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Abstract

One of the main hurdles to the general adoption of

formal program development techniques is a lack of

tools to support their use in combination with more
traditional development techniques. This paper describes
an integrated environment for software development
which embodies the aim of formal program
development. Multiple levels of refinement of each
specification are supported, with associated proof
obligations, each of which can be viewed at various
levels of detail throughout the development process. All
of these formal views are kept consistent with each
other and with more traditional design and
implementation views. This allows software developers
to specify, design, refine, prove, implement and
document their software within a single integrated
environment.

1. Introduction

Conventional software development uses informal
approaches to the analysis, design and implementation
of software systems. Software development involves
refining an abstract design into a concrete
implementation in a programming language. A major
problem with this approach is the lack of rigour used
when refining these designs and implementations, since
errors may be introduced by the refinement process
itself.

Formal program specification and development
techniques have been introduced to try and alleviate the
problems inherent in this informal software
development process. Specification languages include Z
[1, 2, 3], Object-Z [4] and VDM [5]. Specification by
itself is useful for specifying and/or documenting a
program, but of limited use when actually refining a
specification into an implementation.

Unfortunately most software developers view these
formal program specification and refinement techniques
as too hard for practical use. In order to make these
techniques more readily available, environments
supporting them have been developed. These include
environments for specification [6] and those for
specification refinement [7]. Most existing refinement
environments, however, lack integration with
commonly-used CASE tools and programming
languages.

This paper presents the design for a new refinement
environment which extends previous work by the
authors in supporting formal Object-Z specification
views in an integrated CASE tool environment. Views
are provided which represent formal program
specifications. These can be refined to more precise,
lower-level specifications using the refinement calculus.
Complementary proof obligation views, in which work
is done to see whether the refinement is valid or not, are
generated and maintained also.

2. An Example of Informal Refinement

SPE (Snart Programming Environment) provides an
integrated environment for OO analysis, design, and
implementation using Snart, an OO Prolog [8]. SPE
supports multiple views of a system across multiple
phases of development. It has a novel approach to
consistency management based on the propagation of
discrete change descriptions between views. These
descriptions document a change made in one view and
are propagated to all other views that could be affected
by the change. The receiving views interpret the change
and modify their contents appropriately.

We have extended SPE to incorporate Object-Z
views, with consistency management between the
formal Object-Z views and informal design and code
views [9]. Figure one shows a screen dump from SPE
with an Object-Z specification for a stack class shown.
A high-level graphical analysis view is shown
(‘window-root class’), together with a lower-level
graphical design view (‘window-figure stack’). An
Object-Z view (‘stack-Specification’) formally defines
the behaviour of the stack class of objects (from [4]).
Other views supported are textual class interface and
method implementation views, textual documentation
views, and textual and graphical debugging and program
visualisation views [8].

SPE keeps design, code and Object-Z specification
view bi-directionally consistent, i.e. whenever one kind
of view is modified, SPE indicates that other views
which share the modified information are inconsistent.
SPE can automatically resolve some inconsistencies,
such as adding or deleting attributes and methods,
renaming attributes and methods, and adding, deleting
and renaming method arguments. Other inconsistencies
cannot be automatically resolved by the environment.
These include those that arise when Object-Z operation
deltas, pre- or post-conditions are modified or when
implementation code is modified (new method calls



might be used, for example). In this situation, SPE views and this acts as a cue for programmers to
indicates the change that has occurred in other affected manually resolve outstanding inconsistencies.
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Figure one. A screen dump from SPE showing an Object-Z view and design views.
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Figure two. Harder view consistency when operation predicates updated.



As an example, consider extending the definition of a
stack to include an index attribute, acting as a marker
to a distinguished element of the stack (this example has
been adapted from [4]). The formal view in figure two
has been updated to specify the new state and behaviour
of stack objects. In this example, the stack specification
now includes the new index attribute and a state
invariant for this attribute. The set_index method is
used to modify this value, and the push and pop
methods have been updated to ensure the index value is
updated if items are pushed onto or removed from the
stack.

Figure two also illustrates the change descriptions
presented to the programmer in the stack
implementation views. Note that SPE only displays
change descriptions relevant to the implementation view
item. Some can be automatically applied, such as adding
the new index attribute. Others must be implemented
by the programmer; the change descriptions serve to
inform the programmer such updates are required. This
simple example illustrates how SPE supports the
evolution of a formal specification and its
implementation within an integrated environment.
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Figure three. State predicate refinement into
operation predicates.

Informal specification refinement can be carried out
using the Object-Z views in SPE. For example, a
designer may wish to refine the stack class specification
to incorporate the items attribute state predicate into the
push and pop method predicates. The methods will then
reflect the state predicate, making translation of the
specification into code much simpler [10]. The designer
can modify the method specifications to achieve this.
Figure three shows an example of refining the push
method specification to incorporate the items attribute’s
state predicate. SPE’s Object-Z views also help to
support more complex refinement, such as refining two
or more class specifications, by informing the designer
of inconsistencies between different views of the
specifications.

While this simple refinement of formal
specifications is supported by SPE and its Object-Z
views, more rigorous specification refinement cannot be

supported, as the environment does not ensure the
refinement steps used are correct. In order to support
checking for correct refinements within a software
engineering environment like SPE, we are developing
views which utilise the refinement calculus.

3. Refinement

The refinement calculus has its roots in the work of
Dijkstra [11] and Floyd [12] on the simultaneous
development of programs and their proofs of correctness.
This work is based on the simple observation, which
underlies the common, informal, technique of stepwise
refinement, that the production of a program always
goes hand-in-hand with reasoning about why that
program is the one that is needed to solve the given
problem. They suggested that it would be useful to
make both the program and the reasoning about it
explicit—the usefulness comes about for many reasons:
it gives a permanent record of the development process,
which is invaluable for updating and maintaining any
program; it allows as watertight as required an argument
about the program’s correctness relative to its
specification; making reasoning explicit allows the
programmer to see errors in reasoning more clearly than
otherwise and tends to lead to clearer thinking.

The original work referred to above was informal, in
the sense that there were equations which gave the
meaning of the programming language in terms of pre-
and postconditions on the state of the computation (the
weakest precondition calculus) but no formalized rules
about how to use these equations; the process of using
the equations to develop the program was left up to the
programmer’s knowledge and intuition. The next step,
to formalize the development process, had as its
outcome (in the independent work of Morgan [13] and
Morris [14]) the refinement calculus.

The following sections describe some of the
refinement calculus and give an example of its use on a
simple problem. We then discuss support tools for
refinement, leading to the presentation of a proposed
system which, we believe, will be an improvement over
existing tools, such as SPE. We also consider the
situation where several programmers are working on
formal software development in a co-operative fashion.
Our proposed tool supports many different views of the
development process. This allows one person to
concentrate on the reasoning that forms part of the
development and another to concentrate on the
specification.

4. The Calculus

Refinement takes place in a single language which
allows developers to talk about both computation and
specification—what might be termed a wide-spectrum
language. In this language we have programs which
might be ‘all specification’ or ‘all code’, or a mixture of
both. For example, a program might contain some parts
which are executable, the ‘code’ parts, and some which
might not be, the ‘specification’ parts.

Program development, i.e. the act of making
progress from a specification to code which meets it, is
modelled by a sequence of programs related by a
refinement relation. This is denoted by <. The first
program in the sequence is the specification and the last




is the code—the first will typically not be executable
and the last will be. Intermediate programs will be a
mixture of executable and non-executable parts.
Refinement is thus the production of a sequence of
programs py,...,p, such that:

POSPISP2S .. SPu 1S Py

where pq is the initial specification and p, is the
final code.

The relation £, pronounced °‘is refined by’, holds
between two programs p and p’ if someone who would
accept p as a solution to their problem would
necessarily also accept p’ too (ignoring, for the
moment, the fact that some parts may not be executable
on their target machine or in their target language).

< is formally defined in terms of weakest
preconditions, i.e. the least that needs to be true of a
program’s starting state in order that if it terminates it
does so in some required final state which satisfies some
postcondition ([13]). It turns out that < has a very rich
and interesting algebraic structure [15, 13, 14].

We will rely on examples and intuition in this paper
to convey the meaning of <, including examples of <
holding between programs which are obviously
executable. < also holds equally well between non-
executable programs (example adapted from [13]):

220V outlet < 220/110V outlet
safe working load 1000kg < safe working load 2000kg
needs at least 4Mb < needs at least 2 Mb

In each of these cases the relation holds because anyone
who would accept something on the left would accept
the thing on the right.

5. Programs

A program will include many of the usual executable
constructs (assignments, sequencing, conditionals and
loops) as well as non-executable constructs, the most

common of which is the specification statement, of the

form:
v:[P,Q]

where v is a sequence of variables, called a frame, whose
values may be changed by the program. P is a
precondition that must be true of any initial state in
order for the program to start. Q is a postcondition
which must be true for any state the program is in if it
terminates. A state is defined by the values of the
variables at any stage of the computation.

Typically the first program in a sequence of
refinement steps will consist of a single specification
statement. For example (taken from [13]), consider the
program which may alter the value of the variable y,
which has precondition x > 0 and postcondition y2 = x:

y:[x20,y?=x] ' (po)

This program can be refined (into one that is equally
acceptable to someone who would accept pgy) by
strengthening its postcondition, i.e. by making a
program which has more things true of it than py. An

example of this for py would be to add y > 0 to the
postcondition to get:

y:[x20,y2=xAy20] (p1)

which is acceptable since (y2=x Ay 20) > y2 =x
(N.B. — is implication). Then we have:

y:[x20,y2=x] € y:[x20,y =xAy20]

Alternatively, we could weaken the precondition. For
example, since anything implies the always true
proposition True, we have x 2 0 — True, so:

y:[x20,y2=x] < y:[True,y1=x]

As a precondition True describes any state. In the
specification on the right we are asking for a program
which given any value for x makes y? = x. This is
(assuming x and y are real) impossible, however, when
x is negative. Some refinement steps thus lead us to
programs which cannot be refined to code. Such
programs are called infeasible.

To show that a refinement step is correct, each time
we take a step certain proof obligations arise (for
example, (y2=x Ay 20) - y? = x above). These
obligations require us to show that the program on the
right of the refinement really does refine the program on
the left. We give some examples of such steps and their
proof obligations below. Note that, in a sense, the
semantics of the wide-spectrum language are being
given as we describe refinement steps and their
associated proof obligations.

The style of the rules given below is a natural
deduction style: if the statements above the horizontal
line in the rule, the premises, have been proved then, in
an extra step which uses the rule concerned, the
statement below the line, the conclusion, has been
proved.

6. Refinement Rules

assignment:
P — Qlv/e]
v:[P,Q[we]l] v :=¢

e is a sequence of expressions of the same length as v,
Q[v/e] is the sentence Q with all free occurrences of any
variable in v replaced by the corresponding expression in
e.

This rule specifies that v : [P, Q[v/e]] can be refined
to v ;=g if we can show that P — Q[v/e]. In other
words, we can perform the refinement step that gets us
closer to an executable program as long as the premise
to the rule is proved; the premise is an example of a
proof obligation. Having proved this obligation we can
be certain that the program on the right of the
refinement really does refine the program on the left.

Just this one rule allows us to refine py above into
an executable program. The refinement step:

yi[x20,yt=x]<y:= '\(: (assignment)



is justified by the rule ‘assignment’ (as recorded against
the step) because the proof obligation:

x20- (yr= x)[y!\’?]

can be proved, as in:

x20 -
(\{:)2=x -

2 = 0lyNxl

(by definition of "J_)

(by definition of substitution)

sequence:

vi:[P,Ql<x:[P,R];x:[R,Q]

This rule allows us to break large programs into
sequences of smaller ones as long as the sequencing will
work, which is expressed by saying that the
postcondition of the first part is the same as the
precondition of the second. Note that this refinement
step involves us in no new proof obligations.

The next refinement rule allows us to define local
variables (introduced by var) within a new scope (denote
by pairs of braces {...}).

vars:
the variables in w are new

v : [P,Q] € {var w |w,v : [P,Q]}

Another example, which uses all the rules given so
far: let ¢ and d be some real numbers and consider the
specification

xy:[x=cay=d,x=day=c¢]
This can be refined to an executable form as follows:
xy:[x=cay=dx=day=c¢] £ (vars)

{vart]t,x,y:[x=cx\y=d,x=dx\y=c]} <
(sequence)

{vart|txy:[x=cay=d t=cay=d];
txy:lt=cay=d x=day=c]}<
(assignment and obl)

{vart|t:=x;
txy:[t=cay=d x=day=c]} <
(sequence)

{vart|t=x;
txy:[t=cay=dt=cax=d]:
[t=cax=d,y=cax=d]} £
(assignment and o0b2)

{vart|t:=x;x:=Y;
[t=cax=d,y=cax=d]} £

(assignment and ob3)

{vart|t:==x;x:=y;y:=t}

where obl is

(x=cay=d)— (t=cay=d[t/x]
ob2 is

(t=cax=d) > (t=cay=d)[xly]
and ob3 is

(t=cax=d)—= (y=cax=d)[y/]
all of which are trivial to prove.
7. Refinement tools

There are several tools either under development or
being used experimentally which support the building of
refinements (for example see [7]). These tools tend to
support single, textual views of program refinement,
with no preservation of old refinement steps.

The tool we are proposing is unusual in that it will
support several views: first, there will be the refinement
world view and the proof world view; second, within the
refinement world there will be views (linked by
refinement steps) of the refinement sequences; third:
within the proof world (and linked to the refinement
world by the proof obligations) there will be the
separate proofs of each obligation. The refinement views
will be used both by one person or by several working
on different parts of the development or cooperating on a
single part.

Being able to move between parts of the
development and having the parts structured in this way
would prove very useful, both for forming a reliable
model of a complicated process and for organizing the
mass of partial refinements, partial proofs and the
relationships between them. Figure four shows an
example of these refinement views.

Notice that there are three views needed here:

+ the sequence of refinement sequences, which
forms a history of the development
the current refinement step, leading to a
relation between the most recent refinement
sequence and a new refinement sequence

- the proof obligations, arising from each
refinement step, and their proofs.
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Figure five. Refinement and proof obligation views for the swapping refinement example.



Figure five shows an example of taking the
refinement from above and viewing it in this way.

These refinement views must be provided to users of
the environment in such a way that they can be browsed
and modified as necessary. They must also be integrated
with views provided by an environment like SPE,
which support informal design and implementation.
These informal views can be used to both provide
higher-level structuring of refinement views, and to
allow a low-level program specification to be translated
into an implementation in an executable programming
language.

Figure six shows an example of refinement views
for the example from above. The first specification in
the refinement is shown (Step 1), along with the final
specification (Step 6).

Step 1 (Refinement)

* updates_awr(57).
updates_end. */

x¥. [x=c and y=d,x=d and y=c] refines_to
{vart|tx,y:[x=c and y=d,x=dand y=c])

=l Step 6 (Refinement)

* updates_stary(71).
updates_end, */

y:[x=cand y=d,x=dand y=c] refines_to
{vart|jtx,v:[x=c and y=d, x=d and ¥=c]} refines_to

{vart|tx,y:[x=cand y=d, x =d and y=c]) refines_to
(vartfrx,v:[x=coand y=d,x=d and y= ¢} mfines_w0

{rarttey: [x=coand y=d,t=cand y=d];
Ly ft=cand y=d,x =4 and y=c]) refines_©o

Figure six. Refinement views.

Figure seven shows additional proof obligation
views for the example from above.

Step 5 (Dbligation)

* updates_stary{73).
updates_end. */

refinement{t=c and x=d imples (t=c and x=d)[wt]).

proof(
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{t=cand x =d iff, "Definition of sub."),
((y=cand x = dj[wit] ).

Implementation
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o

X,
¥,
L3
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Figure seven. Proof obligation views.

These diverse views of software development must
be kept consistent to make the environment truly useful
for integrated software development. The SPE approach
of expanding change descriptions into views has been
used to propagate changes between views. For example,
consider the example in figure eight.

E[J==——=—=—=—==="tep 6 (Refinement)=——=5|
#* updates_star(71). {3
update(3). 9 Step 4 (Refinement): rename X 1oz
updates_end. ¥

xy: [x=cand y=d,x=dand y=c] refines_ o
{vart|tx,y:[x=c and y=d, x =d end ¥ = c]} refines_to

{wart|tx,y: |[x=cand y=d,x=d and y=c]} refines_to
{fvarttx,y:[x=cand y=d,x=dand y=c} refines m

Figure eight. View consistency management.

This shows a very simple example of consistency
management where the name of a variable has been
changed in an earlier refinement view. All affected
refinement and proof obligation views have a change
description shown in them to indicate the change. Some
of these inconsistencies could be resolved automatically
by the environment, such as variable renaming. Others,
such as changing a refinement step or adding extra pre-
or post-conditions, would normally be manually
implemented. The propagated change descriptions in
these circumstances provide documentation to the
designers that inconsistencies exist and need to be
resolved.

8. Architecture and Implementation

SPE with Object-Z views is implemented as a
collection of classes, specialized from the MViews
framework [16, 17]. MViews supports the construction
of Integrated Software Development Environments
(ISDEs) by providing a general model for defining
software system data structures and tool views, with a
flexible mechanism for propagating changes between
software components, views and distinct software
development tools.

MViews describes ISDE data as components with
attributes, linked by a variety of relationships. Multiple
views are supported by representing each view as a
graph linked to the base software system graph
structure. Each view is rendered and edited in either a
graphical or textual form. Distinct environment tools
can be interfaced at the view level (as editors), via
external view translators, or multiple base layers may be
connected via inter-view relationships.

When a software or view component is updated, a
change description is generated. This is of the form
UpdateKind (UpdatedComponent, ...UpdateKind-
specific Values...). For example, an attribute
update on Compl of attribute Name is represented as:
update (Compl, Name, Oldvalue, Newvalue). All basic
graph editing operations generate change descriptions
and pass them to the propagation system. Change
descriptions are propagated to all related components
that are dependent upon the updated component’s state.
Dependents interpret these change descriptions and
possibly modify their own state, producing further
change descriptions. This change description mechanism
supports a diverse range of software development
environment facilities, including semantic attribute
recalculation, multiple views of a component, flexible,
bi-directional textual and graphical view consistency
management, a generic undo/redo mechanism, and
component “modification history” information.

We are currently building our formal refinement
environment using MViews. This involves reusing



abstractions provided by an object-oriented framework
based on the MViews model. We are specialising
MViews classes to define software components, views
and editing tools to produce our new refinement
environment. A persistent object store is used to store
component and view data.

9. Summary

We are currently in the process of building the tool
described above. As ever, this is turning out to be an
experimental enterprise, but the ideas presented here
form a firm foundation on which we are basing our
implementation.

We expect that this tool will have advantages over
current refinement support tools because we will have
several views of the development of a program and each
view will be maintained in a consistent way relative to
the others. So, experimentation with different
refinement steps at a point in the development will be
less fraught than it currently tends to be—having done
all the work based on one of the alternative steps at a
given point, the thought of having to retrace one’s steps
in order to try another alternative can be a disincentive
to bother with the alternatives. This tendency clearly has
a negative effect on the exploration of designs at this
very high and formal level, which tends to lead into
question the point of working in this way in the first
place.
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