Kind”, “Subject”, and “Text” fields have basically the same
layout and data that appear in the “New Note” window. The “Urgency” field is replaced by the
“Urgent?” button at the bottom left of the window. However, except for the “To” field, their
contents cannot be changed. The To field can be changed in the same manner as the “To” field
in the “New Note” menu. This allows the list of objects to which the note is attached to be
edited after the note has been sent.

14

2.4.7.2 Buttons

The “Urgent?” checkbutton is used to show and toggle the note’s urgency flag. This flag
affects the description of the note when it is listed in listboxes such as the “Show All Notes”
window: it does not affect the urgency flags of the objects that the note is attached to.

The “Reply” and “Delete” buttons have the same function that they have in other places: one
creates a reply and the other deletes the note. The “Show Info” button displays the “Object
Information” screen for the note, while the “Show Thread” button is intended to show a
dialogue capture of the thread that the note is a part of. It is not implemented.

3 The MV-based system

This section introduces the MV-based system (called “MV Notes”) to the reader, and gives
some of the reasons behind prototype implementation of a system to allow notes to be attached
to items of interest.

This section contains issues involving the design of MV Notes and rationale for doing things in
certain ways. Benefits and advantages of each feature will be discussed.

This tool was designed as an extension to an existing ER CASE tool, MViews ER. MViews
ER was built using the MViews framework. MV Notes was kept as separate from MViews ER
as was feasibly possible, thereby enabling it to be used for other MViews applications.

3.1 Snart

The Snart programming language was used as the development platform. Snart integrates the
programming paradigms of object-orientation, logic and constraints. It is built as an extension
of LPA MacProlog32 [LPA 1994] and has been used to experiment with programming language
design and with the architecture of programming environments. Snart was originally designed
to be easy to implement and extend [Grundy 1993].

Snart began as an OO extension of Prolog. To that base has been added: classifiers (based on
Kea), object spaces and persistence, and constraints [Mugridge 1994].

In general terms the object-oriented features of Snart are similar to other class-based OO
languages, such as Eiffel and C++ [Mugridge 1994].

3.2 MViews

MViews [Grundy 1993] is a model and framework for constructing Integrated Software
Development Environments (ISDEs) , which represent the abstract syntax, semantic attribute
values and multiple views of a software system as graphs. Graph components are modified by
operations to construct a program, and software developers view and manipulate the view
graphs in concrete textual and graphical forms.

Consistency management between updated view components is supported by a change
propagation mechanism. MViews graphs are dependency graphs: descriptions of changes to
graph components (called update records) are broadcast to related (dependent) graph
components, which then respond to these update records and update their own state to maintain
consistency. This mechanism provides a way of keeping textual and graphical views of
software development consistent.

Storage of update records by graph components supports a generic undo/redo facility,
modification histories, version control, external tool integration, and collaborative software
development. Extensibility is supported by components and views can be added or modified
without affecting existing structures (via the dependency graph mechanism). New
environments are constructed by specialising an object-oriented framework, which provides a
consistent user interface for views. MViews is currently implemented using the Snart language,
an object-oriented Prolog, however it is being ported to C++.

15

3.3 MViews ER

MViews ER [Venable and Grundy 1995] is a single-user environment that integrates ER
(Entity-Relationship) and RDS (Relational Database Schema) specification to provide graphical
ER modelling views and complementary textual RDS views, with consistency management
between the two. Figure 3.1 shows an example of MViews ER, which takes this approach to
database model specification.

e " " oz, ey Ly

rootl entity
i
k ? customer_id]
3 < e {tupdutes_seare(tl) "j
updates_end, */
L Ty - |
" company rable(account_of [

(=4 @ S0.n3 customer :customer_id, ‘]
- 0,n) o account saceount_id E
— 1. i
2 ety (i) :é
: A |
(1,1 ay K 4
e ;! =
z
i
=]
(,0) (1,2) i
(=) e Tabie |
/tupdutes _stort(t0) . A
wpdate(12). 3 ndd sttribuute compony 3
m updote(13). 5 change order to relotionship wagount-of from (1,n) to (0,n) -
updates_end. */ ']
]
(1,1 teble(customer, | il
customer_id:serinl, i
—— wge:integer([|
e i
ranges(0, 100) §

.
nume sTring [é
1. |
i
i

Figure 3.1 : MViews ER environment

MViews ER supports graphical ER diagram views with diagrams constructed using tools,
dialogues and menus. Textual RDS views contain a table definition including table fields, field
types, and zero or more field values used to specify various attributes for fields. RDS views are
parsed to update table information. The graphical ER views provide a high-level specification
system with details about RDS requirements ignored. Textual RDS views can be generated
from ER data and provide extra information about field types, defaults, ranges and so on.

3.4 MV Notes Architecture
A high level inheritance diagram showing how MViews, MViews ER and MV Notes relate is

shown in figure 3.2:

MViews

j

MViews ER

MV Notes

Figure 3.2 : MV Notes High Level Inheritance Diagram

16

MYV Notes was kept as separate from MViews ER as was feasibly possible, thereby enabling it

to be used for other MViews applications if desired. Ideally MV Notes would be integrated into
MViews, thereby ensuring greater transparency.

3.5 MV Notes

MV Notes is a textual and graphical means of attaching notes to MViews objects. Notes can
have various attributes associated with them (see next paragraph), and these attributes may
effect the graphical appearance of the note. For example, an unread note is graphically
displayed with its name in red. Figure 3.3 shows an example of MV Notes applied to MViews
ER.

End-users-Human

Figure 3.3 : MV Notes applied to MViews ER

The toolbar on the left hand side of each graphical window contains the tools that can be used
on the graphical objects. A menu option is provided that contains access to other information
about MV Notes. This menu would definitely not be considered a masterpiece by HCI experts.
All aspects of this menu are discussed in further sections.

X [k
o
(=] X
il s

Figure 3.4 : MV Notes Tool Bar

17

The “Pointer” icon in figure 3.4 is used to select and move objects. Double clicking on an MV
Note Icon with the “Pointer” will edit the MV Note, and likewise within MV Note User Icon.
The “Entity tool”, “Relationship tool” , “Entity/Relationship tool” and “Attribute tool” are part
of MViews ER and have no effect on MV Notes. “Add View” is used to create a view of an
object (graphical or textual). “Hide” is used to remove a graphical object from the display.
“Delete” is used to delete an object. The “Note tool” is used to create and edit MV Notes. Once
this tool is selected , clicking on an existing MV Note edits it, and clicking on an empty location
creates a new MV Note. The “Note Link tool” is used to link MV Notes and MV Note Users to
MViews objects. The “Note User Icon” is used to create and edit users. The functionality is
similar to the “Note tool”.

Visual representations of notes can be found in section 3.5.5. Attributes of a note include:

Id A user defined id. By default this is the MViews Object id.
Name A user defined name.
Purpose A short text string to overview the note contents.
Text The text the note contains.
Owner The user who is responsible for this note. By default this is the
creator of the note.
Kind A way of classifying notes into types. The only difference the
kind currently makes is in the graphical appearance of the note.
Notes kinds are:
e Explanation (default)
e Message
e (Question
e Example
Priority A scale used to signify the importance of a note. This is set by the
creator of the note. Note priorities are:
e Lowest
e Low
e Normal (default)
e High
e Highest
Section 3.6.1 explains the impact of priority settings.
Private A flag to indicate whether the note is readable by other users.
This makes the note only visible to the owner.
Creation Date The date the note was created.
Creation Time The time the note was created.
Last Update Date The date the note was last updated.
Last Update Time The time the note was last updated.
Default Access Rights | The default privileges that a user has to this note (see section
3.5.2).

MYV Notes also have the ability to have multiple views. An MV Note view may contain MV
Notes, MV Note Users or views of these components. It is intended that MV Note Views are
used to reply to a specific note. This helps to organise the context of notes.

MV Notes can also be attached to the links between objects (notably other Notes). This could
be useful to explain the relationship between notes.

3.5.1 Registration of Interest

Different users have different levels of interest in objects. MV Notes allows users to register
interest in any MViews object. Whenever this object is modified, the user would be notified
appropriately (see section 3.6.1). Four different levels of registration are available:

18

e Very Interested e Reasonably Interested
o Slightly Interested e NOT Interested

A comment field is also provided for the user to enter a reason why they have registered this
level of interest or disinterest.

Registration for Object(a?) - end_user

Reg Level: [NOT Interested

Comment: Hate, hate, hate

Figure 3.5 : Registration of Interest

Registration of disinterest can also be registered in objects. By registering disinterest, the user
will not be notified about anything involving the object concerned. This can help to filter out
annoying notification of change messages.

3.5.2 Access Rights

Whenever an MV Note is created it is given default access rights. These rights, definable by the
user, state what other users can and cannot do to the note.

Default Note Access

Link to [Add View
Delete Edit

[Move [4 Hide
[View [GrantRights

Figure 3.6 : Default Note Access

The rights are assigned to tasks that can be performed on a particular object by an individual
user. By providing security constraints at this level, a high degree of flexibility is available for
restricting access. Access rights available are:

Link to The ability for the user to link this note to another object, or to link
another object to this note.

Delete The ability to delete the note.

Move The ability to change the physical location of this note on the
screen.

View The ability to view the contents of the note (this option is not
currently used. ‘Edit’ is used instead).

Add View The ability to add a view to the current note.

Edit The ability to edit the contents of the note.

Hide The ability to hide the note.

Grant Rights The ability to grant rights to other users for the note.

19

The default access rights can be overridden for a particular user by any user who has grant
rights for the note concerned. Overriding can be used to add and/or remove access rights. For
example, Gordon may have all rights on Note X, yet Colin may only be allowed to perform a
subset of these rights. Figures 3.7 and 3.8 show how these access rights can be modified.

Add Access Rights for Object al113 - Teeth .

Choose Users to add access rights to

al18: Real_Workers
al09: Colin
al05: Gordon

il S al05: Gordon

02: Colin

Ed Link to (< Add Diew

[Delete B Edit

] Move [Hide

View [6rant Rights

Figure 3.7 : Add Access Rights

In figure 3.7 the list on the left hand side is the full list of users and user groups. To give a
user rights, the user should be highlighted in the left list. Pressing the arrow button pointing to
the right will copy the selected user to the list on the right hand side. Likewise using the arrow
button pointing to the left will remove the user from the list of users to add access rights to.
The list on the right hand side is the list of users to add access rights to. The access rights to
grant each of the users can be selected by choosing the relevant checkboxes. Clicking the Ok
button will add the access rights chosen to the users in the right hand list. If the user already
has access rights these will be appended to, and not overwritten.

20

Figure 3.8 works in a similar way to figure 3.7, except that access rights are removed from
users in the list on the right hand side.

Remove Access Rights for 0bject all3 - Teeth

Choose Users to remouve access rights from

al18: Real_Workers

al05: Gordon
al01l: Simon
02: Colin

al09: Colin

[Link to 04 Add View

(] Delete (4 Edit

O Mave [] Hide

B View (< Grant Rights

Figure 3.8 : Remove Access Rights

3.5.3 Filtering

A basic filtering system has been set up to hide a subset of notes from the graphical display.
The user can choose which types of notes they are interested in and only these notes will be
graphically displayed on the screen. This works both for existing notes graphically displayed,
for new notes, and for modified notes. For example, if filtering states that ‘Explanations’ are to
be filtered out, and the kind of a note is changed to ‘Explanation’, then it will be removed from
the graphical display.

'Filtering.

] Messages [<] Examples
[Explanations [] Only Registered
EJ Questions [10nly Unread

Priority
X Lowest High
] Low Highest
Normal

Figure 3.9 : Filtering

21

Filtering is currently only applied to graphical views, although it should not be difficult to
apply filtering to queries.

3.5.4 Update History

The MViews update history can be used to store a list of updates made to any MViews object
(including views). This has been extended to provide information about who made the change
and the time the change was made. Figures 3.10 and 3.11 show the update history for the MV
Note named Currency.

Updates on: Eurr'encg

. (Simon) Currency : base_from_subset

. (Simon) Currency : establish_many_link
. (Simon) Currency : establish_many_link
. (Simon) Currency : establish_many_link

Figure 3.10 : Update History

Currencu
(Simon) 9/1/1996 14:44:47

1. Currency : base_from_subset

1. Currency : change attribute id to 3

2. Currency : change attribute name to Currency
3. Currency : change attribute owner to Tom

Cancel

Figure 3.11 : Update History Detailed Information

22

3.5.5 Visual Representations

An example of an MV Note is given in figure 3.12. These settings plays a large part in
determining the visual representation of the MV Note Icon. Double clicking on an MV Note
Icon edits the note information. Clicking on the “-> To do” button of figure 3.12 adds the

current note to the “To do List” (see section 3.6.3).

Crestion
Lasl pdste.

Id:
Name:
Owner:
Kind:
Priority:

Purpose:

Texnt:

Note(a80)

9/1/1996 14:49:03
9/1/1996 14:49:03

|4 | [] Private

|End-users human?

|Gordon

[Ouestion

| Highest

Just a quick question to all those
knowledgable gurus out there. Are
end_users human? | am constructing a list
of kinds of people that may use this system
and need to know asap.

(cancel | [~ To do]

The kind of a note (i.e. Explanation, Message, Question, Example) is used to determine the
colour of the note icon on the screen. These colours are fairly gaudy since there were very few
colours that could be displayed properly by LPA MacProlog32. The rgb colour scale did not

work as documented.

The text of an unread note is graphically displayed with the border of its icon in red. This
colour will automatically be changed to black once the note has been read. A menu option is

Figure 3.12 : MV Note

-

Figure 3.13 : MV Note Icon

also available for the user to toggle a note between read and unread.

23

The first two letters of the priority of a note is given in the bottom half of the note icon. This
means that “Lowest” and “Low” will both be represented as “Lo”, and likewise for “High” and
“Highest”. It was deemed that this was significant by users.

If the note contains any other views (whether textual of graphical) a diagonal line is displayed in
the top left corner of the icon.

nd-users Ruman? =

Figure 3.14 : Original MV Note Icon

In the first prototype a significantly larger note icon was used (see figure 3.14). This note icon
was too obtrusive, and thereby refined to the icon in figure 3.13. The original note icon
contained the name of the note in the top half of its icon. An unread note was graphically
displayed with the name on its icon in red opposed to the change in border colour. The priority
of a note was given in fill in the bottom half of the note icon. This extra information was not
deemed necessary, therefore removed from the subsequent icon.

An example of the clumsiness of the use of the old icons is displayed in figure 3.15. This
figure contains exactly the same information as figure 3.3.

End-users-Human

Ind-us exrs-Human|

nd-usexe lunen? B

Beal Workers

Feal Workers

Figure 3.15: Old MV Notes applied to MViews ER

Notes can be graphically linked to other MViews objects, and even to objects in other views.
Links to objects in the same view are shown via a line connecting the objects concerned, but
this is not so easy across multiple views. Therefore, if an object contains links in other views
an arrow symbol is displayed on the right side of the MV Note icon.

Textual views are also available for notes. A textual view can be compiled to update the base

note information. A base note is the actual note, and visual representations of this note are
different views of the base note.

24

S[I=——————= End Users Human Text View

f*fupdates _start(t0) .,
updates_and. */

S

mr_note([

id:="4",

name ;="' End-users human?',

owner :='Goxdon' ,

kind:="Question',

priovity:='Highest',

private =off,

creation_date:=[9, 1, 1994],

creation_time:=[15, 59, 3],

lazt_update_date:=[9, 1, 1996],

lazt_update_time:=[15, 59, 3],

purpose:="",

text:="Just n quick question to all these knowledable gurus out there. Are
end_uzers Bummn? I am constructing @ list of kinds of people that mov use
this system and need to know asap .’

1.

Figure 3.16 : Textual View

3.5.6 Linking between Components

MV Notes can be graphically linked to any other graphical MViews object in the same view via
the ‘Link Notes’ tool. This tool however is restricted to linking within the same view. Since
notes can appear in multiple views, a dialogue box was constructed to allow linking between
components in different views. Linking is currently only permitted between MV Notes and MV
Note users (i.e. linking of Note to an Entity in another view is not permitted).

Choose objects to link together

all3: Teeth
: End-Users FAQ
: Edplain humans
: End-users human?
: Currency
: Charging
: End-User

a93: Explain humans
al8: End-User

Cancel

Figure 3.17 : Link Objects

25

MV Notes can be attached to the view by linking them to an icon with the same name as the
view in the top left corner of a newly created view. This icon was added for this purpose, and
is part of MV Notes.

A graphical means of linking between components in different views would be beneficial to
many MViews applications, however has not been implemented.

3.5.7 Querying Support

The provisions for querying notes are minimal and inadequate. Pre-defined queries available
are:

Show All Displays a list of all notes, listed with id and name

Show All Unread Displays a list of all unread notes. listed with 1d and name

Show All Registered | Displays a list of registered notes, listed with id, name and
registration level. The option is available to unregister interest in a

note.

Show All Hidden Displays a list of all hidden notes, listed with id and name. The
option is available to unhide a note

Show Links Displays a list of all notes, listed with 1d and name, that the

currently selected note is connected to. External links (i.e. links to
objects in other views) are marked accordingly.

Notes can be viewed and edited from any of the pre-defined queries in the table above. All of
these queries are automatically updated if they are left open.

Bégistéred Users fnr'ﬂhjéb-t a7 - end_user

Select user to view:

al01: Simon - NOT Interested
al109: Colin - Uery Interested

Figure 3.18 : Show All Registered Notes

A search facility for Notes was explored, and a huge ugly impractical dialogue box that allowed
complex searching constructed. The code to perform the queries has not been implemented.
Ideally, the user would be able to graphically construct complex queries, and have the results
continually updated.

3.5.8 Hyperlinks

Hyperlinks were attempted, but proved to be too cumbersome to implement. It was intended
that the user could click on the name of an object in the text of a note, and the object would be
launched into edit/view mode.

26

Instead, a basic function was implemented that allowed the user to hi ghlight text that referred
to an object and ‘edit’ this object. This was only implemented for MV Notes and MV Note
Users, however could assumingly be adapted for any MViews component.

3.6 MV Note Users

An MV Note User is a user who has access to use MV Notes. When an application using MV
Notes is started up the user must log in. This ensures that the user is given appropriate access
rights to Notes.

Associated with each user is a list of all the objects they are registered in (see section 3.5.1), a
list of the notes they have read, a list of how they intend to be notified about new notes (see
section 3.6.1), the access rights they have (see section 3.5.2), and a To do list (see section
3.6.3).

MYV Note Users also have the ability to have multiple views. An MV Note User view may
contain MV Note Users or views of these components. It is intended that MV Note User Views
are used to create user groups.

It is intended that each MV Note User have an icon to represent them (this may exist within one
or more user groups). To ‘send’ a note to a user, all that is required is to attach it to the user’s

icon. If the icon appears in multiple views it may be attached to any of these icons, since these
are different views of the same user.

3.6.1 User Notification

Each user can determine how they wish to be notified about incoming/updated objects. The
current method of doing this allows users to classify this action depending on their level of
interest in the object and the priority concerned. The objects are distinguished as ‘MV Notes’
and ‘System Objects’. A ‘System Object’ is any object that is not an ‘MV Note’

Actions available are:

Popup Box Pops up a dialogue box informing the user of the modification.
The user then has the option of viewing it, adding it to their To do
list, or continuing on with their work.

To do List Puts the note into the users To do List. The user is not informed
about its arrival.
Beep Displays a banner at the top of the screen, saying that something

of interest has been modified. The name and id of the object are
displayed. The banner then disappears automatically. The user
may check the ‘Unread Notes’ dialogue to view it. It was initially
intended that the ‘Beep’ action would actually beep as well, but
LPA MacProlog32’s beep function fails every time it is used!

None The user 1s not informed at all. If it was a note that was modified
or created, the note is still marked as unread.

The dialogue box used to choose the actions has been criticised to be cumbersome. Other
suggestions however have not given the user as much flexibility in notification of changes.

User Notification
Uery Interested Reasonably Slightly Interested NOT Interested NOT Registered
System Changes | Popup Bon «| [Popup Box [(Beep | [None ~]| [None
Highest Priority | Popup Bon ~] [_Popup Box [Beep v] [None ~| [Beep
High Priority [Popup Box *| [Popup Ban |_Beep «] [None ¥| [Beep

Normal Priority Popup Box v] [[Beep [CBeen] [Nane ~] [[None -
Low Priority [_Popup Box] [_Beep None v] [None v] [None |
Lowest Priority [_Popup Bou ~] [[Been [“None] [Nune v] [[None ~]

Figure 3.19 : User Notification

27

Since this dialogue box would be used very infrequently, it would possibly be sufficient as it is.
Originally User Notification was fully dependent on how the receiver registered interest in an
object, and the sender’s priority was not taken into account. For this reason, the cumbersome
dialogue box was created. This allowed the user a much greater flexibility level. Visual
approaches were suggested, however the models required to contain the same information were
even more complex than the dialogue box.

3.6.2 Visual Representations

MV Note User Icons are much simpler than MV Note Icons. An MV Note User Icon contains
the name of the user this note refers to at the base of the icon. Double clicking on this icon edits

the user information.

User Information

1d: alol

Nome:
User Type:

Figure 3.20 : User Information

If the note contains any other views a diagonal line is displayed in the top left corner of the icon
(see figure 3.21). It is intended that Note User views are used to indicate groups.

Feal_Workers,

Figure 3.21 : MV Note User Icon

Note Users can be graphically linked to other MViews objects, and even to objects in other
views.

3.6.3 To do List
A To do List contains a list of notes. The user can add to, delete, and view notes in this list. It
is intended as a temporary storage location for notes.

Select note to read:
a24: End-users human?

Geleel)

Figure 3.22 : To do List

28

3.7 Prototype Advantages and Disadvantages

No CSCW support is currently available for MViews, therefore the full extent of MV Notes
could not be explored. MV Notes would be used to best advantage on a system with CSCW
support.

MV Notes is not completely independent of MViews ER. Ideally it should be part of MViews,
thereby ensuring greater independence.

Speed is lacking in the prototype. This is largely due to the amount of data currently getting
stored. This could be sped up with more efficient code.

Updates are only processed when the user has finished the task they are doing. This is very
beneficial since it could be disrupting if notes arrive while the user is doing other work (e.g.
dragging an object across the screen). Most dialogue boxes are updated automatically at the end
of each editing cycle (some boxes do not currently support automatic updating).

3.8 Hardware and Software Technicalities

Patches were required to fix some bugs encountered with LPA MacProlog32. Lack of memory
was the main problem. If a procedure is given a large number of parameters it sometimes
crashes LPA MacProlog 32 completely. Dialogue boxes take up lots of memory, for some
unknown reason, thereby inhibiting the number of boxes that can be displayed simultaneously
on the screen.

4 Comparisons

4.1 Creating

MYV Notes are generally created in isolation from the objects, and are later linked up to relevant
objects. They are created by using the “add note” tool and clicking on the graphical display at
an empty location. There are however two exceptions to this. If a note is being linked to
another note or an MV Note User then it can be done directly with the link note tool by dragging
from the icon to attach it to. The creation of MV Notes is restricted to graphical views.

In Muer, notes can be created in a number of ways, but the most common method is to click on
the “New Note” button on the “Main View” screen and then click on the object that you wish to
attach a note to (the view itself is a valid object). Alternatively, the user can press the buttons
marked “New Note” or “Reply” in the “Object Information” and “View All Notes” windows.
Both methods bring up the “New Note” window, allowing the user to change the default note
settings.

There are advantages and disadvantages to both interfaces. In Muer it is easy to forget you are
in “New Note” mode and create new notes by accident. It is tedious to send a note to objects
that are not on the screen, such as users, as the user must create a note to some visible object
and use the “Add” and “Remove” buttons to choose the appropriate target. With LPA
MacProlog32, the enter key is bound to the “Ok” button within dialogue boxes. With MV
Notes, this meant that users often used the enter key when they didn’t want to exit the dialogue
box. Users requested that replies have the text of the old note inserted automatically (and
quoted) in the reply.

4.2 Views

Since MViews is a platform that allows multiple views MV Notes can also be displayed and
linked between multiple views. An MV Note can have graphical and/or textual views. A
graphical view of an MV Note does allow the operations permissible in a MViews ER view.
The operations have been restricted so that an MV Note View has a special meaning. It is
intended that this view is for replying to notes. Likewise, an MV Note User View only allows
MYV Note Users and links between them. This view is used to define user groups. A textual
view of an MV Note contains a Relational Database Schema (RDS) for the note. The user can
modify and compile this schema (assuming they have the access rights), and all graphical views
will be updated accordingly.

29

In Muer, there is only one view of the diagram, called the “Main View”. This displays the
diagram in it’s entirety. Notes can be attached to the main view, and are displayed as an icon on
the top left corner of the view. Notes can also be viewed in lists in the “Object Information”,
“View all Notes” and “View all Objects” windows, and in the “Read Note” window described
below.

Most of the graphical views, in both interfaces, were easily understood. The MV Notes views
tended to get very cluttered when people didn’t use “MV Note View” and “MV Note User”
windows (and these windows were not obvious).

4.2.1 Icons

MYV Note Icons are a view of an MV Note. They were originally displayed as big ugly
graphical objects, though this has been changed to a newer and less bulky form, as described
above. The appearance of an MV Note Icon is determined by the attributes of the note it
represents and whether it is linked to objects in other views. The icon can be hidden from the
screen either via filtering or using the “hide tool”.

The Muer interface is deceptive in that notes are not really viewed as icons at all. When a note
is sent to an object, that object’s icon is altered to show that there are notes attached. The note
does not have an icon of it’s own. The “Show” menu can be used to control what kind of flags
are visible on the screen.

The Muer note icons were not intuitive and suggested the wrong usage to most users. The MV
Notes icons were far more intuitive, but were very large and quickly cluttered the screen. Both
systems used colour to present extra information about the note, though this could be a problem
for colour-blind users. MV Notes icons showed part of the note’s name on the icon: this can be
confusing with long names. On the other extreme, the icons representing the presence of notes
in Muer held very little information, and users suggested that some indication of how many of
each note were represented would be advantageous.

4.2.2 Filtering

Within MV Notes, Filtering is only applied to graphical views. Filtering can be done based on
the kind of message, the priority, whether interest has been registered in it, and whether it is
unread. Muer, on the other hand, has a very crude filtering system, only allowing filtering on
the basis of urgency and whether the note has been read.

The filtering in Muer was not used extensively, and in MV Notes users tended to hide
individual notes rather than filtering the entire set of notes.

4.2.3 Reading

MYV Notes can be read by clicking on the note icon while the “note tool” is selected, or double
clicking on them with the “pointer tool”. They can also be viewed from all queries by double
clicking on them. MV Notes can also be read from a textual view. An MV Note can be
modified by editing the text within it. All changes will be recorded noting who made the change
and when.

In Muer, notes are read by double-clicking on them in a list view. Generally, this is the list that
appears in the “Object Information” window. Muer’s “View Note” window shows all the
information about a single note in a window. Unlike the similar window in MViews, the only
ways that the note can be altered are to delete it, change it’s urgency flag (a change that is not
propagated to the other users), or to change the objects it is linked to.

Users complained that it took too many use actions to read a note in Muer, as opposed to MV
Notes, where a single double-click loads the note. Both systems had very similar note
windows, both clearly based on e-mail layouts (i.e.: subject and other details at the top, the note
text at the bottom). The users were all familiar with and understood this layout.

30

4.3 Links

MYV Notes can be graphically linked to any MViews graphical object in the same view by usin g
the “note link tool”. This includes the links between objects (i.e. a note can be linked to the link
between other notes). They can also be linked to MV Notes and MV Note Users in other views
via a clumsy menu option. Each graphical view contains an object with a name of the view the
top left hand corner. MV Notes can be attached to a view by linking the note to the graphical
view object.

Muer allows the user to link notes to objects when they are created, and any user may re-link
the note at any time. This is done with the “Add” and “Remove” buttons in the “New Note”
and “Read Note” windows respectively.

A drawback of Muer’s textual methods for linking of notes is that it can be hard to tell exactly
which entity is which in the listing without the icon as a reminder. Further, large lists proved
unmanageable: they were too long to fit on the screen, and difficult to search. Linking of MV
Notes to objects in the same graphical view could clutter up the screen quite successfully,
seeming to make the notes more important than the actual work being attempted.

4.3.1 Threads

Threads are notes written in reply to other notes. In MV Notes a graphical view of a note can
be created to contain a thread, and the note icon is altered to indicate the presence of any replies.
Threads can be nested within threads, if necessary.

Muer handles related notes by defining any note that is not in reply to any other to be in a new
thread, and any replies to a note as being part of the thread as the note they are in reply to.
Threads have a hierarchical structure that can be seen in any list of notes.

MV Notes has the a graphical interface for creating threads, however it is a complex interface.
Muer is a lot simpler--the user need not even be aware of why notes are being added to the
thread--but lacks a graphical representation of the structure of the replies. Also, there is some
ambiguity over whether notes can belong to more than one thread, as a note can be in reply to
several threads but only belong to one of them.

4.4 Deleting

MV Notes can be deleted by selecting the “delete tool” and clicking on the note to delete. The
user will be confirmed whether they really do want to delete it. All links associated with the
note will also be deleted. In Muer, the only way to delete notes is from a window where the
notes are listed and a delete button is present.

The main view of Muer also has a delete tool, and many users have tried to delete notes by
selecting it and clicking on a note icon. Unfortunately, as note icons are only additions to other
entity icons, this results in the user accidentally deleting the note. Understandably, these users
were a little upset. Deleting worked fine in MV Notes but some references to the note were
often left dangling around.

4.5 Types

An MV Note can be one of four types; Message, Explanation, Question, or Example. There is
one other type that can be used in addition to those above, and that is the Private type. A
Private note can only be viewed by its owner. The type of a note is determined by the creator.
Muer has a much more complex type structure, described in section 2.4.5.

The drawbacks of Muer and MV Notes complex structure are that users may not be sure exactly
what type of note they are sending, and have complained that they wasted time worrying about
it when, in fact, it is absolutely unimportant. The only difference it makes in MV Notes is in
the appearance of the icon.

4.6 Priorities

MYV Notes supports five different levels of priority; Lowest, Low, Normal, High and Highest.
The priority of a note is determined by the creator. Muer notes only have two real priority

31

levels: urgent and not urgent. However, Muer attempts to let the sender show how important a
note is by putting a “Response time” on it, and by optionally interrupting the recipient’s work.

Users commented that Muer should have a greater range of priority settings.

4.7 Registration of Interest

MV Notes allows users to register interest in any MViews object (including other notes, and
even links between notes). There are four different levels of registration available; Very
Interested, Reasonably Interested, Slightly Interested and NOT Interested. The latter is used to
filter out annoying change messages.

As with the Priority issue, Muer attempts to make a users level of interest in an object specific.
Rather than assign a level of interest to an object, the user must decide from a list of options
exactly what response is appropriate to an incoming note. The options include variations on
interrupting the user, setting flags, and ignoring the note. This effectively combines the MV
Notes “Registration of Interest” and “User Notification” dialogue, but in a simpler fashion.

4.8 User Notification

With MV Notes, each user can determine via a huge pop-up box, how they wish to be notified
about incoming messages. The user can classify the action depending on their level of interest
in the object and the priority that it has. Actions available are; Pop-up box, Put note in To do
List, Beep and None. In addition to this the “Notes Unread” dialogue box would be
automatically updated (Muer has a similar feature). In Muer the user was notified by the
appearance of icons on the screen, entries in lists and pop-up windows.

The huge pop-up box in MV Notes invoked criticism by many. A macro language was
suggested to get around using a huge pop-up box. Users thought that continually updating lists
(c.f. Eudora) would be a good form of notification.

4.9 Searching

Searching in MV Notes could be done via the “Find - Advanced” dialogue (never implemented).
It was intended that queries created with this be automatically updated. The use of several menu
options provided a means of displaying a subset of notes e.g. “Show All Registered Notes” and
“Show All Hidden Notes”.

To let the user search for a specific note in Muer, the “View All Notes” dialogue was created.
This has been through several versions. Originally, a very complex search engine was
envisaged, similar to MV Note’s’ “Find - Advanced” dialogue. However, this was simplified
(before it was even implemented) to a system of filtering. The user can choose from a list what
types of note they would like to see, and can decide whether these should be chosen from all the
notes, the new notes, the urgent notes, or even the deleted notes.

As was expected, users thought the “Find-Advanced” dialogue was ridiculously complex. A
graphical form of querying may be more appropriate.

4.10 Update History

All changes made to MV Notes are recorded. Information recorded includes the change made,
who made the change, and the time it was made. Changes can be undone and redone.

The usefulness of this feature is debatable, however it is useful to have as an Audit trail.

4.11 Note Access

MYV Notes allows access to be restricted to certain users to perform certain tasks. Tasks that can
be restricted are; Linking to a note, Deleting, Moving, Viewing, Editing, Adding a view,
Hiding and Granting access rights.

Being able to restrict Moving was seen as completely impractical and frustrating.

32

4.12 To do List

Within MV Notes, a To do List contains a list of notes. The user can add to, delete, and view
notes in this list. It is intended as a temporary storage location for notes.

4.13 Hyperlinks

These were attempted in MV Notes, but proved too cumbersome to implement. Instead, a basic
function was implemented that allowed the user to highlight text that referred to an object and
‘edit’ this object. These objects however were allow implemented for MV Notes and MV Note
Users.

4.14 Dialogue capture
MYV Notes and Muer provided no support for dialogue capture.

4.15 Summary

Being able to add notes to text or objects is advantageous as long as the notes are not too
cumbersome to use. Notes should not interfere with the task the user is trying to perform. Big
bulky note icons (c.f. MV Notes) can get in the way. The icons used in Muer for notes were
not as obtrusive but would have been better if they were separate from the object they were
associated with. This would ensure that a note could be easily deleted without deleting the
object that it is attached to! If the notes are too complex they will have a tendency to detract
from the work actually done.

A note manager is useful as long as not too much is required of it, and should be mostly
transparent to the user. It should be used to maintain notes and threads, perform notifications,
and possibly permit simple searching. The use of threads is beneficial since it helps to organise
notes. In practice threads should not get very large, but serve more as a reminder of
discussions. Thread creation should happen automatically, requiring little (if any) user
interaction to group replies.

33

5 A Simpler System

“Minimal Notes” was developed after Muer and MV Notes had been evaluated. It was
developed to reflect a different style of note system. Many of the features of Muer and MV
Notes were incorporated into the design, and many were omitted. The prototypes had shown
that complex note systems could be counter-productive, therefore the objective of this system
was to produce a simple (yet useful) note system.

S[==—————— Minimal Notes ==—=——————71=
Fle Show Collaboration Help

pointer 0 AY

test
entity - - o
Animal Testing escription

relation

1tn
attribute ()

test
connect { is cruelty to } el

delete O
(1fn)

ame
i |.P|nima|]
it ~ escription

myself

Figure 5.1 : Minimal Notes applied to Muer

Since both software developers had experience with Tcl/Tk [Ousterhout 1994], Minimal
Notes was written using GroupKit [Roseman et al. 1995]. GroupKit provides CSCW support
to Tcl/Tk applications.

Minimal Notes can be added to both text and canvas widgets in GroupKit. To add Minimal
Notes to an existing GroupKit application, all that is required is two lines of code. The first line
of code contains the source file for the notes application. The second line calls a procedure in
the source file to start the note system. Figure 5.2 shows the full code for a text widget with
CSCW support and the Minimal Notes extension.

gk_initConf $argv #initialises GroupKit

pack [text .t] #creates and displays a text widget
source notes.tcl #loads Minimal Notes

start_notes .t #applies Minimal Notes to the text widget

Figure 5.2: Full code for a text widget with CSCW support and Minimal
Notes

The only change required to apply Minimal Notes to a canvas is to change the second line to
pack [canvas .t].

5.1 Creating

Notes can be created by holding down the “Control” key and clicking on the location where the
note is to be added. This same approach works for both canvas and text widgets. When a note
is created a popup box (see Figure 5.3) will be displayed.

34

createls

subject:]Animal Testing

I think animal testing is a terrible
idea; they get all nervous and give
the wrong answers

-- & Bit of Fry and Laurie

W Stick send Prionity

I~ Simon | “* Lowest |
W Gordon | ~ Low
normal |
~High |

Figure 5.3 : Note Creation Popup Box

The field at the top of the box is used to enter a subject. If no subject is entered, this will be
defaulted to “no subject”. The area between the subject and the buttons is for the content of the
note. Since this is a text widget, notes can also be added to any point in the note by Control-
clicking on the text.

The buttons at the bottom of the note are used to determine what the note should do. The
“Stick” checkbutton (defaulted to on) specifies whether the note is to be stuck to the canvas or
text widget it was created on. If this is turned off the icon will not be displayed. Selecting the
“Send” button allows the user to determine who to send the note to (if anybody). The
“Priority” menu- is used to specify how important the note is. If the note is being sent to
people, then this setting determines how they are notified. The “Done” button completes the
note. If the user has selected anybody in the “Send” list then the note is sent to them, and if the
“Stick” button is checked a note icon will be displayed.

5.2 Views

5.2.1 lIcons

Note icons are displayed differently on canvas and text widgets. On text widgets the note is
applied to the character closest to the cursor. This character will be marked with a yellow
background and be slightly raised to denote that it can be clicked on. If the note is unread then
the character will be displayed in red. If text is written around the note icon, then the icon will
move with the character it is attached to.

qumbootd.

Figure 5.4 : Note icon on text

On canvas widgets the note is attached at the current cursor position. The note has a
yellow background. If it is unread then it has a red border, otherwise the border is black.

35

[

Figure 5.5 : Note icon on canvas

For Muer, if a Note is attached to a location that contains an existing Muer object (eg. entity),
then the note is attached to that entity via a yellow sticky line. There is no limit as to how many
notes can be attached to any object. Whenever the Muer object moves, all notes attached to the
object move with it.

~ame

[]

Figure 5.6 : Note attached to Attribute

5.2.2 Reading
Double clicking on a note icon displays a popup box with the note in it (see Figure 5.7).

Sl=——— 15: Animal Testing

I think animal testing is a terrible
idea; they get all nervous and give
the wrong answers

-- & Bit of Fry and Laurie

Remyl 16 | 18 |

Figure 5.7 : Note Reading Popup Box

The id and subject of the note is diploid in the title bar of the note. The user cannot modify
text in the note, however they may add additional notes to it by Control-clicking on the notes
text. “Close” quits reading the note. “Delete” deletes the current note. All replies and notes to
the note will be lost. “Info” displays additional information about the note (see Figure 5.8).
The “parent” field of the Info section contains a hyperlink to the note that this note is a reply to
(if there is one). Pressing the “Info” button again closes down the Info section. The “Reply”
button can be used to add a reply to a note. Depressing this button pops up the same window
used to create a note. The priority of the note being sent is defaulted to the priority of the note
being replied to, as is the note subject. By default the note is sent to all the original recipients
and the sender. The note being commented on will also be included in a quoted form. Any
replies to the current note are shown to the right of the “Reply” button. These are currently
displayed as buttons with id of the note on them.

Replies can be viewed by clicking once on the button of the note to view. This extends the
current window to include the reply. Likewise replies to replies can be viewed by clicking on
their icon (see Figure 5.8). The “Launch” button displays note in their own window.

36

=s[H=————— 15: Animal Testing

I think animal testing is a terrible
idea; they get all nervous and give
the wrong answers

-- & Bit of Fry and Laurie

Close i Deletel Info I Reply ”-? E_J

From my experience with animals, they
are not that bad if you put them in

gumbootsg.

Close Deletel Launch! Info l Reply ”?

subject: |Animal Testing
sender: |description
date: |[Feb 16 1396 09:50:00
priority: |Hormal
to:
parent: note 16: Animal Testing

[For even hetter results, make sure they

are in a nice homely environment. I
M bring my cows inside each morning

Close i Delete' Launc:hi Info i Heply!

Figure 5.8 : Example of replies to notes

37

5.2.3 Show Menu

i

" Show All Notes
it Show Deleted Notes P
~ Show Unread Notes —
U Show Notes to self

E'_’ Show All Objects

wwul -
Figure 5.9 : Show Menu

The “Show” menu allows the user to display various note and object information. The “Show

All Notes” option displays a list of all notes (see Figure 5.10). Notes can be read from this list
by double clicking on the note to read. If a “d” is shown to the left of a note, then this indicates
that the note has been deleted.

f=————— all notes for Simon ==——————[01=

’ d Feb 22 1996 10:48:23 24: Creation (Simon, Normal)

Feb 16 1996 09:39:08 14: name (test, Normal)

Feb 16 1396 09:43:24 15: Animal Testing (test, Normal)

Feb 16 1396 09:46:24 16: Animal Testiny (test, Normal)

Feb 16 1336 09:47:32 17: gumboots {description, Normal)

Feb 16 1936 09:48:54 18: Animal Testing (description, Normal)
Feb 16 1396 09:50:00 19: Animal Testing (description, Normal)
Feh 16 1996 09:53:21 20: Rating (test, Normal)

Feb 16 1996 09:53:37 21: canvas 2 three (test, Normal)

Feb 16 1336 039:54:39 22: Athletes Foot (description, Normal)
Feb 16 1336 09:56:46 23: Teeth (test, Highest)

Close

Figure 5.10 : Show All Notes

The “Show Deleted Notes” menu option is similar to the “Show All Notes”, but only shows
deleted notes. Notes can be undeleted by selecting them and pressing the “Undelete™ button.

38

deleted notes for Simon

Feb 22 1996 10:48:23 24: Creation (Simon, Normal)

Undelete

Figure 5.11 : Show Deleted Notes

“Show Unread Notes” displays only notes that the user has not read yet.

“Show Notes to self” displays all notes that have been addressed specifically to the current user
(see the User Notification section for more details).

“Show All Objects” contains information about all objects used in Muer including People (see
Figure 5.12). Objects can be deleted, undeleted and completely removed from the database.
Once something in completely removed from the database it cannot be undeleted.

Tk

== —alltheobjects =—————— =—— ———~' |

[sticky 23: sticky23 () T AY
d sticky 22: sticky22 ()

sticky 21: sticky21 ()

sticky 20: sticky20 () .

sticky 19: sticky19 ()

sticky 18: sticky18 ()

sticky 17: sticky17 ()

sticky 16: sticky16 ()

sticky 135: sticky15 ()

sticky 14: sticky14 ()

attribute 13: description {Simon)

attribute 12: name (Simon)

attribute 11: name (Simon)

attribute 10: test (Simon)

attribute 9: description (Simon)

attribute 8: test (Simon)

connector 7: (Simon)

connector 6: (Simon)

entity 5: Animals (Simon)

relationship 4: is (Simon)

entity 3: Animal (Simon)

person 2: Simon (Simon)

view 1: Main ()

o I

Undelete Delete Remove from database !

Close '

Figure 5.12 : Show All Objects

39

5.3 User Notification

Notes (more accurately, Messages) sent to a User are displayed in a popup box (see Figure
5.13). An “n” will be displayed to the left of a note if has not been read yet. The date and time
the note was sent is shown to the left of this followed by the id of the note, and the notes
subject. The sender of the note and the priority assigned to the note are displayed in brackets
after the subject. The note can be deleted from this list by selecting the note to delete and
pressing the “Delete” button.

§=0=————————— notes to Simon

n Feb 16 1996 09:56:46 23: Teeth (Gordon, Highest)
Feb 16 1336 03:46:24 16: Animal Testing (Gordon, Normal)

Figure 5.13 : Incoming Messages Box

The user can be notified of new notes in four different ways, depending on the priority of the
note.

Priority Action

Lowest Put in incoming box

Low Put in incoming box

Normal Put in incoming box, Beep Once
High Put in incoming box, Beep Twice

Highest Put in incoming box, Beep Three Times

If the user does not have their “incoming message box” open when a message arrives, it will
be opened automatically for the user.

Telepointers are another form of group awareness that is supported by Minimal Notes. The
Collaboration Menu (see Figure 5.14) contains a checkbox to allow the user to turn telepointers
on and off for other users screens. The telepointer displays the location of others cursors on the
diagram. It can be useful to see the context they are working in.

Collaboration

Show Participants
W Telepointers
Telepointer Colours

Figure 5.14 : Collaboration Menu

40

The colour of other users telepointers is defaulted to that users default colour. To differentiate
between telepointers, each user can specify what colour they want other users telepointers to be
displayed on their screen (see Figure 5.15).

local telepointer colours
users with telepointers running

color: wheat3 change

color: LightCyan change

Dismiss

Figure 5.15 : Telepointer Colours

The other option in the Collaboration Menu, “Show Participants”, displays information about
the other users currently connected to the current conference.

5.4 Logging in

=— login checking ==

you are logged in as:

nhame |[Simon

userid |gianouts
usemum |11
objectid 26

have you logged in before?
« i am really Colin (24) [

- i am really Simon (2) |

4 i am not one of these users|

okay

Figure 5.16 : Login Checking

If other users have joined and left the conference, information is still retained about them. So
that users are informed of changes made in their absence, and can receive notes sent to them,
login checking has been implemented. Login checking involves prompting the user to choose
who they are from a list. If they are not on the list, they can connect as a new user.

41

6 References

[Grundy 1993] Grundy, J. (1993) “Multiple Textual and Graphical Views for Interactive
Software Development Environments” PhD thesis, Department of Computer Science,
University of Auckland.

[LPA 1994] Logic Programming Associates Ltd. (1994) “LPA MacProlog32 User Guide”
London, England.

[Mugridge 1994] Mugridge, R. (1994) "Snart: a Mixed-Paradigm Language” Working Paper,
Department of Computer Science, University of Auckland, September 1994.

[Ousterhout 1994] Ousterhout, J.K. (1994) “Tcl and the Tk toolkit”, Addison-Wesley, 1994,

[Roseman et al. 1995] Roseman, M. and Greenberg, S. (1995) “Building Real Time
Groupware with GroupKit, A Groupware Toolkit”, Department of Computer Science,
University of Calgary, Calgary, Canada, July 1995.

[Smith et al. 1993] Smith, B.C., Rowe, L.A. and Yen, S.C. (1993) “Tcl Distributed
Processing” in Proceedings of the Tcl/Tk Workshop, Berkeley, California, U.S.A.

[Venable and Grundy 1995] Venable, J, Grundy, J.C. “Integrating and Supporting Entity
Relationship and Object Role Models” 14th OO/ER Conference, Brisbane, Australia; December.

42

