
TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

APIMatchmaker: Matching the Right APIs for
Supporting the Development of Android Apps

Yanjie Zhao, Li Li, Haoyu Wang, Qiang He, and John Grundy

Abstract—Android developers are often faced with the need to learn how to use different APIs suitable for their projects. Automated
API recommendation approaches have been invented to help fill this gap, and these have been demonstrated to be useful to some
extent. Unfortunately, most state-of-the-art works are not proposed for Android developers, and the ones dedicated to Android app
development often suffer from high redundancy and poor run-time performance, or do not target the problem of recommending API
usage patterns. To address this gap we propose to the community a new tool, namely APIMatchmaker, to recommend API usages by
learning directly from similar real-world Android apps. Unlike existing recommendation approaches, which leverage a single context to
find similar projects, we innovatively introduce a multi-dimensional, context-aware, collaborative filtering approach to better achieve the
purpose. Specifically, in addition to code similarity, we also take app descriptions (or topics) into consideration to ensure that similar
apps also provide similar functions. We evaluate APIMatchmaker on a large number of real-world Android apps and observe that
APIMatchmaker yields a high success rate in recommending APIs for Android apps under development, and it is also able to
outperform the state-of-the-art.

Index Terms—Android, API, Recommendation, Collaborative Filtering, APIMatchmaker.

✦

1 INTRODUCTION

THE software community has invented powerful IDEs
(Integrated Development Environment) featuring com-

prehensive facilities, such as automatic code completion,
to help developers better manage their software projects.
The community has also made available a diversified set
of libraries that offer Application Programming Interfaces
(APIs) incorporating readily reusable function implementa-
tions. Developers can hence directly embed these libraries,
instead of developing the same functions from scratch, to
facilitate the development of their software applications.

Being able to provide readily reusable functions, APIs
have become one of the most important components in
modern software development. Our community hence has
provided hundreds of thousands of software libraries, in-
cluding APIs ranging from navigating maps, supporting
security, using device features, and processing images and
voice, etc. to scanning for malicious software packages.
However, while the large number of existing libraries pro-
vide convenience for experienced developers to implement
software quickly, they also introduce significant burdens to
developers. This is because they need to constantly spend
significant time to learn the usage of each new APIs in
detail to correctly deploy it. As argued by Robillard, some
APIs are hard to learn, even for professional developers
working at large software companies such as Microsoft [1].

• Yanjie Zhao, Li Li, John Grundy are with the Faculty of Information
Technology, Monash University, Australia

• Haoyu Wang is with School of Computer Science, Beijing University of
Posts and Telecommunications, China

• Qiang He is with Faculty of Science, Engineering and Technology Swin-
burne University of Technology, Australia

Manuscript accepted 16 Jan 2022

Some have shown developers even spend up to 19% of their
programming time on the internet to search for source code,
especially API usage examples [2].

To mitigate this, much research effort has been spent to
automatically recommend appropriate APIs and their usage
patterns [3], [4], [5], [6], [7]. For example, Niu et al. [3] have
proposed a clustering-based approach, which leverages the
co-existence relations between object usages, to recommend
API usages. Nguyen et al. [5] propose an approach lever-
aging predictive models such as Hidden Markov Model to
recommend API usages. Gu et al. [6] and Kim et al. [7]
propose to learn API usages from similar code examples
through code search.

Unfortunately, most of the state-of-the-art works are
either not targeted to Android developers, the main focus
of our work, or are implemented based on techniques such
as clustering or traditional predictive models that come
with a number of drawbacks. Indeed, for the former case,
existing works cannot be easily adapted to recommend
APIs for Android developers because particular features
need to be specifically fulfilled when developing Android
apps [8], [9]. For example, since the Android framework
evolves rapidly, it is non-trivial to develop Android apps
supporting all the historically released framework versions,
which nevertheless could still be used in outdated devices.
To this end, developers usually develop apps targeting only
a small range of Android frameworks (e.g., by specifying
the minimal, targeted, and maximum SDK version the app
is designed to support) rather than all the historical frame-
works. As a result, when recommending APIs to Android
app developers, the range of supported SDK versions need
to be considered so as to recommend usable APIs. For
the latter case, clustering-based approaches, which use the
frequency of patterns to achieve recommendations, has been
demonstrated to be inefficient as frequent patterns are often

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

uninteresting patterns1, as demonstrated by Fowkes et al. [4].
Predictive model-based approaches often require users to
manually label a training dataset and prepare features for
learning, which are known to be time-intensive and prone
to errors. Furthermore, as argued by Nguyen et al. [11],
the existing pattern recommendation approaches also suffer
from high redundancy and poor run-time performance.

To cope with these limitations, we propose a method for
learning and recommending Android API usage patterns,
based on concepts emerging from Collaborative-Filtering
(CF) recommendation systems. These systems have been
leveraged to recommend items for users to purchase. The
recommendation is made by selecting items that have been
bought by similar users in similar contexts. One core re-
quirement to incorporate collaborative-filtering for recom-
mendation is to assess the similarity of customers. As rec-
ommended by Nguyen et al. [11], the projects that are highly
similar to the project under development should provide
higher quality patterns than those of dissimilar ones.

In the context of recommending Android API usages,
by considering the method intended to use them, i.e., the
client code as "customers" and API methods as "products",
the API recommendation problem can be reformulated as
“which API methods should the client code invoke in order to
complete the method under editing, taking into account the fact
that some APIs have already been invoked by the client code?”
Specifically, for the app under development, we would like
to learn API usages from such apps that are most similar to
it, so as to preferentially recommend APIs that are conjointly
used by those similar apps.

Unlike existing approaches, which leverage code imple-
mentations to locate similar projects, in this work, we also
consider app topics (which need to be provided by app
developers), in addition to the pure code implementations.
The rationale behind this is that apps implementing the
same topics tend to share similar high-level features, indicat-
ing likely similar (or even the same) code implementations.
To this end, on top of the traditional collaborative-filtering
algorithm, we propose a multi-dimensional context-aware
collaborative-filtering approach to support the implementa-
tion of API recommenders for Android app development.

In this work, we were inspired by the FOCUS ap-
proach [11], [12], which was initially designed to learn
from code snippets to recommend API usages for Java.
The FOCUS authors have recently extended their initial
implementation to further support the development of
Android apps. They achieved this by directly converting
Android apps code to Java code so as to be able to reuse
the original Java-focused design. This indirect support has,
however, overlooked some Android-specific features as they
are not available in general Java applications. Our approach
is designed to support the development of Android apps
and hence has explicitly addressed those Android-specific
features.

We design and implement a prototype API recommen-
dation system called APIMatchmaker to support the devel-
opment of Android apps. Since Android apps come with
many different features compared to general Java applica-
tions, APIMatchmaker goes beyond the FOCUS approach by

1. This problem is well known in the data mining literature [10].

leveraging two-dimensional data (i.e., code implementation
and app topic) to locate similar Android apps for learning
and recommending API usages. We take into account both
Android framework APIs and third-party library APIs. For
the sake of simplicity, in this work, we will refer to both of
them as Android APIs. Furthermore, due to the huge frag-
mentation issue (e.g., because of the Android framework’s
fast evolution), i.e., different Android apps may access dif-
ferent Android framework versions as each of them might
contain a slightly different set of APIs, APIMatchmaker also
takes this into account when recommending APIs.

With 12,000 real-world Android apps downloaded from
AndroZoo [13] (their descriptions are directly crawled from
Google Play), we experimentally demonstrate that our ap-
proach is effective and useful in recommending API usages
to Android developers. APIMatchmaker achieves over 80%
(or even 90%) of the success rate at Result@20 and can out-
perform the state-of-the-art approach as well as a baseline
approach. The performance of APIMatchmaker can be even
higher if the development of the active project is at a later
stage, or increasing the size of the training app dataset, or by
varying the customizable parameters provided by the tool.
We make the following key contributions:

• we introduce to the community a new multi-
dimensional context-aware collaborative filtering ap-
proach to better locate the most similar apps to support
the recommendation;

• we design and implement a prototype tool called API-
Matchmaker, which takes as input a method under edit-
ing and outputs a list of APIs (and their usage samples)
meeting the constraints of the SDK versions that could
be leveraged to complete the implementation of the
method; and

• we evaluate our approach on 12,000 real-world An-
droid apps under different experimental settings. Ex-
perimental results show that our approach is promising
in recommending API usages to Android app develop-
ers.

The rest of this paper is organized as follows: Section 2
presents a motivating example attempting to help read-
ers better understand the problem targeted in this work.
Section 3 then details the design and implementation of
our approach, namely APIMatchmaker. Next, we present
the experimental setup and the evaluation results of our
approach in Section 4 and Section 5, respectively. After
that, we discuss the sensitivity of our approach concerning
several aspects in Section 6. Finally, Section 7 discusses
related work, and Section 8 concludes this paper.

2 MOTIVATING EXAMPLE

The typical usage scenario of our work is to recommend
APIs, including their usages to app developers who are
actively implementing an Android app. The developer
might have already completed the development of some
methods and is now halfway through finishing the method
under editing (hereafter referred to as the "active method").
Fig. 1 illustrates such an example (extracted from app
com.appsfreeinc.zebra.sounds, hereinafter referred to as the
"active app project"). The active method (i.e., a()) is divided
into two parts. The first part (lines 2-7) presents the code

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

private	static	void	a(Context	context,	File	file,	String	str,	int	i)	{
								if	(context	!=	null	&&	file	!=	null)	{
												String	absolutePath	=	file.getAbsolutePath();
												ContentValues	contentValues	=	new	ContentValues();
												contentValues.put("_data",	absolutePath);
												...
												contentValues.put("_size",	Long.valueOf(file.length()));
																			
												Uri	contentUriForPath	=	MediaStore.Audio.Media.getContentUriForPath(absolutePath);
												context.getContentResolver().delete(contentUriForPath,	"_data=\""	+	absolutePath	+	"\"",	(String[])	null);
												RingtoneManager.setActualDefaultRingtoneUri(context,	i,	context.getContentResolver().insert(contentUriForPath,	contentValues));

								}
}

1
2
3
4
5
6
7

8
9
10

11
12

Fig. 1: Code snippet extracted from app com.appsfreeinc.zebra.sounds (A Zebra sound player).

Training Set

APP B APP C
Part of the API calls from Method

 "<com.andromo.dev137436.app236697.AudioService: void e(...)>"

1. <android.net.wifi.WifiManager$WifiLock: boolean isHeld()>.
2. <android.net.wifi.WifiManager$WifiLock: void acquire()>
3. <android.net.wifi.WifiManager$WifiLock: void release()>
4. <android.content.Intent: android.content.Intent setAction(java.lang.String)>
5. <android.net.wifi.WifiManager$WifiLock: void setReferenceCounted(boolean)>
6. <android.content.Intent: android.content.Intent addCategory(java.lang.String)>
 ...

Part of the API calls from Method
 "<com.lahcenappsinc.drum.roll.sounds.SetRingtoneService: void a(...)>"

1. <android.provider.MediaStore$Audio$Media: android.net.Uri getContentUriForPath(...)>
2. <android.content.Context: android.content.ContentResolver getContentResolver()>
3. <android.content.ContentResolver: int delete(...)>
4. <android.content.ContentResolver: android.net.Uri insert(...)>
5. <android.media.RingtoneManager: void setActualDefaultRingtoneUri(...)>
 ...

Active method signature:
<com.appsfreeinc.zebra.sounds.SetRingtoneService:

void a(...)>

1. <android.content.ContentValues: void <init>
2. <android.content.ContentValues: void put(...)>
3. <java.io.File: long length()>
4. <java.lang.Long: java.lang.Long valueOf(...)>
 （being edited）

Avtice project A With topic:
1.<android.provider.MediaStore$Audio$Media:
android.net.Uri getContentUriForPath(...)>
2. <android.content.Context:
android.content.ContentResolver
getContentResolver()>
3. <android.content.ContentResolver:
android.net.Uri insert(...)>
4. <android.media.RingtoneManager: void
setActualDefaultRingtoneUri(...)>
5. <android.content.ContentResolver: int
delete(...)>

Default:
1. <android.net.wifi.WifiManager:
android.net.wifi.WifiManager$WifiLock
createWifiLock()>
2. <android.net.wifi.WifiManager$WifiLock:
void setReferenceCounted()>
3. <android.net.wifi.WifiManager$WifiLock:
boolean isHeld()>
4. <android.net.wifi.WifiManager$WifiLock:
void acquire()>
5. <android.net.wifi.WifiManager$WifiLock:
void release()>

Recommendation List

Fig. 2: The details of active project A (under development), APP B, and APP C .

that has just been completed by the developer. The second
part, highlighted in bold, is the actual implementation of
this method (i.e., ground truth). In this motivating example,
we consider the second part is unknown, and our objective
of this work is to recommend appropriate APIs for helping
developers complete the second part.

We plan to learn API usage patterns from existing apps
because we hypothesize that similar apps may implement
the same functionality using suitable, reusable libraries for
the active app project. To this end, we use a large set
of Android apps to locate similar apps of the active app
project. Fig. 2 highlights two such example apps (B and C,
respectively for apps com.lahcenappsinc.drum.roll.sounds and
com.andromo.dev137436.app236697). Although both of them
are very similar to the motivating example app in terms of
code implementations (including the code in other methods
that are not listed here), the API usages leveraged by these
two apps are quite different, which could, in turn, provide
noisy recommendation results.

Based on the recommendation algorithm proposed by
Nguyen et al. [11] for recommending API usages for sup-
porting the development of Java projects, for our motivating

example, the recommended output would be the default
list shown in Fig. 2. The result is however quite far from
the ground truth highlighted in Fig. 1. We then look into
the algorithm and find that in this example, app C has
dominated the recommendation. Although both apps B and
C are possible candidate apps to reuse API usage examples,
a detailed analysis reveals that both app B and the active
app project are players for offline sound resources while
app C is for playing online music and news. Ideally, app B
should be closer to the active project than app C and should
contribute more to the recommendation. To this end, we
refine our recommendation algorithm to also take into ac-
count the similarities of the app topic as codified in the app
description text. The re-computed recommendation output,
as highlighted in Fig. 2 (with topic), is now much more
closer to our ground truth. This simple motivating example
suggests that app topics should not be overlooked when
learning implementations from existing Android apps. In
this work, we leverage both other app implementations
and other app topics to learn and recommend API usage
patterns for the development of Android apps.

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

APM
App Preprocessing

Module

Active App
Project (code + intro)

APKs &
Descriptions

SCM
Similarity Calculation

Module

MCRM
Multi-dimensional Context-aware

Recommendation Module

API List &
API Usage Patterns

Training
Database

Phase 1: Training Database Construction

Phase 2: API and Usage Pattern Recommendation

Fig. 3: The architecture of APIMatchmaker.

3 OUR APPROACH: APIMatchmaker

Fig. 3 presents an overview of our approach APIMatch-
maker, which leverages two phases to find the most likely
best-fit existing Android APIs to assist in supporting the
development of new Android apps. The two phases are
(1) Training database construction and (2) API and usage
pattern recommendation. The first phase prepares a training
database based on the implementation of a large set of
real-world Android apps. The training database will then
be referenced and reused to support the implementation
of the second phase, which aims to recommend APIs and
API usage patterns to an active app project that is currently
under development.

As shown in Fig. 3, APIMatchmaker is made up
of three main modules: (1) App Pre-processing module
(APM), (2) Similarity Calculation Module (SCM), and (3)
Multi-dimensional Context-aware Recommendation Mod-
ule (MCRM). The first module APM is leveraged by both
of the two phases, while the remaining two modules are
used to achieve the objectives of phase 2.

3.1 APM: App Preprocessing Module

APM is used to process three types of inputs in order to
serve both of the aforementioned phases: (1) Android APKs,
(2) Active App projects under development, and (3) App
descriptions. The first type is needed to fulfill the require-
ment of phase 1 towards constructing a training database
for supporting API recommendation. Compiled Android
APKs are leveraged rather than open-source code because
we want to build our training database based on real-world
– likely high-quality – Android apps, which are usually only
released as APKs. The second type is the ideal input for the
second phase, for which the overall goal of this work is to
help developers complete their active app projects under de-
velopment. The last input type is considered because similar
apps – those implementing the same goal, embedding the
same features, etc. – may be more likely to use APIs similar
to the active app project and the active method, as stated
by Nguyen et al. [11]. This information can be taken into
account when learning API usages from Android apps. We
leverage app descriptions to identify similar apps and this
input type is needed to fulfill the purposes of both phases.

This leads us to three key data sources for our pre-
processing module:

• Android APKs are closed-source app versions dis-
tributed over popular app markets such as the official
Google Play store. This module leverages Soot to parse
closed-source compiled app code at the Jimple code
level to extract all the methods implemented in the app
and the Android APIs accessed by those methods. In
other words, our approach does not require converting
Android bytecode to Java source code to achieve its
purpose. Soot is an optimization framework for sup-
porting static program analysis of Java and Android
apps, and Jimple is a typed 3-address intermediate
representation provided by Soot to ease its code manip-
ulations [14]. The output of this processing is the app’s
full list of method signatures and the set of Android
APIs associated with each method signature.

• Active App project under development. The objective
of APIMatchmaker is to match the right APIs for sup-
porting the development of new Android apps. The
input of APIMatchmaker is hence an app project that is
under active development. In such a project, we expect
that some methods have already been fully completed,
while some others have not (might be half-completed or
not even started). The goal of APIMatchmaker is hence
to recommend the best suited APIs and their usage
patterns that will help app developers quickly expand
those incomplete methods.
Since the active app projects come with source code, the
pre-processing of the first module (APM) is achieved by
directly parsing the source code. In practice, APIMatch-
maker leverages JavaParser to ease the implementation.
Given an active app project, this module will parse
all its developer-defined methods and output those
methods, along with their accessed Android APIs.

• App descriptions are provided by app developers to in-
troduce and advertise the app. For closed-source apps,
their descriptions can usually be collected from the app
markets where the apps are hosted. For example, on
the official Google Play store, all apps are provided
with a dedicated page to describe their goals, functions
and key features. For such apps that are still under
development, we need their developers to provide such
descriptions when using our tool-chain to help them
implement the apps.
App descriptions are provided in natural language.
This module hence leverages natural language pro-

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

Active App
Project

Training
Database

m1();
m2();
… …
mN();

(1) Select x most
similar apps

(2) Select y most similar methods
from the selected x apps

m() {}
Methods in Editing

ŏ
ŏ

Fig. 4: The process of selecting x most similar apps and y
most similar methods (x and y are parameters needed to be
customized by the users of APIMatchmaker).

cessing (NLP) techniques to pre-process this type of
input data. Specifically, APIMatchmaker will first cut the
description text paragraphs into words. It then turns all
the words into lower case, and removes punctuation
and stop words (i.e., the most common words in a
language). After that, APIMatchmaker performs a stem-
ming step to further remove the morphological affixes
of the remaining words to only retain their common
base forms. Due to grammatical reasons, different forms
of a word, such as organize, organizes, and organizing,
could be used. However, these forms are essentially just
different tenses of the same root word, i.e., organize, and
hence should be treated as such. The last stemming step
is introduced to achieve that, i.e., mapping words that
are derived from one another to a common word.

3.2 SCM: Similarity Calculation Module
Given an Android app project under active development,
our APIMatchmaker’s second module performs similarity
analyses aiming to find similar apps from the training set.
As shown by Zhong et al. [15], under certain usage scenarios
(e.g., implementing the same functions or leveraging the
same library modules), API methods are frequently called
together and even follow some sequential calling rules.
Taking this empirical evidence in mind, we hypothesize that
similar apps under specific scenarios could share similar
API usage patterns as well. Therefore, we believe that it is
also possible to learn API usage patterns from existing apps.

To this end, in this Similarity Calculation module, we
aim to identify and learn API usages from existing apps that
are similar to the app projects under active development.
As shown in Fig. 4, we rely on two steps to achieve this
purpose. First, we leverage code implementation and app
description to select x apps2 that are most similar to the
app project under development. Then, for such methods
under editing in the active app project, we select top-y
similar methods from the previously selected x apps. These
y methods will be leveraged by the MCRM module (detailed
in Subsection 3.3) to learn and recommend API usages for
the methods under editing in the active app project.

3.2.1 Select x most similar apps.
For this we use the following two types of similar apps: (1)
apps that are similar in terms of their targeted topics or fea-

2. This parameter is configurable. Similarly, the upcoming parameter
y is also configurable.

tures. The rationale behind this is that apps implementing
the same topics could share similar code implementation,
such as leveraging the same third-party libraries. (2) apps
that are similar in terms of app implementation. These apps
may share the same method signatures or access the same
set of Android APIs compared with the app project under
active development.

App Similarity (Topic). For calculating the topic similar-
ity of Android apps, app descriptions are leveraged to fulfill
this purpose. Using the first pre-processing module, the app
descriptions have been transformed to clean and concise
versions. We leverage a popular and classical algorithm
called Term Frequency and Inverse Document Frequency
(TF-IDF) to calculate the topic similarities between the active
app project and the apps in the training database.

In the TF-IDF algorithm, Term Frequency (TF) refers
to the frequency of keywords in a document, which can
be calculated via the following formula, where ni,j is the
number of times the word i appears in document j, and
Σknk,j is the total number of words in document j.

TFi,j =
ni,j∑
k nk,j

(1)

Inverse Document Frequency (IDF) refers to the inverse
text frequency, which is an index used to measure the
weight of keywords. IDF can be calculated by the following
formula, where |D| is the total number of documents, and
|j : ti ∈ dj | is the number of documents where the word i
presents.

IDFi = log
|D|

|j : ti ∈ dj |
(2)

Generally speaking, the higher frequency of words in
a particular document (i.e., higher TF value), or the lower
frequency of words in the entire document set (i.e., lower
IDF value), the higher TF-IDF value can be achieved. In
other words, TF-IDF tends to filter out common words,
meanwhile retaining the important ones. The TF-IDF can
be calculated via the following formula:

TF − IDF = TFi,j × IDFi (3)

Given two app descriptions p′ and q′ (of apps p and q)
and their TF-IDF vectors λ⃗ and µ⃗, respectively, APIMatch-
maker leverages cosine similarity to calculate the distance of
these two descriptions (cf. Formula 4).

sim1(p, q) =
λ⃗ · µ⃗
|λ⃗||µ⃗|

=

∑n
i=1 λi × µi√∑n

i=1(λi)2 ×
√∑n

i=1(µi)2
(4)

App Similarity (Implementation). Similar to the ap-
proach used to calculate the topic similarity of Android
apps, we leverage the same TF-IDF algorithm to calculate
app similarities based code implementations. The only dif-
ference is that API calls are leveraged rather than descriptive
natural language words. We represent an Android app as a
vector ϕ⃗ = {ϕi}i=1,...,k, with ϕi being the TF-IDF value of
each API call. Then, the similarity of apps p and q, with their
feature vectors ϕ⃗ = {ϕi}i=1,...,k and ω⃗ = {ωj}j=1,...,l, can
be calculated by Formula 5.

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

sim2(p, q) =
ϕ⃗ · ω⃗
|ϕ⃗||ω⃗|

=

∑n
t=1 ϕt × ωt√∑n

t=1(ϕt)2 ×
√∑n

t=1(ωt)2
(5)

3.2.2 Select y most similar methods.
The reason why this step is conducted rather than simply
taking into account all the methods declared in the x apps is
that many of the declared methods may not access or only
access a few Android APIs. Hence, it could introduce noise
into our approach if those methods are taken into account.
Therefore, in this work, we decide to only select y most
similar methods to support further analyses.

Method Similarity. Given the method under editing for
which we are about to recommend APIs and usage patterns
to use, we leverage the Jaccard similarity coefficient to find
its y nearest neighbors M = {mi}i=1,2,3,...,y . The Jaccard
coefficient is a well-used metric that has been frequently
leveraged to calculate the similarity or distance of different
sets. Given two sets A, B, as shown in Formula 6, the Jaccard
Index is expressed as the ratio of the size of the intersection
of A and B to the size of the union of A and B:

J(A,B) =
|A ∩B|
|A ∪B|

(6)

For our work, we calculate the similarity between the
method under editing and a method in the x apps via
Formula 7, where F(m) and F(n) are the sets of API calls
extracted from method signatures m and n (the extraction is
done in the APM module).

simγ(m,n) =
|F(m) ∩ F(n)|
|F(m) ∪ F(n)|

(7)

3.3 MCRM: Multi-dimensional Context-aware Recom-
mendation Module

We now present the last module of APIMatchmaker, which
performs multi-dimensional context-aware API recommen-
dation after filtering our incompatible APIs.

3.3.1 Filtering out incompatible APIs
Recall that certain Android APIs are only available in a
number of SDK versions. When developing apps with a
dedicated Android SDK version, developers can only take
advantage of the APIs available in that SDK. However, the
resulting app is expected to be able to run different devices
running different Android frameworks (i.e., SDK versions).
This mismatch has led to the well-known fragmentation
issue in the mobile community, for which Android apps
may crash on certain devices while running smoothly on
others. Typically, there are two types of compatibility issues
introduced by the fast evolution of the Android framework.

• Forward Compatibility Issue implies that a given app
developed targeting a given API level may not execute
seamlessly on devices running Android with higher
API levels.

• Backward Compatibility Issue implies that a given app
developed with a given API level may not perform
normally on devices running Android systems with
lower API levels.

Because of the aforementioned compatibility issues, we
have to take SDK versions into account when recommend-
ing possible APIs for implementing an active method. For-
tunately, Android apps have been provided with a manifest
file to configure the supported SDK versions.

• minSdkVersion, i.e., the minimum API Level at which
the app is intended to run. This attribute is leveraged
by Google Play to filter out devices with SDK platform
versions lower than the value declared in minSdkVer-
sion.

• targetSdkVersion, i.e., the API Level that the app is
targeting. If this attribute is not set explicitly, the default
value will be set to the value of minSdkVersion.

In this module, before running the multi-dimensional
context-aware recommendation algorithm, we take addi-
tional efforts to extract the supported SDK versions from the
apps in the training dataset and subsequently filter out such
APIs that may cause compatibility issues (i.e., the incompat-
ible APIs should not be included in the recommended API
list). We achieve this function by automatically taking into
account the lifecycle of APIs (i.e., when they are introduced
and when they are excluded in the framework), which
are extracted by checking the evolution of the Android
frameworks, following the CiD approach introduced by Li
et al. [9].

3.3.2 Multi-dimensional context-aware recommendation

Using our APIMatchmaker’s second module, the search space
is reduced from all the methods of the training apps to a set
of methods selected from a set of apps in the training set. In
this last step, we introduce our multi-dimensional context-
aware recommendation approach. This aims to recommend
APIs for the method under editing in the active app project.

In particular, APIMatchmaker first determines the number
of Android APIs (k) accessed by the selected apps (x) and
then models them into a (y + 1) ∗ k matrix. As shown in
Table 1, methods (selected ones m1 → my plus the one
under editing medit) are represented as rows, and APIs are
represented as columns. For the elected y methods, each
of their cells in the matrix will be set to either true (1)
or false (0), representing whether the corresponding API
has been accessed by the method or not. For example, cell
(m2, apik) is set to be 1, indicating that method m2 has
accessed apik. For the method under editing (i.e., medit in
the last row), each of its cells will be set to either true (1)
or unknown (-1). The true cells indicate the set of APIs that
have already been leveraged by the method under editing
(i.e., medit). The unknown ones are the possible candidates
that could be needed to complete medit. The goal of our
APIMatchmaker’s last module is hence to predict which of
the possible candidates could be used by the method under
editing so as to recommend them to app developers to assist
them in completing the method code.

Collaborative filtering has been often used for recom-
mendation algorithms to implement recommendation sys-
tems [16]. A typical application of collaborative filtering is
to recommend items that a user is most likely to purchase
based on his/her past shopping records or information
about other users with similar purchasing behaviors in an e-
commerce system. Chen et al. [17] introduce the concept of

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

TABLE 1: An example of the encoding matrix.

api1 api2 api3 api4 api5 ... apik
m1 1 1 0 1 0 1 1
m2 1 1 0 0 0 1 1
m3 1 1 0 0 1 1 0
... 1 1 1 0 0 0 1

my 1 1 1 1 1 0 1
medit 1 1 -1 -1 -1 -1 -1

context into the traditional collaborative filtering algorithm.
The purpose of this is to recommend to the current user in
the present context what other like-minded users do in a
similar context.

Borrowing the idea of context-aware collaborative filter-
ing for recommending items for users to purchase, in this
work we leverage the same algorithm to recommend the
candidate usage of Android APIs. In our work, the method
plays the role of a user, the API plays the role of an item
and the app project, to which the method belongs, plays the
role of context. A rating (e.g., a numerical value) is further
associated with a user and an item. The prospective outcome
of a collaborative filtering system is a set of predicted ratings
(aka. recommendations) for a specific user and a subset
of items [18]. The recommendation system considers the
most similar users to the active user (aka. neighbours) to
calculate new ratings. Additionally, based on the traditional
collaborative filtering approach, we propose a new algo-
rithm called multi-dimensional context-aware collaborative
filtering. The idea behind this new algorithm is to integrate
different types of similarity metrics to fulfill the API usage
recommendation.

Let us define the project, i.e., context C as a tuple of z
different types of similarity metrics, where ct(t ∈ 1...z) is a
type of context.

C = (c1, c2, ..., cz) (8)

Except the APIs already included in the active method
medit, for each api accessed by the x APKs, APIMatchmaker
computes a score for each cell representing an api, i.e., cells
set as −1 in the encoding matrix 3 shown in Table 1. The
probability of recommending a given API api to medit can
then be calculated via the following formula [17], where M
is the set of the y most similar method signatures, simγ

is defined by Formula 7, and ¯rmedit
and r̄m are the mean

ratings of medit and m, respectively.

pmedit,api,Cmedit
= ¯rmedit

+∑
m∈M (Rm,api,Cmedit

− r̄m) · simγ(medit,m)∑
m∈M simγ(medit,m)

(9)
In our implementation, r̄m can be obtained by the en-

coding matrix in Table. 1, i.e., calculating the average rating
of the cells in the row corresponding to m. For ¯rmedit

, we set
its value to 0.8 following the general practice of the state-of-
the-art [11].

3. The encoding matrices of different projects in the training set are
essentially a simplified presentation of the context-aware 3-dimensional
scoring matrix, as mentioned in FOCUS [11]. Interested readers are
encouraged to read this paper for more details.

The weighted rating of each method m ∈ M , i.e.,
Rm,api,Cmedit

, with respect to API api and project context
of the method under editing, can be calculated via the
following formula, where wt is the weight we assign to each
type of context and

∑z
t=1 wt should equal to one, and simt

is defined by Formula 4 and Formula 5.

Rm,api,Cmedit
=

z∑
t=1

wt · rm,api,Cm · simt(Cmedit
, Cm) (10)

We rely on the similarity of two contexts – two-
dimensions: topic and code implementation – to recom-
mend API usages. In this case, project context C will be
(c1, c2), respectively representing the contexts of app topic
and code implementation. Similarly, (w1, w2) will be respec-
tively the weights of app topic and code implementation.
These two weights can be configured by the users of our
approach. By default, we set their values to be (0.2, 0.8).

Output. The output of APIMatchmaker will be a list of
Android APIs that are ranked based on the scores calculated
via Formula 9. This list will be continuously updated to
adapt to the change of the method under editing. Moreover,
apart from the top-N APIs recommended based on the
already written code in the active method, APIMatchmaker
will also generate API usage samples that are extracted from
the selected most similar apps, to help developers make use
of the recommended APIs.

4 EXPERIMENTAL SETUP

To evaluate the effectiveness of APIMatchmaker, we need to
answer the following research questions:

• RQ1: How effective is APIMatchmaker in recommend-
ing accurate APIs for Android app developers to com-
plete their development?

• RQ2: How does APIMatchmaker compare with other
state-of-the-art tools?

• RQ3: To what extent do different parameters affect the
performance of APIMatchmaker?

• RQ4: How effective is the multi-dimensional context-
aware collaborative filtering approach applied by API-
Matchmaker?

4.1 Dataset

To answer these research questions, we crawled a large set
of real-world Android apps from Google Play, including
their descriptions advertised on Google Play. Since it is not
straightforward to crawl Android apps from Google Play,
we resorted to collecting the latest Google Play apps from
the well-known AndroZoo dataset, which has already been
leveraged by various research projects [13]. At the moment,
AndroZoo contains over 10 million Android apps crawled
from various sources, including the official Google Play app
store.

Since our collected dataset will be used as a training
set for APIMatchmaker to learn API usages, it would be
great if the collected apps have significant usage of differ-
ent Android APIs. To this end, when crawling apps from
AndroZoo, we checked API usage of each downloaded app

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

16 18 20 22 24 26 28 30

#.APIs

Fig. 5: Distribution of the numbers of API in the methods
selected from the 12,000 apps.

and only retained the ones that have at least six (6) methods
using at least fifteen (15) Android APIs.

Furthermore, when collecting apps from AndroZoo, we
realize that not all the Google Play apps in AndroZoo are
currently available on Google Play (e.g., those apps might
be removed already), and not all the apps are described in
English. As a result, we cannot obtain or parse those apps’
descriptions, and thereby we have to ignore them when
preparing our dataset. In addition, some apps, although
different in terms of their hash digests (i.e., SHA256), are
essentially the same app (i.e., share the same app package
name but with different versions). Unfortunately, such apps
share the same app description and thereby could intro-
duce biases to our approach and experiments. To mitigate
this, we only retain the latest app version in our dataset.
Finally, because of some corner cases, some apps cannot be
successfully parsed by our tool-chain to preprocess Android
apps. Indeed, some apps do not contain the AndroidManfest
configuration file, so that their app package names cannot
be extracted. In this work, we simply ignore those apps.
Eventually, we stopped the collection at 12,000 apps from
roughly 40,000 apps randomly selected from AndroZoo.
Our final dataset is made up of 12,000 unique Android
apps, along with their descriptions. Fig. 5 presents the basic
statistics of the numbers of unique APIs called per method
in the 12,000 apps. The median and average numbers are
18 and 19.8, respectively. Our final dataset is made up of
12,000 unique Android apps, along with their descriptions.
Fig.5 presents the basic statistics of the numbers of unique
APIs called per method in the 12,000 apps. The median and
average numbers are 18 and 19.8, respectively. It suggests
that the methods used for evaluation roughly involve 16-22
API calls in most cases.

4.2 Experimental settings
Since it is hard to find active app projects under develop-
ment, we use existing apps for simulation. Specifically, given
an Android app with ∆ methods declared, we propose
to simulate its development at two different stages: Stage
1: App developers have completed the implementation of
∆/2−1 methods and are now preparing to finish the (∆/2)-
th method; Stage 2: App developers have completed the
implementation of ∆ − 1 methods and are now preparing
to finish the last method (∆-th). In each stage, for the
method under editing, we further take into account two
scenarios: Scenario 1: The method has already accessed into
one Android API; Scenario 2: The method has accessed into
four Android APIs. Combining the stages with scenarios, we
eventually set up four experimental settings to evaluate the
performance of APIMatchmaker in recommending Android
APIs for supporting the development of Android apps:

• E1 (Stage 1, Scenario 1): The active app project has
∆/2 − 1 method completed and the ∆/2-th method
under editing has already accessed into one Android
API.

• E2 (Stage 1, Scenario 2): The active app project has
∆/2 − 1 method completed and the ∆/2-th method
under editing has already accessed into four Android
APIs.

• E3 (Stage 2, Scenario 1): The active app project has
∆ − 1 method completed and the ∆-th method under
editing has already accessed into one Android API.

• E4 (Stage 2, Scenario 2): The active app project has
∆ − 1 method completed and the ∆-th method under
editing has already accessed into four Android APIs.

For each of these four settings, we use the standard
procedure, i.e., 10-fold cross-validation, to evaluate the per-
formance of our APIMatchmaker’s recommendations. To this
end, we randomly divide our dataset (i.e., 12,000 apps) into
ten sets (1,200 apps in each set). We then select nine sets to
fulfill the training set and use the remaining set for testing.
We repeat this process ten times to make sure that each
of the ten sets has been regarded as a test set once. The
average scores of the ten tests are then reported as the final
performance of our approach. Since it is not easy to get
the actual developing order of each Android project, the
selection of the completed methods is random.

4.3 Evaluation Metrics
Given a method under editing in an active Android app
project, the objective of our approach is to recommend a
ranked list of API calls (e.g., N APIs) to help developers
complete the implementation of the method. To help assess
whether APIMatchmaker fulfills this objective, we leverage
the following metrics to evaluate the effectiveness of our
approach.

For each test sample, we only consider one active
method. Given a set of projects P under testing, for the
method under editing m in each project p ∈ P , APIMatch-
maker generates N recommended APIs, i.e., RN (p), to fulfill
m.

Success rate: We consider that a recommendation is
successful for project p as long as at least one out of the
N APIs hit the Ground-Truth set GT (p). The success rate
for the |P | projects can then be calculated via Formula 11,
where GT (p) stands for the set of APIs actually accessed
by m in p, and matchN (p) is defined as the intersection of
the recommended N APIs and GT (p), i.e., matchN (p) =
RN (p) ∩GT (p).

success rate@N =
countp∈P (|matchN (p)| > 0)

|P |
∗ 100%

(11)
Precision and Recall: For each test sample,

precision@N is the ratio of the top N recommended
APIs matching GT (p), and recall@N is the ratio of APIs
belonging to GT (p) falling in the top N recommendations.

Precision@N =
|matchN (p)|

N
∗ 100% (12)

Recall@N =
|matchN (p)|

|GT (p)|
∗ 100% (13)

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

TABLE 2: Success rate of 10-fold cross-validation on the 12,000 randomly selected apps for APIMatchmaker, the state-of-the-
art tool FOCUS, and the baseline of our approach. Result@N indicates the number of recommended APIs considered for
evaluation.

N APIMatchmaker Baseline 1 - FOCUS Baseline 2
E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

1 52.68% 60.34% 54.09% 61.1% 45.89% 51.92% 45.74% 54.01% 49.73% 49.71% 49.9% 49.1%
5 68.36% 77.33% 69.17% 78.08% 62.28% 71.14% 63.9% 72.43% 68.75% 66.99% 69.45% 66.58%
10 73.7% 82.8% 75.6% 83.04% 68.99% 77.41% 70.13% 78.45% 75.62% 73.27% 75.69% 73.48%
15 77.34% 88.03% 78.96% 88.36% 73.94% 83.13% 74.54% 84.31% 79.35% 78.4% 79.76% 79.39%
20 81.85% 91.61% 82.59% 91.64% 79.45% 87.43% 79.69% 89.14% 81.83% 81.84% 82.52% 83.1%

5 RESULTS

5.1 RQ1: Performance of APIMatchmaker
In this first research question, we investigated the perfor-
mance and effectiveness of our approach APIMatchmaker.
Following the settings described in Section 4.2, all the ex-
periments are conducted based on the default parameters of
APIMatchmaker, i.e., ten similar apps (x = 10), six similar
methods (y = 6), 20% and 80% weights respectively for app
topic and app code implementation(w1 = 0.2, w2 = 0.8).

Table 2 summarizes our experimental results with re-
spect to different situations when different numbers of
APIs considered for evaluation. Specifically, we present
our results in five different situations: 1, 5, 10, 15, 20. For
example, when Result@5 is concerned, we leverage the top-
5 recommended APIs to calculate the performance (suc-
cess rate, precision, and recall) of our approach. Generally
speaking, the more APIs considered, the higher the success
rate our approach can achieve. Indeed, if only one API is
considered, our approach can already hit the correct API
at over 50% of success rate. When increasing the number
of recommended APIs to 20, the success rate can exceed
80%. In other words, by checking at most 20 APIs and for
more than 80% of cases (i.e., methods under editing), app
developers can successfully find the right APIs to complete
the implementation of the method. This experimental result
shows that our approach is effective in recommending APIs
for supporting developers to implement Android apps.

Furthermore, when different scenarios – comparing E1 to
E2, or E3 to E4 – are considered, APIMatchmaker will achieve
different performance. As shown in Table 2, APIMatchmaker
always achieves better performance in Scenario 2, compared
with the results yielded in Scenario 1. This result is expected
by us because Scenario 2 provides more known APIs than
Scenario 1. Indeed, the more known APIs are provided, the
more close neighbor methods can be located, and thereby
the higher performance can be achieved.

Even for the same scenario, when different stages are
taken into account – Stage 1 to Stage 2 and comparing E1 to
E3 and E2 to E4 – it is interesting to observe that the Stage
2 setting can always get a higher performance compared to
that of the Stage 1 setting. This suggests that the success rate
increases when the number of completed methods increases.
In other words, APIMatchmaker will be more useful for app
projects that are already at a later stage.

We now go one step further to check the sensitivity of
our approach to the size of the training dataset. Ideally,
we would hypothesize that the larger the training dataset,
the higher the performance our approach would achieve.
Indeed, a larger set of training dataset could potentially
allow APIMatchmaker to select x most similar apps that are

even closer to the active project under development than
selecting from a small dataset. To this end, apart from the
12,000 training apps considered in this work, we conduct
two new experiments, each considering 3,000 and 6,000
apps as the training set, respectively, where these apps are
randomly selected from the 12,000 datasets. Fig. 6 illustrates
the experimental results. Clearly, in all the four experimental
settings (cf. E1-E4), these results confirm our hypothesis that
the performance of APIMatchmaker increases when more
apps are considered for the training set.

Fig. 7 further compares the experimental results obtained
by excluding the app topic context (i.e., only taking code
implementation into consideration, i.e., (w1 = 0, w2 = 1).
The experimental results confirm our findings that the app
topic context is helpful for finding the most similar apps.
Interestingly, the benefit is even more significant when the
size of the training set is small.

RQ1 Answer

With over 80% or even 90% (in scenario 2) success
rate, APIMatchmaker achieves promising results in recom-
mending API usages at Result@20, and yields acceptable
results in an extreme case when only one recommended
API is concerned. Furthermore, the more knowledge API-
Matchmaker can learn from the active app project under
development (in later stages), the higher performance
APIMatchmaker can achieve in successfully recommend-
ing API usages.

5.2 RQ2: Comparison with the State-of-the-art

We are interested in comparing the performance of our API-
Matchmaker with that of other state-of-the-art approaches.
Specifically, we compare our approach with the state-of-
the-art FOCUS approach and a straightforward baseline
approach.

Baseline 1 - FOCUS: FOCUS was initially designed to
learn from open-source Java projects to recommend APIs
for supporting the development. The authors have then
extended their work to also support the analysis of closed-
source Android apps [12]. In this work, we use their ex-
tended version to compare against our APIMatchmaker tool.

Baseline 2: In order to further verify the effectiveness
of APIMatchmaker, we construct a baseline approach based
on probability statistics. The baseline approach works as
follows:

(1) Training Phase: For each app in the training set, we
implement a static analyzer and leverage it to parse all the
methods declared in the app. In each method, the static
analyzer further extracts all its accessed Android APIs,

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

41.56 42.51
46.83

59.35 60.12 62.69
67.86 67.26 69.4471.5 71.71 74.1877.3 78.48 80.21

0
10
20
30
40
50

60
70
80
90

3,000 6,000 12,000

N=1 N=5 N=10 N=15 N=20

(a) E1

46.69 49.88 52.25

67.41 69.61 71.2675.44 76.13 77.69
81.57 83.52 83.3487.14 88.44 88.13

0
10
20
30
40
50
60
70
80
90

100

3,000 6,000 12,000

N=1 N=5 N=10 N=15 N=20

(b) E2

42.75 43.55
46.82

61.72 61.41 64.7568.1 67.93 70.6671.91 72.42 74.8578.15 77.48 79.98

0
10
20
30
40
50

60
70
80
90

3,000 6,000 12,000

N=1 N=5 N=10 N=15 N=20

(c) E3

48.7 51.18
54.19

69.51 71.36 72.4676.25 77.42 78.63
84.75 84.23 84.57

89.81 88.62 89.34

0
10
20
30
40
50
60
70
80
90

100

3,000 6,000 12,000

N=1 N=5 N=10 N=15 N=20

(d) E4

Fig. 6: Experimental results observed by varying the size of the training dataset.

0 20 40 60 80 100
N=1

N=5

N=10

N=15

N=20

3000(w1=0,w2=1) increase 6000(w1=0,w2=1)
increase 12000(w1=0,w2=1) increase

(a) E1

0 20 40 60 80 100
N=1

N=5

N=10

N=15

N=20

3000(w1=0,w2=1) increase 6000(w1=0,w2=1)
increase 12000(w1=0,w2=1) increase

(b) E2

0 20 40 60 80 100
N=1

N=5

N=10

N=15

N=20

3000(w1=0,w2=1) increase 6000(w1=0,w2=1)
increase 12000(w1=0,w2=1) increase

(c) E1

0 20 40 60 80 100
N=1

N=5

N=10

N=15

N=20

3000(w1=0,w2=1) increase 6000(w1=0,w2=1)
increase 12000(w1=0,w2=1) increase

(d) E2

Fig. 7: Success rate increases brought by the app topic context (i.e., the default setting, w1 = 0.2, w2 = 0.8) compared to the
results only observed via code implementation context (i.e., w1 = 0, w2 = 1).

along with their execution sequences. Then, based on the
extracted information (API sequences), inspired by the idea
of Function Call Graph raised by McMillan et al. [19], we
construct a Weighted API Invocation Graph (WAIG). In
WAIG, each Android API is recorded as a node, and API
execution sequences are recorded as weighted edges. The

weights of edges are simply set based on the number of
times API execution sequences appear in the apps of the
training set. For instance, suppose there is a method that
has accessed two Android APIs (api1 and api2), and api1
is called before api2. In this example, the two APIs will
be included as two nodes (will create new nodes if not

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

com.androidlib.util.AppSetting:
java.lang.String getString(...)

org.json.JSONObject:
org.json.JSONObject accumulate(...)

java.lang.String: boolean
equalsIgnoreCase(...)

115/140 25/140

org.json.JSONObject:
java.lang.String toString()

android.widget.EditText:
android.text.Editable getText()

org.json.JSONArray:
void <init>

74/113 27/113

12/113

61
5/2
48
2

55
6/
24
82

491/2482

434/2482

386/2482

Fig. 8: An example of the constructed weighted API depen-
dency graph applied to the Baseline 2 approach.

already existed) in the WAIG. These two nodes will then
be connected via a directed edge (i.e., api1 → api2). If the
directed edge already exists, there is no need to create the
edge anymore but simply increase the weight by one to the
existing edge. Fig. 8 portrays a sample WAIG (a sub-graph
of the final WAIG built based on the training apps). In this
case, "com.androidlib.util.AppSetting:java.lang.String
getString()" is followed by "org.json.JSONObject:
org.json.JSONObject accumulate()" or "java.lang.String:
boolean equalsIgnoreCase()", but the former occurs more
frequently, so the weight is higher than the latter.

(2) Testing Phase: Given a method under editing and the
APIs calls already written in it, our baseline approach will
try to locate the same API execution sequences on the WAIG
(built based on a set of training apps). If an exact match
cannot be achieved, a similar execution sequence will be
considered. Starting from the located sequence (e.g., the last
node), the baseline approach will simply take its succeeded
N-nodes (with edge’s weights taken into account) as the list
of APIs for the recommendation.

To enable a fair comparison, we use the same setting
to evaluate the effectiveness of FOCUS and this baseline
approach: 10-fold cross-validation on the randomly selected
12,000 APKs with the same training and test set applied
in each fold. The experimental results (i.e., success rate)
of FOCUS and the baseline approach are shown in the
last column of Table. 2. Generally, FOCUS and the base-
line approach achieve more or less the same performance
while APIMatchmaker outperforms both of them in all the
experimental settings. Recall that FOCUS shares the same
collaborative filtering algorithm with our approach, and its
outputs, although lower, share the same pattern as well,
i.e., the results of E2/E4 are much higher than that of
E1/E3. This pattern, however, does not appear in the simple
baseline approach, for which the experimental results are
more or less the same across all the four settings. If only
comparing the results of FOCUS and the baseline approach,
FOCUS yields even lower performance when E1/E3 set-
tings (with only one API written) are considered. This evi-
dence further confirms our previous finding that the more
knowledge our approach (or similar approach) can learn
from the method being editing, the higher performance it
can achieve. Moreover, the simple baseline approach could
also be a suitable supplement for the complex learning-
based approaches, especially when there is no sufficient pre-
knowledge to supervise the learning.

Fig. 9 shows the distribution of precision and recall

scores of APIMatchmaker, FOCUS, and our baseline ap-
proach, in the pre-defined four experimental settings (i.e.,
E1, E2, E3, and E4), respectively. In all experimental settings,
both in terms of precision and recall, APIMatchmaker outper-
forms the two baselines. Mann-Whitney-Wilcoxon (MWW)
tests additionally confirm that the differences between API-
Matchmaker and the two counterparts are statistically sig-
nificant. As highlighted in Table. 3, which summarizes the
p−values of MWW tests conducted between APIMatchmaker
and FOCUS, as well as between APIMatchmaker and the
baseline approach, the p − values are always smaller than
0.0054. The only exceptions are the comparison results in
E2, E3 and E4 between APIMatchmaker and FOCUS when
Top-20 APIs are considered.

RQ2 Answer

Under the same experimental settings, APIMatchmaker
outperforms both FOCUS (i.e., Baseline 1) and Baseline 2
in achieving significantly higher success rate, precision,
and recall for recommending APIs for supporting the
development of Android apps.

5.3 RQ3: Impact of parameter tuning on APIMatch-
maker

We now explore the impact of altering the parameter values
related to the number of similar apps and methods on the
performance of APIMatchmaker. To this end, we designed
multiple sets of experiments (considering different numbers
of most similar projects and methods) to fulfill this objective.
Specifically, we set x = 5, 10, 20 and y = 3, 6, 12. In total,
we conduct nine (i.e., 3∗3) groups of experiments. The other
parameters (i.e., context weights) are kept to the default
value pre-configured in APIMatchmaker.

Table 4 presents the experimental results for the pre-
defined four settings, respectively. Similar to our previ-
ous findings, no matter which group of experiments is
concerned, when increasing the number of APIs (i.e., N)
to be considered, the performance increases continuously.
Furthermore, when looking at the increases in the number
of most similar apps (with the same number of most similar
methods), or the number of most similar methods (with the
same number of most similar apps), in most of the cases,
the success rate of APIMatchmaker also increases constantly.
Indeed, with the largest number of most similar apps and
methods (x = 20, y = 12), APIMatchmaker achieves the
best performance in all the four settings, giving over 83% of
success rate when only one API is known and at least 92%
of success rate when four APIs are known.

We further explore the impact of increasing the number
of most similar apps and methods. Specifically, given a
group of parameters (x, y), we would like to check which
of the following two settings (i.e., (2x, y) and (x, 2y))
contributes more to the increase of the performance of
APIMatchmaker, and the results of (2x, 2y) setting are also
analysed for reference. Fig. 10 illustrates the comparison of
the improvements brought by the previous three settings:

4. Given a significance level α = 0.005, if p − value < α, there is
five chance in a thousand that the difference between the two datasets
is due to a coincidence.

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

M(1) F(1
)
B(1)

0.00

0.25

0.50

0.75

1.00

M(5) F(5
)
B(5)

0.00

0.25

0.50

0.75

1.00

M(10
)
F(1

0)
B(10

)
0.00

0.25

0.50

0.75

1.00
Precision@N

M(15
)
F(1

5)
B(15

)
0.00

0.25

0.50

0.75

1.00

M(20
)
F(2

0)
B(20

)
0.00

0.25

0.50

0.75

1.00

M(1) F(1
)
B(1)

0.00

0.02

0.04

0.06

M(5) F(5
)
B(5)

0.0

0.1

0.2

0.3

M(10
)
F(1

0)
B(10

)
0.0

0.2

0.4

0.6

Recall@N

M(15
)
F(1

5)
B(15

)
0.00

0.25

0.50

0.75

1.00

M(20
)
F(2

0)
B(20

)
0.00

0.25

0.50

0.75

1.00

(a) E1

M(1) F(1
)
B(1)

0.00

0.25

0.50

0.75

1.00

M(5) F(5
)
B(5)

0.00

0.25

0.50

0.75

1.00

M(10
)
F(1

0)
B(10

)
0.00

0.25

0.50

0.75

1.00
Precision@N

M(15
)
F(1

5)
B(15

)
0.00

0.25

0.50

0.75

1.00

M(20
)
F(2

0)
B(20

)
0.00

0.25

0.50

0.75

1.00

M(1) F(1
)
B(1)

0.00
0.02
0.04
0.06
0.08

M(5) F(5
)
B(5)

0.0
0.1
0.2
0.3
0.4

M(10
)
F(1

0)
B(10

)
0.00

0.25

0.50

0.75

Recall@N

M(15
)
F(1

5)
B(15

)
0.00

0.25

0.50

0.75

1.00

M(20
)
F(2

0)
B(20

)
0.00

0.25

0.50

0.75

1.00

(b) E2

M(1) F(1
)
B(1)

0.00

0.25

0.50

0.75

1.00

M(5) F(5
)
B(5)

0.00

0.25

0.50

0.75

1.00

M(10
)
F(1

0)
B(10

)
0.00

0.25

0.50

0.75

1.00
Precision@N

M(15
)
F(1

5)
B(15

)
0.00

0.25

0.50

0.75

1.00

M(20
)
F(2

0)
B(20

)
0.00

0.25

0.50

0.75

1.00

M(1) F(1
)
B(1)

0.00

0.02

0.04

0.06

M(5) F(5
)
B(5)

0.0

0.1

0.2

0.3

M(10
)
F(1

0)
B(10

)
0.0

0.2

0.4

0.6

Recall@N

M(15
)
F(1

5)
B(15

)
0.00

0.25

0.50

0.75

1.00

M(20
)
F(2

0)
B(20

)
0.00

0.25

0.50

0.75

1.00

(c) E3

M(1) F(1
)
B(1)

0.00

0.25

0.50

0.75

1.00

M(5) F(5
)
B(5)

0.00

0.25

0.50

0.75

1.00

M(10
)
F(1

0)
B(10

)
0.00

0.25

0.50

0.75

1.00
Precision@N

M(15
)
F(1

5)
B(15

)
0.00

0.25

0.50

0.75

1.00

M(20
)
F(2

0)
B(20

)
0.00

0.25

0.50

0.75

1.00

M(1) F(1
)
B(1)

0.00
0.02
0.04
0.06
0.08

M(5) F(5
)
B(5)

0.0
0.1
0.2
0.3
0.4

M(10
)
F(1

0)
B(10

)
0.00

0.25

0.50

0.75

Recall@N

M(15
)
F(1

5)
B(15

)
0.00

0.25

0.50

0.75

1.00

M(20
)
F(2

0)
B(20

)
0.00

0.25

0.50

0.75

1.00

(d) E4

Fig. 9: Distribution of precision and recall for APIMatchmaker, FOCUS (i.e., Baseline 1) and the Baseline 2 of our approach.

TABLE 3: The p − values of Mann-Whitney-Wilcoxon Tests on the comparison results of between APIMatchmaker and
Baseline 1 - FOCUS, as well as between APIMatchmaker and Baseline 2.

E1 E2 E3 E4
FOCUS Baseline FOCUS Baseline FOCUS Baseline FOCUS Baseline

N Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
1 5.14E-18 6.73E-18 4.68E-4 1.93E-3 5.17E-22 1.26E-22 6.08E-44 1.09E-40 1.04E-6 4.44E-7 6.33E-8 5.17E-7 1.96E-3 5.01E-3 3.85E-51 2.62E-45
5 1.04E-23 1.16E-24 6.64E-60 6.29E-52 8.28E-17 1.65E-18 3.48E-255 2.19E-229 9.97E-8 5.3E-8 5.34E-65 1.45E-55 3.88E-6 2.39E-6 4.41E-290 1.19E-257
10 1.04E-20 1.05E-21 4.41E-73 2.84E-72 1.09E-13 1.18E-14 2.23E-308 2.23E-308 4.24E-7 3.64E-7 1.12E-92 1.3E-90 1.42E-5 1.51E-5 2.23E-308 2.23E-308
15 8.37E-15 1.86E-15 6.41E-85 1.39E-83 3.65E-7 1.71E-7 2.24E-230 6.79E-234 6.19E-6 5.96E-6 1.47E-113 1.98E-112 7.34E-4 7.2E-4 9.81E-263 1.53E-265
20 3.87E-6 2.46E-6 6.29E-51 5.16E-52 1.99E-2 1.84E-2 1.68E-111 4.11E-113 8.04E-3 8.31E-3 1.04E-60 1.577E-61 5.02E-2 5.13E-2 9.25E-120 1.07E-121

0% 2% 4% 6% 8%

Setting #1

Setting #2

Setting #3

Fig. 10: Distribution of the performance increases by varying
the size of most similar apps and methods (i.e., parameters
x or y).

Setting #1: Double the number of most similar apps (2x, y),
Setting #2: Double the number of most similar methods (x,

2y). Setting #3: Double the number of most similar apps and
methods (2x, 2y). The improvements will be the difference
between the new results and the original ones, i.e., (2x, y) -
(x, y), (x, 2y) - (x, y) and (2x, 2y) - (x, y) respectively. Clearly,
the improvements brought by increasing parameter x are
more significant than that of increasing parameter y, and the
performance of APIMatchmaker will be more significantly
improved, if both x and y are increased, as indicated by
the results of Setting #3. This significance has further been
backed up by the MWW testing result.

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

TABLE 4: Success rate of 10-fold cross-validation on the 12,000 randomly selected apps by varying the size of most similar
apps and methods (i.e., parameters x and y).

E1 E2
N (5, 3) (10, 3) (20, 3) (5, 6) (10, 6) (20, 6) (5, 12) (10, 12) (20, 12) (5, 3) (10, 3) (20, 3) (5, 6) (10, 6) (20, 6) (5, 12) (10, 12) (20, 12)
1 46.83% 47.68% 50.26% 49.01% 52.68% 54.83% 51.31% 55.19% 59.1% 52.25% 55.02% 55.98% 57.75% 60.34% 61.67% 59.46% 62.27% 64.93%
5 62.69% 65.2% 68.03% 64.49% 68.36% 70.61% 65.02% 69.27% 72.52% 71.26% 74.12% 75.43% 73.78% 77.33% 78.33% 74.11% 77% 79.29%
10 69.44% 71.3% 74.24% 70.38% 73.7% 76.74% 70.5% 74.34% 77.63% 77.69% 80.18% 81.45% 79.49% 82.8% 83.71% 80.16% 82.91% 85.15%
15 74.18% 74.92% 77.73% 74.38% 77.34% 79.92% 74.53% 77.59% 80.51% 83.34% 85.34% 86.53% 84.91% 88.03% 88.26% 85.27% 87.83% 89.61%
20 80.21% 80.31% 81.56% 80.76% 81.85% 83.41% 80.74% 81.48% 83.96% 88.13% 89.4% 90.17% 88.44% 91.61% 91.52% 88.92% 91.71% 92.87%

E3 E4
N (5, 3) (10, 3) (20, 3) (5, 6) (10, 6) (20, 6) (5, 12) (10, 12) (20, 12) (5, 3) (10, 3) (20, 3) (5, 6) (10, 6) (20, 6) (5, 12) (10, 12) (20, 12)
1 46.82% 49.39% 50.94% 50.29% 54.09% 55.97% 52.01% 55.57% 60.1% 54.19% 55.73% 56.34% 58% 61.1% 62.58% 60.67% 63.54% 65.78%
5 64.75% 66.44% 69.48% 65.24% 69.17% 71.68% 65.99% 69.87% 73.89% 72.46% 74.84% 76.17% 74.19% 78.08% 78.99% 75.88% 78.38% 80.6%
10 70.66% 72.62% 74.9% 71.34% 75.6% 77.03% 71.67% 75.45% 78.83% 78.63% 80.76% 82% 80.36% 83.04% 84.41% 81.65% 83.92% 86.17%
15 74.85% 76.48% 78.53% 75.3% 78.96% 80.29% 75.62% 78.45% 81.48% 84.57% 86.26% 87.19% 85.67% 88.36% 89.18% 87.47% 89.1% 90.74%
20 79.98% 81.23% 82.54% 80.29% 82.59% 83.9% 80.52% 82.12% 84.48% 89.34% 89.66% 90.65% 89.66% 91.64% 92.26% 90.98% 91.97% 93.25%

TABLE 5: Success rate of 10-fold cross-validation on the 12,000 randomly selected apps by varying the weights of the two
contexts (i.e., app topic w1 and code implementation w2).

E1
N (0,1) (0.1,0.9) (0.2,0.8) (0.3,0.7) (0.4,0.6) (0.5,0.5) (0.6,0.4) (0.7,0.3) (0.8,0.2) (0.9,0.1) (1,0)
1 45.89% 46.01% 46.83% 46.45% 46.14% 45.74% 44.92% 45.01% 45.65% 44.13% 39.64%
5 62.28% 62.3% 62.69% 62.29% 63.3% 63.2% 63.22% 63.12% 62.77% 61.74 % 54.97%
10 68.99% 69.12% 69.44% 70.35% 70.21% 70.11% 69.48% 68.74% 68.91% 66.35% 61.72%
15 73.94% 74.02% 74.18% 74.16% 74.15% 73.9% 73.73% 74.2% 74.24% 73.4% 67.06%
20 79.45% 79.68% 80.21% 80.1% 80% 79.75% 78.34% 78.99% 79.79% 77.35% 72.76%

E2
N (0,1) (0.1,0.9) (0.2,0.8) (0.3,0.7) (0.4,0.6) (0.5,0.5) (0.6,0.4) (0.7,0.3) (0.8,0.2) (0.9,0.1) (1,0)
1 51.92% 52.12% 52.25% 52.21% 52.1% 52.46% 52.52% 52.15% 52% 51.75% 45.71%
5 71.14% 71.2% 71.26% 71.65% 71.69% 71.45% 71.17% 71.03% 70.64% 68.16% 62.33%
10 77.41% 77.51% 77.69% 77.49% 77.45% 77.4% 77.5% 77.33% 77.43% 69.76% 69.08%
15 83.13% 83.25% 83.34% 83.3% 83.28% 83.3% 83.36% 83.44% 83.48% 82.57% 75.17%
20 87.43% 87.74% 88.13% 88.14% 87.95% 87.63% 87% 87.56% 87.48% 86.1% 81.17%

E3
N (0,1) (0.1,0.9) (0.2,0.8) (0.3,0.7) (0.4,0.6) (0.5,0.5) (0.6,0.4) (0.7,0.3) (0.8,0.2) (0.9,0.1) (1,0)
1 45.74% 45.89% 46.82% 46.73% 46.89% 46.73% 46.54% 46.44% 46.72% 45.16% 39.88%
5 63.9% 64.2% 64.75% 64.16% 63.98% 63.47% 62.79% 62.84% 63.65% 62.58% 56.98%
10 70.13% 70.25% 70.66% 70.33% 70.12% 70.1% 69.21% 70.12% 70.25% 68.16% 64.09%
15 74.54% 74.68% 74.85% 74.77% 74.93% 74.14% 73.58% 74.69% 74.77% 73.26% 68.33%
20 79.69% 78.5% 79.98% 79.43% 79.91% 79.21% 78.4% 78.98% 79.24% 77.37% 74.5%

E4
N (0,1) (0.1,0.9) (0.2,0.8) (0.3,0.7) (0.4,0.6) (0.5,0.5) (0.6,0.4) (0.7,0.3) (0.8,0.2) (0.9,0.1) (1,0)
1 54.01% 54.12% 54.19% 54.2% 53.22% 53.87% 54.07% 53.89% 54.04% 53.74% 46.79%
5 72.43% 72.44% 72.46% 72.33% 71.95% 72.15% 72.02% 72.1% 72.18% 70.35% 63.29%
10 78.45% 78.55% 78.63% 78.41% 78.21% 78.37% 78.57% 78.46% 78.4% 77.25% 70.35%
15 84.31% 84.44% 84.57% 84.41% 84.21% 84.46% 84.52% 84.1% 84.02% 83.2% 77.19%
20 89.14% 89.2% 89.34% 89.4% 88.24% 89.17% 88.76% 88.21% 87.91% 86.53% 83.19%

RQ3 Answer

Generally, the more number of most similar apps, or
the more number of most similar methods considered,
the higher performance APIMatchmaker will yield. Nev-
ertheless, the former case (i.e., increasing the number of
most similar apps) contributes more to the performance
of APIMatchmaker than the latter case (i.e., increasing the
number of most similar methods).

5.4 RQ4: Effectiveness of the multi-dimensional
context-aware collaborative filtering approach

Recall that we provide four parameters (x apps, y methods,
(w1, w2) context weights) for users to customize the per-
formance of APIMatchmaker. The previous section explores
the sensitivity of APIMatchmaker on the number of similar
apps and methods (i.e., x and y) to the final performance
of recommending API usages to Android developers. Here
we explore the impact of the other two parameters (i.e., w1,
w2) on the recommendation performance of APIMatchmaker.
Specifically, we are interested in evaluating the effective-
ness of the multi-dimensional context-aware collaborative
filtering algorithm applied by APIMatchmaker. Specifically,
since we only take two-dimensional data (app code and
app topic) into consideration, we evaluate the sensitivity of

the weights we have assigned to these two dimensions. By
default, the weights for app topic and code (w1, w2) are set
to be (0.2, 0.8). In this work, we compare this default setting
with another ten settings formed by altering the weights,
i.e., (0, 1), (0.1, 0.9), (0.3, 0.7), (0.4, 0.6), (0.5, 0.5), (0.6, 0.4),
(0.7, 0.3) (0.8, 0.2), (0.9, 0.1) and (1, 0). Weights (0, 1) and (1,
0) respectively stand for the cases where only app code or
app topic is considered for locating similar methods in the
training set. All the other parameters of APIMatchmaker are
kept the same to ensure a fair comparison.

Table. 5 summarizes the experimental results. As shown
in the seventh and thirteenth columns, APIMatchmaker
yields significantly worse results when only app topic is
considered, showing that the app code is a very important
dimension for locating similar apps in learning and recom-
mending API usage patterns. Nevertheless, by considering
only the app code, APIMatchmaker does not achieve the
best performance either. Indeed, in almost all the cases, the
combination of app topic and code (e.g., (0.2, 0.8), (0.3, 0.7),
(0.4, 0.6)) achieves better performance than that of app code
alone (0, 1) or app topic alone (1, 0). This empirical evidence
shows that our multi-dimensional context-aware collabora-
tive filtering algorithm is indeed effective and useful for
learning API usages from large-scale Android apps.

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

RQ4 Answer

Balancing the weights of two types of context can in-
deed achieve better performance than considering one
type along. This empirical evidence demonstrates that
our multi-dimensional context-aware approach is effec-
tive and useful in finding the closest apps for learning
API usages and subsequently allowing our approach to
recommending more suitable APIs for methods under
editing.

5.5 Artifact and Data Availability

To foster open science, we have made available online our
full implementation and the relevant datasets on the famous
open-access repository Zenodo [20], aiming to help readers
reproduce our experimental results. We further put the full
implementation as an open-source project on Github (i.e.,
the subsequent updates will hence be also recorded and
opened) via the following link.

https://github.com/SMAT-Lab/APIMatchmaker

5.6 Threats to Validity

The validity of our study may have been impacted by
several threats below we highlight the key ones.

Threats to External Validity. One of the main threats to
external validity lies in the random selection of our training
dataset, which may not be generic and representative of all
the apps available in the ecosystem. We have attempted to
mitigate this threat by selecting more than 10,000 real-world
apps that have been all released over the official Google
Play store. Additionally, we also evaluate the effectiveness
of our approach by varying the size of the training dataset.
The fact that there is no significant difference observed by
doing that shows that this threat to the external validity
of our study could be small. Furthermore, at the moment,
we do not take into account app obfuscation in this work,
despite it has likely been applied to some of the apps in our
training dataset. Nonetheless, since we are mainly interested
in learning API usages, which would not be impacted by
simple obfuscation strategies such as method renaming, our
approach should remain valid and effective. Indeed, as re-
vealed by Dong et al. [21], the majority of Android apps are
only obfuscated via simple strategies. Advanced strategies
such as altering the code implementation are rarely adopted
by real-world Android apps.

We leverage the app description on Google Play to
represent the app topic. We consider these descriptions are
reliable because they are publicly advertised by the app
owners. However, the app descriptions may not be well-
written or representative of the actual app topic. Ideally,
it would be great if automated approaches could be intro-
duced to validate the app descriptions before applying to
our approach. This is nonetheless out of the scope of this
work. We take it as our future work.

The implementation of APIMatchmaker relies on two
static analysis frameworks, Soot [22] and JavaParser5, for

5. https://javaparser.org

which their reliability issues could propagate to APIMatch-
maker so as to threaten the validity of our approach. Nev-
ertheless, both Soot and JavaParser are well-known frame-
works that have already been shown practical and useful
by many of our fellow researchers [23], [24], [25]. We hence
believe the threat brought by these two tools should not be
significant.

So far, our APIMatchmaker only supports API recommen-
dation for such app projects that are developed in Java,
although there is nowadays a significant portion of Android
apps developed using Kotlin [26], a new programming
language introduced by Google to develop Android apps.
Nonetheless, since Kotlin is designed to interoperate fully
with Java, its syntax is quite similar to that of Java. Hence, it
should be relatively straightforward to extend our approach
to also support Kotlin-based app projects. We take this as
our future work.

Threats to Internal Validity. The main threat is that
we employ simulated experimental scenarios for evaluation
rather than user studies. Drawing on the related work [11],
we mitigate the threat by forming large-scale datasets with
apps randomly collected from AndroZoo [13] and adopting
10-fold cross-validation to reduce the impact of contingency.
We also attempt to simulate different development scenar-
ios (at an earlier or later stage of the development) and
examine the recommended results of APIMatchmaker with
the ground-truth composed of the real APIs invoked by the
method under editing. Nevertheless, we believe user studies
are also necessary towards understanding if our approach
has fulfilled the actual demand of Android app developers.

Since it is hard to guess and thereby simulate the se-
quence of methods developed by app developers, in our
work, we resort to random selections to prepare the com-
pleted methods to fulfill our experiments. However, in the
actual situation, the part that the developer has completed
is usually related to the method under editing. As a result,
the experimental results presented in this work may not
reflect the actual capability of APIMatchmaker in practice.
In order to explore the influence of the order of the methods
belonging to the completed part of the test method on
the experimental results, we conduct supplementary exper-
iments by comparing the methods selected via a random
order with methods selected based on their lexicographic
order on the 12,000 apps. The final results suggest that
the impact seems to be marginal. Indeed, the p − values
of MWW tests are always larger than 0.05, indicating that
there is no statistically significant difference between the
aforementioned two experiments.

6 DISCUSSION

To the best of our knowledge, APIMatchmaker is the first
work that combines both code implementation and app
topic text to learn and recommend API usage. Unlike most
state-of-the-art works, which mainly focus on recommend-
ing Android APIs based on known Java objects, in API-
Matchmaker we aim to give suggestions without knowing
such objects information. Below we discuss the performance
sensitivities of our approach with respect to different exper-
imental settings.

https://github.com/SMAT-Lab/APIMatchmaker

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

Impact of the Training Dataset. As experimentally
demonstrated in Section 5.1, when varying the training
dataset size (e.g., in addition to the data set of 12,000
apps, we conducted two sets of comparative experiments
on 6,000 and 3,000 datasets, respectively), the performance
of APIMatchmaker also varies. Generally speaking, the larger
the training dataset, the higher performance APIMatchmaker
could achieve, as a larger training dataset could potentially
allow APIMatchmaker to select most similar apps that are
even closer to the active project under development than
selecting from a small dataset. As also confirmed via ex-
periments, the app descriptions (or topics) are also helpful
for identifying the most similar apps. Nevertheless, in this
work, we have not evaluated the impact of app qualities
(neither the apps’ code implementation nor their descrip-
tions) selected for training the model. This, however, is
outside of the scope of this work. We hence consider it as
our future work.

Impact of the number of known accessed APIs in
the active method under editing. Recall that in all the
experiments conducted in answering the proposed research
questions, we directly follow the settings of FOCUS and
consider that the method under editing has already accessed
four Android APIs, as described in Scenario 2 of E2 and E4
in Section 4.2. We now explore the influence of the numbers
of APIs that have already been accessed by the method
under editing on the recommendation performance of API-
Matchmaker. Ideally, when the number of known accessed
APIs increases (as the developer continuously edits the ac-
tive method), the recommended results should be improved
as well, as more information becomes available for training.
Towards confirming this hypothesize, we conduct another
round of experiments by replicating the E2 and E4 experi-
ments with the number of known APIs changed, e.g., from
four to half of the APIs leveraged by the active method. Our
experimental results indeed confirm the previous hypoth-
esis, i.e., the precision and recall are improved when half
of leveraged APIs (rather than four) are considered. This
experimental evidence further demonstrates the usability of
our recommendation approach.

On the Importance of taking Android SDK versions
into account. We would like to emphasize that the SDK ver-
sion check of the recommended APIs is critically important
since the evolution of the Android framework could cause
compatibility issues. For example, API <SentenceSuggestion-
sInfo: int getLengthAt(int)> is added in API level 16 while the
min sdk version of app com.college.theking.christ is 15. When
the above API is recommended for the implementation of
the app, compatibility issues will occur if the SDK version
supported by the API is not checked and known to the
developer. In other words, if the developer does not protect
the API with condition checks, when the app runs on an
Android device with the SDK version 15, it will crash. In
order to provide developers with more help, if such an
API appears in our recommended list, APIMatchmaker will
remove it and inform the developer of the reason for the
removal, which is to separately remark it according to the
incompatibility compared to the SDK versions of the app
currently being developed. As for future work, instead of
excluding incompatible APIs, we would like to enhance
our recommendation approach to provide better options to

resolve this problem, including alternative ways to bypass
the compatibility issues (e.g., by recommending its possible
replacements).

Learning API usages from more fine-grained similar ar-
tifacts. In this work, to fulfill our multi-dimensional context-
aware approach for recommending API usages, we have
leveraged app descriptions to locate similar apps, aiming at
learning API usages from apps that share similar functions
with the one under development. Our experimental results
have demonstrated that this information is indeed useful
for improving the recommendation results. However, sim-
ilarity analysis at the app level might be too coarse. More
fine-grained similarity analysis could further improve the
recommendation results. For example, one could leverage
the methods’ comments to compute method-level similar-
ities when selecting relevant implementations for learning
API usages. The methods’ comments, however, are only
available in source code projects, which are not the focus
of this work. We hence regard it as our future work and
encourage our fellow researchers to collaboratively explore
this research direction.

7 RELATED WORK

We summarize key related work from three aspects, i.e.,
recommendation in Android and in the field of software
engineering, and collaborative filtering applied in software
engineering.

7.1 Recommendation in Android Development
Since the development process of mobile apps relies heavily
on API frameworks and libraries, in the Android commu-
nity, researchers have devoted much effort to supporting
Android API recommendation to better support mobile app
development.

Some works try to give appropriate recommendation
suggestions on third-party libraries [27], [28], [29], others
knuckle down to the code level, that is, giving real-time sug-
gestions during app development. Hence, many works have
been done to extract parameters as recommendations in
similar programming scenarios [30], [31]. Except for recom-
mending third-party libraries or parameter values for APIs,
there are a large number of researchers focusing on recom-
mending Android APIs and their usage patterns. According
to Wu et al. [32]’s defined categories, we introduce state-
of-the-art research works related to API recommendations.
Most integrated development environments (IDEs) haven
been widely equipped with fundamental code completion
features, which have been shown effective and useful by
developers. Through the basic recommendation features of
IDEs, developers can promptly complete an API by typing
’dot’ subsequent an object instance to obtain a recommen-
dation list generated based on the static information of the
Android app under development.

At present, most of the advanced API recommendation
mechanisms predict API usage patterns that are generated
together with a given object instance. For example, Nguyen
et al. [33] propose a sequence-based tool named DroidAssist
to perform code completion for method calls based on
Hidden Markov model of API usages (HAPI). They sub-
sequently provide another approach, the key component of

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

which is also HAPI, to train a statistical model of API usage
from Dalvik Virtual Machine (DVM) bytecodes [5]. The ob-
jective of these approaches is to recommend the next method
call as well as a more suitable method sequence. Users are
required to provide the object instances being edited as
query, which is not the same as the usage scenario of our
approach. In our circumstance, even if the programmer does
not enter an instance of the object, APIMatchmaker can also
give suitable recommendations for the method currently
under development.

Clustering techniques have also been employed to object
usage-based Android API recommendation. Niu et al. [3]
mine API usage patterns by clustering the data based on
the associations of object usages, i.e., API sequences on a
given class, while building the “gold set” manually based
on human programming knowledge is time-consuming and
a potential threat to the construct validity in terms of both
establishment and evaluation. In contrast, APIMatchmaker
utilizes the context information to extract API usage pat-
terns from similar apps, i.e., the construction is completed
without human intervention. Yuan et al. [34] initially focus
on the need to recommend event callbacks in the environ-
ment of Android application development and introduce an
approach to recommend both functional APIs and the event
callbacks that need to be overridden. Later on, the authors
extend their work by establishing Android-specific API de-
scription databases designating the associations among di-
verse functionalities and APIs [35]. Unlike their work, which
is based on structured and fixed databases, APIMatchmaker
learns from a training set that can be easily adjusted to fulfill
different requirements.

Code search, as another research topic in software engi-
neering, has also been leveraged as a means to recommend
API usages for Android developers. Indeed, with the objec-
tive of code search, Gu et al. [6] introduce an approach to
generate API usage sequences based on a natural language
query through a deep learning-based approach. Similarly,
Jiang et al. [36] generate recommended code snippets based
on multi-aspect features, including text, topic, and the num-
ber of lines, etc. Different from the aforementioned code
search methods, Nie et al. [37] propose an approach lever-
aging knowledge learned from Stack Overflow to grow the
performance of code search algorithms. All the above three
works are mainly based on querying natural languages to
perform relevant-API recommendations, which are natu-
rally different approaches compared to ours. Nevertheless,
we believe those approaches, together with ours, could
supplement each other and hence be combined to better
serve app developers.

The work most close to ours is the one proposed by
Nguyen et al. [11], who introduce a context-aware collabo-
rative filtering based algorithm to recommend Java method
invocations utilizing Rascal M3 model 6. Later, the authors
extend their work by leveraging the algorithm to the An-
droid platform [12]. In our work, we extend the context to
multi-dimensions to make full use of other features besides
code implementation.

6. https://www.eclipse.org/jdt/core/

7.2 Recommendation in software engineering
Researchers have consecrated many efforts in offering fun-
damental recommendation features as a primary recom-
mendation for modern IDEs [38], [39], [40]. In recent years,
concerning further improve the efficiency of developers,
advanced research works based on recommendations are
emerging [4], [41], [42], [43], [44], [45], [46], [47]. As
another example, Gu et al. [48] present a graph kernel-
based approach to the selection of API usage examples by
representing source code as object usage graphs.

Mcmillan et al. [19], [49] utilize graph-based matching
to retrieve and visualize associated functions and their
usages. Chan et al. [50] propose an optimized algorithm to
search in an API graph with the given text query phrases.
Thung et al. [51] take as input a textual description of
a feature request and recommend API methods based on
the similarity between textual API descriptions. Rahman
et al. [52] exploit the keyword-API association identified
by crowd-sourced knowledge of StackOverflow to enrich
the translation between natural language query and code
search. Raghothaman et al. [53] propose a work to suggest
code snippets given API-related natural language queries
by learning structured API call sequences from open-source
code repositories. Huang et al. [54] propose BIKER, which
leverages both Stack Overflow posts and API documen-
tation to extract candidate APIs for ranking with a pro-
gramming task described in natural language. The above
works frequently mention the utilization of text as query
phrases. However, in our work, the topic text of apps is
uniquely used as a type of context together with code
implementation, which is significantly different from the
traditional modes of code search with text queries.

7.3 Collaborative filtering applied in software engineer-
ing
Collaborative filtering techniques are widely utilized in soft-
ware engineering in general to implement recommendation
systems. To assist developers in taking advantage of avail-
able third-party libraries, Thung et al. [55] combine associa-
tion rule mining and user-based collaborative filtering and
propose a technique to recommend likely relevant libraries
according to the libraries an application currently uses.
Furthermore, Yu et al. [16] introduce an approach that com-
bines collaborative filtering and Latent Dirichlet Allocation
(LDA) to provide suggestions about third-party libraries
for mobile apps. Moreover, He et al. [29] design a novel
approach leveraging Matrix Factorization (a classic collab-
orative filtering based prediction approach) for predicting
useful third-party libraries. Similarly, Xia et al. [56] employ
an approach that combines a Matrix Factorization based
latent factor model with a neighborhood-based method to
capture implicit relations for improving the code reviewer
recommendation, which has been acknowledged to be of
great importance for software quality assurance. That is
because due to the complexity of expertise and availability
of candidate reviewers, it can be quite challenging to find
appropriate reviewers.

Collaborative filtering techniques have also been intro-
duced to recommend sampling methods to improve the
performance of software defect prediction. For example,

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

Sun et al. [57] present a collaborative filtering based sam-
pling method recommendation algorithm to automatically
suggest appropriate sampling methods for newly identified
defect data.

8 CONCLUSION

In this paper, we have proposed a novel multi-dimensional
context-aware collaborative filtering-based approach, API-
Matchmaker, for recommending API usages to Android app
developers. APIMatchmaker initially leverages both pure
code implementations and app topics to identify high-level
features and subsequently locate similar projects as well
as methods that are closest to the active project’s method
under editing. Then, it utilizes the encoding matrix and
rating algorithm to obtain the output of recommended APIs
and extracts the code snippets (as API usage samples) from
the original APKs files. Our experimental results on large-
scale datasets demonstrate that APIMatchmaker is effective
in learning and recommending API usages for Android
developers and is able to outperform both state-of-the-art
and our baseline approaches.

As key areas for future work we plan to integrate our ap-
proach into Android Studio (the default IDE recommended
for app developers to implement Android apps) as a plugin
and aim at continuously recommending API usages during
the whole development phase of given Android apps. The
recommended list of API usages as well as their sample
code, will be continuously updated based on the code writ-
ten by app developers. In addition to recommending API
usages for Android projects developed in Java, we also plan
to support API recommendation for Kotlin-based Android
apps.

ACKNOWLEDGEMENTS

This work is supported by ARC Laureate Fellowship
FL190100035, ARC Discovery Early Career Researcher
Award (DECRA) project DE200100016, and a Discovery
project DP200100020.

REFERENCES

[1] M. P. Robillard, “What makes apis hard to learn? answers from
developers,” IEEE software, vol. 26, no. 6, pp. 27–34, 2009.

[2] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klem-
mer, “Two studies of opportunistic programming: interleaving
web foraging, learning, and writing code,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, 2009,
pp. 1589–1598.

[3] H. Niu, I. Keivanloo, and Y. Zou, “Api usage pattern recommen-
dation for software development,” Journal of Systems and Software,
vol. 129, pp. 127–139, 2017.

[4] J. Fowkes and C. Sutton, “Parameter-free probabilistic api mining
across github,” in Proceedings of the 2016 24th ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering, 2016,
pp. 254–265.

[5] T. T. Nguyen, H. V. Pham, P. M. Vu, and T. T. Nguyen, “Learn-
ing api usages from bytecode: a statistical approach,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
(ICSE). IEEE, 2016, pp. 416–427.

[6] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016, pp. 631–642.

[7] K. Kim, D. Kim, T. F. Bissyandé, E. Choi, L. Li, J. Klein, and
Y. Le Traon, “Facoy - a code-to-code search engine,” in The 40th
International Conference on Software Engineering (ICSE 2018), 2018.

[8] H. Cai, Z. Zhang, L. Li, and X. Fu, “A large-scale study of appli-
cation incompatibilities in android,” in The 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA
2019), 2019.

[9] L. Li, T. F. Bissyandé, H. Wang, and J. Klein, “Cid: Automating the
detection of api-related compatibility issues in android apps,” in
The ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA 2018), 2018.

[10] C. C. Aggarwal, M. A. Bhuiyan, and M. Al Hasan, “Frequent
pattern mining algorithms: A survey,” in Frequent pattern mining.
Springer, 2014, pp. 19–64.

[11] P. T. Nguyen, J. Di Rocco, D. Di Ruscio, L. Ochoa, T. Degueule,
and M. Di Penta, “Focus: A recommender system for mining
api function calls and usage patterns,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE, 2019,
pp. 1050–1060.

[12] P. T. Nguyen, J. Di Rocco, C. Di Sipio, D. Di Ruscio, and
M. Di Penta, “Recommending api function calls and code snippets
to support software development,” IEEE Transactions on Software
Engineering, 2021.

[13] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,”
in 2016 IEEE/ACM 13th Working Conference on Mining Software
Repositories (MSR). IEEE, 2016, pp. 468–471.

[14] S. Arzt, S. Rasthofer, and E. Bodden, “The soot-based toolchain for
analyzing android apps,” in 2017 IEEE/ACM 4th International Con-
ference on Mobile Software Engineering and Systems (MOBILESoft).
IEEE, 2017, pp. 13–24.

[15] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “Mapo: Mining
and recommending api usage patterns,” in European Conference on
Object-Oriented Programming. Springer, 2009, pp. 318–343.

[16] H. Yu, X. Xia, X. Zhao, and W. Qiu, “Combining collaborative
filtering and topic modeling for more accurate android mobile
app library recommendation,” in Proceedings of the 9th Asia-Pacific
Symposium on Internetware, 2017, pp. 1–6.

[17] A. Chen, “Context-aware collaborative filtering system: Predict-
ing the user’s preference in the ubiquitous computing envi-
ronment,” in International Symposium on Location-and Context-
Awareness. Springer, 2005, pp. 244–253.

[18] P. Brusilovski, A. Kobsa, and W. Nejdl, The adaptive web: methods
and strategies of web personalization. Springer Science & Business
Media, 2007, vol. 4321.

[19] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: finding relevant functions and their usage,” in Pro-
ceedings of the 33rd International Conference on Software Engineering,
2011, pp. 111–120.

[20] APIMatchmaker, The dataset for APIMatchmaker, 2021. [Online].
Available: https://zenodo.org/record/5812605

[21] S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu, K. Chen,
X. Wang, and K. Zhang, “Understanding android obfuscation
techniques: A large-scale investigation in the wild,” in Interna-
tional Conference on Security and Privacy in Communication Systems.
Springer, 2018, pp. 172–192.

[22] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “The soot frame-
work for java program analysis: a retrospective,” in Cetus Users
and Compiler Infastructure Workshop (CETUS 2011), vol. 15, 2011,
p. 35.

[23] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269,
2014.

[24] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta:
Detecting inter-component privacy leaks in android apps,” in 2015
IEEE/ACM 37th IEEE International Conference on Software Engineer-
ing, vol. 1. IEEE, 2015, pp. 280–291.

[25] R. Coppola, M. Morisio, and M. Torchiano, “Evolution and fragili-
ties in scripted gui testing of android applications,” in Proceedings
of the 3rd International Workshop on User Interface Test Automation.
ACM, 2017.

[26] P. Liu, L. Li, Y. Zhao, X. Sun, and J. Grundy, “Androzooopen:
Collecting large-scale open source android apps for the research
community,” in The 2020 International Conference on Mining Software
Repositories, Data Track (MSR 2020), 2020.

[27] Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar: fast and accurate
detection of third-party libraries in android apps,” in Proceedings

https://zenodo.org/record/5812605

TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

of the 38th international conference on software engineering companion,
2016, pp. 653–656.

[28] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and
W. Huo, “Libd: scalable and precise third-party library detection in
android markets,” in 2017 IEEE/ACM 39th International Conference
on Software Engineering (ICSE). IEEE, 2017, pp. 335–346.

[29] Q. He, B. Li, F. Chen, J. Grundy, X. Xia, and Y. Yang, “Diversified
third-party library prediction for mobile app development,” IEEE
Transactions on Software Engineering, 2020.

[30] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden, “Harvesting
runtime values in android applications that feature anti-analysis
techniques.” in NDSS, 2016.

[31] L. Li, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Parameter values
of android apis: A preliminary study on 100,000 apps,” in 2016
IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), vol. 1. IEEE, 2016, pp. 584–588.

[32] J. Wu, L. Shen, W. Guo, and W. Zhao, “Code recommendation
for android development: how does it work and what can be
improved?” Science China Information Sciences, vol. 60, no. 9, p.
092111, 2017.

[33] T. T. Nguyen, H. V. Pham, P. M. Vu, and T. T. Nguyen, “Recom-
mending api usages for mobile apps with hidden markov model,”
in 2015 30th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). IEEE, 2015, pp. 795–800.

[34] W. Yuan, H. H. Nguyen, L. Jiang, and Y. Chen, “Libraryguru:
Api recommendation for android developers,” in Proceedings of
the 40th International Conference on Software Engineering: Companion
Proceeedings, 2018, pp. 364–365.

[35] W. Yuan, H. H. Nguyen, L. Jiang, Y. Chen, J. Zhao, and H. Yu,
“Api recommendation for event-driven android application devel-
opment,” Information and Software Technology, vol. 107, pp. 30–47,
2019.

[36] H. Jiang, L. Nie, Z. Sun, Z. Ren, W. Kong, T. Zhang, and X. Luo,
“Rosf: Leveraging information retrieval and supervised learning
for recommending code snippets,” IEEE Transactions on Services
Computing, vol. 12, no. 1, pp. 34–46, 2016.

[37] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li, “Query expansion
based on crowd knowledge for code search,” IEEE Transactions on
Services Computing, vol. 9, no. 5, pp. 771–783, 2016.

[38] C. Omar, Y. S. Yoon, T. D. LaToza, and B. A. Myers, “Active
code completion,” in 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 2012, pp. 859–869.

[39] M. Schäfer, M. Sridharan, J. Dolby, and F. Tip, “Effective smart
completion for javascript,” Technical Report RC25359, 2013.

[40] T. Omori, H. Kuwabara, and K. Maruyama, “Improving code
completion based on repetitive code completion operations,” In-
formation and Media Technologies, vol. 10, no. 2, pp. 210–225, 2015.

[41] C. Chen and Z. Xing, “Similartech: automatically recommend
analogical libraries across different programming languages,” in
Proceedings of the 31st IEEE/ACM International Conference on Auto-
mated Software Engineering, 2016, pp. 834–839.

[42] F. Thung, R. J. Oentaryo, D. Lo, and Y. Tian, “Webapirec: Recom-
mending web apis to software projects via personalized ranking,”
IEEE Transactions on Emerging Topics in Computational Intelligence,
vol. 1, no. 3, pp. 145–156, 2017.

[43] H. Zhang, A. Jain, G. Khandelwal, C. Kaushik, S. Ge, and W. Hu,
“Bing developer assistant: improving developer productivity by
recommending sample code,” in Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, 2016, pp. 956–961.

[44] S. Azad, P. C. Rigby, and L. Guerrouj, “Generating api call rules
from version history and stack overflow posts,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 25, no. 4,
pp. 1–22, 2017.

[45] A. T. Nguyen, M. Hilton, M. Codoban, H. A. Nguyen, L. Mast,
E. Rademacher, T. N. Nguyen, and D. Dig, “Api code recommen-
dation using statistical learning from fine-grained changes,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016, pp. 511–522.

[46] P. Roos, “Fast and precise statistical code completion,” in 2015
IEEE/ACM 37th IEEE International Conference on Software Engineer-
ing, vol. 2. IEEE, 2015, pp. 757–759.

[47] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, and A. Marcus,
“How can i use this method?” in 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, vol. 1. IEEE, 2015,
pp. 880–890.

[48] X. Gu, H. Zhang, and S. Kim, “Codekernel: A graph kernel based
approach to the selection of api usage examples,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2019, pp. 590–601.

[49] C. Mcmillan, D. Poshyvanyk, M. Grechanik, Q. Xie, and C. Fu,
“Portfolio: Searching for relevant functions and their usages in
millions of lines of code,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 22, no. 4, pp. 1–30, 2013.

[50] W.-K. Chan, H. Cheng, and D. Lo, “Searching connected api sub-
graph via text phrases,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
2012, pp. 1–11.

[51] F. Thung, S. Wang, D. Lo, and J. Lawall, “Automatic recommenda-
tion of api methods from feature requests,” in 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2013, pp. 290–300.

[52] M. M. Rahman, C. K. Roy, and D. Lo, “Rack: Automatic api
recommendation using crowdsourced knowledge,” in 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), vol. 1. IEEE, 2016, pp. 349–359.

[53] M. Raghothaman, Y. Wei, and Y. Hamadi, “Swim: Synthesizing
what i mean-code search and idiomatic snippet synthesis,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
(ICSE). IEEE, 2016, pp. 357–367.

[54] Q. Huang, X. Xia, Z. Xing, D. Lo, and X. Wang, “Api method
recommendation without worrying about the task-api knowledge
gap,” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, 2018, pp. 293–304.

[55] F. Thung, D. Lo, and J. Lawall, “Automated library recommen-
dation,” in 2013 20th Working Conference on Reverse Engineering
(WCRE). IEEE, 2013, pp. 182–191.

[56] Z. Xia, H. Sun, J. Jiang, X. Wang, and X. Liu, “A hybrid approach
to code reviewer recommendation with collaborative filtering,”
in 2017 6th International Workshop on Software Mining (SoftwareMi-
ning). IEEE, 2017, pp. 24–31.

[57] Z. Sun, J. Zhang, H. Sun, and X. Zhu, “Collaborative filtering
based recommendation of sampling methods for software defect
prediction,” Applied Soft Computing, vol. 90, p. 106163, 2020.

	Introduction
	Motivating Example
	Our Approach: APIMatchmaker
	APM: App Preprocessing Module
	SCM: Similarity Calculation Module
	Select x most similar apps.
	Select y most similar methods.

	MCRM: Multi-dimensional Context-aware Recommendation Module
	Filtering out incompatible APIs
	Multi-dimensional context-aware recommendation

	Experimental Setup
	Dataset
	Experimental settings
	Evaluation Metrics

	Results
	RQ1: Performance of APIMatchmaker
	RQ2: Comparison with the State-of-the-art
	RQ3: Impact of parameter tuning on APIMatchmaker
	RQ4: Effectiveness of the multi-dimensional context-aware collaborative filtering approach
	Artifact and Data Availability
	Threats to Validity

	Discussion
	Related Work
	Recommendation in Android Development
	Recommendation in software engineering
	Collaborative filtering applied in software engineering

	Conclusion
	References

