
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 1

Just-In-Time TODO-Missed Commits Detection
Haoye Wang, Zhipeng Gao, Xing Hu, David Lo, John Grundy and Xinyu Wang

Abstract—TODO comments play an important role in helping developers to manage their tasks and communicate with other team
members. TODO comments are often introduced by developers as a type of technical debt, such as a reminder to add/remove features
or a request to optimize the code implementations. These can all be considered as notifications for developers to revisit regarding the
current suboptimal solutions. TODO comments often bring short-term benefits – higher productivity or shorter development cost – and
indicate attention needs to be paid for the long-term software quality. Unfortunately, due to their lack of knowledge or experience and/or
the time constraints, developers sometimes may forget or even not be aware of suboptimal implementations. The loss of the TODO
comments for these suboptimal solutions may hurt the software quality and reliability in the long-term. Therefore it is beneficial to
remind the developers of the suboptimal solutions whenever they change the code. In this work, we refer this problem to the task of
detecting TODO-missed commits, and we propose a novel approach named TDREMINDER (TODO comment Reminder) to address
the task. With the help of TDREMINDER, developers can identify possible missing TODO commits just-in-time when submitting a
commit. Our approach has two phases: offline training and online inference. We first embed code change and commit message into
contextual vector representations using two neural encoders respectively. The association between these representations is learned by
our model automatically.In the online inference phase, TDREMINDER leverages the trained model to compute the likelihood of a commit
being a TODO-missed commit. We evaluate TDREMINDER on datasets crawled from 10k popular Python and Java repositories in
GitHub respectively. Our experimental results show that TDREMINDER outperforms a set of benchmarks by a large margin in
TODO-missed commits detection. Moreover, to better help developers use TDREMINDER in practice, we have incorporated Large
Language Models (LLMs) with our approach to provide explainable recommendations. The user study shows that our tool can
effectively inform developers not only “when” to add TODOs, but also “where” and “what” TODOs should be added, verifying the value
of our tool in practical application.

Index Terms—Technical Debt, TODO Comment, Code-Comment Inconsistency, Suboptimal Implementation

✦

1 INTRODUCTION

Natural language annotations are an important part of
software repositories and are used to communicate between
developers [1], [2]. Terms such as ”FIXME”, ”XXX”, and
”TODO” are frequently employed to indicate instances of
technical debt (TD) or suboptimal implementations that
demand future attention [3], [4], [5]. Within these com-
ments, TODO comments are the most extensively used by
developers to describe pending tasks during the software
development lifecycle. For example, TODO comments can
be used as a reminder to add/delete features, or a request
for other members to look at a problem, or a request to
optimize/clean/refactor the source code. A previous study
by Ying et al. [6] identified the importance and frequency of
TODO comments in software repositories.

Different from some previous work in the field of self-
admitted technical debt (SATD) [7], [8], [9], [10], we ex-
plore the TODO comments from a constructive viewpoint.
We suggest that the presence of TODO comments can be

• Haoye Wang is with Hangzhou City University, China.
E-mail: wanghaoye@hzcu.edu.cn

• Zhipeng Gao is with Shanghai Institute for Advanced Study of Zhejiang
University, China.
E-mail: zhipeng.gao@zju.edu.cn

• Xing Hu and Xinyu Wang are with Zhejiang University, China.
E-mail: {xinghu, wangxinyu}@zju.edu.cn

• David Lo is with Singapore Management University, Singapore.
E-mail: davidlo@smu.edu.sg

• John Grundy is with Monash University, Melbourne, Australia.
E-mail: john.grundy@monash.edu

• Xinyu Wang is the corresponding author.

Example 1: aosp-mirror/platform_frameworks_base (stars: 9.7K)
@@ -374,6 +389,17 @@ public String getUserName() {
+ /**
+ * Gets the username for authentication
+ * @ return the auth.username
+ * …
+ */
+ public String getAuthUserName() {
+ return mAuthUserName;
+ }
+
Commit message: Merge "Merge "Add auth. Username
Example 2: osmandapp/OsmAnd (stars: 2.8k)
@@ -386,6 +386,15 @@ private static void showWiki …
+ if(Algorithms.isEmpty(lng)) {
+ // Second choice to display wiki article …
+ lng = a.getNameSelected("en");
+ }
+ if(Algorithms.isEmpty(lng)) {
+ lng = a.getNameSelected("");
+ }
Commit message: partial implementation of wiki article language preference

TODO: remove when we make it public

TODO: third choice to display wiki article ...

Fig. 1. Examples of TODO comments

beneficial. Such explicit markers by developers enhance the
chances of addressing these suboptimal sections in future
iterations. TODO comments usually contain information
about code changes that can improve software quality,
performance, maintenance, and reliability [11]. In other
words, TODO comments indicate the existence of (tem-
porary) suboptimal solutions to achieve short-term goals,
such as higher productivity, satisfying testing needs, or
meeting release time constraints. As an example, consider
Example 1 in Figure 1. Here, the developer implemented
the getAuthUserName function for short-term benefits.
This code implementation contains a potential risk that the
authentication user name may leak out when it is publicly

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2

accessible. This issue could hurt software quality and cause
software security problems. However, due to the code be-
ing unremarkable or the developers’ lack of familiarity or
development experience, they may be completely unaware
of the current suboptimal code changes, e.g., when taking
over responsibility for the code from another developer. If
the TODO comment in the figure could be promptly added,
then this risk would gain more attention from developers.
Therefore, it is helpful and beneficial to prompt the devel-
opers to insert notes of their suboptimal code (as comments)
before submitting a commit.

In this paper, to address such issues, we propose an
automated solution that can detect whether a submitted
commit is a TODO-missed commit. We define a commit as a
“TODO-missed commit” if its associated change is suboptimal
and there is a need to introduce further TODO actions.
These TODO-missed commits have negative impact to the
quality and reliability of software. Once a TODO-missed
commit is identified, we can provide a just-in-time reminder
to the developer. This can help the developer as well as other
team members to better understand the potential risks of
the code changes and better coordinate their programming
tasks.

Some previous works [6], [1], [12], [13] have studied the
role and influence of TODO comments in software develop-
ment. There are also several approaches [14], [2], [11], [15],
[16] proposed to analyze and maintain TODO comments.
However, to the best of our knowledge, solutions that can
perform automatic TODO-missed commits detection have not
yet been developed. It is difficult to identify TODO-missed
commits due to the following challenges:

Capturing software commit semantics: Identifying
TODO-missed commits first needs to understand the se-
mantics of the code changes. Sometimes it is difficult to
determine whether a commit is a TODO-missed commit by
just reading the changed code fragments. This requires de-
velopers to have enough knowledge of the code context as
well as the existing implementations. An example is shown
in the Example 2 in Figure 1, even though the code change
is presented, one can not easily claim the code change is
suboptimal due to his/her unfamiliarity with the code con-
text. However, the associated commit message (i.e., partial
implementation of wiki article language preference) provides
some additional clues to fill up this gap. Therefore, if the
information contained in both code changes and commit
messages are taken into account, we can better capture the
semantics of the software commits and make more accurate
detections.

Dealing with imbalanced datasets: TODO-missed com-
mits only account for a very small proportion of submitted
commits. This will lead to the problem that the proportion
of positive and negative samples is imbalanced when we
build training data sets. According to our empirical study,
the total ratio of the positive samples (i.e., TODO-missed
commits) is only around 1.5% on average in all commits.
For such imbalanced datasets, the performance of tradi-
tional classification algorithms will decrease dramatically.
The traditional algorithms learn more from biased examples
as opposed to the examples in the minority class. One might
end up with a scenario where the model assumes that most
test data belongs to the majority class. In order to better

identify TODO-missed commits, it is not only necessary to
construct a dataset suitable for classifier learning under
imbalanced conditions, but also to make the algorithm more
focused on hard, misclassified samples and prevent the vast
number of easy negative samples from excessively affecting
the learning process.

We present a novel approach named TDREMINDER
(TODO comment Reminder) to automatically detect
TODO-missed commits. Our approach has two phases: offline
training and online inference. In the offline training phase,
we collect commits from the top-10,000 Python and Java
GitHub repositories, respectively. We select the commits that
introduced TODO comments to the source code as the pos-
itive samples. The remaining commits are used as negative
samples. Resampling is applied to make the training set
more suitable for model training, while the test set can better
reflect the performance in practice. Our approach is trained
as a binary classification model with the dataset consisting
of these two types of samples. With the aim of understand-
ing the implementation of code changes more deeply, we
take the knowledge of commit messages into account. To
further capture the semantics of commits, we adapt the
large-scale pre-trained model, namely CodeBERT [17], to
encode the code changes and commit messages into contex-
tualized vectors. In the training process of our model, Focal
Loss [18] is selected as the loss function to aid better learning
of hard samples and reduce the impact of simple negative
samples. In the online inference phase, given a commit,
our approach encodes code change and commit message
respectively, and feeds them into the trained model. The
model then outputs a score to determine whether the given
commit is likely to be a TODO-missed commit.

In order to verify the performance of our approach,
we conducted extensive experiments and a user study on
Python and Java datasets. Since there are no previous stud-
ies investigating this problem, we constructed three baseline
methods for comparative experiments. Our experimental
results show that our TDREMINDER approach can signifi-
cantly outperform all the baselines. The main contributions
of our work include:

• We developed a novel tool, TDREMINDER, to auto-
matically detect TODO-missed commits just in time. To
the best of our knowledge, this is the first work that
investigates the possibility of detecting TODO-missed
commits in software repositories.

• We created a large-scale benchmark dataset of TODO-
introducing commits, which is extracted from the top-
10k Python and Java GitHub repositories respectively.
As far as we know, it is the first and largest dataset for
this task.

• We carried out extensive experiments using real-
world popular repositories in GitHub, demonstrat-
ing the effectiveness and promising performance of
TDREMINDER.

• We have released our source code of TDREMINDER [19].
The datasets used in our experiments have been made
publicly available for community research.

The rest of this paper is organized as follows. Section 2
presents the motivating examples of our study. Section 3 de-
scribes the details of proposed approach. Section 4 describes

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 3

Example 1: allenai/deep_qa (stars: 409)
@@ -38,4 +38,12 @@ resolvers ++= Seq(H6
 "AllenAI Releases" at "http://utility.allenai.org:8081/nexus
 /content/repositories/releases"
)
+ lazy val testPython = TaskKey[Unit]("testPython")
+
+ testPython := {
+ "py.test" !
+ }

+ (test in Test) <<= (test in Test) dependsOn (testPython)

 instrumentSettings

Commit message: sbt test now tests python too

Example 2: Azure/azure-cli (stars: 2.5k)
@@ -532,20 +532,21 @@ def __init__(self):
 'test_name': 'storage_account_create_and_delete',
 'script': StorageAccountCreateAndDeleteTest()
 },
- {
- 'test_name': 'storage_blob',
- 'script': StorageBlobScenarioTest()
- },
- …
+ # {
+ # 'test_name': 'storage_blob',
+ # 'script': StorageBlobScenarioTest()
+ # },
+ …

Commit message:Comment out tests that fail due to decoding of byte
object bug in Python 3

Fig. 2. Motivating examples

the data preparation for our approach. Section 5 shows the
baseline methods, the evaluation metrics, the evaluation
process and the experimental results. Section 6 shows the
user study and its results. Section 7 is the discussion about
TDREMINDER. Section 8 reviews the related work. Finally,
Section 9 concludes the paper.

2 MOTIVATION

Figure 2 shows two representative examples of TODO
missed commits that we found in popular real-world reposi-
tories. Consider the first example in Figure 2. The submitter
of this commit added a new code snippet about “python
test task” to the repository. Through the associated commit
message, we know that this developer added the Python
test script to the “sbt test”. But what the developer didn’t
realize is that if additional Python tests are added, the script
will exit directly when the Python test fails. In other words,
the original “sbt test” will not run completely because
of the lack of exception handling mechanism due to the
developer’s mistake. We checked the modification history
of this script and found that the developers were aware
of this problem. In the next update, developers added a
simple exception handling mechanism and introduced a
TODO comment: “TODO(matt): it’d be nicer if this would
still execute scala tests if python tests fail...”. At the same
time, they attached a commit message that says “testPython
task now fails on failed tests”. It seems that it was the failure
of “testPython” task made them aware of this issue.

As shown in the above example, the loss of TODO com-
ments may lead to varying degrees of defects. Some scholars
have also found similar phenomena in previous studies on
SATD [20], [5]. If TODO comments are not introduced in
time, developers might only check the source code when
the program throws an exception. Developers may often

spend significant time locating the cause of a bug after
a program crash, which can potentially impact software
maintenance in terms of time and costs [21], [22], [23]. If a
tool can help developers check whether their code changes
are still suboptimal and/or incomplete before submitting
the commit, this kind of situation will be avoided effectively.

The TODO comments can also help developers be aware
of their code that needs to be further inspected to when
making modifications or further implementations. For the
Example 2 shown in Figure 2, the developers commented
out some tests in the code change. If we only rely on the
content of the code change, we are not sure why developers
commented out these tests. The information in the commit
message helps us fill this knowledge gap between source
code and developer understanding. The decoding of byte
object bug in Python3 makes it impossible for them to run
these tests. Therefore, a TODO comment should have been
introduced in the code to remind later developers. Once
the formatter is fixed, developers should restore these tests
immediately.

With the help of TDREMINDER, before developers sub-
mit their commits they will be reminded if a commit appears
to be not complete and there is a need to introduce further
TODO actions. Developers can add or modify comments
or make further code modifications. This may help en-
hance code quality and potentially reduce the likelihood
of encountering the problems exemplified above. With this
proactive reminding about TODO comments, developers
are unlikely to forget key pending tasks. After addressing
the TODO comments, the reliability and maintainability of
the system will also be increased.

3 OUR APPROACH

In this section, we describe details of our proposed ap-
proach, TDREMINDER, to automatically identify the TODO-
missed commits. In order to present our approach more
clearly, we first define the task of TODO-missed commits
detection. The overall framework is illustrated in Figure 3.
The details of its offline training phase and online inference
phase are described in Section 3.2.

3.1 Task Definition
Our goal is to automatically identify a submitted commit
that should have introduced TODO comment(s) but did
not. Once such TODO-missed commits are detected, our
TDREMINDER tool then reminds developers to add corre-
sponding TODO comments to the code. Given a commit,
our approach needs to determine whether the commit is
a TODO-missed commit or not. We formulate this task as a
binary classification problem. For a given commit, we refer
the code changes contained in the diff of the commit and
the corresponding commit message as x and c, respectively.
The label of whether the commit is a TODO-missed commit
or not is recorded as y. We consider the label of a TODO-
missed commit as positive, and the opposite as negative. Our
approach will train a model θ using the training dataset.
The probability Pθ

(
y| ⟨x, c⟩

)
is the conditional likelihood

of predicting the label y with the given ⟨x, c⟩. So the goal of
our proposed model is to find:

ŷ = argmaxY Pθ

(
y| ⟨x, c⟩

)
, (1)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 4

Embedding

Linear Linear Linear

Scaled Dot-product Attention

Concat

Linear

Add & Norm

Feed Forward

Add & Norm

+

CodeBERT 12X

Code change Commit message

!! !"
MLP layer1

MLP layer2

MLP layer3

Final hidden
state vectors

Maxpooling & Concat

"#

#

Probability
distribution

Target

Offline training phase

Online inference phase

Commit

Code change

Commit message

Trained
model "#

Inference
result

Focal loss
CodeBERTCodeBERT

Commit

Fig. 3. The overall framework of our approach.

3.2 Implementation Details
There are several challenges in identifying such TODO-
missed commits. As described in Section 1, the first challenge
is to understand the code changes in the given commits.
Given a commit, by only analyzing the code changes it will
often be difficult for our approach to have a concept about
the purpose of the code modifications. Thus, our approach
introduces the information from the corresponding com-
mit message to bridge the knowledge gap. TDREMINDER
adopts two encoders to embed the code that has changed
and its associated commit message into a vector represen-
tation. By learning from patterns in the training dataset,
TDREMINDER has the potential to capture the connection
between changed code and commit message.

However, another difficulty arises. The syntax of the
code is fixed while the commit message is written in natural
language. It is hard for traditional embedding techniques
like word2vec [24] to embed both code and natural language
as vectors. In order to capture the semantic correlation
better, we employ CodeBERT [17] as the encoder component
of our model. CodeBERT is a Transformer encoder which is
pre-trained with natural-language descriptions and corre-
sponding functions from open-source GitHub repositories.
It is pre-trained for natural language and programming
language. Previous studies [17], [25], [26], [27], [28], [29]
have shown the effectiveness of CodeBERT for capturing
semantics and context information of code and natural lan-
guage. In this way, the code changes and commit message
from the given commit can be transformed into the same
vector space.

3.2.1 Encoders
As mentioned above, TDREMINDER introduces double en-
coders which are based on CodeBERT to enhance the un-

derstanding of commit data. Given a commit as input, we
first extract the code changes x =

{
x1, · · · , x|x|

}
and the

commit message c =
{
c1, · · · , c|c|

}
(shown in the training

phase of Figure 3). These two sequences of tokens are then
used as the input of Code Change Encoder and Commit Mes-
sage Encoder, respectively. The structures of the two encoders
are basically the same. Each encoder contains 12 layers of
transformers. The hidden size of each layer is 768, and each
layer has a self-attention sub-layer which is composed of 12
attention heads. After feeding the sequence of tokens into
encoder, the encoder will calculate the contextualized repre-
sentations R, which includes final hidden states H of each
token and the representation vector of special token [CLS].
In order to better represent the sequence, TDREMINDER
applies the global max pooling [30] to compress the final
hidden state vectors of tokens. The vector representation v
obtained through the above calculation is used as the output
of the encoder.

We take the input of code changes x =
{
x1, · · · , x|x|

}
as an example. The final hidden state vectors of encoder is
Hx =

[
h1, · · · , h|x|

]
. Thus, the contextual vector represen-

tation vx of the code changes computed by the Code Change
Encoder is as follows:

vx = maxpooling(
[
hi

1, · · · , hi
k
]
), i ∈

[
1, |x|

]
, (2)

where k denotes the hidden size of the final layer.
Correspondingly, the Commit Message Encoder embeds

commit messages c =
{
c1, · · · , c|c|

}
into hidden state

vectors Hc. Likewise, the contextual vector representation
vc of the given commit message is calculated following
Equation 2.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 5

3.2.2 Multi Layer Perceptron
We use the information from commit messages to enhance
the comprehension of the code changes made. However
these code changes and their commit message are rela-
tively independent when they are represented as contextual
vectors. Therefore, we need to capture the relationships
between them to boost the performance of our method. In
order to address this, we employ a multi-layer perceptron
(MLP) to integrate the information from code changes and
commit message. The contextual vector representations vx
and vc are first concatenated as a separate vector u. Then
the multi-layer perceptron are applied to further extract
information from the vector u. In this way, our model has
the ability to capture the latent correlation between these
features. In the end, the probability distribution of the final
classification y ∈ {0, 1} is output by the last layer of
MLP. More precisely, the probability distribution of the final
classification Pθ

(
y| ⟨x, c⟩

)
is computed as:

u = [vx; vc] ,

r1 = a1(W1u+ b1),

...,

ri = ai(Wiri−1 + bi),

Pθ

(
y| ⟨x, c⟩

)
= σ(ri),

(3)

where Wi, bi and ai are the weight matrix, bias and ac-
tivation function of the i-th layer, σ is the sigmoid function
which can control the probability of the final output between
0 and 1.

3.2.3 Loss function
In our scenario, the number of positive samples is very
much lower than that of negative samples. Unfortunately,
there are a large amount of easy samples in these negative
samples. The model will easily identify which category
these easy samples belong to. At the same time, the trained
model will then be more inclined to classify the test data
into the category of these easy samples. Therefore, a model
which focuses more on hard samples will be more helpful
for our task.

To address this, we apply Focal Loss [18] to dynamically
adjust the loss of each sample. Focal Loss is a loss function
modified from the standard cross entropy loss function. The
Focal Loss used in our approach is computed as follows:

L(pt) = −αt(1− pt)
γ log(pt), (4)

where t indicates the time steps, α is a weighting factor
which controls the weight of different samples to the loss, γ
is a focusing parameter which controls the degree of atten-
tion to the difficult samples. Compared with cross entropy
loss, using a Focal Loss function can reduce the impact of
easy samples on model training [18], so that our model
will put more focus on hard, misclassified samples during
training. In other words, we utilize Focal Loss to increase
the learning rate of difficult cases, not just to mitigate the
influence from class imbalance.

4 DATA PREPARATION

We first introduce our data collection process from top-10k
Python and Java software repositories (ordered by the num-
ber of stars). Even though our dataset is built from Python

and Java datasets, our approach is language-agnostic and
can be easily adapted for other languages. We then present
our data construction process of dealing with the data
imbalance problem.

4.1 Experimental Dataset Preparation

In order to build a large-scale dataset, we first clone the top
10,000 repositories from GitHub according to the number
of stars. Repositories based on Java language or Python
language were collected to mitigate the threats to external
validity. Our study is not focused on one programming
language, but rather on the development practices from
the perspective of the entire repository. Many code changes
in open-source repositories often involve cross-language
collaboration [31], [32]. Therefore, we did not specifically
collect projects that use one particular language, but instead
selected projects that mainly use Java or Python as our
data source. For each repository, we extract all the commits
from the history. Every commit has a diff which repre-
sents the code change and a commit message describing
the change. In addition to TODO comments, FIXME and
XXX comments also indicate the existence of sub-optimized
code implementations [3]. We need to use repositories with
these types of code comment additions in their version
history. We check all the commits of each repository, and
if “TODO”/“FIXME”/“XXX” appears within any comment
of their diffs, the corresponding repository is retained. Any
repositories that have never introduced these types of anno-
tations in historical submissions are excluded. After filter-
ing, 5,467 Python repositories and 3,089 Java repositories re-
mained. Many open-source projects do not allow developers
to submit code changes which contain TODO/FIXME/XXX
comments [3]. Some developers also do not want to com-
mit their unfinished tasks in the form of these comments
on open-source platforms [1]. These may be the causes
why many of the repositories we collected do not contain
TODO/FIXME/XXX comments.

After obtaining the required Github repositories, all of
the commits from these repositories need cleaning and
preprocessing. First, we extract all the diffs and commit
messages from the commits of these repositories. Similar to
the previous works [33], [16], [34] dealing with commits, we
process diffs and commit messages respectively:

The commits with a diff larger than 1MB are all removed.
Some diffs may introduce several TODO/FIXME/XXX com-
ments. According to a previous study [16], this kind of
commits are also removed because they are often used to
batch update code comments. For the rest commits, diffs are
extracted and converted into lowercase. Then we delete the
diff header by using regular expressions. Commit IDs are
replaced by “⟨commit id⟩” to ensure semantic integrity. Fi-
nally, each diff is tokenized by blank space and punctuation
marks.

We lowercase text in all commit messages. We retain the
first sentences of the commit message since the first sen-
tences are usually summaries of the entire commit message,
as found by other researchers’ prior work [35], [33]. For the
same reason as diff cleaning, GitHub issue IDs and commit
IDs are replaced by “⟨issue id⟩” and “⟨commit id⟩”. Merge
and rollback commits are removed by checking whether the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 6

TABLE 1
Dataset summary statistics

Language TODO (Positive) FIXME XXX Negative Total

Python 78,241 15,565 26,648 5,742,081 5,862,535
Java 72,467 9,239 7,210 4,747,915 4,836,831

commit messages began with “merge” or “rollback”. We
remove these commits for the reason that they obviously
do not need to introduce comments to represent subopti-
mal implementations. Similarly, we tokenize the extracted
commit messages with blank space and punctuation marks.
In order to make our training and testing sets disjoint, we
further remove the duplicated commits in the corpus.

During the data cleaning and filtering process mentioned
above, approximately 31.35% and 34.32% of the commits in
the remaining Python and Java repositories were deleted,
respectively. Finally, we collected 5,862,535 and 4,836,831
cleaned data pairs from Python and Java repositories.
Among them, each Python and Java repository contributes
an average of 1,072 and 1,566 commits, respectively.

4.2 Dataset Construction
In this step, we marked all three types of code annotations
simultaneously. Our goal is to identify the TODO-missed
commits. The meanings and usage scenarios of FIXME/XXX
comments are different from those of TODO comments [36],
[37]. When submitting code changes, developers will choose
different tags based on their different corresponding content
of code change [38]. It is unreasonable to use these three
categories together as positive samples. During the data
processing process, we found that the number of FIXME
and XXX was much lower than that of TODO comments.
Based on the above two reasons, we do not add FIXME
and XXX comments to the positive samples for now. Thus,
the commits which introduce TODO comments are marked
as positive samples. Then, the remaining commits from
the same repository with positive samples are labeled as
negative samples. We only focus on the commits that add
new TODO/FIXME/XXX comments in the source code.
This is reasonable because it is the code change in that
commit that leads to the addition of a TODO/FIXME/XXX
comment. Finally, we completed the labeling of the data
and classified them into four categories. Table 1 shows the
statistical results for each category.

Once the labeling task is completed, we specifically
delete TODO comments in all diffs, otherwise, our model
can judge directly according to the addition and deletion
of TODO comments. When we detect a TODO comment
within a diff, we further check if the subsequent lines are
also comments. If so, these lines will be regarded as a part of
the TODO comment. Finally, the TODO comment is deleted
individually and the rest of the diff is tokenized again. The
purpose of this process is to prevent the introduction of
artificial traces indirectly caused by the deletion of TODO
comments. For commit messages, we did not perform this
cleaning operation. It is clear that our constructed dataset
is extremely imbalanced, the number of the TODO-missed
commits represents only a tiny percentage (i.e., around 1.5%)
of all commits.

The primary data used in this study was drawn from the
categories of “TODO (Positive)” and “Negative” in Table 1.
To help ensure the dataset’s quality, manual validation was
performed to confirm the accuracy of labels applied to
the samples. Given that both the datasets for Python and
Java demonstrated an imbalance, the research implemented
group sampling for each. We randomly selected 100 sam-
ples from both the positive and negative instances in each
dataset, respectively. For each set, the first author metic-
ulously checked whether each sample was assigned the
appropriate label based on the corresponding code changes
and commit messages. This involves identifying positive
samples where the pending task has been resolved but the
TODO comments remain unremoved, and identifying neg-
ative samples that contain either unfinished or suboptimal
implementations.

With respect to the Python dataset, the verification re-
sults indicated that 6% of positive samples were incorrectly
categorized, while a mere 1% of negative samples suffered
from misclassification. In the case of the Java dataset, the
misclassification rates for positive samples and negative
samples were 5% and 2%, respectively. The results affirm
that the overall accuracy of the labels in our provided
dataset is reasonably high.

4.2.1 Intra-project Dataset
After getting the labeled data, we first construct an intra-
project dataset using common general practices. We split all
the data pairs into three sets: training set, validation set and
test set. The imbalanced dataset may cause the performance
degradation of the models if it is not handled properly. In
order to ensure that the testing environment is similar to the
actual working environment, we do not perform resampling
when building the validation set and test set. This means
the distribution of the validation and test set are the same
as the real-world situations. We directly randomly select
50K samples as test set and validation set, respectively. For
the training set, we then perform resampling according to
a positive and negative sample ratio of 1:1. The purpose
of resampling is to reduce the bias of our model learning
caused by a large number of negative samples – this method
is widely used to deal with imbalanced data [39], [40], [41],
[42].

Finally, we follow the steps above to build our Python
and Java datasets. We refer this dataset as Intra-project
Dataset. We get 154k, 50k and 50k commit pairs in the
training set, validation set and test set respectively for
Python. For Java, there are 142k, 50k and 50k commit pairs
in training set, validation set and test set respectively. Our
model can learn and adjust the parameters from the com-
mon patterns contained in the training set. The validation
set can help us avoid overfitting as much as possible. Finally,
we can make detections on the test set to evaluate the
performance of our trained model.

4.2.2 Inter-project Dataset
Due to random segmentation of all data pairs, similar
commits from the same project may appear in both the
training and testing sets. This may lead to deviations in
the experimental results. LeClair et al. [43] also found a
similar phenomenon in code summarization task. In order

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 7

to investigate the inter-project performance of our proposed
approach, we further construct a dataset which is split by
project. We first count the amount of processed data con-
tained in each remaining Java project and Python project. To
ensure a data volume distribution similar to the Intra-project
Dataset, we randomly select 1% of the projects and use all
the processed data pairs in these projects as the validation
set and test set. For the remaining projects, we extract all
positive samples from them and resample the same number
of negative samples to form the training set.

In the Inter-project Dataset, there are 154k, 52k and 35k
commits pairs in training set, validation set and test set
respectively for Python. For Java, we get 142k, 22k and
37k commit pairs in training set, validation set and test set
respectively.

5 EMPIRICAL EVALUATION

In this section, we present the setup and the results of
our empirical evaluation. First, we describe the baselines,
training settings and the evaluation metrics used in our
experiments. We evaluate the performance of our approach
TDREMINDER on the datasets described in Section 4. The
research questions and the experimental results on Intra-
project Dataset are described in Section 5.4. Then we inves-
tigate the inter-project performance of different methods in
Section 5.5. Finally, we present some manual analysis of the
results in Section 5.6.

5.1 Baselines

Since there is no previous work on detecting the TODO-
missed commits that we could find, we have to construct base-
lines by ourselves. In order to compare the effectiveness of
the proposed approach with other methods, we implement
three baselines:

Random Guess: When there is no previous method
for addressing the same research question, random guess
is usually selected as a baseline [44], [45]. For each given
commit, the Random Guess model will randomly determine
whether it is a TODO-missed commit or not. Thus the eval-
uation metrics used in our experiments can be computed
directly.

TODO Overlap Commit Message: It is a reasonable
heuristic baseline which based on lexical overlap. Commit
message is often the summary of the code change. If the
submitter of the commit think there is a need to add
TODO comments to the source code, he/she may mentions
TODO related content in the commit message. Therefore,
we manually read a large number of commit messages
and collected some keywords with similar semantics. These
TODO overlap keywords are as follows: “todo”, “unfin-
ished”, “later”, “workaround” and “temporarily”. Then we
create this baseline as follows: if any keyword is mentioned
in the corresponding commit message of a commit, the
commit is considered as a TODO-missed commit.

Random Forest based on Code Change: Random Forest
(RF) [46] is an ensemble approach which combines many
tree predictors. Each tree predictors in the forest depends on
the values of a random vector sampled independently and
with the same distribution for all these trees. Random Forest

can often achieve good performance because it units many
differently trained trees, it can mitigate overfitting and is not
sensitive to outliers. Random Forest is also selected as one
of the baselines in many works of software engineering [13],
[47], [48], [49]. In our experiment, we first preprocess all
the code changes by stop-word removal and tokenization.
Then we embed the code change into vectors by word2vec
technique [24]. At last, the mean of word embedding vectors
are used as the input to the Random Forest algorithm.
The Random Forest algorithm will output the probability
distribution and its inference result for each commit.

5.2 Training Details
Our TDREMINDER approach was developed using the Py-
torch framework in Python. The pre-trained model Code-
BERT [17] is used as the encoder component for both code
change and commit message. CodeBERT is easy to adopt
in our approach. Due to the training design of CodeBERT
model, it can handle source code and natural language
well. While training the model, the dimension of final
hidden state our encoders is 768. The output of encoders
(Code Change Encoder and Commit Message Encoder) will be
compressed into a 768 dimensional vector. The max length
setting of the tokenizer is set to be 512, which is the max-
imum value of this optional parameter. The training batch
size is set to be 16. We use AdamW [50] optimizer algorithm
to optimize the parameters of our model with 2e-5 initial
learning rate. The α and γ in Equation 4 is set to be 0.25 and
2.0 by default following the setting used by Lin et al. [18].
The maximum number of training epoch is set to be 10. We
validate our model every epoch on the validation set. The
model which performs best on the validation set is used
as the final trained model for evaluation. We carry out all
our experiments on a Ubuntu 20.04 server with one Nvidia
A800 GPU and 80G memory, and 20 cores 3.7GHz CPU and
32GB memory.

5.3 Evaluation Metrics
Considering the highly imbalanced data (e.g., the positive
samples is only around 1.5% on average) for our specific
task, the traditional evaluation metrics (e.g., Precision and
Recall) are not suitable for this usage scenario. We thus
evaluate our approach with the following two evaluation
metrics which are widely-adopted for unbalanced dataset
evaluation [13], [51], [52].

AUC: AUC is a widely-used evaluation metric in many
software engineering studies [13], [53], [51]. AUC repre-
sents the area under receiver operating characteristic (ROC)
curve. The value of AUC ranges from 0 to 1, and higher
AUC values indicate better performance, and a value of 0.7
is often considered as promising performance for different
tasks. We choose the AUC metric for our study because of
the following reasons: (a) AUC is robust towards imbal-
anced data distribution [53], [51]. The class distribution may
affect some traditional evaluation metrics like precision,
recall and F1-score and leads to unfair comparative experi-
ments. Considering the dataset in our study is extremely im-
balanced, we thus use AUC as one of the primary indicators
due to its insensitive feature to class distributions. (b) AUC
has the feature of statistical interpretable, for our case, AUC

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 8

TABLE 2
Comparison results with baseline models on different datasets

Language Approaches AUC Cost-effectiveness

Python

Random Guess 50.0% 20.0%
Commit message 52.1% 23.9%
Random Forest 73.5% 50.0%
TDReminder 94.5% 91.6%

Java

Random Guess 50.0% 20.0%
Commit message 53.2% 26.3%
Random Forest 74.3% 52.2%
TDReminder 95.2% 93.6%

can be interpreted as the ability of a model to distinguish
the positive cases (i.e., the TODO-missed commits) from the
negative cases (i.e., the not TODO-missed commits). (c) AUC
is threshold independent [54]. The setting of the threshold
can determine whether the commit is labeled as positive
or negative. However, in many cases like class imbalance
case, the threshold can be changed according to the actual
situation. Precision, recall and F1-score rely on the setting of
the threshold, while AUC can independently evaluate the
performance of the model.

Cost-effectiveness: Cost-effectiveness aims at maximiz-
ing the benefits by spending the same amount of cost,
which has been widely used as an evaluation metric for
defect prediction [55], [56], [52]. In our context, the cost
is amount of commits to inspect, and the benefit is the
number of TODO-missed commits that can be discovered.
If we inspect all the inferred commits, the percentage of
the TODO-missed commits is the recall. However, due to
time constraint and/or limited resources, developers can
only inspect a limited number of software commits. For this
kind of situation, it is desirable to identify as many TODO-
missed commits as possible while minimizing the number
of commits to inspect, therefore, we introduce the cost-
effectiveness evaluation metric for such cases. Particularly,
the cost-effectiveness in our study denotes the recall of the
TODO-missed commits when using 20% of the entire effort
required to inspect all commits to inspect the top ranked
commits.

5.4 Experimental Results
We want to answer the following three research questions:

• RQ1: How well does our TDREMINDER perform against the
baselines?

• RQ2: What are the impacts of the different components in
our model?

• RQ3: How does focal loss affect the performance of our
approach?

Same as most of studies, we conduct extensive experi-
ments on Intra-project Dataset to answer the above three
research questions, results discussed below.

5.4.1 RQ1: How does our TDREMINDER perform against
baselines?
Motivation. In order to evaluate the effectiveness of our pro-
posed approach, we conducted a comparative experiment
with our method and baselines. Due to the lack of previous
work to address the detection of TODO-missed commits,

we have constructed several basic methods as baselines.
Compared to these baselines, we wanted to evaluate the
overall performance of our TDREMINDER in terms of the
AUC and Cost-effectiveness.
Approach. We compare TDREMINDER against the three
baselines described in Section 5.1. For a better presentation
of our experimental results, we refer to the baseline “TODO
Overlap Commit Message” as Commit message and “Ran-
dom Forest based on Code Change” as Random Forest. As
described in Section 5.3, the selection of evaluation metrics
needs to be suitable for the scenario of this work. To show
the comprehensive classification ability of the models, we
used AUC and cost-effectiveness in our experiments. These
two metrics are more robust and appropriate to evaluate the
performance in this task. We trained Random Forest and
TDREMINDER on the training set and conducted inference
on the test set.
Results. Table 2 presents the results of different methods
applied to the Python dataset and Java dataset. From the
table, we can see that Random Guess and Commit message
have low AUC scores and cost-effectiveness scores. The
performance of Commit message is slightly better than Ran-
dom Guess. This phenomenon demonstrates that although
Commit message can identify some TODO-missed commits,
it still misses a lot of positive samples. From the results,
we can see that the proportion of TODO-missed commits that
can be identified by using the TODO keyword in commit
messages is very small. On the other hand, when developers
introduce a TODO comment into the source code, they will
sometimes mention relevant content in the commit message
when submitting the commit. The information contained
in the commit message can help us detect TODO-missed
commits, but we can not rely entirely on the commit message.

Random Forest based on Code Change, which com-
bined with Random Forest and word2vec technique, per-
forms the best among all the baselines on two datasets.
The technique Random Forest baseline employed, Random
Forest [46], is widely used in classification tasks in various
fields and has achieved good results. In addition, unlike
a simple method checking whether there is lexical over-
lap, Random Forest applies the word2vec technique [24]
to capture the semantic information in the code changes.
Word2vec is a popular technique for embedding text into a
vector representation. Nevertheless, the word2vec technique
still suffers from some serious issues. Word2vec technique
can not capture dependency information over a long dis-
tance and can not deal with the problem of polysemy [57].
For example, when the same function name appears in two
distant positions within a long diff, word2vec will not be
able to capture the relationship. Some polysemous words
that may appear in a commit, such as “pointer” (could refer
to a programming ”pointer” or a UI ”cursor”), cannot be
handled by word2vec. It’s possible that these technique dis-
advantages could limit the effectiveness of Random Forest.

In our experiments, the improvement ratio of our ap-
proach is computed as Ours−baseline

baseline ∗ 100%. Compared to
the Random Forest on the Python dataset, TDREMINDER
outperforms Random Forest by 28.6% and 83.2% in terms
of AUC and cost-effectiveness, respectively. As for the com-
parison experiments based on the Java dataset, the rela-
tive improvements of TDREMINDER are 28.1% and 79.3%

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 9

TABLE 3
Effectiveness of each components in TDREMINDER

Language Approaches AUC Cost-effectiveness

Python
Drop-CC 75.3% 53.4%
Drop-CM 93.1% 89.3%
TDReminder 94.5% 91.6%

Java
Drop-CC 76.8% 55.4%
Drop-CM 94.0% 90.2%
TDReminder 95.2% 93.6%

w.r.t. AUC and cost-effectiveness, respectively. On average,
TDREMINDER outperforms Random Forest by 28.4% and
81.3% in terms of AUC and cost-effectiveness respectively.
Our approach achieves the best performance for all eval-
uation metrics in experiments. We attribute our good per-
formance to the following three points: (1) We make full
use of information from different resources, e.g. diff and
commit message. The information from the commit mes-
sage further enhances the understanding of code change.
(2) CodeBERT is employed to further represent input into
contextual vectors. For the reason that CodeBERT is pre-
trained with natural language and source code, the diff and
commit message can be transformed into the same vector
space. Thus, our approach is able to better understand their
semantics and connections, and then distinguish TODO-
missed commits. (3) With the help of focal loss, TDREMINDER
has better learning ability for hard samples.

Furthermore, we can observe that TDREMINDER is stable
on both Python and Java datasets. This demonstrates the
generalization of our approach. We believe TDREMINDER
can support other programming languages just as well.

In summary, TDREMINDER obtains higher AUC as well
as cost-effectiveness scores than all the baselines on our
two datasets, demonstrating the superior performance of
our approach.

5.4.2 RQ2: What are the impacts of different components
in our model?
Motivation. To better capture the semantic features of the
software commits, we adopt two encoders, i.e., Code Change
Encoder (CC Encoder) and Commit Message Encoder (CM En-
coder), to encode the code change and the commit messages
respectively. To verify the effectiveness of the two input
components, we conduct a component-wise evaluation to
evaluate their individual performance as well as their con-
tributions one by one.
Approach. To answer this research question, we first build
two incomplete versions of TDREMINDER:

1) Drop-CM: For a given commit, we only consider the
code change of this commit and ignore the commit
message, in other words, it only uses the Code Change
Encoder and drops the Commit Message Encoder.

2) Drop-CC: For a given commit, we only consider the
commit message as input and ignore the associated
code change. In other words, we keep the Commit
Message Encoder and drop the Code Change Encoder.

Then we train the above two variants and TDREMINDER
using both Commit Message Encoder and Code Change Encoder

TABLE 4
The impact of focal loss

Language Approaches AUC Cost-effectiveness

Python Drop-FL 93.4% 89.7%
TDReminder 94.5% 91.6%

Java Drop-FL 94.1% 89.9%
TDReminder 95.2% 93.6%

according to the training details described in section 5.2.
Finally, we compare the performance of these three ap-
proaches on the test set.
Results. The experimental results of the component-wise
evaluation are shown in Table 3. It can be seen that:

• By comparing the performance of our approach with
Drop-CC and Drop-CM, we can measure the perfor-
mance improvements achieved by incorporating the
commit messages and code change as inputs. For exam-
ple, incorporating the information of commit messages,
the AUC, Cost-effectiveness of our approach score in-
creases 1.5% and 2.6% on Python dataset and 1.3%,
3.8% on Java dataset. By incorporating the code change,
the AUC, Cost-effectiveness of our approach increases
25.5%, 71.5% on Python dataset and 24.0%, 69.0% Java
dataset. It is clear that the code change do make a sig-
nificant contribution to the overall performance of our
approach. On this basis, the commit message further
enhances the performance of the approach.

• To bridge the gap between status of the software com-
mits and the code semantics, we introduce the Code
Change Encoder and Commit Message Encoder compo-
nents for capturing the features from code change and
commit message respectively. No matter which com-
ponent we dropped, it hurts the overall performance
of our model. This also verifies the importance and ne-
cessity of incorporating the double encoder architecture
for our model.

In summary, both the Code Change Encoder and the
Commit Message Encoder are effective and helpful to
enhance to performance of our approach.

5.4.3 RQ3: How does focal loss affect the performance of
our approach?
Motivation. In our TDREMINDER, focal loss is applied to
mitigate the influence from the large number of simple
samples in our imbalanced datasets. Focal loss modifies the
traditional cross entropy loss and makes the model pays
more attention to the samples that are difficult to classify.
In focal loss, the weight of loss brought from the hard,
misclassified samples are enlarged, while the weight of
the easy sample is decreased. It is widely used in various
classification tasks, i.e., object detection, emotional analysis
and text classification, and achieves good results. In this
research question, we conduct an ablation study to analyze
the performance gain achieved due to the focal loss.
Approach. In order to eliminate the impact of focal loss,
we replace the focal loss with cross entropy loss function
which is commonly used in classification algorithms. Then
we retrain the TDREMINDER on the Intra-project Dataset

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 10

TABLE 5
Inter-project performance of different methods

Language Approaches AUC Cost-effectiveness

Python

Random Guess 50.0% 20.0%
Commit message 52.2% 24.3%
Random Forest 68.8% 42.7%
TDReminder-inter 92.8% 86.9%

Java

Random Guess 50.0% 20.0%
Commit message 52.3% 24.5%
Random Forest 61.2% 30.7%
TDReminder-inter 94.8% 89.8%

again. To facilitate reading, Drop-FL is used to represent
the variant that does not use focal loss in TDREMINDER.
Results. Table 4 shows the results. From the table, we
can see that the performance of TDREMINDER is bet-
ter than Drop-FL on both datasets. For Python dataset,
TDREMINDER outperforms Drop-FL by 1.2% and 2.1% w.r.t.
AUC, and cost-effectiveness, respectively. On Java dataset,
TDREMINDER outperforms Drop-FL by 1.2% and 4.1% in
terms of AUC, and cost-effectiveness, respectively. The aver-
age improvements are 1.2% and 3.1% in terms of AUC, and
cost-effectiveness, respectively. In summary, focal loss func-
tion is helpful and effective for the task of TODO-missed
commits detection. These experimental results verify the
importance of focal loss in our proposed TDREMINDER
method.

5.5 Inter Project Performance

Motivation. When merging data from all repositories and
segmenting the dataset, there is a risk of similar or even
identical samples appearing in the training, validation, and
testing sets. For these data, the model will be able to
make inferences easily. This will result in higher AUC and
cost-effectiveness scores, resulting in deviation in model
performance evaluation. When the model is used to make
inferences on data from other projects, it may not perform
as expected.
Approach. In order to study the generalizability of our ap-
proach, we further construct the Inter-project Dataset which
is split by project (as described in Section 4.2.2). Then the
proposed TDREMINDER and the baselines are retrained and
tested on the Inter-project Dataset.
Results. Table 5 shows the inter-project performance of
different methods. From the table, we can find that our
approach TDREMINDER outperforms Random Forest by
34.9% and 103.5% in terms of AUC and Cost-effectiveness
respectively on the Python dataset. As for the Java dataset,
the relative improvements of TDREMINDER are 54.9% and
192.5% in terms of AUC and Cost-effectiveness, respectively.
The performance of our approach TDREMINDER is still
ahead of the baseline method Random Forest, and even
more advanced on the Inter-project Dataset than on the Intra-
project Dataset.

Compared with the results of intra-project performance
in Section 5.4.1 (shown in Table 2), we can see that all meth-
ods except for heuristic-based have shown a decrease in per-
formance. This phenomenon is similar to the findings from

LeClair et al. [43]. The AUC and Cost-effectiveness scores
of baseline Random Forest dropped 12.0% and 27.9% on
average, respectively. For TDREMINDER, the AUC and Cost-
effectiveness scores dropped 1.1% and 4.6% on average.
Despite the performance penalty, our approach is relatively
less degraded. There are two main reasons, the first is that
the corpus we provide is broad enough for models to learn
the features, and the second is the excellent representation
and learning ability of the approach we propose.

In conclusion, the experimental results on the Inter-
project Dataset show the good generalizability of our pro-
posed TDREMINDER.

5.6 Manual Analysis

In this section, we further discuss the reasons why our
approach outperforms others by manually investigating
some samples from the experimental results. TDREMINDER
utilizes the information from diff and commit message for
better performance of the model. Our experiments described
above have shown the effectiveness of our approach. To
further examine the performance of TDREMINDER, we man-
ually inspected the inference results on our test set from
different baselines.
Approach. For both Python and Java datasets, we randomly
sampled 50 positive and 50 negative samples from their
test sets. Subsequently, we obtained the inference results
of various baselines and TDREMINDER for these samples.
After carefully examining all the samples, four representa-
tive examples are selected to show in the qualitative results.
Figure 4 shows the examples. To better showcase the orig-
inal intent of the code committers, we have reinserted the
TODO comments that were removed from the diffs back
to their original positions. In the actual dataset, if a TODO
comment does not occupy an entire line, as shown in the
first and fourh examples of Figure 4, the TODO comment
within that line will be individually deleted. If a TODO
comment occupies a single line or multiple lines on their
own, then these lines (including newline characters) will be
removed together.
Results. In the first example, the developers submitted
the commit without implementing specific logic under the
“request.method == ‘POST’” branch. All of the baselines,
i.e., RG (Random Guess), TOCM (TODO Overlap Com-
mit Message), and RFCC (Random Forest based on Code
Change), are unable to accurately determine whether this
commit is a TODO-missed commit. However, our method
can successfully identify this commit as TODO-missed. We
attribute its better performance to two reasons: (1) The pre-
trained CodeBERT that TDREMINDER employed is well-
trained for natural language and programming language.
Furthermore, our model has been trained on the large-
scale dataset and learned the common patterns from the
semantic features. Thus, our model has a better semantic
understanding of code changes and commit messages. (2)
TDREMINDER absorbs the knowledge from the commit
message. In this case, the commit message attached to
the commit says, “Add ‘create-association’ API endpoint
method (unfinished)”. In the submission history of repos-
itories, vocabulary representing unfinished semantics often
appears simultaneously with pending tasks. Therefore, the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 11

Example 1: brettkromkamp/contextualise (stars: 918)

@@ -223,3 +223,18 @@ def get_associations(map_identifier, topic_identifier):
+ def create_association(map_identifier, topic_identifier):
+ topic_store = get_topic_store()
+ topic_map = topic_store.get_topic_map(map_identifier, current_user.id)
+ if topic_map is None:
+ return jsonify({"status": "error", "code": 404}), 404
+
+ if request.method == "POST":
+ pass # TODO: Implement logic
+
+ return jsonify({"status": "success", "code": 201}), 201

Commit message: Add 'create-association' API endpoint method (unfinished)

RG: TOCM: RFCC: TDReminder:

Example 2: mucommander/mucommander (stars: 554)

@@ -24,6 +24,7 @@
 import java.io.IOException;
+ import java.security.NoSuchAlgorithmException;
@@ -50,6 +51,12 @@
+ // Method temporarily overridden to prevent the unit tests from failing
+ public void testInputStream() throws IOException, NoSuchAlgorithmException{
+ // Todo: fix the InputStream
+ }
 ///
 // AbstractFileTestCase implementation //

Commit message: testInputStream temporarily overridden to prevent unit tests

from failing while the problem is being fixed.

RG: TOCM: RFCC: TDReminder:

Example 3: astropy/astroquery (stars: 655)

@@ -15,6 +15,10 @@
 u'kmos', u'sinfoni', u'amber', u'midi', u'pionier',
 u'gravity']
+ # Some tests take too long, leading to travis timeouts
+ # TODO: make this a configuration item
+ SKIP_SLOW = True
+
@remote_data

Commit message: Skipping slow eso test, it run 246s & 281s for me locally

RG: TOCM: RFCC: TDReminder:

Example 4: apache/jackrabbit-oak (stars: 350)
@@ -44,7 +44,7 @@
- public class SecureNodeState extends AbstractNodeState {

+ class SecureNodeState extends AbstractNodeState {// TODO

 /**
 * Underlying root state, used to optimize a common case
@@ -45,7 +45,6 @@
import org.apache.jackrabbit.oak.commons.PathUtils;

- import org.apache.jackrabbit.oak.core.SecureNodeState;
Commit message: OAK-709:Consider moving permission evaluation to the node state

level. Remove the earlier equals() hack and make SecureNodeState package-private
RG: TOCM: RFCC: TDReminder:

Fig. 4. Manual Analysis Examples

model learned the association between these words and
TODO-missed commit in the training phase. The keyword
“unfinished” further helps our model identify this TODO-
missed commit.

The second example shows a similar situation. Because
we remove the TODO comments from the code changes
when we build our datasets, TDREMINDER finds that there
is nothing in the “testInputStream()” function in this case.
The commit message and the comment in the code change
both mentioned that this function is only temporarily over-
ridden to prevent a test from failing. Based on this informa-
tion, TDREMINDER can determine that the commit is still
an incomplete implementation and there is a need to apply
further TODO actions.

Our model has learned the code patterns of TODO-
missed commit from the large training set, and the encoder
component for commit messages further enhances the per-
formance. Although certain keywords in commits can assist
in identifying TODO-missed commits, some text from the
commits may also mislead our model, and these commits
sometimes do not need to introduce TODO comments at
all. To validate our assumptions, we conducted probing
like Karmakar et al. [58] to investigate whether keywords
in commits can assist in the detection of TODO-missed
commits. We randomly selected samples from the test set
of the Intra-project Dataset that contained keywords such

as ’unfinished’, ’later’, ’workaround’, and ’temporarily’ in
their commit messages. For both Python and Java datasets,
we retrieved 10 positive samples and 10 negative samples,
respectively. Subsequently, we employed TDREMINDER to
conduct inference on these samples. For the positive sam-
ples, which contained these keywords and were actually
TODO-missed commits, TDREMINDER accurately identified
all of them. Regarding the negative samples, TDREMINDER
correctly inferred 6 out of the Java samples and 7 out of
the Python samples. This shows that even if these keywords
appear in negative samples and cause some misdirection,
our model’s understanding of code changes can mitigate the
impact of this misguidance. These results, to some extent,
reflect the correctness of our assumptions.

Upon inspecting the inference results, we observed that
numerous test commits do not contain any prompt words
in the commit message or source code. Nevertheless, our
method accurately identifies these commits. For instance,
in the third case illustrated in Figure 4, the developer
introduced a “SKIP SLOW” parameter to circumvent tests
that are frequently timed out due to their prolonged execu-
tion. While this approach may not directly lead to system
crashes, integrating the parameter into a configuration file
would offer a more optimal solution, facilitating uniform
settings across developers. In the fourth case in Figure 4, the
developer make the SecureNodeState package private.
According to our experience, it’s essential to verify if associ-
ated calls in other packages have been removed. Otherwise,
this will cause the relevant module to compilation failures.

In the above two examples, TDREMINDER successfully
recognizes instances of suboptimal code implementation
even without any prompts from relevant comments or
commit messages. This capability arises from its training
on expansive datasets. Such training enables the model to
accurately identify similar situations based on the learned
patterns, equipping it to detect code submissions that re-
quire further improvement. While the training data derives
from scenarios of suboptimal implementations acknowl-
edged by developers, the amassed development insights of-
fer valuable assistance to the broader developer community.
However, there are also some cases that our method can not
handle well. When the code changes are too complicated,
such as the modification of multiple submodules, it is often
difficult for TDREMINDER to learn their semantic informa-
tion. At this time, we may need to rely on the semantic
features in commit messages. If the commit message is of
low quality, TDREMINDER will not be able to make correct
detections in such a situation.

6 USER STUDY

In order to evaluate the performance of TDREMINDER more
comprehensively, we choose metrics that are threshold inde-
pendent and robust towards imbalanced data distribution in
the above experiments. In this section, we study the poten-
tial practical value of TDREMINDER. While our proposed
TDREMINDER can assist developers in identifying TODO-
missed commits, it is more actionable for developers if we can
also offer interpretable suggestions of “where” and “what”
TODOs should be added. To this end, inspired by the
remarkable performance of Large Language Models (LLMs)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 12

in natural language understanding and logic reasoning, we
have integrated TDREMINDER with LLMs to construct a tool
more tailored for software engineers. It is also an attempt to
utilize TDREMINDER to build practical development plug-
ins. Following this, we designed a user study to investigate
the tool’s efficacy in aiding developers to detect suboptimal
code implementations. Our study design was approved by
Zhejiang University’s Ethics Advisory Board.

6.1 Tool Implementation

The overall architecture of the tool is shown in Figure 5.
TDReminder module: Given a commit submitted by a
developer, we first extract its code change (represented by
diff) and associated commit message. These are then fed into
TDREMINDER. The TDREMINDER first determines whether
this commit is a TODO-missed commit. If not, there is no need
for further action. If it is, the commit is then input into the
subsequent retrieval module.
Retrieval module: The retrieval module first preprocesses
all the training corpus. Utilizing the trained Code Change
Encoder which is described in Section 3.2.1, it represents
every diff in the training set as vectors, facilitating similarity
calculations. The collection of these vectors is denoted as T .
Whenever a TODO-missed commit c is inputted, the retrieval
module also uses the Code Change Encoder to represent its
diff as a vector vc. Subsequently, the module computes the
cosine similarity between vc and every vector in T . Finally,
all commits from training set are ranked by similarity scores,
and the most similar historical commit ch is selected.
LLM module: After obtaining the historical commit record
ch most similar to the TODO-missed commit c, we utilize
them to construct prompts for the LLM. The prompt we
construct are as follows:

You are an software engineer with 10 years of software
development experience and is very familiar with the
popular open-source software repositories on GitHub.
Given a code changes (diff) and its associated commit
message which contain a suboptimal implementation or
a task that is yet to be completed. So we need to insert a
TODO comment to highlight this. Here is an example:
-diff: {diff of ch}
-commit message: {commit message of ch}
Please analyze and determine where and what TODO
comment should be inserted for the following commit:
-diff: {diff of c}
-commit message: {commit message of c}

For convenience, we currently use gpt-3.5-turbo-0125 1

as the base LLM for our implementation. The temperature
value used for all API calls is set to be 0.2 [59]. Given
the aforementioned prompt, it will analyze and suggest
where and what TODO comments users should insert. In
this manner, our user tool can seamlessly transition from
identifying suboptimal code implementations to suggesting
actionable TODO comments.

1. https://platform.openai.com/docs/models/gpt-3-5-turbo

LLMCommit message

Code change

TDReminder Suggestion

Training corpus Retrieval module Prompts

Fig. 5. The architecture of the user tool.

6.2 Study Design

To investigate the usefulness of our user tool in helping
developers discover suboptimal code implementations, we
conducted a user study. Through posting on the internal
forum of Zhejiang University, we recruited a total of 40
volunteers to participate in our user research. These volun-
teers were required to have some development experience
with Java or Python, and they were enthusiastic about using
intelligent development plugins. Each participant was paid
40-80 Chinese Yuan when they completed the user study.
This payment amount is comparable to the rates offered for
various other experimental recruitments within the forum.
Among them, 20 participants have industrial experience in
Java programming ranging from two to six years (referred
to as G1), and 20 participants have more than three years
of Python industrial development experience (referred to as
G2).

To mitigate biases from our imbalanced dataset, we
randomly selected 50 samples, including 25 positive and 25
negative ones, from Java and Python test sets respectively
as our evaluation data. Since we have already removed
duplicate commits during dataset preparation (described in
Section 4.1), the samples we drew from the test set would
not coincide with the data in the retrieval corpus. To ensure
that there were no mislabeled data in these samples, the first
two authors manually checked the samples. Whenever we
identified mislabeled data, we removed it and resampled
another one from the remaining test set. G1 is required to
evaluate the 50 commits of the Java programming language.
Accordingly, the 50 Python code changes are evaluated
by G2. To compare the effectiveness of different tools in
assisting developers in identifying suboptimal code imple-
mentations, we further divided each group’s 20 participants
into four subgroups, namely subgroups A, B, C, and D.

In our user study, each participant first received a task
guide. Participants were informed that they would receive
variable payment depending on the number of correct an-
swers that they make [60]. Then they were asked to read 50
commits one by one with suggestions from different tools
and determine whether each commit needed to insert an
additional TODO comment.

• For subgroup A, the provided suggestions come from
the user tool which is referred as TDReminder.

• For subgroup B, we constructed a variant called
TDReminder−r . This variant eliminates the retrieval
module from the TDReminder and directly requests the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 13

LLM to generate suggestions based on the provided
commits.

• As for subgroup C, the suggestions were based on base-
line Random Forest because it performs best among
various baseline methods. We directly provided the
inference results of Random Forest to the evaluators.

• Subgroup D, serving as the control group, was not
provided with any additional suggestions.

Then the participants only need to choose one answer
from ‘Yes’ (additional TODOs need to be inserted), ‘No’
(no need to add additional TODOs), or ‘Uncertain’ (not
sure if the commit is TODO-missing) for each sample. The
time each participant spent to complete the questionnaire
was recorded. Furthermore, the order of these samples in
the questionnaire was shuffled, and participants were told
that the provided suggestions may be not reliable. The
participants were permitted to search the internet for any
information.

Since the participants need to analyze 50 commits, there
is a risk that participants may directly accept the pro-
vided suggestions without thinking on their own. Therefore,
we added an additional attention check [61] in the ques-
tionnaire to mitigate its impact. We borrowed an idea of
building the attention check from previous work [62], [63],
[64]. We first sampled a new commit and added an extra
statement at the end of its code change, “This is an attention
check. Please select ‘uncertain’.” Then, for the provided sug-
gestion in groups A, B, and C, we included some analysis
text that is completely unrelated to the commit itself. For
group D, suggestions were still not provided for reference.
The attention check question appeared randomly in the
questionnaire. In this way, participants who blindly answer
questions or simply follow suggestions could be identified.

After completing these questions, participants of sub-
groups A, B, and C were required to answer two additional
questions: 1) Please rate the usefulness of the suggestions
provided on a scale of 1 to 5 (where 1 represents “not
useful at all” and 5 represents “extremely useful”). 2) Do
you think this tool could assist you in software development
and maintenance? Please share your thoughts and briefly
describe any specific benefits or potential issues that the tool
might bring.

TABLE 6
Results of the User Study

Language Suggestions Accuracy (%) Time (min) Uncertain (%) Usefulness

Python

No Suggestions 57.2± 5.4 33.5± 3.7 13.2± 3.9 -
RandomForest 63.5± 7.7 27.7± 3.0 10.0± 4.9 2.0± 0.8
TDReminder−r 81.2± 7.4 30.1± 2.5 6.0± 3.2 3.8± 1.1
TDReminder 86.4± 3.8 29.1± 3.1 3.6± 1.7 4.0± 0.7

Java

No Suggestions 55.6± 6.1 31.7± 3.0 16.0± 2.4 -
RandomForest 66.0± 9.1 26.8± 3.5 14.0± 5.4 2.4± 0.5
TDReminder−r 82.4± 6.7 27.3± 2.2 6.4± 1.7 3.8± 1.1
TDReminder 83.2± 5.9 27.6± 1.5 5.6± 3.8 3.8± 0.8

6.3 Results
Consistent with previous work [62], [63], [64], we first
identified participants who did not pass the attention test.
In our user study, one person in the “RandomForest” sub-
group of the Python language failed the attention check.
This participant only received the lowest payment and their

result was discarded. Table 6 presents the average accuracy,
the completion time for the questionnaire, the proportion of
“Uncertain” choices, and usefulness scores across different
groups.

(1) From the table, it is evident that when developers
were left to judge based solely on the content of the commits
without any reference suggestions, the average accuracy for
both Python and Java language samples was only 56.4%.
With the suggestions from the baseline RandomForest, the
average accuracy rate rose to 64.8%, though it still remained
relatively low. In contrast, with the assistance of our user
tool, participants’ accuracy surged to 84.8% on average.
In terms of accuracy, TDReminder outperforms the best
baseline by 36.1% and 26.1% on Python and Java samples,
respectively. Since our tool is a two-phase approach, we
further examined the misclassification of samples by our
tool and Random Forest, respectively. For TDReminder, it
misclassified 7 out of 50 on both Python and Java samples.
As for the tool based on Random Forest, the number of
misclassifications on Python and Java samples is 15 and 16,
respectively. Differences in accurately detecting suboptimal
implementations may result in varied accuracy of partic-
ipants’ responses across different tools. We further con-
ducted a Wilcoxon rank-sum test [65] to evaluate whether
the differences between TDReminder and the above two
baselines are statistically significant. The results showed that
the improvements in our tool are all statistically significant
at a 95% significance level. For the Python language, the
p-values are 0.009 and 0.014 when comparing TDReminder
with methods “No Suggestions” and “RandomForest”, re-
spectively. Similarly, for the Java language, the p-values are
0.009 and 0.012. This experimental result not only shows the
excellent performance of our tool in detecting suboptimal
code implementations but also demonstrates the usefulness
of the suggestions provided by our tool.

(2) For the completion time, we can see that the control
group that did not provide any suggestions took the longest
time on average. Developers spent an average of 32.6 min-
utes on the questionnaire without the assistance of any
tool. When utilizing recommendations from TDReminder,
the time spent was reduced to an average of 28.4 minutes.
The time for participants to answer each question is approx-
imately 34.1 seconds. Compared to ”No Suggestions”, the
completion time of TDReminder is shorter with statistical
significance at the 95% confidence level on both Python
and Java samples. Specifically, the p-values are 0.047 and
0.028, respectively. In addition, although the completion
time of the “RandomForest” group is similar to that of
the TDReminder, the low accuracy of this tool in detecting
TODO-missed commits led to the participants in this group
being misled.

(3) According to the uncertain rate in Table 6, our
tool effectively decreased the rate of ’uncertain’ choices
by participants, indicating a reduction in their confusion.
Compared to “No Suggestions”, the assistance from our
user tool has reduced the uncertainty ratio from 14.6%
to 4.6% on average. Such findings highlight the tangible
effectiveness gains that our proposed tool provides during
software development and maintenance.

(4) For the rating of the usefulness of the tool by the
participants, we can see that the average usefulness score

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 14

RandomForest-based: No need to add TODO.

TDReminder-based: Based on the given code changes and commit message, the
TODO comment should be added in the `testServerNoCloseHandshake()` method.
The comment should describe the pending task related to the failing test.

Here's an example of the TODO comment:

```java 
// TODO: Investigate and fix the failing test for server close handshake 
``` 


RandomForest-based: Need to add TODO.

TDReminder-based: Based on the given code changes and commit message, the
TODO comment should be added to the line where the change `numel =
np.prod(init.shape).astype(np.int32)` is made. The comment should describe the
pending task related to this change.

Possible TODO comment:

``` 
# TODO: Verify if casting to np.int32 is necessary for numel calculation 
``` 


RandomForest-based: No need to add TODO.
TDReminder-based: Based on the given code changes and commit message, the
TODO comment should be added to the line where the list of supported locale tags is
hardcoded.
The TODO comment should be added to the line where the list is defined, like this:
```java 
// TODO: Update the list of supported locale tags dynamically to include all available 
locales 
``` 
This TODO comment instructs developers to update the list of supported locale tags so
that it dynamically includes all available locales.

Commit message: Fix build (#829)
* jax.numpy.prod -> np.prod
* Comment

Commit message: Make the locale list complete (#122)

Commit message: Issue #609 ignore failing test

Fig. 6. Three examples of the user study.

of the RandomForest-based tool is only 2.2. The average
usefulness score of TDReminder reached 3.9. Compared
to the RandomForest-based tool, our tool outperforms the
baseline in terms of usefulness with statistical significance at
the 95% confidence level. Specifically, the p-values are 0.020
for the Python samples and 0.028 for the Java samples. This
is reasonable because our user tool can provide developers
with actionable suggestions.

We examined feedback from participants regarding the
RandomForest-based tool. Many comments highlighted a
recurring issue: they were informed by a hint that the
code was incomplete or suboptimal, which actually confuses
them. Many participants expressed a desire for more specific
information about the problem. Additionally, a few partici-
pants criticized that the tool was only useful in rare cases,
such as when they previously remembered a sub-task but
subsequently forgot about it. In such cases, the tool could
remind users to recall the forgotten task before submission.

The feedback on our tool is more positive. 70% of par-
ticipants agreed or strongly agreed that the tool could be
beneficial in their daily development. Several participants
found the majority of the recommendations to be sensible.
They suggested that the tool could be beneficial during
both the coding and code review phases to help identify
overlooked issues. One participant mentioned that this tool
can be combined with Linters, Formatters, and some code

vulnerability scanning tools. A few participants expressed
that although it may be difficult, it would be great if our
tool could provide a fixed patch directly. However, several
participants also pointed out that the suggestions in several
examples were meaningless, and a few recommendations
were irrelevant to what they considered to be suboptimal
implementations. The comments from participant indicates
the potential usability of our tool. Their thoughts also offer
some insights into optimizing our tool and guiding future
research directions.

(5) To investigate the effectiveness of the retrieval mod-
ule introduced in our tool, we manually checked the sugges-
tions generated by TDReminder−r and TDReminder. Since
we only generated suggestions for TODO-missed commits,
we first selected the corresponding generated suggestions
of these samples separately. Subsequently, our first author
compared the original TODO comments and the generated
suggestions for each sample. We did not strictly use “exactly
match” as the evaluation metric, but instead marked this
sample as long as two comments point to the same problem
or describe similar pending tasks. For both Python and Java
positive samples, 20 TODO-missed commits were correctly
classified. For Python language, the proportion of marked
suggestions generated by TDReminder and TDReminder−r

is 60% and 40%, respectively. For Java language, the cor-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 15

responding proportions are 65% and 55%, respectively. As
can be seen, with the addition of the retrieval module, our
user tool can generate more suggestions that are close to the
original TODO comments in our samples. Many previous
studies have also reported that similar examples retrieved
can help LLMs generate higher-quality answers [66], [67],
[68]. However, in our study, the differences experienced
by participants were not significant. In the future, we will
combine our method with LLMs to construct a better frame-
work to generate higher-quality suggestions or patches for
suboptimal implementations.

6.4 User Tool Cases
To better illustrate the utility of our tool, three examples
from positive samples are presented in Figure 6.

In the first example, the developer ignores the failing
test temporarily. If it is not addressed, the test case may be
missed in future testing. As can be seen from the figure,
the Random Forest based tool failed to identify this TODO-
missed commit. However, our tool not only accurately de-
tected it but also provided targeted recommendations. The
original TODO comment for this commit was ”work out
why this test is failing”, while the suggestion we provided
is more specific.

For the second case, the committer cast the data type
of “numel” to “np.int32”. By searching for raw data, the
original TODO comment we removed highlighted a poten-
tial issue: “check if this runs on TPU (dtype issue)”. From
the recommendation given by the TDReminder-based tool,
it can be seen that our tool also identified the suboptimal
implementation and pointed out the potential issue related
to data type at this location.

In the third instance, the developer hard-coded a fixed
list of values. Directly embedding a list of constants (or
any other values) in the code is often considered poor pro-
gramming practice. It can hinder the reusability, flexibility,
and maintainability of the code. Our tool recommends a
dynamic updating approach as a more elegant solution. We
also compared the original TODO comment from this com-
mit, and its intended meaning aligns with this suggestion.

Our proposed approach, TDREMINDER, could effec-
tively detect TODO-missed commits during code submis-
sions. By utilizing the accompanying user tool, developers
can receive a timely analysis of potential suboptimal im-
plementations and be prompted to add TODO comments.
Such guidance will be helpful in improving the code and
enhancing the comprehensiveness of the documentation
in the software repositories.

7 DISCUSSION

In this section, we present the threats to validity and some
implications from this work.

7.1 Threats to Validity
Threats to internal validity are related to potential errors
in the code implementation and experimental settings. We
have double checked the code of our approach and the
baselines. The baseline TODO Overlap Commit Message
is easy to implement. As for the baseline Random Forest

based on Code Change, we directly use the open-source
software library scikit-learn [69]. The parameters used in
our experiments are fine-tuned through many attempts.
Basically, the parameter settings are considered and tested.
For the reason that pre-trained CodeBERT has fixed the
dimension of output, thus we use the same hidden size in
our approach.

The second key threat to internal validity relates to the
potential inaccuracies in our labeling process. In our study,
the labeling of data is based on comment tags in commits,
which means there may be unmarked suboptimal code
implementations in some negative samples. As a result, the
overall accuracy and reliability of the model in practical ap-
plications could be compromised. To mitigate this threat, we
conducted manual validation during dataset construction
to examine the accuracy of the datasets. The results of this
manual validation indicate that the accuracy of the labels in
our datasets is reasonably high. Therefore, the impact of this
threat is very limited.
Threats to external validity relate to the generalizability
of our experimental results. Because Python and Java are
the most popular programming languages, we only use
the commits from top-10K Python and Java repositories in
GitHub to construct our datasets. But we believe it is not dif-
ficult to support other languages based on the approach we
propose. Our model is not specifically designed for Python
and Java languages. The experimental results in Section 5.4
on different language datasets also show that TDREMINDER
is language-independent. In order to mitigate these threats,
we will collect more data consisting of commits written in
various programming languages and try to investigate our
approach with such extended data.

The second key threat to external validity is that we
removed the diffs which contain multiple TODO comments,
following the approach of Gao et al. [16]. This was because
such commits are often comment updates and will intro-
duce noise into our datasets. Therefore, if TDREMINDER
encounters commits with multiple TODO comments in the
real-world scenario, our method may not work. In the
future, we will try to overcome this shortcoming and make
TDREMINDER a more universal tool.

Another key threat to external validity relates to the
diverse practices of annotation in software development.
Developers and development teams vary widely in their use
of TODO comments. Some open-source software projects,
for instance, prohibit contributors from submitting code
with TODO comments [70]. Some developers believe that
issue trackers are the appropriate place for TODOs, rather
than embedding them in the source code [71]. Contrarily,
research by Storey et al. [1] indicates that other developers
find it is costly to add TODO comments to issue trackers.
They tend to directly insert descriptions of subtasks into
source code in the form of Technical Debt. During our
data collection, we found that only 54.7% of the Python
repositories and 30.9% of the Java repositories contained
TODO/FIXME/XXX comments. It is clear that these lim-
itations on writing Technical Debt significantly affect the
comprehensiveness of our dataset. This resulted in over
half of the total 20,000 projects we collected being excluded.
Nevertheless, TDREMINDER still outperforms the baselines
on both intra-project and inter-project datasets. The lack of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 16

some data does not significantly damage the performance
of TDREMINDER. In terms of the actual impact of tools on
developers, our user study shows that our tool can help
them more accurately and quickly detect suboptimal im-
plementations, thereby improving development efficiency
and code quality. To further mitigate this in the future, we
plan to expand our training dataset to include small-size
repositories from GitHub and other open-source platforms.

Additionally, the filtering out of FIXME/XXX comments
may also introduce a key threat to the external validity. The
primary reasons for the filtering include that the different
types of comments are associated with different content of
code changes, and the quantity of FIXME/XXX comments
is much lower compared to TODO comments. We have col-
lected a large range of open-source repositories to increase
the scale and variety of our data, and the experimental
results have demonstrated the good performance of our
model. However, this filtering operation may still limit the
generalizability of our model. In the future, we plan to
further investigate the real roles and practical characteristics
of comments with different tags in software repositories.
This will also facilitate our work on generalizing the model
to handle different suboptimal implementation.
Threats to construct validity relate to suitability of our eval-
uation metric selection. We use AUC and cost-effectiveness
to evaluate the effectiveness of our approach and baselines
in our experiments. The dataset is highly imbalanced in
this task. Thus the selection of evaluation metrics needs
to be class distribution and threshold independent. The
traditional metrics like recall and precision is not suitable for
this situation. We pay more attention to the comprehensive
performance of the model. AUC and cost-effectiveness are
widely used in many past software engineering studies [55],
[56], [52], [72], [13].

Another threat to construct validity relates to the user
study in Section 6. We cannot guarantee that all participants’
answers are given under the same evaluation criteria. Par-
ticipants’ programming experiences will also lead to their
different understanding of the code. To mitigate this threat,
we trained the participants and provided detailed examples
and tutorials for them. We evaluated each case with 20
experienced participants who were interested in intelligent
development tools, and they were provided with different
reference information. Additionally, we applied an attention
test to filter out participants who might blindly answer
questions or follow suggestions without thoughtful consid-
eration. We also introduced variable payment to encourage
participants to search for useful information and carefully
consider each question. Therefore, we believe that this threat
has been mitigated to a considerable extent. In the future, we
plan to develop a more intelligent tool and integrate it into
popular IDEs (such as Visual Studio Code) to attract a larger
number of experienced developers to evaluate our tool.

7.2 Implications for Practice

Understanding the context of code change: The proposed
tool TDREMINDER is designed to detect missing TODO
comments on change-level. TDREMINDER reduces a lot of
effort to figure out which source file TODO comments need
to be added. When these valuable contexts are provided

to developers, they will be able to quickly locate the code
snippets that need to be changed, and introduce TODO
comments or further optimize the code implementation.
As detailed in Section 7.1, the annotation practices among
developers vary considerably. Based on the context, such
as personal development, peer collaboration, or community
involvement, developers may choose different strategies on
using TODO comments. Some might even opt not to include
TODO annotations in their code changes. While developers
may not add TODO comments in some situations, our tool
can still alert them to the presence of suboptimal code im-
plementations and encourage them to improve code quality.
Developers can also improve their development habits in
this process, so as to make the software system develop
healthily.
Ensuring comprehensive and timely inspections: Devel-
opers utilize TODO comments as reminders for them-
selves or teammates regarding code modifications. Using
TDREMINDER, some missing TODO comments will be able
to be added to the appropriate position in time. This ensures
that some suboptimal code implementations are identified
and valued by developers as much as possible. However,
it is frequently observed that while TODO comments are
added, they aren’t addressed in time and sometimes are
even overlooked. Many TODO comments are never for-
mally migrated to change requests and remain obscured
within the codebase for prolonged periods [1]. For such
cases, the added TODO failed in their primary role to re-
mind themselves or anyone else to actually update the code.
Therefore, for software development practice, it is better to
provide a mechanism to ensure that developers can revisit
the unfinished TODO tasks in time. For instance, raising an
error or exception when the associated class or function is
loaded can serve as an effective reminder. In this way, TODO
comments are not only added when necessary but also
revisited and resolved at crucial stages in the development
cycle. This allows the full value of TODO comments to be
realized.

7.3 Implications for Research

For the task of TODO-missed commits detection,
TDREMINDER has achieved promising performance
on our large real-world Java and Python datasets. There
are still some work we can do to further improve our
approach. For example, one of the key problems is that we
lack the context of the various libraries used in the project.
If TDREMINDER could obtain some knowledge about the
libraries, our approach may has the ability to know the
relative risks of some API calls and remind developers to
modify them in the future. Besides, other features about
the code changes are also factors that can be considered in
future methods. We could combine the change features (i.e.,
distribution of modified code across each file, number of
modified subsystems and files, number of unique changes
to the modified files before) in TDREMINDER and study the
effect of various features on this task.

TODO comments are widely used in software devel-
opment, and the life cycle of TODO comments involve
many challenges, e.g., where-TODO, what-TODO, and how-
TODO. For example, as mentioned above, revisiting and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 17

fixing the unfinished TODO comments (relevant to how-
TODO) is meaningful and useful for developers. Our work
of identifying TODO-missed commits first investigates the
possibility of solving where-TODO tasks, which can benefit
other researchers to further explore what-TODO and how-
TODO tasks in the furture. This will make an important
contribution to the management of TODO comments and
suboptimal code implementations.

8 RELATED WORK

This section discusses the related work with respect to
TODO comments, SATD in software engineering as well as
the mining software commits.

8.1 TODO comments in SE
TODO comments are extensively used by software devel-
opers during software development, and previous studies
have investigated the practical usage of TODO comments in
software engineering tasks.

Storey et al. [1] explored how the task annotations (i.e.,
TODO comments) can be used to support the work practices
within the software development. They conducted a survey
of professional developers, and they found that TODO
comments make up a majority of the task annotations and
developers often write TODO comments to mark the part
of the source code which need their attention. Nie et al. [2]
surveyed the importance of improving and the maintenance
of TODO comments, and developed a framework to write
trigger-action TODO comments in executable format. Srid-
hara et al. [14] presented a technique to check the status
of the TODO comments, given a method associated with
a TODO comment, their approach automatically checks if
the TODO comment is up to date via using the information
retrieval, linguistics and semantics methods. Most recently,
Gao et al. [16] proposed a neural network based model,
named TDCleaner, to detect the obsolete TODO comments
from mining the commit histories of the software reposito-
ries. Wang et al. [73] investigated the quality characteristics
of TODO comments and the lifecycle of these comments
under varying quality conditions. Additionally, they devel-
oped a tool designed to differentiate TODO comments based
on their quality.

Different from the aforementioned studies, our work
focus on a novel task of detecting TODO-missed commit just-
in-time during software development. To the best of our
knowledge, this is the first research to exploit the possibility
of automating the determination of TODO-missed commit.

8.2 Self-admitted Technical Debt in SE
Technical debt (TD) refers to developers taking suboptimal
solutions to achieve short-term goals that may affect long-
term software quality [4], [5]. The impact of self-admitted
technical debt (SATD) on software development has gar-
nered significant attention. For example, Kamei et al. [74]
found that 42% to 44% of TD incurs positive interest by
analysing Apache JMeter project. Russo et al. [20] shows
that SATD contains many different weaknesses that may
affect the security of the project. Wehaibi et al. [5] noted
that while the presence of SATD often leads to complex

changes, code changes with SATD surprisingly introduce
fewer future defects compared to those without. This insight
underscores the long-term value of detecting suboptimal
implementations in minimizing code defects.

Prior works have investigated different ways to identify
TD through source code [75], [76], [77] as well as source
code comments [3], [78], [79], [74], [80]. Potdar et al. [3]
proposed the self-admitted technical debt (SATD) concept
(e.g., TODO, FIXME, and HACK) for the first time, which
refers to the TD introduced by a developer intentionally and
documented by source code comments. Huang et al. [79]
proposed text-mining based methods to predict whether a
comment contains SATD or not. Ren et al. [80] proposed
a CNN-based approach for classifying code comments as
SATD or non-SATD. Instead of detecting SATD at the file-
level, Yan et al. [13] first presented the idea of “change-level
SATD determination”, which determines whether a change
introduces SATD or not. More recently, Rungroj et al. [81]
presented an approach to detect the “on hold” SATD in
software repositories.

Some researchers have also been dedicated to the re-
moval of SATD [7], [8], [9], [10]. da Silva Maldonado et
al. [10] found that a significant portion of SATDs were
removed by the creators themselves. After studying the
relationship between SATD removal and code changes,
Zampetti et al. [7], [8] proposed a deep learning-based clas-
sifier SARDELE to recommend six different SATD removal
strategies. Liu et al. [9] analyzed the patterns in which
different types of SATD were introduced and removed by
investigating 7 deep learning projects.

In addition, there are also some works that focus on
different aspects of the SATD practice [70], [71], [82], [83].
For example, Fucci et al. [82] analyzed 5 Java open-source
projects and found that SATD was not necessarily in-
troduced by code changes, but could also be introduced
through code reviews by individuals with higher levels of
project ownership. Xavier et al. [83] studied the proportion
of SATDs solved in issue tracker systems and argued the
need for better SATD management tools. Zampetti et al. [71]
found that the admission level of SATD is similar in open-
source and industrial communities, and is constrained by
organizational guidelines. Cassee et al. [70] studied the
polarity of SATD content and the situations in which de-
velopers would highlight the importance of SATD.

In this research, we primarily focus on the TODO-related
commit for two main reasons. Firstly, the TODO comment is
one of the most common SATD, which makes up a majority
of the SATD. Secondly, aligned with our goal of assisting
developers in the identification of suboptimal commits just
in time, TODO-related commits often describe the func-
tionality that needs to be paid attention to, making them
particularly relevant for our investigation.

8.3 Mining software commits

Software development process generates a huge amounts of
commits, and these commits are valuable resources during
the software evolution. Prior works have investigated differ-
ent software engineering tasks from mining these commits.

For example, Rosen et al. [84] presented a tool, named
Commit Guru, to identify the risky software commits. Jiang

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 18

et al. [33] adapted the neural machine translation techniques
to the task of commit message generation. They presented a
tool to automatically translate diff into commit messages.
Following this work, Wang et al. [34] extended this re-
search by training a context-aware encoder-decoder model
for commit message generation. Liu et al. [85] proposed
an approach to automatically generate descriptions for a
pull request by considering the commit messages and code
comments. Yan et al. [86] developed a two-phase frame-
work to perform the defect identification and localization
by exploring a total of 177K code changes during software
development.

Different from the existing research, our research targets
a novel commits related software engineering task, i.e.,
identifying the TODO-missed commit by mining the accumu-
lated software commits histories. We have released the first
dataset for this task to facilitate other researchers to extend
our work and verify their own ideas.

9 CONCLUSION AND FUTURE WORK

In this paper, we aim to automatically identify the TODO-
missed commits whenever the developers submit code
change. The novel approach named TDREMINDER (TODO
comment Reminder) is proposed to detect TODO-missed
commits and remind developers of the suboptimal changes.
Our approach leverages both information contained in code
changes and also the knowledge in commit messages to
improve the effectiveness of TDREMINDER. Furthermore,
the focal loss is employed to strengthen the model learning
ability of hard, misclassified samples. In order to evalu-
ate our approach, we build Python and Java datasets by
collecting data from the top-10k Python and Java repos-
itories in GitHub, respectively. Extensive experiments on
the large-scale real-world datasets have demonstrated the
effectiveness and performance of our approach. We believe
that TDREMINDER will help developers better manage the
potential risk of commits and thus improve the quality
of software. We have made the code for our approach
and datasets publicly available for community research. We
plan to evaluate our TDREMINDER on commits written
in other programming languages. We also plan to explore
better characterization technique for commits and incorpo-
rate more knowledge about commits to further improve
the performance. Finally, we will incorporate it into an IDE
plugin and further gather developers’ feedback in the wild.

ACKNOWLEDGEMENTS

This research is partially supported by the National Nat-
ural Science Foundation of China (No. 62302430 and No.
62202341), Zhejiang Provincial Natural Science Foundation
of China (No. LQ24F020017), Zhejiang Province “JianBin-
gLingYan+X” Research, the Starry Night Science Fund of
Zhejiang University Shanghai Institute for Advanced Study
(Grant No. SN-ZJU-SIAS-001), and Shanghai Sailing Pro-
gram (23YF1446900). Grundy is supported by ARC Laureate
Fellowship FL190100035. This work is also supported by the
National Research Foundation, under its Investigatorship
Grant (NRF-NRFI08-2022-0002). Any opinions, findings and
conclusions or recommendations expressed in this material

are those of the author(s) and do not reflect the views of
National Research Foundation, Singapore.

This work is supported by Zhejiang Provincial Engi-
neering Research Center for Real-Time SmartTech in Urban
Security Governance. The numerical calculations in this
paper have been done on the supercomputing system in the
Supercomputing Center of Hangzhou City University.

REFERENCES

[1] Margaret-Anne Storey, Jody Ryall, R Ian Bull, Del Myers, and
Janice Singer. Todo or to bug. In 2008 ACM/IEEE 30th International
Conference on Software Engineering, pages 251–260. IEEE, 2008.

[2] Pengyu Nie, Rishabh Rai, Junyi Jessy Li, Sarfraz Khurshid, Ray-
mond J Mooney, and Milos Gligoric. A framework for writing
trigger-action todo comments in executable format. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
pages 385–396, 2019.

[3] Aniket Potdar and Emad Shihab. An exploratory study on self-
admitted technical debt. In 2014 IEEE International Conference on
Software Maintenance and Evolution, pages 91–100. IEEE, 2014.

[4] Zengyang Li, Paris Avgeriou, and Peng Liang. A systematic
mapping study on technical debt and its management. Journal
of Systems and Software, 101:193–220, 2015.

[5] Sultan Wehaibi, Emad Shihab, and Latifa Guerrouj. Examining the
impact of self-admitted technical debt on software quality. In 2016
IEEE 23Rd international conference on software analysis, evolution, and
reengineering (SANER), volume 1, pages 179–188. IEEE, 2016.

[6] Annie TT Ying, James L Wright, and Steven Abrams. Source
code that talks: an exploration of eclipse task comments and
their implication to repository mining. ACM SIGSOFT software
engineering notes, 30(4):1–5, 2005.

[7] Fiorella Zampetti, Alexander Serebrenik, and Massimiliano
Di Penta. Was self-admitted technical debt removal a real removal?
an in-depth perspective. In Proceedings of the 15th international
conference on mining software repositories, pages 526–536, 2018.

[8] Fiorella Zampetti, Alexander Serebrenik, and Massimiliano
Di Penta. Automatically learning patterns for self-admitted tech-
nical debt removal. In 2020 IEEE 27th International conference on
software analysis, evolution and reengineering (SANER), pages 355–
366. IEEE, 2020.

[9] Jiakun Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and
Shanping Li. An exploratory study on the introduction and
removal of different types of technical debt in deep learning
frameworks. Empirical Software Engineering, 26:1–36, 2021.

[10] Everton da S Maldonado, Rabe Abdalkareem, Emad Shihab, and
Alexander Serebrenik. An empirical study on the removal of self-
admitted technical debt. In 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 238–248. IEEE,
2017.

[11] Pengyu Nie, Junyi Jessy Li, Sarfraz Khurshid, Raymond Mooney,
and Milos Gligoric. Natural language processing and program
analysis for supporting todo comments as software evolves. In
Workshops at the Thirty-Second AAAI Conference on Artificial Intelli-
gence, 2018.

[12] Dorsaf Haouari, Houari Sahraoui, and Philippe Langlais. How
good is your comment? a study of comments in java programs. In
2011 International Symposium on Empirical Software Engineering and
Measurement, pages 137–146. IEEE, 2011.

[13] Meng Yan, Xin Xia, Emad Shihab, David Lo, Jianwei Yin, and
Xiaohu Yang. Automating change-level self-admitted technical
debt determination. IEEE Transactions on Software Engineering,
45(12):1211–1229, 2018.

[14] Giriprasad Sridhara. Automatically detecting the up-to-date status
of todo comments in java programs. In Proceedings of the 9th India
Software Engineering Conference, pages 16–25, 2016.

[15] Innobuilt Software LLC. All your todo comments in one place.
https://imdone.io, 2019.

[16] Zhipeng Gao, Xin Xia, David Lo, John Grundy, and Thomas Zim-
mermann. Automating the removal of obsolete todo comments.
arXiv preprint arXiv:2108.05846, 2021.

[17] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng
Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang,
et al. Codebert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155, 2020.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 19

[18] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr
Dollár. Focal loss for dense object detection. In Proceedings of the
IEEE international conference on computer vision, pages 2980–2988,
2017.

[19] Tdreminder. https://doi.org/10.5281/zenodo.5402956, 2023.
[20] Barbara Russo, Matteo Camilli, and Moritz Mock. Weaksatd:

Detecting weak self-admitted technical debt. In Proceedings of the
19th International Conference on Mining Software Repositories, pages
448–453, 2022.

[21] Basma S Alqadi and Jonathan I Maletic. An empirical study of
debugging patterns among novices programmers. In Proceedings
of the 2017 ACM SIGCSE technical symposium on computer science
education, pages 15–20, 2017.

[22] Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, and An-
dreas Zeller. How long will it take to fix this bug? In Fourth
International Workshop on Mining Software Repositories (MSR’07:
ICSE Workshops 2007), pages 1–1. IEEE, 2007.

[23] Francesco Lomio, Emanuele Iannone, Andrea De Lucia, Fabio
Palomba, and Valentina Lenarduzzi. Just-in-time software vulner-
ability detection: Are we there yet? Journal of Systems and Software,
188:111283, 2022.

[24] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Ef-
ficient estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781, 2013.

[25] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. Pretrained
transformers for text ranking: Bert and beyond. arXiv preprint
arXiv:2010.06467, 2020.

[26] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie
Liu, Long Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu,
et al. Graphcodebert: Pre-training code representations with data
flow. arXiv preprint arXiv:2009.08366, 2020.

[27] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu
Tang, Neel Sundaresan, Ming Zhou, Ambrosio Blanco, and Shuai
Ma. Codebleu: a method for automatic evaluation of code synthe-
sis. arXiv preprint arXiv:2009.10297, 2020.

[28] Jinfeng Lin, Yalin Liu, Qingkai Zeng, Meng Jiang, and Jane
Cleland-Huang. Traceability transformed: Generating more ac-
curate links with pre-trained bert models. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), pages 324–
335. IEEE, 2021.

[29] Maryam Vahdat Pour, Zhuo Li, Lei Ma, and Hadi Hemmati.
A search-based testing framework for deep neural networks of
source code embedding. In 2021 14th IEEE Conference on Software
Testing, Verification and Validation (ICST), pages 36–46. IEEE, 2021.

[30] Yoon Kim. Convolutional neural networks for sentence classifica-
tion. arXiv preprint arXiv:1408.5882, 2014.

[31] Philip Mayer and Alexander Bauer. An empirical analysis of the
utilization of multiple programming languages in open source
projects. In Proceedings of the 19th International Conference on
Evaluation and Assessment in Software Engineering, pages 1–10, 2015.

[32] Philip Mayer, Michael Kirsch, and Minh Anh Le. On multi-
language software development, cross-language links and ac-
companying tools: a survey of professional software developers.
Journal of Software Engineering Research and Development, 5:1–33,
2017.

[33] Siyuan Jiang, Ameer Armaly, and Collin McMillan. Automatically
generating commit messages from diffs using neural machine
translation. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 135–146. IEEE, 2017.

[34] Haoye Wang, Xin Xia, David Lo, Qiang He, Xinyu Wang, and
John Grundy. Context-aware retrieval-based deep commit mes-
sage generation. ACM Transactions on Software Engineering and
Methodology (TOSEM), 30(4):1–30, 2021.

[35] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun
Kim. Deep api learning. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, pages 631–642, 2016.

[36] Python developer’s guide. https://peps.python.org/pep-0350/,
2023.

[37] Zhaoqiang Guo, Shiran Liu, Jinping Liu, Yanhui Li, Lin Chen,
Hongmin Lu, and Yuming Zhou. How far have we progressed
in identifying self-admitted technical debts? a comprehensive
empirical study. ACM Transactions on Software Engineering and
Methodology (TOSEM), 30(4):1–56, 2021.

[38] Cong Chen, Kang Zhang, and Takayuki Itoh. Empirical evidence
of tags supporting high-level awareness. In Cooperative Design,
Visualization, and Engineering: 9th International Conference, CDVE
2012, Osaka, Japan, September 2-5, 2012. Proceedings 9, pages 94–101.
Springer, 2012.

[39] Ming Tan, Lin Tan, Sashank Dara, and Caleb Mayeux. Online
defect prediction for imbalanced data. In 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, volume 2,
pages 99–108. IEEE, 2015.

[40] Naufal Azmi Verdikha, Teguh Bharata Adji, and Adhistya Erna
Permanasari. Study of undersampling method: Instance hardness
threshold with various estimators for hate speech classification.
IJITEE (International Journal of Information Technology and Electrical
Engineering), 2(2):39–44, 2018.

[41] Supatsara Wattanakriengkrai, Napat Srisermphoak, Sahawat Sin-
toplertchaikul, Morakot Choetkiertikul, Chaiyong Ragkhitwet-
sagul, Thanwadee Sunetnanta, Hideaki Hata, and Kenichi Mat-
sumoto. Automatic classifying self-admitted technical debt using
n-gram idf. In 2019 26th Asia-Pacific Software Engineering Conference
(APSEC), pages 316–322. IEEE, 2019.

[42] Kwabena Ebo Bennin, Jacky W Keung, and Akito Monden. On the
relative value of data resampling approaches for software defect
prediction. Empirical Software Engineering, 24(2):602–636, 2019.

[43] Alexander LeClair and Collin McMillan. Recommendations for
datasets for source code summarization. In Proceedings of the
2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 3931–3937, 2019.

[44] Xin Xia, Emad Shihab, Yasutaka Kamei, David Lo, and Xinyu
Wang. Predicting crashing releases of mobile applications. In Pro-
ceedings of the 10th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, pages 1–10, 2016.

[45] Zhong Li, Minxue Pan, Yu Pei, Tian Zhang, Linzhang Wang, and
Xuandong Li. Empirically revisiting and enhancing automatic
classification of bug and non-bug issues. Frontiers of Computer
Science, 18(5):1–20, 2024.

[46] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[47] Yue Jiang, Bojan Cukic, and Yan Ma. Techniques for evaluating

fault prediction models. Empirical Software Engineering, 13(5):561–
595, 2008.

[48] Chris Mills, Gabriele Bavota, Sonia Haiduc, Rocco Oliveto, An-
drian Marcus, and Andrea De Lucia. Predicting query quality for
applications of text retrieval to software engineering tasks. ACM
Transactions on Software Engineering and Methodology (TOSEM),
26(1):1–45, 2017.

[49] Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, and
Aditya Ghose. Predicting delays in software projects using net-
worked classification (t). In 2015 30th IEEE/ACM international
conference on automated software engineering (ASE), pages 353–364.
IEEE, 2015.

[50] Ilya Loshchilov and Frank Hutter. Fixing weight decay regular-
ization in adam. 2018.

[51] Jaechang Nam and Sunghun Kim. Clami: Defect prediction on
unlabeled datasets (t). In 2015 30th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pages 452–463. IEEE,
2015.

[52] Yibiao Yang, Yuming Zhou, Jinping Liu, Yangyang Zhao, Hong-
min Lu, Lei Xu, Baowen Xu, and Hareton Leung. Effort-aware
just-in-time defect prediction: simple unsupervised models could
be better than supervised models. In Proceedings of the 2016 24th
ACM SIGSOFT international symposium on foundations of software
engineering, pages 157–168, 2016.

[53] Stefan Lessmann, Bart Baesens, Christophe Mues, and Swantje
Pietsch. Benchmarking classification models for software defect
prediction: A proposed framework and novel findings. IEEE
Transactions on Software Engineering, 34(4):485–496, 2008.

[54] Andrew P Bradley. The use of the area under the roc curve in
the evaluation of machine learning algorithms. Pattern recognition,
30(7):1145–1159, 1997.

[55] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E Hassan,
Audris Mockus, Anand Sinha, and Naoyasu Ubayashi. A large-
scale empirical study of just-in-time quality assurance. IEEE
Transactions on Software Engineering, 39(6):757–773, 2012.

[56] Tian Jiang, Lin Tan, and Sunghun Kim. Personalized defect
prediction. In 2013 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 279–289. Ieee, 2013.

[57] Kawin Ethayarajh. How contextual are contextualized word
representations? comparing the geometry of bert, elmo, and gpt-2
embeddings. arXiv preprint arXiv:1909.00512, 2019.

[58] Anjan Karmakar and Romain Robbes. Inspect: Intrinsic and
systematic probing evaluation for code transformers. IEEE Trans-
actions on Software Engineering, 2023.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 20

[59] Hongxin Li, Jingran Su, Yuntao Chen, Qing Li, and ZHAO-XIANG
ZHANG. Sheetcopilot: Bringing software productivity to the
next level through large language models. Advances in Neural
Information Processing Systems, 36, 2024.

[60] Zhiyuan Wan, Lingfeng Bao, Debin Gao, Eran Toch, Xin Xia, Tamir
Mendel, and David Lo. Appmod: Helping older adults manage
mobile security with online social help. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, 3(4):1–22,
2019.

[61] Franki YH Kung, Navio Kwok, and Douglas J Brown. Are atten-
tion check questions a threat to scale validity? Applied Psychology,
67(2):264–283, 2018.

[62] Emerson Murphy-Hill, Ciera Jaspan, Caitlin Sadowski, David
Shepherd, Michael Phillips, Collin Winter, Andrea Knight, Edward
Smith, and Matthew Jorde. What predicts software developers’
productivity? IEEE Transactions on Software Engineering, 47(3):582–
594, 2019.

[63] Anastasia Danilova, Alena Naiakshina, Stefan Horstmann, and
Matthew Smith. Do you really code? designing and evaluating
screening questions for online surveys with programmers. In 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), pages 537–548. IEEE, 2021.

[64] Ita Ryan, Utz Roedig, and Klaas-Jan Stol. Measuring secure coding
practice and culture: A finger pointing at the moon is not the
moon. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pages 1622–1634. IEEE, 2023.

[65] Henry B Mann and Donald R Whitney. On a test of whether one
of two random variables is stochastically larger than the other. The
annals of mathematical statistics, pages 50–60, 1947.

[66] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan,
Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen Wang. Retrieval-
augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

[67] Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian
Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie Callan, and Graham
Neubig. Active retrieval augmented generation. arXiv preprint
arXiv:2305.06983, 2023.

[68] Noor Nashid, Mifta Sintaha, and Ali Mesbah. Retrieval-based
prompt selection for code-related few-shot learning. In Proceedings
of the 45th International Conference on Software Engineering (ICSE’23),
2023.

[69] The replicate package. scikit-learn. https://scikit-learn.org/
stable/, 2021.

[70] Nathan Cassee, Fiorella Zampetti, Nicole Novielli, Alexander
Serebrenik, and Massimiliano Di Penta. Self-admitted technical
debt and comments’ polarity: an empirical study. Empirical Soft-
ware Engineering, 27(6):139, 2022.

[71] Fiorella Zampetti, Gianmarco Fucci, Alexander Serebrenik, and
Massimiliano Di Penta. Self-admitted technical debt practices: a
comparison between industry and open-source. Empirical Software
Engineering, 26:1–32, 2021.

[72] Chao Ni, Xin Xia, David Lo, Xiang Chen, and Qing Gu. Revisiting
supervised and unsupervised methods for effort-aware cross-
project defect prediction. IEEE Transactions on Software Engineering,
2020.

[73] Haoye Wang, Zhipeng Gao, Tingting Bi, John Grundy, Xinyu
Wang, Minghui Wu, and Xiaohu Yang. What makes a good todo
comment? ACM Trans. Softw. Eng. Methodol., 2024.

[74] Yasutaka Kamei, Everton da S Maldonado, Emad Shihab, and
Naoyasu Ubayashi. Using analytics to quantify interest of self-
admitted technical debt. In QuASoQ/TDA@ APSEC, pages 68–71,
2016.

[75] Nico Zazworka, Michele A Shaw, Forrest Shull, and Carolyn
Seaman. Investigating the impact of design debt on software
quality. In Proceedings of the 2nd Workshop on Managing Technical
Debt, pages 17–23, 2011.

[76] Robert L Nord, Ipek Ozkaya, Philippe Kruchten, and Marco
Gonzalez-Rojas. In search of a metric for managing architectural
technical debt. In 2012 Joint Working IEEE/IFIP Conference on Soft-
ware Architecture and European Conference on Software Architecture,
pages 91–100. IEEE, 2012.

[77] Nico Zazworka, Rodrigo O Spı́nola, Antonio Vetro’, Forrest Shull,
and Carolyn Seaman. A case study on effectively identifying
technical debt. In Proceedings of the 17th International Conference
on Evaluation and Assessment in Software Engineering, pages 42–47,
2013.

[78] Everton da S Maldonado and Emad Shihab. Detecting and
quantifying different types of self-admitted technical debt. In 2015
IEEE 7Th international workshop on managing technical debt (MTD),
pages 9–15. IEEE, 2015.

[79] Qiao Huang, Emad Shihab, Xin Xia, David Lo, and Shanping Li.
Identifying self-admitted technical debt in open source projects
using text mining. Empirical Software Engineering, 23(1):418–451,
2018.

[80] Xiaoxue Ren, Zhenchang Xing, Xin Xia, David Lo, Xinyu Wang,
and John Grundy. Neural network-based detection of self-
admitted technical debt: From performance to explainability.
ACM transactions on software engineering and methodology (TOSEM),
28(3):1–45, 2019.

[81] Rungroj Maipradit, Christoph Treude, Hideaki Hata, and Kenichi
Matsumoto. Wait for it: identifying “on-hold” self-admitted tech-
nical debt. Empirical Software Engineering, 25(5):3770–3798, 2020.

[82] Gianmarco Fucci, Fiorella Zampetti, Alexander Serebrenik, and
Massimiliano Di Penta. Who (self) admits technical debt? In 2020
IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 672–676. IEEE, 2020.

[83] Laerte Xavier, Fabio Ferreira, Rodrigo Brito, and Marco Tulio
Valente. Beyond the code: Mining self-admitted technical debt
in issue tracker systems. In Proceedings of the 17th international
conference on mining software repositories, pages 137–146, 2020.

[84] Christoffer Rosen, Ben Grawi, and Emad Shihab. Commit guru:
analytics and risk prediction of software commits. In Proceedings
of the 2015 10th joint meeting on foundations of software engineering,
pages 966–969, 2015.

[85] Zhongxin Liu, Xin Xia, Christoph Treude, David Lo, and Shan-
ping Li. Automatic generation of pull request descriptions. In
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 176–188. IEEE, 2019.

[86] Meng Yan, Xin Xia, Yuanrui Fan, Ahmed E Hassan, David Lo, and
Shanping Li. Just-in-time defect identification and localization: A
two-phase framework. IEEE Transactions on Software Engineering,
2020.

