Working Paper Series
ISSN 1170-487X

Collaborative, Integrated
Software Development
with Multiple Views

by John C Grundy, John G Hosking,
Warwick B Mugridge, Robert W Armor

Working Paper 94/6
May, 1994

© 1994 by John C Grundy, John G Hosking,
Warwick B Mugridge, Robert W Armor
Department of Computer Science
The University of Waikato
Private Bag 3105
Hamilton, New Zealand

Collaborative, Integrated Software Development with Multiple Views

John C. Grundy®, Warwick B. Mugridgef, John
G. Hosking and Robert W. Amort

Abstract

This paper presents a new model for supporting
collaborative, integrated software development
utilising multiple textual and graphical views.
Views can be asynchronously edited by different
developers using separate versions. Versions can be
incrementally merged, with merge conflicts detected
and presented. Synchronous editing of views by
different developers is also supported. View
updates are broadcast to other users and are
incrementally incorporated as required in their
alternative versions. The new model is illustrated by
its use in a software development environment for
an object-oriented language.

1. Introduction

Software systems are growing ever larger and more
complex. Two related approaches to managing this
complexity are integrated software development
environments (ISDEs) and collaborative
programming environments.

ISDEs support multiple tools which assist in the
development of complex software systems. Multi-
view editing support in these environments allows
developers to work with software components at
different levels of abstraction and using different
representations [Meyers 91]. For example, in an
ISDE for object-oriented programming, analysis
and design views might support graphical
construction and representation of the high-level
aspects of a program, while textual views might
support detailed implementation of class interfaces
and methods. As these views share some
information (class and feature names, types and
arguments, class relationships), consistency
management is required to keep all of the views
consistent when one view is edited.

Large software systems require the collaboration of
multiple developers, with each developer viewing
and manipulating information shared with others

* Department of Computer Science, University of Waikato,
Private Bag 3105, Hamilton, New Zealand.
Jjgrundy @waikato.ac.nz

t Department of Computer Science, University of Auckland,
Private Bag 92019, Auckland, New Zealand.

[Nascimento and Dollimore 93, Magnusson et al
93]. Support for collaboration can be provided by
two types of tool: version control systems, which
allow alternative designs to be created and merged
asynchronously; and synchronous editors, which
allow concurrent manipulation of a system by two
or more collaborators [Magnusson et al 93]. Ideally
an environment should support both synchronous
and asynchronous modes for all types of software
system components, allowing developers to switch
between modes as required.

Our recent research has been concerned with the
development of MViews, a framework for
constructing multi-view ISDEs [Grundy and
Hosking 93], together with SPE, an ISDE for an
object-oriented language [Grundy et al 94]. In this
paper we describe the extension of MViews to
include support for the development of collaborative
multi-view ISDE’s. Extending the MViews multi-
view approach to support collaborative development
required support the following additional
functionality:

* A version control system that deals with
software components at a suitable level of
granularity, and which allows for asynchronous
and synchronous editing of multiple views.

* The ability to retrieve or regenerate earlier
versions.

* Facilities for merging two or more completed
versions that have been developed
asynchronously by one or more developers.

* Facilities for incremental merging of two or more
incomplete versions that are being developed in
parallel by multiple developers and which are
related by synchronous editing.

* A means of detecting merge conflicts that are
immediately apparent from the changes
concerned. For examples, two changes that
operate on a single component in an inconsistent
manner.

* A means of detecting indirect merge conflicts that
can only be determined by semantic processing.

* A means of storing and distributing multiple
versions, with appropriate identification.

* A means of traversing historical information
associated with different versions.

* Facilities for developers to provide information
about a high-level change and relate it to the set

Page 1

of low-level changes that will be made or have
been made.

The remainder of this paper discusses how these
needs are met in the new ISDE environment.
Section 2 discusses related research. Section 3
describes the single-user ISDE that we have
extended in this research. Section 4 describes the
basic version control mechanism, while Sections 5
and 6 show how this mechanism can be used to
support asynchronous and synchronous
collaboration. Section 7 discusses implementation
issues. Section 8 summarises the contributions of
this research and outlines possible future research
directions.

2., Related Research

PECAN [Reiss 85] and Garden [Reiss 86] support
software development via multiple textual and
graphical views. This allows developers to view
software systems using different representations
and at different levels of abstraction. Garden allows
programmers to share software components and
their views via an object-oriented database;
however, it does not support version merging or
collaborative view editing.

Tools such as SCCS [Roekind 75] support version
control for text source code files. SCCS stores the
differences between two versions of a text file as
“deltas”, which allows different versions to be
regenerated and merged asynchronously. This
technique does not work so well for more
structured information, such as diagrams. In
addition, the version merging process can be
tedious and error-prone. FIELD environments
[Reiss 90] allow Unix tools to be integrated by
selective broadcasting of changes that occur in other
tools. FIELD supports version control with SCCS
and does not support collaborative view editing.

Collaborative document editors support
synchronous, collaborative work on a shared
document by a group of people [Ellis et al 91].
They do not usually support asynchronous editing
and version control, as the multiple users are
assumed to be working on the same document. For
example, OpenDoc [OpenDoc 93] supports
synchronous editing and versions via its object
base, although automatic support for version
merging is not provided.

Mercury [Kaiser et al 87] extends the Cornell
Program Synthesizer [Reps and Teitelbaum 87] to
support a restricted form of collaborative
programming. Changes to module interfaces are
broadcast to other users. Mercury does not support
versioning of program modules and only a single,
textual view of a module is supported. Nascimento
and Dollimore [93] propose a programming
environment which supports (manual) version
control for multiple programmers working on a
shared Smalltalk program. Their approach does not
support synchronous editing and multiple views.
Mjglner/ORM environments [Magnusson et al 93]
use a fine-grained version control system which
supports both asynchronous and semi-synchronous
editing. Mjglner environments also support “active
diffs” which identify aspects of a program which
have been changed by other developers. These
environments provide only a single, textual,
structure-edited view of program code.

Dora environments [Ratcliffe et al 92] provide
multiple textual and graphical views of software
development. Dora, however, supports neither
version control nor the propagation of changes that
can not be directly applied to a view. Thus it does
not support “fuzzy” view updates between analysis,
design and implementation views, and makes
reconciliation of these views dependent on
programmers remembering old updates.

Before discussing the details of the new framework
and programming environment, we introduce the
single-user versions that have been extended for
collaboration.

3. MViews and the
Programming Environment

Snart

SPE (Snart Programming Environment) provides
multiple textual and graphical views for
constructing programs in Snart, an object-oriented
Prolog [Grundy et al 94]. SPE supports full
consistency management between all view types;
changes to one view are always reflected in other
views that share the updated information. For
example, fig. 1. shows a screen dump from SPE
showing two graphical views (one for object-
oriented analysis and one for design), and two
textual views (a class interface and a method
implementation).

Page 2

window-root class |
11

\ 59 drawing_window-Class Defin
/*updates_start(89).
fon LE A updates_end. */
- - /%
Jon % drawing windov] * Drawing Window class.
*
*
figures but’ton' class{drawving_window,
= Yoot butt| parents([
window(
[rename(clicked, window_clicked)
1)

figure-Drawing

features([
buttons(list{drawing_button)),
current_button(drawing_button).
figures(list(figure)),
clicked,
shift_clicked,
add_figure,
remove_figure,

dunlisata

1 £
. hide
L —>del_pic E[E drawing_window::add_figure-Me! =015
draw /*updntes_start(95) .
i ity

->add_pic updotes_end. */ [

K
T Ly

% Add o figure to the figure list of this window.

[y
»

drawing_window|]

- drawing_window: :add_figure(Window,Figure) :-
add_figure Windowdfigures(Tigures),
remove_figure Figurefiinfo,
£ et Window@figures :=[Figure |Figures].
gures drawing_windew: :add_figure(Window, Figure) :-
Figurefinfo,

Windowlf igures :=[Figure].

)<l

L
fig. 1. A screen dump from SPE,

Graphical views are kept consistent when other
views are modified by directly updating affected To support multiple views, a base layer defines
icons, expanding new icons into the view, shading base software system components (base
icons to indicate the software components they components). A subset layer defines view
render have been deleted, or storing with affected components, which are partial views of the base
icons a sequence of change descriptions that can be components. These view components are grouped
viewed in a dialogue. Consistency management for into views, which are rendered in either textual or
textual views involves expanding descriptions of graphical forms by a display layer. Developers
changes into the view’s text in a special header update view components by direct manipulation of
annotation. Some of the expanded changes can be graphical views and free-editing of textual views in
automatically applied by SPE to update the view’s the display layer.
text. Other changes represent “fuzzy” changes
affecting the view (eg a design level change When a component is updated, a change description
propagated to an implementation view) which must is generated (called an update record). For example
be implemented manually as they require creative update_attribute(compl, attrl, oldvalue, newvalue)
input from the programmer. To aid developers in describes the change of value of attribute attr] of
determining the consequence to other views of a component compl from oldvalue to newvalue.
change, SPE supports a rich set of view navigation Update records are propagated to all components
facilities, utilising hypertext techniques. connected to the updated component which are
dependent upon changes to its state (called
SPE is implemented by using a framework of Snart ~ dependents). Dependents interpret the update
classes, based on the MViews model [Grundy and description and possibly modify their own state,
Hosking 93]. MViews supports the definition of producing further update records. This propagation
new ISDEs by providing a general model for process continues until all components affected by
defining software system data structures and views, the original change have updated their state
with a flexible mechanism for propagating changes appropriately.
between software components and their views to
keep them consistent. With MViews, ISDE datais The update record mechanism is used to support a
described as components with attributes, linked by diverse range of software development environment
a variety of relationships. Relationships behave as facilities, including: semantic value recalculation;
components and can thus participate in further —multiple views of a component; flexible, bi-
relationships. directional textual and graphical view consistency
management; a generic undo/redo mechanism; and
component “update history” information.

Page 3

The MViews framework also provides abstractions
for building view editors and defining component
view rendering and interaction. New environments
are implemented by specialising MViews
framework classes to define new components and
relationships. A persistent object store is used to
store component and view data.

Neither MViews nor SPE support collaborative,
multi-user software development. We have
extended MViews to produce C-MViews
(Collaborative Multiple Views). C-MViews
supports a flexible component and view version
control mechanism and both asynchronous and
synchronous view editing for collaborative software
development. We have implemented a prototype of
C-MViews and used this to construct C-SPE,
which supports collaborative object-oriented
software development.

In the following section we describe the basic
versioning mechanism of the C-MViews model.
This is based on storing and manipulating MViews-
style update records. In Section 5, we show how
this mechanism can be used to support
asynchronous version editing and merging. In
Section 6 we show how distributing update records
between multiple users can be used to support
synchronous merging.

4. Version Control

4.1 Component Version Control

Software system components usually have a natural
hierarchy, with some components being “composed
of” other sub-components. For example, an object-
oriented program in SPE is made up of several class
frameworks (or patterns); a framework is composed
of several classes and class relationships; and a
class is composed of various features and inter-
class relationships.

There are several possible approaches to managing
versioning of such hierarchical software systems.
One approach is to create a new version number for
the whole system whenever any (set of) changes is
to be made to the system. A finer grained approach
is taken by SCCS. Here, individual version
numbers can be maintained for one level of the
component hierarchy; thus each framework could
have its own version number. The main difficulty
with this approach has been that independent,
usually manual, systems are needed to relate the
framework versions that form a system version. A
more general approach is to allow individual
versions for any component in the hierarchy, with a
configuration management tool able to construct a
system version from versions at multiple levels of
the hierarchy.

Rather than opting for one of these approaches, C-
MViews aims to allow any of them to be
implemented by providing a tailorable low-level
versioning mechanism based on stored sequences
of update records called version records.
Specialisations of C-MViews, such as C-SPE use
this low level mechanism to implement appropriate
higher-level mechanisms.

4.2 Version Records

Version records are associated with C-MViews
components. Creating a new version of a
versionable component involves creation of a new
version record.

Version records contain a record of changes made
to that component since the previous version. These
can include: update records associated with changes
to the component itself; update records associated to
changes to subcomponents; and changes to the
configuration (ie the version numbers) of
subcomponents. What is actually included in a
version record depends on the versioning scheme
implemented by the C-MViews specialisation.

For example, fig. 2 shows how version records are
used in C-SPE’s version control. C-SPE adopts a
component-level versioning approach where each
component in the component hierarchy has multiple
versions with associated version records.

A3
version
records
Dro

<———/'f

:
@

Ao

@ Version
records |

N4 L
0

A

N

+ @D

- records §

VErsion
records

fig. 2. The general structure of C-SPE versions.

The most recent version of a C-SPE component is
either frozen, and hence closed to change, or open,
and hence able to be further modified. The version
records describe changes made to a component:
feature deltas (in the form of update records)
describe changes between one feature version and
the next; class deltas describe changes to a class
component and its relationships and so on. Higher-
level component version records also describe the
particular configuration of their sub-components:
class versions describe which versions of features
and relationships owned by the class are used for a

Page 4

particular version of the class; framework version
records describe which class versions are used for
each version of a framework: and so on.

Each time a new C-SPE component version is
created, such as a new feature implementation, a
new version record for that component must be
created to record the modifications to the
component. The component’s parent, eg the
feature’s class, in the aggregation structure must be
notified of this new subcomponent version. If the
parent’s version is closed to change (ie it is frozen)
a new version of the parent is created, and with it a
new version record. The latest parent version record
then records the changed subcomponent
configuration. This propagation of configuration
change is transitive up the aggregation hierarchy: if
the change causes a new version of the class to be
created, this in turn informs the framework and so
on.

Other versioning schemes can also be supported
using component version records. For example, the
global version number method described in Section
5.1, can be implemented by simultaneously creating
new (open) versions for every component, all
labelled with the global version number.
Subcomponent configuration information does not
need to be maintained in this scheme, as all
subcomponents will have the same version number.

For small types of subcomponent, it may be
sensible to have version records only associated
with their parents in the aggregation structure. For
example, in C-SPE, rather than having version
records for both classes and feature
implementations, it would be possible to have
version records associated with just classes.
MViews aggregation (part-of) relationships between
components automatically propagate a sub-
component update record to its owning component
and thus owning components are informed when
their sub-components change. Update records
associated with changes to a feature would thus be
propagated to its parent class to be stored in the
class’ version record. While this approach means a
smaller number of version records, it also means
that local component version numbering can only
extend to, for example, the class level, with no
individual versions for feature implementations.
The C-SPE view versioning scheme, described in
the next section, also makes use of part-of
relationships to reduce the number of version
records.

4.3 View Versions

Views often express information difficult to express
concisely in other ways, for example by the use of
location to represent relationships between
components not captured in the language semantics.

It is thus useful to capture changes to views in a
version system, in addition to the changes to base
components. An important distinction between C-
MViews and other environment models is its
support for view versioning. C-MViews keeps
view versions Separate from base component
versions, as a view may render several different
base components. Changing any base component
will thus partially change the view (and vice versa).
Views may also change independently of their base
components, as, for example, layout information is
view-specific.

Fig. 3. shows view versioning for C-SPE. View
components, such as class icons and connectors, do
not have their own version records as they are not
versioned independently from their owning view. A
single base class or feature may appear in several
different views (i.e. be linked to several different
view class and feature components).

version
records
version l

— view-of
—> part-of

C-SPE multiple view versions.

fig 3.

4.4 Regenerating Versions

The update records stored in 2 version record of a
component (including update records specifying
changes to the subcomponent configuration) can be
used as deltas to regenerate previous or subsequent
versions (by modifying the current version of a
component). In order to convert one version to
another in this way, C-MViews will undo the
update records (to go back a version) or apply them
(to go forward a version). Previous or subsequent
versions may also be cached for efficiency.

4.5 Creating and Browsing Versions

Version records are stored separately from
components in order to provide an always
accessible version history. This information can be
browsed using standard MViews tools.

Evolution graph views show several related
component and view evolution graphs. These views
are used to graphically specify new versions,
alternate versions and alternate merges. They also

Page 5

allow developers to view the version record updates
for a component, and to compare these with other
components’ version record updates.

5. Asynchronous Collaboration

Rather than the check-out style of SCCS, C-SPE
permits an optimistic approach to version control in
the parallel development of software by multiple
developers. This approach is especially appropriate
when the software under development cannot be
easily partitioned between the developers. For
example, the addition of a single function to an OO
software system can lead to changes in several
classes.

Asynchronous editing of multiple views (and,
indirectly, software System components) is
supported by supplying each developer with their
own alternative versions of a view and the
components rendered in the view. Changes to
views (and thus to the software components
rendered in the view) are recorded by their current
versions. The change descriptions may
subsequently be used to merge two (or more)
alternatives or regenerate a particular version of a
view or component. Alternative merging is carried
out by a single developer with merge conflicts being
detected and brought to the developer’s attention.
Our environment can animate updates on a view to
illustrate, graphically or textually, changes other
developers have made.

5.1 Asynchronous Editing

In C-SPE, developers have their own local
repositories for component versions. A developer
Mmay create a new version of a component at any
level in the component hierarchy, based on their
current version. Once a new version is frozen it can
be “exported”; ie, made available for others’ to
access. There is no problem with multiple copies of
a version being distributed, as they are frozen
before they can be exported. Another developer
may later import an exported version and merge it
with the developer's own version of the
component, exporting the resulting version for
other developers to use.

Fig. 4. illustrates this asynchronous editing and
merging approach to coliaborative development.
Developer 1 copies version V1.0 of a component
from developer 3 and creates a new version
(denoted by V1.1a). Developer 2 also imports V1.0
and creates a new version (V1.1b) so they can
modify it at the same time. After updating their
alternatives, developers 1 and 2 freeze their
component versions. Developer 2 then takes
responsibility for integrating the changes, obtains a
copy of version 1.1.a and merges it with version

1.1b. This merged component version is then
exported as V1.2, for other developers to use.

developer 3 repository

!
G
a” ‘:‘

developer 1 repository developer 2 repository

D @ @

Asynchronous view editing and exporting/importing.

Q)

fig. 4.

The component version control provided by C-SPE
allows for changing and merging to be carried out at
different levels within the hierarchy. This permits,
for example, a developer to take a sin gle component
from another system version and merge just that
with their current version. In this way, there need
be no distinction between the versionin g of libraries
that are used across applications and the versioning
of applications.

5.2 Asynchronous Merging

C-MViews expects specialisation environments,
such as C-SPE, to provide facilities for capturing
information about why a change is made, and to
present this information appropriately in views. The
capture and presentation of this information needs
to be of limited “interference”, as developers
typically do not want to supply or see all of it every
time they make a minor view modification. C-
MViews attempts to overcome some of this
interference by allowing an application to capture
and present this information on demand via an
update history dialogue used to browse version
records. It is often difficult to decide when a
developer wants to view the propagated information
and currently this is done on demand via a dialogue.

Alternatives may be merged by applying one
alternative’s update records to the other alternative’s
component, or by reverting to a common ancestor
version and applying all update records from both
alternatives to this earlier version. The first
approach is faster, as there are likely to be fewer
update records to apply. The second is more
powerful (in general), as the ordering of the two
streams of update records can be changed and thus
conflicts are more easily resolved, Developers can
have update records from another alternative
incrementally applied to a view and watch how the
view is updated (i.e. animate the affects of the
merge). This allows developers to more clearly
identify the effects of a merge operation in terms of
actual changes to views.

Page 6

Two alternative versions may contain conflicts that
must be resolved when merging them. For
example, one version deletes something that the
other updates). C-MViews marks an update record
if it can’t be merged automatically and informs the
developer of the conflict.

Consider the example in fig. 5. To merge the
versions for a base class component, C-SPE must
carry out both sets of update records. Note the
conflict: developer 1 deleted feature method]l while
developer 2 updated it. This problem should be
identified and the developer merging the class
alternatives informed of the conflict. The developer
can then decide which update to allow (if either) or
make other changes to reconcile the two
alternatives. A similar problem occurs between the
renaming of methodl by developer 1 and the
addition of method2 by developer 2 (a semantic
error). This can be resolved if method1 is deleted or
if one of the updates is disallowed. C-SPE does not
currently check for such semantic errors during
alternative merging but identifies them when
checking the semantic correctness of the merged
class.

11. rename feature attr1 to attr2 it
12. add feature attr3

13. rename attr3 to attrd

14. rename method1 to method2

=

[_“dd] ((Delete | (cancel

Developer 1's updates on class alternative
— 4;1

6. delete feature methodi i
7. add feature method2

O]

@ (_Add] (_pelete) (Cancel)
((Undo] [Redo)
I—

Developer 2's updates on class alternative
Example of two class alternative update lists to merge.

fig 5.

Fig 6 shows the Merge Conflicts dialogue which
displays conflicts that C-SPE has detected in the
merge process. The version record names are user-

defined (although C-MViews stores unique version
record identifiers internally).

Merge Conflicts

1.1a (john] - 14. rename method1 to method2|{}
1.1b (rick) - 6. delete feature method1

o]

-l Apply | (_Delete) (‘Cancer

)

Conflicts detected when merging two alternatives.

L
fig. 6.

One interesting complication to the view merging
process is MViews” support for free-edited textual
views. These are stored as blocks of text which are
parsed to recover structural information and thus to
update base components shared by other views. C-
MViews supports multiple versions of these “text
forms”, but only stores update records generated by
the parsing process. Other aspects of the views
which are updated between two versions of the
same component (such as comments, expressions
or code statements) need to be reconciled either
manually or by using a traditional SCCS-style
textual differencing approach.

5.3 Merging Multiple Views

Multiple views complicate the versioning process as
a view has multiple versions and each base
component rendered in the view has its own
versions. Changing the current version of a view
should modify underlying base components, if
affected by the view change, and thus should also
modify other views that render these base
components. This can result in large scale changes
from simple view version merging or when
switching between a previous or subsequent view
version. A further complication is that some view
changes are view-specific, for example layout and
view composition, eg which components and
viewed and which aren’t, while others affect the
underlying base information, eg component
renaming, adding or deleting relationships. Merging
of two alternatives needs to resolve layout and
composition conflicts (which often occur) with
underlying base information conflicts (which occur
less often). C-SPE must currently present the
merging developer with a list of all conflicting
update records for manual resolution. Heuristics
may be useful to assist in automation of some of
this decision making.

Page 7

5.4 Indirect Merge Errors

At present, C-MViews requires that all components
linked to a component whose version has been
changed have their semantic values recalculated.
This should be enhanced so that incremental
semantic value recalculation is supported. C-
MViews supports view update animation when
merging view updates, but does not currently
support a form of “active-diffing”, as used by
Mjglner environments. C-MViews does not indicate
which information has been changed in alternate
versions, but could do so via colouring graphical
view icons and with techniques similar to those of
Mjdlner (+, - and underlining annotation) for textual
views.

6. Synchronous Collaboration

The aim of synchronous collaboration is to allow
two or more developers to simultaneously examine
and alter a common view of a software system,
communicating the changes they make between
themselves as they are made. There are two main
approaches to handling the integration of the
changes made. The first approach is to consider
that the developers are communicating and
negotiating in order to derive a single result. In this
case, it is appropriate that all the developers
concerned share a common view, so that a change
can be rejected by any participant and thus undone
in all of their views.

The second approach does not aim for a single
result, so that developers may end up with their
own distinct versions that reflect their current
thinking. In this case, each developer can choose
whether or not to accept the changes of others in the
collaboration without affecting the others.

The framework that C-MViews provides can be
used to support both of these approaches. It makes
no assumptions about the choice of version that will
form the basis of the collaboration and whether the
whole system or specific (versions of)
subcomponents will be used. A specific ISDE will
determine how developers choose versions. For
example a developer could request to be informed
of changes to versions of a component (usually a
view) that are descendants of a specified version of
the component. ~ Alternatively, the choice can be
made on the basis of the developers concerned
rather than the version. In the latter case, though,
there are difficulties if the developers are starting
from different versions, as the differences between
them will need to be resolved before synchronous
collaboration can begin.

Synchronous view editing in C-MViews is
supported by broadcasting update records to other

developers’ environments as they are generated.
These descriptions are then incrementally merged
with other view alternatives, allowin g collaborative
development to take place. Developers may have
these changes automatically applied to their views,
may browse the descriptions before applying them,
or may reject them, informing other developers why
they have chosen to do so. Developers can move
between asynchronous and synchronous modes of
view editing; both modes are compatible under
subsequent alternative merging.

Broadcast update messages include who, when and
why information, which assists developers in
understanding the change. User-defined update
records can be broadcast to facilitate flexible,
context-dependent, developer communication.

Fig. 7. illustrates the use of the C-MViews
synchronous view editing model in C-SPE. The
interface shown allows a developer to view update
records describing the changes before deciding to
apply them, ignore them, or view the affect of the
changes on their version.

Syncronous Updates

1.1b [rick) - 18. add feature attrs T
1.1b (rick) - 11. delete feature attri |
1.1b [rick) - 12. add generalisation to class2

A

(_Apply] (Cignore) (cancer)
t J

fig. 7. Synchronous view edits in C-SPE.

C-MViews attaches a version record ID and unique
sequence number to broadcast update records.
Thus, no matter whether synchronous view editing
1s switched on or off for an alternative, changes the
developer is not notified about can still be
incrementally merged at a later date.

Update record broadcasting is handled as part of the
general mechanism of propagating update records
up the component hierarchy. The current version
record for a component records other developers’
interest in updates to the component. When an
update record is stored in this version record, it is
also broadcast to the environments of these other,
interested developers.

These broadcast update records are then stored by
the current version record of the other developer’s
component. Broadcast updates are presented to
these developers when they work on the version

Page 8

record’s component or view. An indication of new
update records is given by shading icons or
changing a menu bar item which results in a
context-dependent communication mechanism. This
is important in making C-MViews environments
useable, so developers aren’t inundated with
messages at inappropriate times.

7. Implementation

The prototype of C-MViews is implemented in
Snart and has been used to construct the prototype
C-SPE environment. Here, we briefly comment on
a few implementation issues and shortcomings in
these prototype implementations.

7.1 Versions, Object Persistency, and
Distribution

C-MViews extends persistent Snart object stores to

support multiple versions of an object, so multiple
component versions are represented by multiple
object versions. Update records are now stored
separately to the components that generate them.
Update records include additional information over
that used in MViews update records. This includes
timestamp, user id, and change reason data. Each
version record object contains a sequence of update
records together with links to its predecessor(s) and
successor(s), giving an evolution graph for the
component.

C-MViews currently supports a common, shared
component repository as a shared object store, and
high-performance, single-user repositories. A
database server is provided to moderate access to a
shared object store. This allows a group of
collaborating environments to provide high-speed
data storage for each developer’s alternatives,
supports sharing of these alternatives, and handles
update record broadcasting between developers. A
central server is used, rather than developer-to-
developer communication, so a definitive copy of
the whole system is always available for new
developers to access. This architecture also allows
synchronous editing to be controlled from one
location.

A component alternative in one developer’s object
store may be merged with a version in another’s
object store. Thus a component’s object, its sub-
component objects, and its version objects must be
copied from one object store to another. As C-
MViews knows about the aggregation structures
present between software components, it can import
and export the sub-components of a component
automatically. For example, when a C-SPE class is
imported, ail of the features and relationships it
owns are also imported. The shared repository acts
as a form of distributed database by ensuring

objects created in any developer’s object space
always have unique object IDs.

When editing different alternatives two developers
may create different objects which represent the
Same conceptual view or base component.
Subsequent merging of these alternatives will result
in redundancy that can be resolved by any of the
collaborators discarding one of these objects in
favour of the other.

7.2 Limitations of the C-SPE prototype
Our current C-SPE prototype does not give
developers any assistance in rearranging updates to
resolve conflicts and at present only allows two
versions to be merged at a time, Free-edited textual
views may have multiple versions but C-SPE does
not give any support to merging these alternatives
(this must be done manually). C-SPE currently
lacks a mechanism for relating different component
versions. For example, if changes are made to
several classes to implement one new system
feature, these version relationships are not
documented. It is thus difficult for developers to
trace between related updates to different classes
and frameworks. As a shared filing system is used
to propagate update records, synchronous editing is
quite slow and adversely affected by large network
traffic volume.

8. Conclusions

Our experience in developing integrated software
development environments indicates that both
multiple views of software development and
collaborative software development are important
when building large software Systems.

C-MViews is a new model for supporting multiple
versions of software components and their multiple
textual and graphical views, C-MViews supports
collaborative development via multiple views,
including both asynchronous and synchronous
editing modes.

Developers can collaborate via asynchronous
alternative editing and then merge alternatives.
Changes between versions are recorded by
sequences of update records, grouped into version
records. Flexible version merging is supported
using the update records, allowing developers to
switch between component versions by undoing or
reapplying these change descriptions, or by
switching between multiple versions of the same
component object.

Synchronous collaboration is supported by
broadcasting update records as they occur between
different developers’ environments. These are
incrementally merged into other versions of the

Page 9

same view, either automatically or manuall y. These
modes of development are complementary and
developers can switch between them.

Our experience with C-MViews indicates the need
for several improvements to the architecture and its
implementation. In particular, the user interface of
C-MViews needs to be improved. For example,
further work is needed to determine how changes
broadcast for synchronous editing can be most
usefully presented to developers. The mode of
presentation is often dependent on the view being
edited and individual developer’s requirements. The
capture of extra information, particularly a
description of why a change was made, usually
occurs above the update record level but below the
version level. Thus a system for associating several
related update records which implement one desired
global change would be very useful. This could be
extended so that updates to several different
components can be related and traversed via
hypergraph techniques, giving developers a high-
level view of the relationships between different
component versions. This is particularly useful for
object-oriented Systems, where changes are often
made to several frameworks and classes to provide
oneé new system function, but where individual
updated components also need independent version
control.

Use of semantic information during the version
merging process may improve the simple heuristics
used for detecting and managing merge conflicts.
Support for tracing between changes made to
analysis, design and implementation views in C-
SPE should be provided. This is complicated by the
versioning process as different versions of views
and base components will be in use. Effective
support for detecting and resolving semantic
conflicts between views and components when
changing between different Versions is an open
research issue. Another useful addition would be to
allow developers to link different versions so
changing from one component version to another
also changes other component and view versions. It
may also be useful for C-MViews to give
ownership of components and views to some
developers, to restrict component updating and
alternative merging, if required by a development
team.

References

Ellis, C.A, Gibbs, S.J, Rein, G.L.: Groupware: Some Issues and
Experiences, Communications of the ACM 34, 1 (January
1991).

Grundy, J.C., and Hosking, J.G., Constructing Multi-view
Editing Environments Using MVicws,Pmcecdings of the
1993 IEEE Symposium on Visual Languages, IEEE Press,
August, 1993, pp. 220-224.

Grundy, J.C., Hosking, J.G., Fenwick, S., Mugridge, W.B.,
Connecting the pieces: integrated development of object-
oriented systems using multiple views, Chapter 11 in

Visual Object-oriented Programming, M. Burnett, A.
Goldberg, T. Lewis Eds, Prentice-Hall, 1994 (in press).

Kaiser, G.E., Kaplan, S.M., Micallef, J.: Multiuser, Distributed
Language-Based Environments, IEEE Software 4, 11
(November 1987), 58-67.

Magnusson, B, Asklund, U., Minér, S.: Fine-grained Revisjon
Control for Collaborative Software Development”,
Proceedings of the 1993 ACM SIGSOFT Conference on
Foundations of Software Engineering, Los Angeles CA, 7-
10 December 1993,

Meyers, S. Difficulties in Integrating Multiview Editing
Environments, IEEE Software 8, 1 (January 1991), 49-57.

Nascimento, C., and Dollimore, J. A model for co-operative
object-oriented programming, IEE Software Engineering
Journal 8, | (1993), 41-48.

OpenDoc, OpenDoc Technical Summary, OpenDoc Design Team,
Apple Computer, Inc., 1993

Ratcliffe, M., Wang, C., Gautier, R.J., Whittle B.R. Dora - a
structure oriented environment generator, IEE Software
Engineering Journal 7, 3 (1992), 184-190.

Reiss, S.P., PECAN: Program Development Systems that

Support Multiple Views, IEEE Transactions on Software

Engineering 11, (3) March 1985, 276-285.

S.P. Working in the GARDEN Environment for
Conceptual Programming, [EEE Software 4, 1]
(November 1987), 16-26.

Reiss, S.P. Connecting Tools Using Message Passing in the
Field Environment, IEEE Software 7, 7 (July 1990), 57-
66.

Reps, T., Teitelbaum, T, Language Processing in Program
Editors, COMPUTER 20, 11 (November 1987), 29-40.

Roekind, M.J.: The Source Code Control System, IEEE
Transactions on Software Engineering 1, 4 (December
1975), 364-370,

Reiss,

Page 10

