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Abstract

Integrated software development environments need to support multiple textual and graphical views of
software products under development. MViews, a new model for constructing such environments,
provides abstractions for representing the abstract syntax of a program as graphs and for viewing and
manipulating these graphs in concrete textual and graphical forms. Graphs are used to represent
software system structures using components (graph nodes) and relationships (graph edges). These
graph components are modified by graph operations to construct and modify a program. Views of these
graph components are rendered and manipulated in either graphical or textual forms,

Consistency management between updated graph components is supported by a novel update record
mechanism. MViews graphs are dependency graphs: updates to graph components are broadcast to
related components as update records. These dependent components, or the inter-connecting
relationships, respond to these update records and update the dependent components appropriately. This
mechanism is used to support inter-component consistency management, and in particular provides a
novel way keeping textual and graphical views of software development consistent. This mechanism
can also be used as the basis of a wide range of other software development environment facilities.
MViews has been reused to implement a variety of integrated environments and examples of these
environments are discussed.

1. Introduction

Programming environments assist programmers to implement and debug programs by providing tools
which make the task of program construction easier [11]. Integrated software development
environments (ISDEs) subsume programming environments and provide tools for various software
management tasks such as analysis, design, implementation, debugging, maintenance and version
control [26, 11]. ISDEs usually require both graphical and textual representations of parts of a software
system, and each such partial representation is called a view. Support for many views and view types is
usually needed in an ISDE together with some form of consistency management between the different
views and software representations that share information. A mechanism that permits new or existing
tools to be integrated into the environment is also essential [26]. In this paper we describe MViews, a
new model and framework for constructing ISDEs which provides such support.

MViews represents the structure of software systems and their views as graphs, which can be extended
with static language semantic values using further graph components and relationships. The graphs are
organised in three layers. A base layer provides a representation of shared information. View layers
provide view specific representations and behaviour, while display layers render, and permit
manipulation of, view layer information either graphically or textually. Consistency between graph
components is supported by a novel update record propagation mechanism. This uses the arcs in the
graph to propagate a record of the exact change to a component to other components dependent on its
state. Base and view components are kept consistent via this mechanism and this allows graphical and
textual view representations to be kept fully consistent, no matter which kind of view is manipulated.
External tools can also be interfaced to MViews environments via views.

We begin by surveying current approaches to the development of ISDEs. MViews is then described and
illustrated with examples from systems developed using the model. Development of environments using
MViews is discussed and experience of building several systems using this model is presented. Current
and future research on MViews and its derivatives is summarised.

* Author’s addresses: J. Grundy, Department of Computer Science, University of Waikato, Private Bag 3105, Hamilton,
New Zealand; J. Hosking, Department of Computer Science, University of Auckland, Private Bag, Auckland, New
Zealand.
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2. Related Research

Traditional programming environments are based on an edit-compile-run sequence of program
development [11]. Such environments usually support text-based program development with limited
graphical user interfaces and with tools loosely integrated usin g a file system [26]. Program data, views
and tools do not usually have a consistent, shared representation mechanism. Thus consistency
management between graphical tools and interfaces and textual program representations either does not
exist or is unidirectional from text to graphical forms [32]. Similarly, with purpose-built environments,
such as THINK C on the Macintosh [35], and language-based environments, such as Smalltalk [15],
information in graphical and textual views is either non-overlapping or has limited consistency
management. Graphical views are usually regenerated as required (for example, class browsers and
dialogs are simply re-rendered). These approaches mean that very limited amounts of over-lapping
information can be supported before view inconsistencies arise. Abstract models and reusable
frameworks for constructing such multi-view editing environments are often simplistic and over-
general, such as the MVC model for Smalltalk [15] (see later discussion).

CASE tools, such as Software thru Pictures [37] and the OOATool [8], provide graphical editors
supporting the construction of analysis and design diagrams. These usually provide consistency
management between different graphical views. Most CASE tools do not support program
implementation although some generate program fragments from a design and allow programmers to
incorporate these into their own programs. A major drawback of this approach is a lack of consistency
management and traceability between design and implementation, leading to problems if one or both are
modified independently. Reverse-engineering of design diagrams from program code partially solves
this problem by allowing design information to be regenerated (or possibly modified) to reflect program
change. This does not solve the problem of design chan ge impacting on programs, however, nor does it
allow “fuzzy” changes to be propagated (i.e. changes that can not be directly translated from design to
implementation representations).

Visual programming environments, such as Fabrik [20] and Prograph [9], must keep different graphical
views of programs consistent. This is straightforward when views contain information that is directly
updateable by changes applied to other views. An environment supporting abstract design and visual
programming views, however, must provide a mechanism for translating changes in one type of view
to appropriate changes in other types of view. These chan ges may not necessarily be directly applicable
to other kinds of views, for example an entity-relationship connection in a design view modelled as a
dataflow in a visual program view.

Many researchers have attempted to support declarative specification and generation of languages and
their environments. These have usually been based on the abstract syntax of a language together with
automatic generation of structure-oriented editors. Examples include the Cornell Program Synthesizer
[34] and Mjglner environments [25]. These systems allow language structure and static semantics to be
specified abstractly and in a declarative manner. Environments produced in this way are generally not
very extensible, however, and have a restrictive editing style [38]. As they are text-based, they require
additional tools for software analysis and design which usually introduces problems with data and user
interface consistency and integration.

Dora [29] and PECAN [30] use structure-oriented editin g techniques on a shared program
representation to support view consistency by propagating editing changes between views. A weakness
is that changes not directly able to be applied to another view can not be indicated to programmers.
FormsVBT [4] supports multi-view editing with consistency via token substitution in textual views and
incremental redisplay of graphical views. This approach means graphical view updates must be locked
out when a textual view is edited, however, and only a simple S-expression language can be supported
for the textual program. Systems such as Zeus [6], Dora [29], and GLIDE [22] provide some
abstractions for building multi-view editing environments. In general, however, the support for ISDE
view consistency management they provide is too inflexible. Semantic Program Graphs (SPGs) [27]
use a hypergraph-based notation to represent both the executable and unexecutable aspects of software
systems for multi-view development environments. While a flexible approach to base software system
specification, SPGs do not directly describe how multiple textual and graphical views of a software
system are defined and manipulated, nor how these views are kept consistent under change.

Multiple textual and graphical views of information are common to most ISDEs and development of
these systems is a large programming effort. An appropriate set of abstractions for constructing such
environments would thus be very useful. In the above work, different view and tool integration
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mechanisms, including file system integration, database and database view integration, and canonical
form representation, have been attempted with varying degrees of success [26]. In the development of
MViews we have aimed for a homogeneous solution which provides a useful set of ISDE abstractions
based on a uniform conceptual model of dependency graphs. This model can be used as a set of
reusable building-blocks, or framework, for more easily constructing new environments and tools.

3. SPE

To focus the following detailed description of MViews, we first introduce SPE (the Snart Programming
Environment) an ISDE for Snart, an object-oriented extension to Prolog. SPE is implemented using the
MViews framework, and will serve as an example environment throu ghout our discussion of MViews.
A more detailed description of SPE may be found in [18). Other MViews-based environments will be
described in later sections.

Fig. 1. shows a screen dump from SPE during the development of a drawing editor program. Several
windows are shown, each corresponding to different views of the program. One graphical view shows
an analysis-level diagram representing important generalisation and aggregation structures. The second
shows a design-level diagram describing method calling protocols when rendering figures in a drawin g
window. One textual view shows a detailed class interface for the drawing_window class, another
shows a method implementation, and the third shows detailed documentation about the window class.

Edit Views Tools

Compile

Layaut

minduwrnnl class window-Class Definition

/*updates_start(68).
‘ B wind ow Updates_end. 4/
L I~
T &y 4 + Window class.
+
Jos % drawving wind +/
E - class(window,
@ parents([]),
figures button| oetriputes(|
ﬁ nt---‘-—-» fbut| lpa_window(atom),
igur buttons(list(button)),
current_button(button)]),
pethods( [
" : drawin| create,
Iclose-:l EJ.gura open_figure é add_pie,
£ i figure::hide-Method
figure-Drawi| /*vpdates_start(11).
Juee vpdates_end. */
X
Tﬂ oy ¥ Hide a figure by removing its representation in an LPA window,
- X
figure: :hide(Fig) :—
1.,_. % Fig@window(Window) ,
Windowidel_pic(Fig),
@ Fig@visible:=talse. EM== \yindow-Documentation e
= draw 5 tc /*updates_start(4).
¥ -»add_pic P t—FEorTgUrT indd vpdstes_end. */

b /* Class window documentation:
drawing i The window class abstracts out

information about windows. Windows

drawving_window

add_figure display information as either text or
remove_figure graphics and can be shown or hidden.
figures

*/

Fig. 1. An example of SPE views during the development of a simple drawing program.

There is no restriction on the number and types of views able to be constructed and displayed, and the
contents and layout of each view are under user control. Graphical views include a palette, used for
selecting tools for interactive manipulation of the view contents (which use an icon and connector
representation). Textual views are free-edited. Inter-view navigation is either via menus or via an
automatically constructed point and click type hyper-link system, which allows access from any view
component to any other view also containing that component. As there is over-lapping information in
each kind of view, SPE must keep these different views consistent under change. To achieve this it
ensures:

* changes are propagated to all affected views (so no inconsistent information is manipulated)
3



* where appropriate, views are updated automatically (so programmers need not be concerned with
doing this themselves)

* changes made to one view that can't be automatically applied to other affected views (eg
propagation of an analysis view change to a code view) are indicated in some way (so
programmers are aware of inconsistencies and know to update a view themselves)

4. The MViews Model for ISDEs

The MViews framework provides support for the following abstractions: flexible representation of
software structure and static language semantics; definition of different views and view representations,
both textual and graphical; view and com ponent consistency management; simple specification of editor
functionality and user interfaces; persistency; multi-user development; and tool integration mechanisms.
This is by no means an exhaustive collection of abstractions useful for ISDE construction; built-in
support for version control would be useful, for example. However, it provides most of the necessary
elements in a highly reusable framework.

4.1. Software System Representation

An environment framework must be capable of constructing environments for a diverse range of
languages and system representations. Thus software system structure needs to be represented in a
manner which is flexible. The representation also needs to be close to an environment’s needs (i.e. a
“natural” representation for the application domain) [26, 3]. This latter requirement may, of course,
conflict with the former. A complementary mechanism for describing language-specific semantics is
also required [34, 5]. MViews adopts a graph-based approach for representing both the abstract syntax
of software structures and static semantic values associated with these structures. This is appropriate for
most of the program structures an ISDE should model, includin g graph-based visual languages which
plain abstract syntax trees cannot model [5]. Another advantage over ordinary abstract syntax structures
is flexibility of construction: graph components may be built up independently and then combined via
appropriate links.

MViews represents environment data as a collection of (possibly disjoint) directed graphs. Software
components are represented as components (nodes) and are connected by relationships (labelled edges).
Each component has attributes (name/value pairs) associated with it (symbolically represented by the
quoted text items in Fig. 2.). Some relationships are simple in that they just link related components
while others contain information about the relationship as attributes. For example, the type-of
relationship in Fig. 2 has an associated attribute specifying the feature figures is of type list Jigure rather
than just figure. Relationships also behave as components i.e. they can be connected by other
relationships, and thus we collectively refer to all graph components (nodes and edges) as components.
Fig. 2. shows an example of an MViews graph for part of a drawing editor program modelled in SPE.
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generalises-to

class
name="figure"

classifies-to
*shape"

class
names=
.drawing_window"

class
name=
"closed_figure"
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feature
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Fig. 2. Part of the program graph for an object-oriented design of a drawing program.
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In addition to the structure of a software system, values representing some of the computed semantic
meanings of these structures can be associated with components. These values are represented using the
same graph-based form (for example, the computed interface of a class in fig. 2), and equate to the
attributes of decorated abstract syntax trees used in attribute grammar systems [19, 34].

4.2. Views and View Representation

Views model a subset of the total software system state and provide a textual or graphical rendering of
this “partial system”. Views can also be thought of as editing interfaces to the underlying software
system. Structures need to be modified to develop a software system and in the programmer's mind,
modification of a view is equivalent to changing the part of a system displayed in the view [26, 36].
View editing operations are thus translated into appropriate software system modifications. Vlissides
[90] argues that the structure of views should be similar to the structure of base software data, to allow
view data to be manipulated in a similar manner to the base data it mirrors. There may, however, be
some scope for structuring views differently for efficiency or because a different structure is a more
appropriate model for the view [10].

MViews uses a three-layer architecture to achieve these goals. Fig. 3 shows an example of this three
layer view architecture as used in the implementation of SPE. A single base layer provides a shared
representation of the software system as a graph. View layers are graphs representing the information
needed for each view, i.e. base layer elements and relationships have corresponding view layer
elements and relationships. In Fig. 3, three such view layers are shown. There, base layer "class"
components are represented by view layer "class icon" components. Display layers act as both renderers
and interactive editors of the view layer components with which they are associated.

componeni-Class Delinition

Display/
External
Layers

display
relationghip f

View
Layers

Base
Layer

Fig. 3. Typical program and view relationships in the MViews implementation of SPE.

View layer components (view components) are usually connected to base layer components (base
components) via inter-view relationships (view relationships in Fig. 3). These allow view components
to access base component data, and permit changes to be propagated bi-directionally between a base
component and its view components. View components, however, need not always be connected
(mapped) to a base component. This allows partial, but controlled, inconsistency at the view level. It
also provides a mechanism for temporarily retaining view components when their base components
have been deleted. This mechanism could be used, for example, to remap a disconnected view
component to another base component.



Base components typically have more than one view component in one or more views. Each view
component represents a subset of its corresponding base view component's attributes and relationships.
View components typically model one base component although they may be mapped to, and hence
model, more than one base component. This allows composite components to be represented in views.
For example a “feature icon” for SPE might have a class and feature name and be mapped to the base
class and base feature at the same time (so it can respond to changes in both base components). View
components may also be chained together to abstract away from specific kinds of base components,
forming a flexible view component abstraction mechanism.

Each view layer can be rendered (displayed) either graphically or textually using an appropriate display
layer. A display layer renders a view component in a textual or graphical form, and connects this
rendering to the view component via a display relationshi p. The display layer supplies both a rendering
and an editing mechanism so view components can be both visualised and modified by programmers,
MViews supports a variety of view editing approaches including free form editing of textual views and
direct manipulation for graphical views. Programmers generally find these approaches to be more
natural to use than comparable structure-editing approaches [3, 38, 39], as used by most other
integrated environments [25, 29].

Editing changes are applied to view components, and are thence propagated to base components.
Display layer renderings are regenerated (possibl y incrementally) when their view component changes.
Two display layers are shown in Fig. 3, one textual and one graphical. In the graphical view, the view
components are rendered as class icons and generalisation and clien t-supplier glue (icon connectors).

4.3. Tool Integration and Extensibility

Environments are typically made up of several tools used for different purposes, for example editing,
compiling, debugging and version control. Environment integration should be at both the user interface
level (providing a consistent user interface across all tools) and the tool data level (providing uniform
data storage or translation mechanisms) [26, 32]. This is really an extension of the multiple view
support requirements described earlier, but where "tool views" need to be supported. An environment
should also be extensible, allowing new tools to be developed or existing tools from other systems to be
integrated in a consistent manner [26, 32].

Views can also be used for tool extensibility and integration. The view layer provides a tool-specific
interface to the canonical program structure stored in the base view. Display layers and dialogues
provide a data mapping facility for exporting and importing external tool data, using parsing and
unparsing, and tool user interface integration, as shown by the “external view” of Fig. 3., in a similar
manner to FIELD environments [33].

4.4. Program and View Modification

A more formal description of the state of an MViews environment, i.e. its graph, G, is the 4-tuple:
G ¥ <CRAV>

where:

* C s the set of components that comprise the graph, C ¥ Component—ComponentKind, where
Component is unique for G and ComponentKind denotes the kind of program component (which
also gives component-specific macro operations, i.e. ComponentKind—0p—Args—G—G,
where Op ¥ String, Args Y seq Value);

* R is a connection relation over the components of the graph, R ¥RelComp—Parent—Child,
where RelComp ™ C, Parent™ C, Child¥ C:

* A gives the attributes of each component, A "éfComponent—}AttributeName—}Value, where
AttributeName @ String and Value Boolean|Integer|String|List(Value):

* Vis the set of views, V¥ C—Elements, where Elements {C).

This graph defines the state of an MViews environment. Manipulation and modification of this state is
via graph operations. MViews components support a number of fundamental graph operations, shown
in Table 1. These fundamental operations (and their meanings) are used in the following section on
consistency management in MViews environments. Macro operations, built up from a sequence
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fundamental (and other macro) operations, can also be defined for, and associated with, each kind of

component.
Operation New Graph Description
AddComp(Kind,Comp) C' « C v {Comp—Kind) Add a new component to the graph

EstRel(Kind,Paren t,Child,Rel)

CreateView(Kind, View)

DeleteComp(Comp)

DissolveRel(Rel)

DeleteView(View)

AddToView(View,Comp)

RemoveFromView(View,Comp)
UpdateAttr(Comp, Attribute, Value)
GetAttr(Comp, Attribute, Value)

ApplyOp(Comp,Op,Args)

Table 1.

MViews environments use the dis
modify, indirectly, base graphs.
graphical view components. These modifications are
generic editing tools supplied by MViews or by
components. View components are then upd
component updates and apply appropriate ope

MViews supports free-edited textual views made u
these view components renders a view componen
Jorm, which can be free-edited and parsed to updat
some significant program entity. For example in
implementations, and arbitrary documentation are pr

R’ & R v {Rel—Parent—Child} ;
AddComp(Kind,Rel)

V'« Vu (View—=@} ;
AddComp(Kind,View)

C' « C y! Comp;
A’ « Ay Comp;
V((Rel-sComp—sChild € R V

Rel—Child—»Comp € R)»
DissolveRel(Rel)) ;

VViewe V A Compe V(View)s
RemoveFromView(View,Comp)

R’ < R yRel;
DeleteComp(Rel)

VCompe V(View)e
DeleteComp(P,Comp)) ;

V' =V wy View ;

DeleteComp(View)

V’ & V @2 V5(V(View) U {Comp))

V'« V® V(V(View) — {Comp})

A’ « A ® Comp—(Attribute— Value)

Value ¢ A(Comp,Attribute)

(C(Comp))(Op))(Args)

Establish a relationship between Parent
and Child components

Create a new view

Delete a component from the graph. Must
remove component kind, attributes,
dissolve relationships to other
components, and remove from view.

Dissolve a relationship

Delete a view (and its components)

Add a component to a view

Remove a component from a view
Update a component attribute
Get the value of a component attribute

Apply a macro operation to a component
i.e. use function associated with Op for
component kind

Fundamental MViews program graph operations.

play layer of views as editing tools to modify view graphs and thus to
Graphical view editors utilise a direct manipulation interface to modify
translated into view component operations by
application-specific operations associated with the view
ated and their view relationships interpret these view
rations to the base components.

p of one or more textual view components. Each of
t as a sequence of textual characters, called a text
e base component data. A text form corresponds to
SPE, text forms for class interfaces, method
ovided. The corresponding view components are

IFunction domain difference, i.e. the result of F y A is the function F with A removed from its domain.

20\.rf,-1'-riding union, i.e. the result of F ® A — B is the function F with the map

with A — B.
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therefore fairly "coarse grain" representations of their program components, with the internal structure
of the text forms not being stored directly in the MViews graph structure (although text forms may
contain over-lapping information with other components, such as class and feature names and types).
This coarse-grained approach is time and space efficient and also allows MViews environments to use
conventional text editors rather than structure-editors.

To edit textual views a conventional text editor is used, with an unparser and parser defined. Unparsers
convert a base program representation into a textual form and parsers convert an edited piece of text into
changes to this program representation. Parsers generate a “parse graph” (effectively a “transient” view
graph) which is given to each view component. A view com ponent compares its parse graph data to the
base graph and computes and applies required chan ges to the base graph, reflecting changes made to the
textual view. This approach permits free form editing of textual views to be supported. Individual text
components can also be structure-edited using menu commands. Text and graphic editors can be tailor-
made for an application or specialised from generic MViews tools.

5. Consistency Management in MViews

When a software component is modified all affected views should be updated to reflect the change [26,
30]. This change should also cause language-specific semantics to be rechecked to ensure programmers
are informed of errors [5,34]. The change propagation process should be both efficient and as automatic
as possible, so programmers need not be concerned with inter-com ponent dependencies [19].

Change propagation is not trivial and a variety of approaches to handling propagated changes is
required. Some propagated changes may be applied directly to a view’s structure to affect a change. For
other changes, it may not be possible to automatically translate them into appropriate view
modifications, as there may be an incomplete mapping of concepts between the two views. For
example, in SPE, if a change is made to an analysis level view, it may not be at all clear how the
modified requirements should be implemented in design or implementation views, and creative input
from the programmer is required. In these cases, a visual indication of the change may be appropriate to
inform programmers that additional changes need to be made. Lazy application of changes may also be
appropriate when a view is hidden [10], and for attribute recalculation for semantic checking where
affected values need not be recalculated until required [19].

MViews uses graph relationships not only for structural information but also to describe inter-
component dependency for change propagation. Whenever an operation is applied to a graph, the
operation generates a description of the change it has made, called an update record. This update record
is propagated via the graph relationships to components which need to modify their state in response to
the original graph update. Components receiving update records are free to interpret them in ways
appropriate to the modification. In the rest of this section we formalise the notion of component
dependency, update records, and the update record propagation mechanism. In following sections we
examine how this mechanism can be used to support a wide variety of view consistency schemes.

5.1. Dependents

An MViews graph is a dependency graph, where every component has zero or more related, or

dependent, components that may be affected by changes to itself. For example, an SPE base class is

dependent on its generalisation class, which it inherits features from, and the features it defines, as these

determine if the class’s interface has been modified. More precisely, the dependents of a component are

the other components immediately connected to it via relationships (including the relationship

components themselves). For a component, a, the dependents of the component is given by:
Dependents(a)& {rir»a—ceR} U (rir>p—aeR) U {plr—p—sac R} U {clr—a—ceR}

This mechanism can represent various kinds of software development environment dependencies. For
example, a base component has the view components it is linked to as dependents (and vice versa).
Components may also be dependent on various aggregate components (and thus have part-of
dependency relationships to these components) and may have attribute values dependent on or
constrained by other component attribute values (and thus have attribute dependency relationships to
these components).



5.2. Update Records and Their Propagation

Update records are generated when graph operations are applied. An update record is, conceptually, a
sequence of values of the form <component, Updatekind, val ues>, where:

* Component—Kinde C

* UpdateKind '15[AddCompIEstRel!CreateViewlDeleteCompIDissolveRellDeleteViewl
AddToView|RemoveFromView|UpdateAttr|String

* Values™ seq Value

For example an UpdateAttr(Comp,Attribute, New Value) operation applied to a base component Comp
generates the update record <Comp, UpdateAttr, <Attribute, OldValue, NewValue>>, where OldValue
is the previous value of Attribute for Comp.

Each update record generated by an operation on a component is propagated to that component’s
dependents. Dependents interpret updates and modify themselves (depending on the language structure
and semantics for the program under construction). They may, in turn, generate further update records
which are propagated. This process is achieved by including appropriate update handlers (similar to
event handlers) in components. If an update record is received by a component which matches an
available update handler, that handler will be executed. Fig. 4. shows an example of how an operation
on a component, A, generates an update record which is propagated to dependents of A: B, C and the
relationships A—B and C—A. These dependents determine whether their state should be modified, with B
subsequently generating and propagating update records of its own.

—

Operation applied to component A.

2. Update record generated and propagated to A’s dependents, B and C and the relationships
A—B and C—A.

3. Cand the relationships do not change their state.

4. B responds to the update record by applying an operation to update its own state, to be
consistent with that of A’s,

5. B propagates the update record its operation produced to A, D and E (and the

relationships B— A, B—D and B—E) (repeating steps 4, 5 transitively until no more

components modify their state).

Fig. 4. An example of update record generation and propagation.

A program’s graph, P, is thus manipulated by successively applying a sequence of operations
<0j,...,Op> 10 Pjto form P4 ;. Any operation, O;, applied to a component, Cj, produces a new state,
P;’, and propagates an update record, U,, to the dependents of C;. Further operations may be generated
by dependent component interpretation of these update records to produce the next state, P;, ;. The
display layer of any views, {Vj,...,Vin}, containing Cj (or one of its dependents, if updated by U,)
will be re-rendered to reflect the changed program state.

Note, in particular, that the definition of dependents includes inter-view relationships, and hence base
components are dependent on their view components (and vice versa). Thus update record propagation
proceeds both horizontally, between related components, and vertically, between base and view
components.

This dependency graph and update record representation is sufficient to model complex software system
component structures and to maintain various semantic constraints between these components.
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Components generally define their response to update records in an operational manner using update
handlers. As relationships are sent update records in addition to dependent elements, however,
relationships can factor out this operational interpretation of update records. MViews component kind
specifications can be sub-classed, in a similar manner to object-oriented programming languages, which
allows both operations and update responses to be modified for new component kinds.

For example, this mechanism supports the definition of a generic view relationship which always
translates updates to attributes on a base component to updates on attributes of view components with
the same name (and vice-versa). This behaviour can be modified by defining new view relationships,
specialised from the generic view relationship, which support, for example, automatic “expansion” of
view components for newly added base components into views. Thus MViews provides the speed and
flexibility of an operational approach to the inter-component consistency problem, yet allows high-level
relationship-specific constraints to be simply and easily specified.

The description of the MViews consistency model has so far emphasised the underlying graph
manipulations involved. In the following two sections we examine the practical application of this
model to providing graphical and textual view consistency. A third section examines other applications
of update records.

6. Graphical View Consistency

MViews environments use three techniques for keeping graphical view components consistent when
their base program components are modified (usually as a result of other view components being
updated). The first method is direct update. As graphical view components are rendered directly from
their view component structures, they can often be updated directl y when the view component receives
an update record from its base component.

The second method is expansion and/or disconnection. When a base com ponent is added new graphical
view components may be expanded into the view. Similarly, when a base component is deleted,
existing view components can be disconnected from the deleted base component and re-rendered to
reflect this change.

The third technique supports updates which can not be directly applied to a graphical view. This is
where a “fuzzy” relationship exists between information modified in one view and other representations
of the modified component in other views.

6.1. Direct Update of Structure

update_attribute(
Class,class_name,
g OldName,NewName)

propagate
to subsets

apply operation
o, 10 base

update_attribute(
& Classlcon,class_name,
NewNarme, OldMame)

update
display

Fig. 5. Direct update of view and graphical view components.

When a view component with a graphical rendering needs to be updated in response to a change to its

base component, the view component can usually be updated and re-rendered to reflect the change. For

example, if an SPE base class is renamed (i.e. an operation of the form Updateattr (ClassComp,

class_name, NewName) is applied to it) view components of this class can have their class_name
10



attribute modified. The renaming of the class could have originated in a graphical view using direct
manipulation or dialogue box, or in a textual view by editing the name and re-parsing the view’s text.
For example, in Fig. 5. a class is renamed in a textual view resulting in its base class being updated
(after parsing). The base class propagates an update record, resulting in its view components being
appropriately modified, with view components rendered as class icons redisplaying themselves.

6.2. Expansion and Disconnection

MViews supports three approaches to handling the addition of a new base component where a view is
dependent on that addition. The view may:

* Automatically expand the addition (with appropriate layout information and connectivity to existing
view components). This is driven by creating new view components in response to AddComp Or
EstRel update records, and these new components are linked to existing view and base
components as appropriate.

* Indicate to the programmer that there is new information that they may want expanded. When a
new base component is added, relationships to existing base components are usually established
via a mapping function defined by the view component’s kind. Views of these base components
can be re-rendered to indicate that new information has been added. The programmer can expand
the new component and its relationships at any stage.

* Take no action at all, i.e. the view ignores the update records generated by addition of the new
component or relationship.

Similarly, when a base component is deleted, a view may:

* Delete any graphical view components for the deleted base component (with corresponding
deletion of connected view components, if appropriate). In this case view components of the base
component delete themselves in response to the update record generated. This may also cause
appropriate deletion of relationships and dependent components, as necessary.

* Indicate that a view component’s base component has been deleted (but not actually delete the view
component). Here, a view component simply dissolves its relationship with the deleted base
component and re-renders itself to indicate it is no longer connected to a base component. This
allows programmers to see view components whose base components have been deleted and
update the view appropriately (change or delete glue connections, add new view components to
take the deleted component’s place, and so on). This contrasts with systems which try to
automatically update a view's appearance and composition, often resulting in an undesirable or
incorrect layout.

* Take no action.

Different environments may utilise one or more of these approaches to handling additions and deletions
in different types of views.

6.3. Storage of Update Records

A third technique for maintaining graphical view consistency is to store update records against base or
view components. A built-in component operation, StoreUpdate(Comp, UpdateRecord), is available to
implement this. One application of this approach is to support changes propagated over "fuzzy"
relationships where automatic modification is not possible, such as the propagation of an analysis level
change to a design or implementation level view. In this case, the graphical view visually indicates a
change has occured (for example, by re-rendering “updated” components in a different colour).
Programmers can then interactively view details of the recorded update record, presented as a list of
descriptions of each update in a dialogue, and modify the view appropriately themselves. Using this
approach the programmer is informed of changes to base components by the re-rendering of view
components and determines and implements appropriate view modifications.

7. Textual View Consistency
Many of the mechanisms described for use in graphical views can also be applied to textual views. As

textual view component renderings are text forms, however, the way in which textual views are
manipulated and kept consistent differs somewhat from graphical views.
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After updating a textual view via free-editing, the view is parsed and appropriate changes made to
update base component information. Conversely, when base components are updated, textual view
component states can be updated in the same way as graphical view components, as their structure is
known and can be manipulated using graph operations. The text forms associated with these view
components can not be updated in this manner, however, as their graph structure is not stored directly
by MViews in a graph form.

MViews uses an incremental parsing and character substitution technique to update text form contents
from an update record. MViews textual views do not store a complete parse tree or token array for text
forms but store only the text itself. This requires the environment to incrementally parse a text form and
locate the lexical tokens (as their character sequences) which need to be updated, in order to update the
view. The advantage of this approach is its space efficiency, and in practice, as the parsing and
substitution is performed on small amounts of text (typically < 3K of textual characters), this algorithm
is very fast.

This technique has proven very flexible and applicable to a wide range of textual representations.
Addition and deletion of information can also be performed in this manner by inserting or deleting
character sequences as appropriate. Context-sensitive substitution is possible by locating preceding or
following characters. For example, when inserting a new argument to a method, a comma must be
added if the new argument is followed by an existing argument. Substitution may be performed multiple
times and for different character sequences for the same update record. This is useful when information
occurs more than once in a text form (for example, when renaming and/or retyping variables). When a
textual view is initially created, MViews environments unparse existing data defined in other views to
form the initial contents of the textual view. This initial text may be free-edited or incrementally updated
via character substitution, as appropriate.

Many changes propagated to a textual view may not be able to be directly applied to the view using
incremental parsing and character substitution. Such updates require the programmer to make the
necessary view modifications. When a textual view is selected, any new update records stored against
the base components of view components are expanded into a human-readable form. This text is
included as part of the view.

E[J= drawing_window-Class Definition ===0s|
/*updates_start(94). o
update(36). ¥ add client/server design call clicked :
=> figure : pt_in_ fiqure

update(44). ¥ +++ Compilation Error: Duplicate featur
names for colicked

updates_end. */

Fid
+ Drawing Window class.
*

*/

class(drawing window,

parents( [
window( [rename(clicked ,window_clicked)])

1),

features([
buttons:list(drawing_button),
current_button:drawing button,
gfigures: list(figure),
clicked,
shift_clicked,
add_figure,
remove_figure,
duplicate,
find_rectangles,
create_figure,
figure_rectangle,
figure_oval,
oval_to_rectangle,
rectangle_to_oval,
change_figure,
clicked

m.

Fig. 6. Updates expanded into a textual view.

Fig. 6 shows a class interface textual view from SPE with two update records expanded in a readable
form. The first indicates that addition of a client-supplier relationship, indicating that method clicked
calls method pt_in_figure of class figure, has been made in another (graphical) view. SPE cannot
automatically change the textual view appropriately because such the connection is implemented in the
view as a feature call and the arguments and position of the call cannot be automatically determined. The

12



update record is expanded, but the programmer is expected to make an appropriate change to the code
and remove the update record.

Update records may also be used for processing of errors, as shown by the second update record of
Fig. 6. In SPE any semantic errors found when classes are compiled are expanded into textual views
using update records (syntax errors are flagged interactively). In the example shown, two features of
the same name have been defined in a class. The programmer may also ask SPE to expand all update
records into textual views, including those that can be automatically applied to the view’s text (such as
class and feature renames, feature addition and deletion, changing feature types, etc.). This allows
programmers to view all the updates affecting the view before any are applied.

8. Other Applications of Update Records

In addition to view consistency, MViews environments can make use of update records to implement
many of the other ISDE facilities described earlier. The following list briefly indicates some of these
uses to illustrate the power of the approach:

* Generic Undo/Redo: MViews supports a generic undo/redo mechanism by storing update
records generated by modified view components as an operation history list. Operation undo is
supported by sending stored update records back to their generating components, in reverse order,
for reversal. Redo is accomplished by sending stored updates to their generating components, in
order, for re-application. A transaction roll-back mechanism is also supported, allowing sequences
of operations associated with an aborted editing transaction to be reversed by undoing their effect.

* Inter-component constraints: Update records can be used to constrain graphical view
component editing. Graphical view components can check update records propagated from related
components and reconfigure their position and/or size, or abort the editing operation if the
modification is invalid.

* Incremental attribute recalculation: Attribute recalculation in other ISDE frameworks is
typically driven by state variable dependencies [19, 34]. MViews environments support
incremental attribute recalculation driven by update records and attribute dependency relationships.
For example, if a new feature is added to a class, the class interface usually must be fully
recalculated. SPE can, however, incrementally add the new feature name and type to the class
interface attribute list, rather than having to recompute this list from scratch.

* Update Composition: Composition of low-level update records into a higher-level update
record can reduce the number of update records stored and shown to a programmer. For example,
if graphical view components are often dragged to new locations, it is useful to compose update
records of the form Updateattr (Comp, depth, 01dD, NewD) and UpdateAttr (Comp, width,
OldW, NewW) into ChangeSize(Comp, 01dD, 01dW, NewD, NewwW). This new update record
then be expanded, stored and automatically applied as one update record. Dependent components
may respond to this composed update record or either one of the Updateat tr records (as all three
are propagated to dependents).

* Traceability support: An analysis component can be related to a more refined form of itself in a
design and/or implementation. Updates applied to the analysis component can then be propagated
to the design/implementation where they may be stored and unparsed to indicate an analysis
change (and possibly a reason for the change). Similarly, this process may be used in reverse to
propagate design/implementation changes back to analysis views and components. We are
currently extending SPE to support this update record-based consistency management for
traceability.

* Modification Histories and Version Control: SPE uses recorded update records to create a
modification history for components. User defined update records may also be added to document
changes that are or have been made. Grouping these stored update records supports version
control, as groups of updates can be undone and redone to produce different component versions.
We are currently experimenting with version control facilities in MViews environments based on
update records and non-sequential undo/redo of these records (to support version merging and
partial version reversal).

* Co-operative Software Development: Support for multi-user software development allows
larger software systems to be constructed but requires support for concurrent view updating [25,
28]. Update records can assist in implementing this. Update records could be broadcast between
distributed copies of a software system. Programmers could then work with information being
manipulated by other programmers and be informed of the changes to this information by the
update records they receive. This would support a degree of collaborative programming ‘with
programmers conversing via automatically generated update records. Combined with the version
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control facilities, programmers could keep their views of the shared software system consistent
with modifications made by other programmers incrementally or in groups.

9. Constructing ISDEs Using the MViews Model
9.1. Design

A textual notation, called MVSL, has been developed for expressing base and view component
structure, operations and update record responses during preliminary design of MViews-based
environments. This model has been formally defined using operational semantics and implemented in
Haskell to ensure MViews structures and operations have a precise meaning. A complementary visual
notation, called MVisual, is used to define the appearance and behaviour of a view’s display layer and
user interface. MVSL and MVisual specifications for an environment conceptually communicate via
event flows represented as update records. For more detail on these notations, consult [17].

More detailed design is done using an object-oriented architecture based on the MViews abstractions.
Fig. 7. shows the hierarchy of classes defined by this architecture. Components are modelled as classes
(for example, a base layer is base_layer and a graphic icon is graphic_icon). Component attributes
are represented by objects associated with a component and relationships are defined as attributes which
refer to relationship component objects.

Frext_view

icomponentil @\
 orr—— S \:

iewable_base_com text_base_compd

Fig. 7. An object-oriented hierarchy of MViews components (generated from an SPE view).

Environment-specific components are defined by specialising classes appropriately. For example, a
class_icon for SPE can be defined by specialising graphic_icon from the MViews framework and
defining appropriate extra attributes (for example, class_name and feature_names) and methods (for
example, update_attribute for class_name and add_feature_name for feature_names).

Each kind of MViews component class defines the operations it supports as methods and the
component-specific data as attributes. The component class abstracts out all common component
behaviour such as attribute updating and storage, update record generation and propagation and
participation in relationships. Layer components extend component data and operations for different
kinds of layer components (base, view and display). Relationship components link other components
and may define attributes and operations of their own. Views group graph components and provide
additional operations for manipulating these graphs. The view/display layer relationship is modelled by
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inheritance (i.e. a display_comp inherits all the information of a view_comp and hence one view
component object incorporates both view and display layer data and behaviour).

9.2. Implementation

MViews has been implemented as a reusable framework of Snart? classes. Each kind of component is
implemented using a Snart class with component attributes described as Snart object attributes and
operations implemented as methods. Update records are represented by Prolog terms. Methods used to
process these update record terms are written in a declarative style by specifying update record patterns
(predicate head) to respond to and the actions to take for each kind of update record (body).

Graphical view components are updated by modifying their view component state in response to an
update record. The component is redrawn to reflect the change, with MViews supporting abstractions
for updating graphical view components incrementally for efficiency. The framework also provides
building-blocks for constructing graphical editors, and for describing graphical view component
behaviour and common graphical view metaphors:

* icon/connector and icon/sub-icon approaches;

* manipulation mechanisms, such as click and drag and tool palettes;

* hypertext-like click-points on icons; commonly used graphical component constraints;

* and lazy update record processing and update record composition.

The incremental parsing and token substitution algorithm for updating textual views is implemented in
Prolog. Regular expressions are used to specify the character sequences (i.e. lexical tokens) to locate.
These are returned as their character value with their offsets (start position, length) in the view text.
Textual view components define how update records are applied to their textual representation using
methods written in a declarative style, similar to update record response methods. MViews uses a
standard text window editor for displaying and editing textual views. This editor is augmented with
menus to assist view navigation and update record management within an environment,

Software systems and their views need to be stored between invocations of an environment. The
MViews framework provides software system persistency support that is efficient in both time and
space, requires little or no application-specific programming to support, and is flexible enough to suit
the requirements of different environments. MViews supports component persistency via class methods
or transparently via persistent Snart objects. We have found the second approach to be much more
natural, easy-to-use and manageable and are currently improving the performance of Snart persistency
to support distributed object stores. This will permit us to implement a multi-user form of MViews

supporting collaborative software development.

An object-oriented Prolog proved to be a good choice of prototyping language for MViews. Update
record processing using a declarative style of update record pattern->response forms a natural
approach to specifying component responses to update records, how update records are unparsed, and
how to apply update records to update textual views and view components. Representing update
records as Prolog terms provides an efficient implementation for generating, propagating and storing
update records.

10. Experience with MViews

MViews has been used to model, design and implement a number of diverse environments and
applications. The first application of MViews was in the development of the Snart Programming
Environment (SPE), used as an example throughout the earlier discussion. Other environments
developed include an Entity-Relationship modeller, a dialogue box designer, and a program
visualisation system. Here we briefly describe these systems to illustrate the reusability of the M Views
framework, with an emphasis on our reuse of MViews dependency graphs and the multiple textual and
graphical views provided by each system.

3Snart is the Object Oriented Prolog that SPE provides a programming environment for,
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10.1. MViewsER

Entity-relationship (ER) modelling [7] is typically used to model database systems by decomposing data
into entities and relationships between entities. ER models are translated into relational database
schemas (RDSs) to provide a data model for information systems. One solution to integrating ER and
RDS specification is to provide graphical ER modelling views and complementary textual RDS views,
with consistency management between the two. Fig. 8. shows an example of MViewsER, which takes
this approach to database model specification.
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Fig. 8. MViewsER graphical ER views and textual RDS views.

MViewsER supports graphical ER diagram views and textual RDS views. The latter contain a table
definition including table field names, field types, and field attributes. RDS views are parsed to update
table information. The graphical ER views provide a high-level specification system with details about
RDS requirements ignored. Textual RDS views can be generated from ER data and extra information
added about field types, defaults, range values and so on,

Consistency management is employed between ER diagrams and RDS tables. ER diagram views are
updated directly by changes to RDS table views. RDS views are updated by unparsing update records
(as shown in Fig. 8.) in a similar manner to SPE. Some update records can be automatically applied to
reflect changes to entities and relationships. Other update records serve as documentation to inform
programmers of ER model changes that may or may not impact on the RDS tables. ER models and RDS
tables are represented as base layer graphs, and views of these structures and rendered and manipulated

using appropriate view abstractions.
10.2. MViewsDP

MViewsDP is a dialogue painter for specifying Macintosh-style dialogue boxes. MViewsDP provides a
graphical view which allows dialogue box components to be interactively added, deleted and modified.
This view shows the form a dialogue box will have when actually used. One or more textual views are
used to specify additional information about the dialogue box. These contain a Prolog predicate defining
the dialogue box’s sub-components and predicates used to set up initial values for fields, check the
validity of entered data, and carry out any processing of entered data for passing back to Prolog
predicates which invoke the dialogue box. Graphical and textual views are kept consistent with update
records and an update history is kept. Graphical view components are redisplayed after receiving
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updates while textual views unparse update records. Fig. 9. shows an example of MViewsDP views
and a resulting dialogue box.
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Fig. 9. An example of MViewsDP views and a corresponding dialogue box.

A difference between MViewsDP and both SPE and MViewsER is that graphical dialogue box sub-
components must be enclosed by their owning dialogue box’s border and are displayed relative to their
owner’s location. Sub-component icons are also shifted and resized when their owner's border is
shifted or resized. These sub-component icons are thus dependent on updates on their enclosing
dialogue, i.e. they implement a container-containment approach, rather than an icon-connector model.
The dialogue components and their views are represented as MViews graphs. Update record
composition reduces the number of update records used and graphical component constraints are
employed to enforce dialogue component containment, scaling and re-location when they or their
enclosing dialogue border is manipulated.

10.3. Cernoll
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Fig. 10. An example of Cernoll multi-object views.

Visual debugging allows executing programs to be debugged by displaying object data, relationships
and control flow [12]. Cernoll, a visual debugging system for SPE, reuses MViews to build graphical
debugging views for Snart programs [13]. Snart provides a dynamic object tracing mechanism where
individual objects and an object’s features can be spied. Cernoll uses this to produce update records
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equating to object method calls and atiribute assignment which are used to drive program visualisations.
Cernoll defines views and view components to describe the state of an executing Snart program. A
multi-object view shows one or more Snart objects and references to other Snart objects. Programmers
can specify which attributes of an object are shown for each object view component. References are
expanded by programmers and object attribute values can be interactively modified by the user. Fig. 10.
shows an example of a Cerno multi-object view.

10.4. Other Systems

Many other uses of MViews have been developed or are under development. Specialisations of SPE
and Cerno are being used for constructing building models [1], and for implementing an environment
for developing EXPRESS programs and corresponding EXPRESS-G diagrams# [2]. A generic
dataflow diagrammer is under development and is being specialised for the following applications: a
high-level DFD diagrammer for analysis and more detailed diagrams for dataflow between features in
SPE; a visual dataflow programming language, similar to Prograph [9], which will give a
complementary way of defining methods to textual Snart code in SPE; and a DFD-based concurrent
programming language. An environment for programming Hyper-Pascal, a visual Pascal-like language
is also being implemented using MViews [24]. MViews also provides a mechanism for implementing
tool based abstraction, as suggested by [14]. Components represent tools, relationships are used to
connect tools and update records describe the exact change to a tool’s data structures.

11. Discussion

Development of SPE, MViewsER, MViewsDP and Cernoll has shown that MViews greatly assists the
development of integrated software development environments. For example, MViewsER and
MViewsDP took less than a person week each to develop from initial specification to final
implementation. Use of MViews for the development of Cernoll has resulted in a much faster
development time, less errors during im plementation and much improved function ality and extensibility
over an earlier prototype which did not use MViews [13]. Similarly, development of SPE has been
greatly enhanced, in terms of development time, extensibility and useful functionality, compared with
an earlier object-oriented programming environment [16].

In the rest of this section we discuss how the key abstractions of MViews make the task of building
integrated environments easier in com parison with existing ISDE frameworks.

11.1. Software System Data Representation

MViews’ graph-based model for representing software system structure and semantics has proved very
flexible for a diverse range of applications. Graph-based visual languages, such as class relationship
diagrams and entity-relationship models, can be naturally defined as graph components and
relationships. Hierarchical language structures, such as class interfaces and dialogue box components,
can be represented equally well using part-of relationships between components. Representation of
language semantic information using the same technique allows this information to be rendered (and
sometimes manipulated) in the same manner as structural components.

MViews’ representation model compares favourably with other approaches. It is more flexible than tree-
based environments, such as the Synthesiser Generator [34], and a more homogeneous model than
extended tree-based representations for graphical language support, such as LOGGIE [5]. MViews
supports a more language-oriented representation model than that of Dora [29], with similar capabilities
to the graph-based representation of GLIDE [22], although MViews graph components can be
specialised to support software system evolution (see later). While not as expressive as SPGs [27],
MViews’ graph representation is much simpler and is reuseable for view component specification.

11.2. Multiple Textual and Graphical Views

MViews supports multiple textual and graphical views of software system data via views and textual
and graphical renderings of these views. As view layer components are graph components they share a

4 EXPRESS and EXPRESS-G are object-oriented specification languages [21].
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common representation and manipulation technique with base layer graphs. This aids in the definition of
view layer components based on base layer structure and semantic information.

Display layers provide a rendering of views and an interactive editor for modifying view components.
The distinction between display and view layers is useful for modelling purposes as it allows view data
to be defined using the graph model and a view rendering/interaction mechanism to be defined for the
information in this view graph. The provision of a set of building blocks for view editors in the
MViews framework makes new environment views easier to build, in a similar way that Unidraw

makes drawing editors easier to build [36].
11.3. Consistency Management

Update records provide several advantages over MVC-style u pdate messages, as used in Smalltalk [15],
and state variable change propagation, as used by Unidraw [36] and active databases [19]. Base and
view component updates can be propagated using update records without the need for intervention from
a controller or editor component. This allows a more modular approach to the propagation of
component change.

As MViews uses relationships to determine dependency, it does not require a separate dependency
graph network in addition to component data, as do other approaches, such as [40]. MViews uses
structural relationship components to not only link other components but also to form the dependency
graph for a program. This also means update records do not need to store additions and deletions of
dependents like change reports [40], as these are encoded by separate EstRel and DissolveRel
operation update records. Unlike the TtemList structure [10], MViews can represent a much richer set
of structures using graphs. As updates are recorded sequentially, redundant copies of Ttem (attribute)
values are not stored, resulting in a simpler undo/redo mechanism. As update records can be stored and
manipulated independently of their generating components, they support environment facilities in a
more homogeneous way than database transactions and object dependency links, as used in Garden

[31].

As an update record documents the exact change a component has undergone, dependents of the
component can update themselves in an incremental manner. For example, a view component can
determine the exact change to one of its base component’s attributes or a change in a related view
component. This can be used to implement efficient incremental update and redrawing of a view
component from changes to its base component’s state. This mechanism can also provide a flexible
constraint mechanism between components. Lazy update record processing proved very useful for
composing update records into more abstract records and for lazy view consistency and constraint
maintenance in MViewsER and MViewsDP. This lazy update record processing is quite low-level,
however, and only supported by the Snart framework. More powerful methods of specifying update
record composition and lazy processing are required, particularly support for these at the modelling and
architecture levels. Dependent component attribute recalculation could similarly do with more abstract
specification and better framework support.

Textual views are kept consistent by unparsing and automatically applying a sequence of update
records. Parsing a textual view updates appropriate base program information and thus affects other
views. The incremental parsing and token substitution model allows many textual view components to
be automatically updated by MViews environments. This model is more flexible than the FormsVBT
approach [4] as it allows concurrent textual and graphical view updates and supports unrestricted free-
editing of text. Non-uniquely identifiable structures can’t be automatically updated using this model
(such as documentation or method implementation code) but the MViews framework does support
annotation of view text which allows it to be uniquely identified. An improved text editor could be used
to do this annotation more transparently, similar to the FIELD editor [33].

Update records could be used in structure-oriented environments, such as Mjglner [25] or Dora [29], to
achieve view consistency and other environment tasks. Structure-oriented editing commands could
generate update records in the same manner as MViews graph operations (which are, in fact, structure-
oriented). These update records could be propagated, stored and unparsed to achieve the same kind of
view consistency mechanisms as provided by MViews environments, It may also be possible to make
more automatic updates as the structure of all views is always known and manipulable.
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11.4. Tool Integration and Extensibility

MViews uses a canonical base program representation with multiple views of this representation for
different environment tools. A chief advantage of MViews is that its components can be specialised and
extended via inheritance to support software system evolution, thus partially solving a major problem
with integrating multi-view editing environments [26]. For example, SPE is actually specialised from
IspelM, a generic multi-view programming environment for any (class-based) object-oriented language.
IspelM is itself built from a collection of component classes specialised from MViews. SPE extends
IspelM for Snart programming by further specialising the IspelM framework. If SPE structures need to
be modified (for example, to extend the environment tools), then these structures extended by
specialising the current SPE can still use existing environment data.

MViews supports tool data integration via the canonical base program view with different kinds of
views of this representation for different tools. User interface integration is supported via views built
from a common set of window, dialogue and menu building blocks. Views can also be used to integrate
tools not built using MViews by parsing and unparsing external tool data formats and linking these to
base components via view components (where applicable). Update records can also be generated in
response to external tool operations and be used to generate corresponding external tool operations
(where the external tool supports an appropriate interface).

11.5. Persistency and Multi-user Software Development

Initial versions of the MViews framework provided a collection of methods for saving and loading
component state, similar to the mechanism used by Unidraw [36]. This mechanism proved to be less
than ideal. It is clumsy and error prone as it requires significant programming effort and is difficult to
update when an environment’s component structures change. Dora uses PCTE to store program data
[29], GARDEN uses an object-oriented database [31], and [28] uses a distributed Smalltalk, but these
all require some form of database views, which can be very problematic when maintaining an integrated
environment [26, 27]. Snart supports transparent object persistency and we have used this in later
versions of MViews to support component persistency. This has proved to be a much more satisfactory
approach which preserves our canonical data representation scheme while supporting flexible software
system data persistency.

MViews does not currently support multi-user software development. We are extending it to support
flexible version control based on update records and are extending Snart to support distributed
persistent object stores. We also plan to broadcast update records between environments to support
collaborative software development, particularly for analysis and design views.

12. Conclusions and Future Research

MViews provides a novel model for ISDEs that support multiple textual and graphical views of
information with consistency management. MViews provides a model based on dependency graphs for
representing program data and views of this program data. Views are rendered graphically or textually
with graphical views interactively edited and textual views free-edited and parsed. The novel update
record mechanism is used for a variety of environment consistency requirements. Examples include
maintaining textual and graphical view consistency in a novel manner, propagating changes between
related components for attribute recalculation and enforcin g constraints, supporting undo and redo of
editing operations, and supporting component change documentation.

MVSL and MVisual support the specification of environments based on the MViews model. The
MViews object-oriented architecture and Snart framework allow these environments to be implemented
much more easily than without MViews’ abstractions and building blocks. Dependency graph
components are implemented as specialisations of framework classes. Methods for processing update
records, generated, represented and propagated efficiently as Prolog terms, are implemented in a
declarative style. MViews has been reused to produce SPE, a novel ISDE for constructing Snart
software; an entity-relationship modeller with textual relational database views; a dialogue painter with
textual constraint specification views; and various program visualisation views for SPE.

We are currently extending MViews to support multi-user, distributed software development. This
includes use of update records for version control, configuration management, and collaborative
software development where update records are broadcast between different environment invocations.
The MViews framework is also being extended to provide better support for attribute grammars to
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support efficient recalculation of static language semantic values, more abstract specification of update
record composition and lazy update record propagation, and support for non-sequential undo/redo for
version control. SPE is being extended to support collaborative, distributed object-oriented software
development using these MViews facilities. We are planning to experiment with partial generation of
MViews environments from MVSL and MVisual and to provide visual specification of view appearance
and functionality.
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