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Abstract—Software analytics have empowered software organisations to support a wide range of improved decision-making and
policy-making. However, such predictions made by software analytics to date have not been explained and justified. Specifically,
current defect prediction models still fail to explain why models make such a prediction and fail to uphold the privacy laws in terms of
the requirement to explain any decision made by an algorithm. In this paper, we empirically evaluate three model-agnostic techniques,
i.e., two state-of-the-art Local Interpretability Model-agnostic Explanations technique (LIME) and BreakDown techniques, and our
improvement of LIME with Hyper Parameter Optimisation (LIME-HPO). Through a case study of 32 highly-curated defect datasets that
span across 9 open-source software systems, we conclude that (1) model-agnostic techniques are needed to explain individual
predictions of defect models; (2) instance explanations generated by model-agnostic techniques are mostly overlapping (but not exactly
the same) with the global explanation of defect models and reliable when they are re-generated; (3) model-agnostic techniques take
less than a minute to generate instance explanations; and (4) more than half of the practitioners perceive that the contrastive
explanations are necessary and useful to understand the predictions of defect models. Since the implementation of the studied
model-agnostic techniques is available in both Python and R, we recommend model-agnostic techniques be used in the future.

Index Terms—Explainable Software Analytics, Software Quality Assurance, Defect Prediction Models, Model-Agnostic Techniques.

1 INTRODUCTION

Software analytics have empowered many software organi-
sations to improve software quality and accelerate software
development processes. Such analytics are essential to guide
operational decisions and establish quality improvement
plans. For example, Microsoft leverages the advances of
Artificial Intelligence and Machine Learning (AI/ML) ca-
pabilities to predict software defects [69]. In addition, prior
studies have proposed techniques to estimate Agile story
points [15], estimate software development costs [72], rec-
ommend a reviewer [105], recommend a developer to fix a
software defect [4].

Despite the recent advances in software analytics, such
decision-making based on Al/ML-based systems needs to
be better justified and uphold privacy laws. Article 22 of
the European Union’s General Data Protection Regulation
(GDPR) [82] states that the use of data in decision-making
that affects an individual or group requires an explanation
for any decision made by an algorithm. Recent work raises a
concern about a lack of explainability of software analytics
in software engineering [16]. Practitioners also share similar
concerns that analytical models in software engineering
must be explainable and actionable [16], [52]. For example,
Google [52] argue that defect models should be more ac-
tionable to help software engineers debug their programs.
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Miller [66] also argue that human aspects should be taken
into consideration when developing Al/ML-based systems.
Thus, Explainable Software Analytics—a suite of AI/ML tech-
niques that produce accurate predictions, while being able
to explain such predictions—is vitally needed.

Thus, researchers often generated global explanations,
which refers to an explanation that summarises the predic-
tions of black-box AI/ML learning algorithms. Such global
explanations can be generated by model-specific explana-
tion techniques of machine learning techniques (e.g., an
ANOVA analysis for logistic regression and a variable im-
portance analysis for random forests). Prior studies used
these model interpretation techniques to understand the
relationship between studied variables and an outcome. For
example, Menzies et al. [63] investigated the impact of code
attributes on software quality. Bird et al. [10] studied the
correlation between human factors and software quality.
McIntosh et al. [58] and Thongtanunam et al. [104] inves-
tigated the relationship between code review practices and
post-release defects.

However, such global explanations cannot justify each
individual prediction of the models on testing or unseen
data. For example, an analytical model for software defects
may generate a predicted probability of 0.9 for a testing
instance, suggesting that a software module will be defec-
tive in the future. Such the predicted probability does not
provide any explanation from the models as to why the
machine learning techniques make that prediction. A lack of
explanation of the predictions generated by such analytical
models could lead to serious errors in decision- and policy-
making, hindering the adoption of software analytics in
industrial practices [16].

Recently, model-agnostic techniques have been proposed
to explain the prediction of black-box AI/ML algorithms
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Figure 1: An illustration of model-agnostic techniques.
Model-agnostic techniques are used to explain the predic-
tions of unseen data, while the global explanation is derived
from the trained models from training data. In other words,
one model can have only one global explanation, but should
have multiple instance explanations.

by identifying the contribution that each metric has on the
prediction of an instance according to a trained model. Yet,
such techniques have never been formally introduced and
empirically evaluated in the context of software engineer-
ing. To address this challenge, this paper is the first to
focus on generating instance explanations which refers to
an explanation of the prediction of defect prediction models
(see Figure[l), by answering a central question: Should model-
agnostic techniques be used to explain the predictions of defect
models?

In this paper, we empirically evaluate three model-
agnostic techniques, ie., two state-of-the-art Local In-
terpretability Model-agnostic Explanations (LIME) tech-
nique [85] and BreakDown [29], [90] technique, and our
improvement of LIME with Hyper Parameter Optimisation
(LIME-HPO) using a differential evolution algorithm. LIME
constructs a local regression model surrounding the instance
to be explained to identify the contribution of each metric to
the prediction of the instance to be explained. On the other
hand, BreakDown decomposes the prediction of the instance
to be explained into parts that can be attributed to each
studied metric as to their contribution to the prediction. We
generate explanations of the predictions of defect models
that are constructed from six classification techniques (i.e.,
logistic regression (LR), random forests (RF), C5.0, aver-
aged neural network (AVNNet), gradient boosting machines
(GBM), and extreme Gradient Boosting Trees (xGBTree)).
Through a case study of 32 publicly-available defect datasets
of 9 large-scale open-source software systems, we address
the following six research questions:

(RQ1) Does LIME with Hyper Parameter Optimisation
(LIME-HPO) outperform default LIME in terms of
the goodness-of-fit of the local regression models?
LIME-HPO always outperform default LIME in
terms of the goodness-of-fit (R?) of the local regres-
sion models with an average improvement of 8% for
all of the studied classification techniques.

(RQ2) Can model-agnostic techniques explain the predic-
tions of defect models?
Model-agnostic techniques can explain the predic-
tions of defect models. Given the same defect mod-
els, different predictions have different instance ex-
planations. For example, one metric that appears at
the top rank for one instance could appear at the
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rank 21 for another instance. Such high variation
indicates that global explanations do not imply in-
stance explanations (and vice versa), highlighting the
need for model-agnostic techniques for explaining
the predictions of defect models.

(RQ3) Do instance explanations generated by model-

agnostic techniques overlap with the global expla-
nation of defect models?
Despite the variation of the ranking of the top-
10 important metrics for instance explanations (see
RQ2), their overall ranking is mostly overlapping
(but not exactly the same) with that of the global
explanations. We find that, at the median, 7, 10, and
9 of the top-10 summarised important metrics of for
instance explanations are overlapping with the top-
10 global important metrics for LIME, LIME-HPO,
and BreakDown, respectively.

(RQ4) Do model-agnostic techniques generate the same

instance explanation when they are re-generated
for the same instance?
Regardless of the studied classification techniques,
LIME-HPO and BreakDown consistently generate
the same instance explanation for the same instance.
On the other hand, LIME generates different instance
explanations when re-generating instance explana-
tions of the same instance with a median rank differ-
ence of 7 ranks.

(RQ5) What is the computational time of model-agnostic

techniques for explaining the predictions of defect
models?
The computational time of LIME-HPO, BreakDown,
and LIME techniques is less than a minute to gen-
erate instance explanations for all of the studied
classification techniques, suggesting that all of the
studied model-agnostic techniques are practical to be
used in real-world deployments in the future.

(RQ6) How do practitioners perceive the contrastive

explanations generated by model-agnostic tech-
niques?
65% of the practitioners agree that model-agnostic
techniques can generate a contrastive explanation
within an object over time (Time-contrast) (e.g., why
was file A not classified as defective in version 1.2,
but was subsequently classified as defective in ver-
sion 1.3?). In particular, 55% and 65% of the partici-
pants perceive that such Time-contrast explanations
are necessary and useful, respectively.

Since the implementation of the studied model-agnostic
techniques is readily available in both Python (LIME [83]
and pyBreakDown [9]) and R (LIME [75] and Break-
Down [8], [29]), we recommend model-agnostic techniques
be used to explain the predictions of defect models.
Novelty & Contributions. The key contributions of this pa-
per are as follows:

(1) An introduction to the explainability in software en-
gineering from a perspective of psychological science
(Section2).

(2) An introduction to the state-of-the-art model-agnostic
techniques (i.e., LIME and BreakDown) for generating
instance explanations (Section [3).



(3) An improvement of LIME using Hyper Parameter Op-
timisation (LIME-HPO) with a differential evolution al-
gorithm (Section 3.2.2) and empirical evidence (RQ1).

(4) An empirical study of the need (RQ2), trustworthi-
ness (RQ3), reliability (RQ4), computational time (RQ5),
and software practitioners’ perception (RQ6) of model-
agnostic techniques (Section [4).

Paper Organisation. Section [2| introduces the explainabil-
ity in software engineering. Section 3| introduces model-
agnostic techniques for generating instance explanation.
Section [] presents the design of our case study, while
Section [5| discusses the results with respect to six research
questions. Section [6| discusses the key differences between
model-agnostic techniques and a simple tree-based tech-
nique. Section |7| discusses related work in order to situate
the contributions of our paper with respect to explainable
software analytics and analytical models for software de-
fects. Section [8] discusses the threats to the validity of our
study. Finally, Section [9 draws conclusions.

2 EXPLAINABILITY IN SOFTWARE ENGINEERING

Software engineering is by nature a collaborative social
practice. Collaboration among different stakeholders (e.g.,
users, developers, and managers) is essential in modern
software engineering. As a part of the collaboration, individ-
uals are often expected to explain decisions made through-
out software development processes to develop appropriate
trust and enable effective communication. Since tool support
in software development processes is an integral part of this
collaborative process, similar expectations are also applied.
Such tools should not only provide insights or generate
predictions for recommendation, but also be able to explain
such insights and recommendations.

Recent automated and advanced software development
tools heavily rely on Artificial Intelligence and Machine
Learning (AI/ML) capabilities to predict software defects,
estimate development effort, and recommend API choices.
However, such AI/ML algorithms are often “black-box”,
which makes it hard for practitioners to understand how
the models arrive at a decision. A lack of explainability of
the black-box algorithms leads to a lack of trust in the pre-
dictions or recommendations produced by such algorithms.

2.1

According to philosophy, social science, and psychology
theories, a common definition of explainability or interpretabil-
ity is the degree to which a human can understand the rea-
sons behind a decision or an action [67]. The explainability
of AI/ML algorithms can be achieved by (1) making the
entire decision-making process transparent and compre-
hensible and (2) explicitly providing an explanation for
each decision [54] (since an explanation is not likely ap-
plicable to all decisions [50]). In order to make the en-
tire decision-making process transparent, prior software
engineering studies often use white-box AI/ML algorithms
(e.g., decision trees and decision rules). While such white-
box AI/ML algorithms can increase the explainability of
the decision-making process, their predictions may not be
as accurate as complex black-box AI/ML techniques (e.g.,
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random forest, extreme gradient boosting trees). Hence,
research has emerged to explore how to explain decisions
made by complex, black-box models and how explanations
are presented in a form that would be easily understood
(and hence, accepted) by humans.

2.2 A Theory of Explanations

According to a philosophical and psychological theory of
explanations, Salmon et al. [87] argue that explanations
can be presented as a causal chain of causes that lead to
the decision. Causal chains can be classified into five cate-
gories [35]: temporal, coincidental, unfolding, opportunity
chains and pre-emptive. Each type of causal chain is thus
associated with an explanation type. However, identifying
the complete causal chain of causes is challenging, since
most AI/ML techniques produce only correlations instead
of causations.

In contrast, Miller [67] argue that explanations can be
presented as answers to why-questions. Similarly, Lipton et
al. [53]] also share a similar view of explanations as being con-
trastive. There are three components of why-questions [6]:
(1) the event to be explained, also called the explanandum
(e.g., file A is defective); (2) a set of similar events that are
similar to the explanandum but did not occur (e.g., file A is
clean); and (3) a request for information that can distinguish
the occurrence of the explanandum from the non-occurrence
of the other similar events (e.g., a large number of changes
made to file A). Below, we describe four types of why-
questions:

— Plain-fact is the properties of the object. “Why does
object a have property P?”

Example: Why is file A defective?

— Property-contrast is the differences in the Properties
within an object. “Why does object a have property P,
rather than property P'?”

Example: Why is file A defective rather than clean?

— Object-contrast is the differences between two Ob-
jects. “Why does object a have property P, while object b
has property P'?”

Example: Why is file A defective, while file B is
clean?

— Time-contrast is the differences within an object over
Time. “Why does object a have property P at time t, but
property P’ at time t'?”

Example: Why was file A not classified as defective
in version 1.2, but was subsequently classified as
defective in version 1.3?

Answers to the P-contrast, O-contrast and T-contrast
why-questions form an explanation. Contrastive explanations
focus on only the differences on Properties within an object
(Property-contrast), between two Objects (Object-contrast), and
within an object over Time (Time-contrast) [[107]. Answer-
ing a plain fact question is generally more difficult than
generating answers to the contrastive questions [53]]. For
example, we could answer the Property-contrast question
(e.g., “Why is file A classified as being defective instead
of being clean?”) by citing that there are a substantial
number of defect-fixing commits that involve with the file.
Information about the size, complexity, owner of the file,
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(4) average # of cyclomatic tokens
contributes 7%.

Figure 2: An example of visual explanations for a decision tree model, and two model-agnostic techniques (i.e., LIME and

BreakDown).

and so on are not required to answer this question. On the
other hand, explaining why file A is defective in a non-
contrastive manner would require us to use all causes. In
addition, humans tend to be cognitively attached to digest
contrastive explanations [67]. Thus, contrastive explanations
may be more valuable and more intuitive to humans. These
important factors from both social and computational per-
spectives should be considered when providing explainable
models or tool support for software engineering.

Explanation is not only a product, as discussed above,
but also a process [56]. In fact, generating explanations is
a cognitive process which essentially involves four cognitive
systems: (1) attention, (2) long-term memory, (3) working
memory, and (4) metacognition [36], [50]. Recent work [[67]
further recognised the importance of considering explana-
tion as being not only a cognitive process but also a social
process, in which an explainer communicates knowledge
to an explainee. Using this view, explanations should be
considered as part of a conversation between the explainer
and explainee. The theories, models, and processes of how
humans explain decisions to one another are important to
the work on explainable software analytics and the develop-
ment of explainable tool support for software engineering in
general.

3 TECHNIQUES FOR GENERATING EXPLANATIONS

Prior studies often leverage white-box AI/ML techniques, such
as decision trees [22] and decision rules [77]. The trans-
parency of such white-box AI/ML techniques allows us to
meaningfully understand the magnitude of the contribution
of each metric on the learned outcomes by directly inspect-
ing the model components. For example, the coefficients of
each metric in a regression model, paths in a decision tree, or
rules of a decision rule model. Figure 2] provides an example
visual explanation of a white-box model (e.g., decision trees)
and model-agnostic techniques.

In contrast, white-box AI/ML techniques are often less
accurate than complex black-box AI/ML techniques and
often generate generic explanations (e.g., one decision node
may cover 100 instances). Recently, model-agnostic tech-
niques (e.g., LIME [85] and BreakDown [29]) have been used
to explain the predictions of any black-box AI/ML models
at an instance level. Guiding by a theory of explanations
in Section this paper focuses on answering the why-
questions at an instance level for any predictions made by
a black-box model. Below, we present the formal definition
of a black-box model, a global explanation, and an instance
explanation.

Definition 1.1: A black-box model. A black-box model is
a function b X Y where X(™) is the feature
space with m corresponding to the studied metrics (ie.,
independent variables), and Y is the outcome space (e.g.,
defective or clean). Typically, training data Dyyain is used for
training a black-box model b( D¢yain ), and testing data Dyegt
is used for evaluating the accuracy of a black-box model b.

There are a plethora of techniques for generating expla-
nations from these black-box models where each technique
has different definitions and targets of explanations. Below,
we provide formal definitions and introduce techniques for
explaining a black-box model and techniques for explaining
an individual prediction made by a black-box model.

3.1 Explaining a black-box model

A global explanation (or a model explanation) refers to an
explanation of the decisions of a black-box model which
summarises the logic of a classification technique based
on the conditional relationship between the independent
variables (software metrics) and the dependent variable (an
outcome) with respect to a whole training data. Below,
we present the formal definition of global explanation and
model-specific explanation techniques as follows:



Definition 1.2: global explanation. A global explanation
em = €(b, Dirain), if a global explanation e,, is generated
from an explanation function ¢ which summarises the logic
of a black-box model b that is learned from a training dataset
D train-

Model-specific explanation techniques focus on explain-
ing the entire decision-making process of a specific black-
box model. For example, an ANOVA analysis for logistic
regression and a variable importance analysis for random
forests. However, such global explanations are often derived
from black-box models that are constructed from training
data, which are not specific enough to explain an individual
prediction.

3.2 Explaining an individual prediction

An instance explanation (or a local explanation) refers to
an explanation of the decision of a black-box model with
respect to a testing instance. Below, we present the formal
definition of instance explanation and model-agnostic tech-
niques as follows:

Definition 1.3: instance explanation An instance expla-
nation e, = (b, z), if an instance explanation e, is gener-
ated from an explanation function ¢ for a prediction b(z) of
an instance x € Dy in a testing dataset Dyegt.

Model-agnostic techniques (i.e., local explanation tech-
niques) focus on explaining an individual prediction by
diagnosing a black-box model. Unlike model-specific expla-
nation techniques discussed above, the great advantage of
model-agnostic techniques is their flexibility. Such model-
agnostic techniques can (1) interpret any classification tech-
niques (e.g., regression, random forest, and neural net-
works); (2) are not limited to a certain form of explanations
(e.g., feature importance or rules); and (3) are able to process
any input data (e.g., features, words, and images [84]).
According to the literature survey of model-agnostic tech-
niques [30]], we selected and discussed two state-of-the-art
model-agnostic techniques (i.e., LIME and BreakDown). We
also propose LIME-HPO—an improvement of LIME using
Hyper Parameter Optimisation based on the differential
evolution technique.

3.2.1 LIME: Explaining a local model that mimics the global
model

LIME (i.e., Local Interpretable Model-agnostic Explana-
tions) [85] is a model-agnostic technique that mimics the be-
haviour of the black-box model to generate the explanations
of the predictions of the black-box model. Given a black-
box model and an instance to explain, LIME performs 4 key
steps to generate an instance explanation as follows:

—  First, LIME randomly generates instances surround-
ing the instance of interest (cf. Line 3).

— Second, LIME uses the black-box model to generate
predictions of the generated random instances (cf.
Line 4).

— Third, LIME constructs a local regression model us-
ing the generated random instances and their gener-
ated predictions from the black-box model (c¢f. Line
7).

—  Finally, the coefficients of the regression model indi-
cate the contribution of each metric on the prediction

Algorithm 1: LIME’s algorithm [85]
Input

: b is a black-box model,
z is an instance to explain,
n is a number of randomly generated
instances, and
k is a length of explanation
Output: e is a set of contributions of metrics on the
prediction of the instance x.
1 D=0
2 foriin {1, ..., n} do
3 d; = sample_around(z)
4 | yl=predict(b,d;)
5 | D=DuU{d;,yl)
6 end
7 | = K — Lasso(D, k)
8 e = get_coefficients(])
9 return e

of the instance of interest according to the black-box
model (cf. Line 8).

Figure 2]shows a visual explanation of LIME (the middle
column). The blue bars indicate the supporting (+) scores
of metrics towards the prediction as defective, while the
red bars indicate the contradicting (-) scores of metrics
towards the prediction as defective. In this example, the
NotifyBuilder.java of the release 2.10.0 of the Apache Camel
project is predicted (74%) as defective due to a supporting
score of 0.75 for a condition of {#ClassCoupled > 5}, a
supporting score of 0.6 for a condition of {#LineComment
> 24}, and a supporting score of 0.5 for a condition of
{#DeclareMethodPublic > 5}. On the other hand, the re-
maining probability of 26% of not defective could be ex-
plained by a contradict score of 0.77 for a condition of
{#MajorDeveloper < 2}.

3.2.2 LIME-HPO: Optimising the hyperparameter settings
of LIME

Since LIME involves parameter settings (e.g., the number
of randomly generated instances that LIME uses to con-
struct local regression models), we propose to optimise the
parameter settings of the LIME algorithm using a Hyper
Parameter Optimisation (LIME-HPO). We use a differential
evolution algorithm [91] to find an optimal value of the
number of randomly generated instances where the objec-
tive function is to maximise the goodness-of-fit (R?) of the
local regression models of LIME. We use the implementation
of the differential evolution technique as provided by the
DEopt im function of the DEopt im R package [68] using the
following parameter settings:

— The lower boundary of 100 and the upper boundary
of 10000 for the population of the number of ran-
domly generated instances used by LIME.

—  The number of population (N P) of 10.

— The crossover probability (cr) of 0.5.

—  The differential weighting factor from interval (f) of
0.8.

— The number of procedure iterations of 10 for gener-
ating population.



Given a black-box model and an instance to explain,
LIME-HPO performs 6 key steps to generate an instance
explanation as follows:

— First, LIME-HPO randomly generates a set of can-
didate of size NP within the population boundary
for the number of randomly generated instances
surrounding the instance of interest.

— Second, for each ca ndidate, LIME-HPO uses the
black-box model to generate predictions of the gen-
erated random instances and constructs local regres-
sion models (Steps 2 and 3 of LIME).

— Third, LIME-HPO find the best candidate of this
generation for the number of randomly generated
instances that produces the local regression model
with the highest goodness-of-fit.

— Fouth, LIME-HPO generates a set of candidate for
the next generation using the set of candidate of
the current generation with the crossover probability
(cr) and the differential weighting factor from inter-
val (f).

- Fifth, LIME-HPO reiterates the procedure until
reaching the number of procedure iterations.

— Finally, LIME-HPO derives the coefficients of the
local regression model that yields the highest
goodness-of-fit across all generations as the contribu-
tion of each metric on the prediction of the instance
of interest according to the black-box model.

Since LIME involves random perturbation (Line 3 in

Algorithm 1), different samplings may produce different
instance explanations. To mitigate the randomisation of

LIME when re-generating instance explanations, Ribeircﬂ

suggests to set a random seed prior to applying LIME. Thus,
our LIME-HPO follows this suggestion by setting a random
seed.

3.2.3 BreakDown: Explaining a global model

BreakDown [29]], [90] is a model-agnostic technique that
uses the greedy strategy to sequentially measure contribu-
tions of metrics towards the expected prediction. Given a
black-box model b, an instance to explain z, and training
data used to construct the model Dy,4p, BreakDown per-
forms 5 key steps to generate an instance explanation as
follows:

— First, BreakDown generates the predictions of all
instances in the training data and computes the
average estimation of such predictions (cf. Lines 3-
4). In the first iteration, BreakDown uses the original
training data as the syntactic training data for calcu-
lation (cf. Line 5).

— Second, BreakDown sequentially substitutes the val-
ues of each metric in the syntactic training data with
the value of such metric appeared at the instance of
interest (cf. Lines 7-9).

— Third, BreakDown generates the predictions of the
substituted training data, and identify the metric that
produces the greatest absolute difference between
the expected predictions of the syntactic training

1. https:/ / github.com/marcotcr/lime/issues/119#
issuecomment-344743006

Algorithm 2: BreakDown’s algorithm [90]

: b is a black-box model,
2 is an instance to explain, and
Dyyqin is a set of training instances used
to construct the black-box model.
Output: c is a set of contributions of metrics on the
prediction of the instance x.
1 M = independent variables in
2 Minitial = @
3 Y/ .in = predict(b, Dipain)

¢ EY5nitial = average(yl

Input

train)

5 Dinitial = Dtruin

6 foriin {1, ..., size(M)} do

7 for j in {M — M;nitiai } do

8 Dupstituted = Dinitial
9 Dsubstituted[aj] = ZL’[]]
10 Y@lubstituted,j = prediCt(bv DSUbStitutEd)
1 dy] = a’bS(average()/;/ubstituted,j) - E}/;nitial)
12 end
B | dYym,.., = ind_max(dyyr—ns,.,..0)
14 Crmpman = QY on
15 EYinitial = average(Y‘;lubstituted,mmam)
16 Dinitial [7 mmam] = x[mmax]
17 Minitiat = Minitiat U Mmaz
18 end
19 return c

data and the substituted training data (cf. Lines 10-
13).

— Fourth, BreakDown allocates such greatest difference
in expected predictions made by the metric as its
contribution (cf. Line 14).

— Finally, BreakDown considers the set of expected
predictions of the substituted training data with the
greatest difference in expected predictions as the new
set of expected predictions (cf. Lines 15-16) and re-
iterates to calculate the contributions of the metrics
in which their contributions are not allocated (cf. Line
17).

Figure [2| shows a visual explanation of BreakDown (the
right column). The light blue bars indicate the supporting
(+) probability of metrics towards the prediction as defec-
tive, while the light brown bars indicate the contradicting (-
) probability of metrics towards the prediction as defective.
In this example, the NotifyBuilderjava of the release 2.10.0
of the Apache Camel project is predicted (74%) as defective
due to a supporting probability of 0.11 for #MajorDevel-
oper, a supporting probability of 0.09 for #LineComment,
a supporting probability of 0.9 for #ClassCoupled, and a
supporting probability of 0.07 for AverageCyclomatic.

4 EXPERIMENTAL DESIGN

In this section, we discuss our criteria for selecting the
studied datasets; and the design of the case study that
we perform to address our six research questions. Figure
provides an overview of the design of our case study.
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Figure 3: An overview diagram of the design of our case study.
4.1 Studied Datasets changes, i.e., lines of code level (LINE), and commit level

Recently, Yatish et al. [112] showed that (1) some issue
reports that are addressed within 6 months after a release do
not realistically affect a studied release (false positive), while
(2) some issue reports that realistically affect the studied
release are addressed later than 6 months after the release
(false negative). Thus, the approximation of post-release
window periods (e.g., 6 months) that were popularly-used
in many defect datasets may introduce biases to the con-
struct to the validity of our results.

Thus, we select a corpus of publicly-available defect
datasets provided by Yatish et al. [112] where the ground-
truths were labelled based on the affected releases. The
datasets consist of 32 releases that span 9 open-source soft-
ware systems. Each dataset has 65 software metrics along 3
dimensions, i.e., 54 code metrics, 5 process metrics, and 6
human metrics. Table [I| shows a statistical summary of the
studied datasets.

Code metrics describe the relationship between proper-
ties extracted from source code and software quality. These
code metrics are extracted using the Understand tool from
SciTools along 3 dimensions, i.e., complexity (e.g., McCabe
Cyclomatic), volume (e.g., lines of code), and object-oriented
(e.g., a coupling between object classes). Among these code
metrics, some properties are extracted at the method level,
and thus three aggregation schemes (i.e., minimum, aver-
age, and maximum) are used to summarise these metrics to
the file level.

Process metrics describe the relationship between de-
velopment process and software quality. For each instance,
there are (1) the number of commits, (2) the number of
added lines of code, (3) the number of deleted lines of code,
(4) the number of active developers, and (5) the number
of distinct developers. Similar to Rahman et al. [80], the
number of added and deleted lines of code of each instance
is normalized by the total number of added and deleted
lines, respectively.

Human factors describe the relationship between the
ownership of instances and software quality [10], [79],
[104]. Ownership metrics are based on the traditional code
ownership heuristics of Bird et al. [10], for each instance,
the ownership of each developer is measured using the
proportion of the code changes made by the developer on
the total code changes. There are two granularities of code

(COMMIT), while there are two levels of ownership of an
instance for developers, as recommended by Bird et al. [10].
That is, developers with low code ownership (i.e., less than
5% code contribution on an instance) are considered as
minor authors. On the other hand, developers with high
code ownership (i.e., more than 5% code contribution on
an instance) are considered as major authors. Ownership
metrics consist of (1) the number of the owner (i.e., the de-
veloper with the highest code contribution on an instance),
(2) the number of the minor authors, and (3) the number of
major authors with respect to the two granularities of code
changes.

4.2 Generate Training and Testing Samples

To generate training and testing samples, we opt to use an
out-of-sample bootstrap validation technique [19], [23]], [34],
[95], [101], which leverages aspects of statistical inference.
We use the out-of-sample bootstrap validation technique
(1) to ensure that the generated training samples are rep-
resentative to the original dataset and (2) to ensure that the
produced estimates are the least bias and most reliable [101].
We first generate a bootstrap sample of sizes N with re-
placement from the studied defect datasets. The generated
sample is also of size N. We construct defect models using
the bootstrap samples, while we interpret the samples that
do not appear in the generated bootstrap samples at the
instance-level. On average, 36.8% of the original dataset will
not appear in the bootstrap samples, since the samples are
drawn with replacement [19]. We repeat the out-of-sample
bootstrap process for 100 times and report their average
calculations.

4.3 Remove Correlated Metrics

Prior studies raise concerns that collinearity (i.e., correlated
metrics) often impacts the global explanation of defect
models [39]], [41], [96], [100]. For example, a defect model
that is constructed with correlated metrics could produce
different global explanations when reordering the model
formula of regression models. Recently, the bagging tech-
nique for random forest is proposed to mitigate collinearity
(i.e., different trees are constructed with different subset of



Table 1: A statistical summary of the studied systems.

Name Description #DefectReports  No. of files  Defective Rate KLOC  Studied Releases

ActiveMQ  Messaging and Integration Patterns server 3,157 1,884-3,420 6%-15% 142-299  5.0.0, 5.1.0, 5.2.0, 5.3.0, 5.8.0
Camel Enterprise Integration Framework 2,312 1,515-8,846  2%-18% 75-383 1.4.0,2.9.0,2.10.0, 2.11.0
Derby Relational Database 3,731 1,963-2,705  14%-33% 412-533  10.2.1.6,10.3.1.4, 10.5.1.1
Groovy Java-syntax-compatible OOP for JAVA 3,943 757-884 3%-8% 74-90 1.5.7,1.6.0.Beta_1, 1.6.0.Beta_2
HBase Distributed Scalable Data Store 5,360 1,059-1,834  20%-26% 246-534  0.94.0,0.95.0, 0.95.2

Hive Data Warehouse System for Hadoop 3,306 1,416-2,662  8%-19% 287-563  0.9.0, 0.10.0, 0.12.0

JRuby Ruby Programming Lang for JVM 5475 731-1,614 5%-18% 105-238  1.1,14,15,1.7

Lucene Text Search Engine Library 2,316 8,05-2,806 3%-24% 101-342  2.3.0,29.0,3.0.0,3.1.0

Wicket Web Application Framework 3,327 1,672-2,578  4%-7% 109-165  1.3.0.betal, 1.3.0.beta2, 1.5.3

metrics), prior studies found that some trees are still con-
structed with correlated metrics [39], [92]. Since LIME builds
a local regression model which is known to be sensitive to
collinearity [39], [96], it is necessary to remove correlated
metrics to mitigate such impact prior to constructing defect
models.

Prior studies introduce many techniques to remove ir-
relevant metrics and correlated metrics (e.g., Correlation-
based Feature Selection (CFS), Information Gain (IG), and
stepwise regression) [5], [12], [18], [20], [44], [63], [73],
[89]. Jiarpakdee et al. [42] found that such feature selection
techniques cannot mitigate correlated metrics (e.g., CFS
produces a subset of metrics that are highly correlated with
the dependent variable while having the least correlation
among themselves. Yet, some of the independent variables
are still highly correlated), suggesting that correlation anal-
yses must be applied. However, such correlation analyses
often involve manual selection by a domain expert. To en-
sure the scalability of our framework, we apply the AutoS-
pearman technique on the training samples. AutoSpearman
automatically selects one metric of a group of the highest
correlated metrics that shares the least correlation with other
metrics that are not in that group [42]. We use the implemen-
tation of the AutoSpearman technique as provided by the
AutoSpearman function of the Rnalytica R package [41].
We observe that AutoSpearman mitigates correlated met-
rics and selects only 22-27 of 65 metrics. In other words,
as high as 38-43 metrics share strong correlations among
themselves, which are then removed by AutoSpearman.

4.4 Construct Defect Models

Shihab [88] and Hall et al. [32] show that logistic regression
and random forests are the two most-popularly-used classi-
fication techniques in the literature of software defect pre-
diction, since they are explainable and have built-in model
explanation techniques (i.e., the ANOVA analysis for the
regression technique and the variable importance analysis
for the random forests technique). Recent studies [25], [99],
[102] also demonstrate that automated parameter optimi-
sation can improve the performance and stability of defect
models. Using the findings of prior studies to guide our
selection, we choose (1) the commonly-used classification
techniques that have built-in model-specific explanation
techniques (i.e., logistic regression and random forests) and
(2) the top-5 classification techniques when performing
automated parameter optimisation [99], [102] (i.e., random
forests, C5.0, AVNNet, GBM, and xGBTree).

We use the implementation of Logistic Regression as
provided by the glm function of the stats R package [103].

We use the implementation of automated parameter op-
timisation of Random Forests, C5.0, AVNNet, GBM, and
xGBTree as provided by the train function of the caret
R package [49] with the options of rf, C5.0, avNNet, gbm,
and xgbTree for the method parameter, respectively. We
neither re-balance nor normalize our training samples to
preserve its original characteristics and to avoid any concept
drift for the explanations of defect models [97].

4.5 Apply Model-specific Explanation Techniques

We apply model-specific explanation techniques to gener-
ate global explanations—what factors are associated with
software quality. We use the ANOVA Type-II analysis for
logistic regression and the scaled Permutation Importance
analysis for random forests, as suggested by our recent
work [39]. We use the usage (i.e., the percentage of training
instances that satisfy all of the terminal nodes after the
split which are associated with the metric) of metrics to
the generate global explanation of C5.0 [78]. We use the
combinations of the absolute values of the weights derived
across hidden layers in neural networks to generate the
global explanation of AVNNet [26]. We use the relative
influence of metrics derived from boosted trees to generate
the global explanation of GBM and xGBTree [24], [71].

We use the implementation of the ANOVA Type-II anal-
ysis as provided by the Anova function of the car R pack-
age [21]. We use the implementation of the scaled Permuta-
tion Importance analysis as provided by the importance
function of the randomForest R package [11]. We use the
implementation provided by the varImp function of the
caret R package [49] to generate global explanation of
C5.0, GBM, and xGBTree.

4.6 Apply Model-agnostic Techniques

We apply model-agnostic techniques to generate instance
explanations of the predictions of defect models. We use
three model-agnostic techniques, i.e., two state-of-the-art
LIME (Local Interpretable Model-Agnostic Explanations)
and BreakDown, and our improvement of LIME with Hyper
Parameter Optimisation based on the differential evolution
technique (LIME-HPO) The technical descriptions are pre-
sented in Section [3| We use the implementation of LIME as
provided by the 1ime and explain functions of the 1ime R
package [75]. We use the implementation of the differential
evolution technique as provided by the DEopt im function
of the DEopt im R package [68]. We use the implementation
of BreakDown as provided by the broken function of the
breakDown R package [8].



4.7 Generate Predicted Probability

We use defect models to generate predicted probabilities
(i.e., defect-proneness) of testing instances. The predicted
probabilities range from 0 (not defective) to 1 (likely to be
defective). We use the classification threshold of 0.5 to map
predicted probabilities to a binary decision of defect and
clean. Predicted probabilities of above 0.5 indicate defect,
otherwise clean.

4.8 Analyse Global Explanation and Instance Explana-
tions

We analyse global explanation and instance explanations
to address RQs 1, 2, 3, and 4. We also conduct a survey
study of 20 practitioners to evaluation instance explanations
generated by the studied model-agnostic techniques in RQ6.
The motivation, approach, and results for each RQ are
explained in detail in Section

4.9 Analyse Model Performance

To ensure that the generated global explanation and instance
explanations are derived from accurate defect models, we
evaluate the model performance of the studied classification
techniques.

First, we use the Area Under the receiver operator char-
acteristic Curve (AUC) to measure the discriminatory power
of our models, as suggested by recent research [27], [51],
[80]. The axes of the curve of the AUC measure are the
coverage of non-defective modules (true negative rate) for
the x-axis and the coverage of defective modules (true pos-
itive rate) for the y-axis. The AUC measure is a threshold-
independent performance measure that evaluates the ability
of models in discriminating between defective and clean
instances. The values of AUC range between 0 (worst), 0.5
(no better than random guessing), and 1 (best) [33].

Second, we use the Initial False Alarm (IFA) measure to
identify the number of false alarms encountered before the
first defective module [37]]. To calculate the IFA measure, we
sort the modules in descending order of their risk predicted
by a model. Then, the IFA measure is computed as k, where
k is the number of non-defective modules that are predicted
as defective by a model before the first defective module.
The values of IFA range from 1 (best) to n, where n is the
number of all modules.

Third, we use the F,,; measure [43], [60], [111] to
measure the effort-aware predictive performance of defect
models. The P,,: measure is defined by the area A, be-
tween the effort-based cumulative lift charts of the optimal
model and a defect model. The axes of the effort-based
cumulative lift charts are the proportion of effort for the
x-axis and the coverage of defective modules for the y-axis.
For the optimal model, all modules are sorted in descending
order of the actual defect density (i.e., the proportion of the
number of defects and the lines of code of each module). On
the other hand, for a defect model, all modules are sorted
in decreasing order of the predicted probabilities of each
module. The P,,; measure is computed as Pyt = 1 — Agpy.
The values of P,,; range between 0 (worst), 0.5 (no better
than random guessing), and 1 (best).

Preliminary Analysis. Figure [4f shows the distributions of
the model performance of all of the studied classification
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Figure 4: The distributions of model performance for all
studied defect datasets of each classification technique.

techniques for all of the studied defect datasets. Our studied
classification techniques achieve a median AUC of 0.79-
0.94, a median IFA of 1, and a median Popt20 of 0.27-
0.77, indicating that our studied classification techniques are
highly accurate.

5 CASE STuDY RESULTS

We present the results of our case study with respect to our
five research questions.

(RQ1) Does LIME with Hyper Parameter Optimisation
(LIME-HPO) outperform default LIME in terms of the
goodness-of-fit of the local regression models?

Motivation. Since LIME generates instance explanations
from local regression models that are constructed using the
randomly generated instances around the neighbours of the
instance to be explained, we use the goodness-of-fit (R?) of
the local regression models as a proxy for measuring the per-
formance of LIME when generating instance explanations.
Prior studies [25], [99], [102] have shown that hyper param-
eter optimisation can be used to improve the performance
of defect models. Yet, little is known about whether hyper
parameter optimisation can improve the goodness-of-fit of
the LIME algorithm when generating explanations for the
predictions of defect models.

Approach. To address RQ1, we analyse the goodness-of-fit
(R?) of LIME and LIME-HPO when generating explanations
for the predictions of defect models for all of the studied
datasets. For each bootstrap sample of each defect dataset,
we use the overview diagram (see Figure |3) to generate
instance explanations of the testing instances. Then, we com-
pute the goodness-of-fit of the local regression models that
are used to generate these instance explanations for LIME
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Figure 5: The distributions of the goodness-of-fit (1??) of the
local regression models constructed with LIME and LIME-
HPO for all of the studied defect datasets and the studied
classification techniques.

and LIME-HPO. We apply Wilcoxon signed-rank test [[110]
to identify whether distributions of the goodness-of-fit of
the local regression models produced by LIME and LIME-
HPO are statistically different. We also apply Cliff’s |§| effect
size test to measure the magnitude of the differences. Finally,
we report the results using boxplots in Figure

Results. LIME-HPO always outperform default LIME in
terms of the goodness-of-fit of the local regression models
with an average improvement of 8%. Figure |5 shows the
distributions of the goodness-of-fit of the local regression
models constructed with LIME and LIME-HPO for all stud-
ied defect datasets. After performing hyper parameter op-
timisation (LIME-HPO), we find that LIME-HPO improves
the goodness-of-fit of the local regression models by (at the
median) 6.6% for LR, 7.4% for RF, 6.7% for C5.0, 6.1% for
AVNNet, 8.0% for GBM, and 7.6% for xGBTree. We observe
that the average R? improvement among six classification
techniques is 8%. Moreover, the results of Wilcoxon signed-
rank test confirm that the improvement in the goodness-of-
fit of the local regression models of LIME-HPO over LIME
are statistically significant for all of the studied classification
techniques. The Cliff’s |d] effect size test also shows that the
effect size of such differences are large for GBM; medium
for LR, RF, C5.0, and xGBTree; and small for AVNNet.

(RQ2) Can model-agnostic techniques explain the pre-
dictions of defect models?

Motivation. Traditionally, model-specific explanation tech-
niques (e.g., ANOVA) are used to generate global explana-
tions. However, such global explanations cannot justify each
individual prediction of defect models—i.e., why a software
module is likely to be defective in the future. Recent research
introduces model-agnostic techniques for explaining the
predictions of any black-box models [29], [85]. Yet, these
model-agnostic techniques have not been investigated in
the context of software engineering (particularly for defect
prediction).
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Approach. To address RQ2, we investigate the variation
of instance explanations generated by model-agnostic tech-
niques for explaining the predictions of defect models. In
other words, given a model trained from the same training
data, do different predictions (i.e., test data) have different
explanations. For each bootstrap sample of each defect
dataset, we use the overview diagram (see Figure |3) to
generate instance explanations of the testing instances. In-
stance explanations are the importance scores of each metric
that contribute to the final probability of each prediction.
For each instance explanation, we transform the scores of
metrics into the ranking of metrics (e.g., from [ADEV =
0.8, MINOR_DEV = 0.15, CC = 0.05] to [1st = ADEV, 2nd
= MINOR_DEYV, 3rd = CC]). We then compute the rank
differences of each metric among instance explanations of
the correctly predicted defective instances. For example,
given two instance explanations, the ranking of one instance
explanation is [Ist = ADEV, 2nd = MINOR_DEV, 3rd =
CC], while that of another explanation is [1st = CC, 2nd =
MINOR_DEYV, 3rd = ADEV]. In this example, ADEV appears
at the 1st rank in one instance explanation, while appearing
at the 3rd rank in another instance explanation. Thus, the
rank difference of ADEV is |1 — 3| = 2. We apply this
calculation for all of the studied metrics for all instance
explanations and report the results using box plots.
Results. Model-agnostic techniques can explain the pre-
dictions of defect models. To illustrate the visual explana-
tion of our studied model-agnostic techniques, we select the
Apache ActiveMQ 5.0.0 dataset and logistic regression (LR)
as the subject of this illustrative example. Figures [6a] and [6b|
presents an illustrative example of instance explanations of
two testing instances that are correctly predicted as defective
(i.e., Destination.java and BrokerTestSupport.java) produced
by LIME and BreakDown, respectively. In this example,
Destination.java and BrokerTestSupport.java are predicted
as defective files with the predicted probability of 63% and
88%, respectively.

LIME. Figure |62 (left) shows the visual explanations for ex-
plaining the predictions of Destination.java that is generated
by LIME. The blue bars indicate the supporting (+) scores of
metrics towards the prediction as defective, while the red
bars indicate the contradicting (-) scores of metrics towards
the prediction as defective. Figure [6a| (left) shows that Desti-
nation.java is predicted (63%) as defective due to a support-
ing score of 0.3 for a condition of {ADEV > 3} and a sup-
porting score of 0.29 for a condition of {1.5 < MAJOR_LINE
< 2}. On the other hand, the remaining probability of 37% of
not defective could be explained by a contradict score of 0.29
for a condition of {CountInput_Mean > 3.56}, a contradict
score of 0.27 for a condition of {CountDeclMethodProtected
< 2}, and a contradict score of 0.22 for a condition of {
CountInput_Min < 1}. These instance explanations indicate
the most important conditions that support and contradict
a file being predicted as defective.

BreakDown. Figure [6D] (left) shows the visual explanations
for explaining the predictions of Destination.java that is
generated by BreakDown. The light blue bars indicate the
supporting (+) probability of metrics towards the prediction
as defective, while the light brown bars indicate the con-
tradicting (-) probability of metrics towards the prediction
as defective. Figure |6b| (left) shows that Destination.java is
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(a) An example instance explanation of LIME. The blue bars indicate supporting (positive) scores
towards a file being predicted as defective, while the red bars indicate contradict (negative) scores

towards its prediction.
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Figure 6: An illustrative example of instance explanations generated by LIME and BreakDown, respectively.

predicted (63%) as defective due to a supporting probabil-
ity of 0.27 for MAJOR_LINE, a supporting probability of
0.15 for CountDeclMethodDefault, a supporting probability
of 0.13 for ADEV, and a supporting probability of 0.07
for CountClassCoupled. In contrast, an CountClassCoupled
value of 12 contradicts the prediction by a probability of
0.8, and an AvgLineComment value of 0 contradicts the
prediction by a probability of 0.05.

Given the same defect models, different predictions
have different instance explanations. Figure [7] shows the
distributions of the rank difference of the metric among
instance explanations for all of the studied defect datasets.
We find that the rank differences of metrics among in-
stance explanations are, at the median, 20 for LIME, 22
for LIME-HPO, and 21 for BreakDown. In other words,
the most important metric of an instance may appear as
the rank 21*2-23'% of another instance. We observe similar
results for all studied classification techniques (the online
appendix provides the results of each classification
technique). As shown in Figures [6a] and [bb] we observe
that while these two instances are predicted as defective
by defect models, their instance explanations are different.
According to this example, on the above sub-figure (LIME),
the number of active developers (ADEV), which appears as
the most important metric of the instance explanation of
Destination.java, appears as the 4" important metric of the
instance explanation of BrokerTestSupportjava. Similarly,
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Figure 7: The distributions of rank differences of each metric
across instances explanations for all studied defect datasets.

on the below sub-figure (BreakDown), the lines of code
contributed by major developers (MAJOR_LINE), which ap-
pears as the most important metric of the instance explana-
tion of Destination.java, appears as the 2" important metric
of the instance explanation of BrokerTestSupport.java. The
variation of instance explanations among the predictions of
defect models indicates that one global explanation of defect
models does not imply instance explanations (and vice
versa), highlighting the need for model-agnostic techniques
for explaining the predictions defect models.



(RQ3) Do instance explanations generated by model-
agnostic techniques overlap with the global explanation
of defect models?

Motivation. Recent research raised concerns about the trust-
worthiness of instance explanations as generated by model-
agnostic techniques. For example, Ribeiro et al. [85] argue
that instance explanations must correspond to how the
trained model behaves. Guidotti et al. [30] argue that the
local approximation models should mimic the black-box
models when predicting an unseen dataset. The results of
RQ2 suggest that instance explanations generated by the
studied model-agnostic techniques have a great variation
among each prediction of defect models. Yet, little is known
about whether these instance explanations generated by the
studied model-agnostic techniques are overlapping with the
global explanation of defect models.
Approach. To address RQ3, we investigate whether instance
explanations generated by model-agnostic techniques are
overlapping with the global explanation of defect models.
For each bootstrap sample, we use the overview diagram
(see Figure [3) to generate a global explanation from training
instances and generate instance explanations from testing
instances. Since the out-of-sample bootstrap validation tech-
nique leverages aspects of statistical inference [19], [23],
[34], [95], [101], both training and testing samples are ap-
proximately equivalent to the population (i.e., the original
dataset). Thus, explanations derived from both training and
testing instances should also be approximately equivalent.
To generate a global explanation, we use the ANOVA Type-
IT analysis for logistic regression, the scaled Permutation
Importance analysis for random forests, the usage of metrics
for C5.0, the combinations of the absolute weights across
hidden layers for AVNNet, and the relative influence of
metrics derived from boosted trees for GBM and xGBTree.
To generate instance explanations for testing instances, we
use the LIME, LIME-HPO, and BreakDown techniques.
While a defect model generates only one global expla-
nation from training instances, model-agnostic techniques
generate many instance explanations from testing instances.
Thus, we need to summarise instance explanations to the
model level prior to comparing with a global explanation
of each bootstrap sample. To summarise instance expla-
nations, we apply the Scott-Knott Effect Size Difference
test (ScottKnottESD) [94] to identify the ranking of metrics
that is statistically distinct across ranks while being non-
negligible different within ranks. Then, we identify the top-
k overlapping metrics between global explanations and the
summary of instance explanations. The top-k overlapping
metrics are the number of the top-k metrics of a global
explanation that consistently appear in the top-k metrics
of the summary of instance explanations. For example, the
global ranking of metrics is [1st = LOC, 2nd = CC, 3rd
= ADEV], while the summarised ranking of metrics for
instance explanations is [1st = ADEV, 2nd = MINOR_DEV,
3rd = CC]. In this example, the top-3 overlapping metrics
are 2 out of 3 metrics. Finally, we apply Wilcoxon signed-
rank test [110] to identify whether the distributions of the
top-k overlapping metrics between the global explanation
and instance explanation produced by LIME, LIME-HPO,
and BreakDown are statistically different. We also apply
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Figure 8: The distributions of the top-k overlapping metrics
between the global explanation and instance explanations

for all of the studied defect datasets and the studied classi-
fication techniques.

Cliff’s |d| effect size test to measure the magnitude of the
differences.

Results. Despite the variation of the ranking of the top-
10 important metrics for instance explanations in RQ2,
their overall ranking is mostly overlapping with (but is
not exactly the same) as that of the global explanations.
Figure |8 shows that, at the median, 7, 10, and 9 of the top-
10 summarised important metrics for instance explanations
are overlapping with the top-10 global important metrics
for LIME, LIME-HPO, and BreakDown, respectively. The re-
sults of Wilcoxon signed-rank test show that the differences
of the top-10 overlapping metrics are statistically significant
among the studied model-agnostic techniques (for LIME
and LIME-HPO, LIME-HPO and BreakDown, and LIME
and BreakDown). The Cliff’s || effect size test also shows
that the magnitude of such differences are large for LIME
and LIME-HPO, medium for LIME and BreakDown, and
negligible for LIME-HPO and BreakDown, suggesting that
LIME-HPO is comparable to BreakDown. On the other
hand, at the median, at least one of the top-3 summarised
important metrics for instance explanations is overlapping
with the top-3 global important metrics. The detailed results
of each studied classification techniques are available in the
online appendix [1].

(RQ4) Do model-agnostic techniques generate the same
instance explanation when they are re-generated for the
same instance?

Motivation. Recent research raised concerns about the relia-
bility of instance explanations generated by model-agnostic
techniques. For example, Lundberg ef al. [57] argue that
instance explanations must remain the same when they
are re-generated for the same instance. Assuming that one
wants to generate an explanation for a file predicted as
defective, model-agnostic techniques (that involve random
perturbation like LIME) might generate different synthetic
instances, leading to different explanations for the same in-
stance. Thus, little is known about whether model-agnostic
techniques generate the same instance explanation when
they are re-generated for the same instance and the same
defect model.

Approach. To address RQ4, we analyse the reliability of
the instance explanations generated by LIME, LIME-HPO,
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Figure 10: An illustrative example of instances explanations
of a defective testing instance when regenerating instance
explanations with LIME.

and BreakDown. Ideally, re-generating instance explana-
tions of the same instance from the same model using the
same model-agnostic technique should produces the same
explanation. Therefore, we use the variation in instance
explanations when re-generating with the same setting as
a proxy for measuring the reliability of model-agnostic
techniques. Rather than generating instance explanations of
all testing instances, we randomly select only one testing
instance as the instance of interest. Similar to RQs 1, 2, and
3, we use the overview diagram (see Figure [3) to generate
instance explanations of this instance of interest. We re-
generate the instance explanation of the selected instance
for 100 repetitions. We compute the rank differences of each
metric when re-generating instance explanations and report
the results of all studied defect datasets using boxplots.
Results. Regardless of the studied classification tech-
niques, LIME-HPO and BreakDown consistently generate
the same instance explanation for the same instance.
On the other hand, LIME generates different instance
explanations when re-generating instance explanations
of the same instance. Figure [J shows the distributions of
rank differences of each metric when re-generating instance
explanations for all studied defect datasets. Ideally, instance
explanations of an instance should be the same when re-
generating using the same model and the same model-
agnostic technique. Regardless of the studied classification
techniques, we find that LIME-HPO and BreakDown consis-
tently produce the same instance explanation for the same
instance. On the other hand, we find that LIME produces
inconsistent instance explanations across repetitions with
the median rank differences of 7. We report the detailed
results of rank differences for each studied classification
technique in the online appendix [1]].

To further illustrate the variation of instance explana-
tions generated by LIME across repetitions, similar to RQ?2,
we select the Apache ActiveMQ 5.0.0 dataset as the subject
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Figure 11: The distributions of computational time of model-
agnostic techniques for explaining the predictions of defect
models for all of the studied defect datasets.

of this illustrative example. Figure [10| shows an illustra-
tive example of instance explanations of a defective test-
ing instance when re-generating instance explanations with
LIME. We observe that the model consistently identifies the
instance as defective with the same predicted probability
of 0.63 for both repetitions. However, while these instance
explanations of the same instances are generated from
the same model using the same model-agnostic technique
(LIME), such explanations—the top-5 important metrics—
vary greatly.

(RQ5) What is the computational time of model-agnostic
techniques for explaining the predictions of defect mod-
els?

Motivation. The computational time is one of the most
important criteria when deploying software analytics in
practice. Model-agnostic techniques may introduce signif-
icant overhead to the current practices of defect modelling
workflow. Yet, little is known about whether the computa-
tional time of model-agnostic techniques is practical to be
deployed by practitioners.

Approach. To address RQ4, we analyse the computational
time of model-agnostic techniques for explaining the pre-
dictions of defect models. To do so, similar to RQs 1, 2,
3, and 4, we use the overview diagram (see Figure [3)



to construct defect models and generate instance explana-
tions. For each studied defect dataset, we generate one set
of bootstrap training and testing instances. We construct
a defect model using bootstrap training instances. Then,
we randomly select one testing instance and generate an
instance explanation using model-agnostic techniques to
measure their computation time. The computational time is
based on a standard computing machine with an Intel Core
i7-8700K processor and 32GB of RAM. Finally, we report the
results using box plots.

Results. The computational time of LIME-HPO, Break-
Down, and LIME is less than a minute to generate
instance explanations for all of the studied classification
techniques. Figure [11| shows the distributions of computa-
tional time of model-agnostic techniques for explaining the
predictions of defect models for all of the studied defect
datasets. We find that, regardless of the studied classification
techniques, the computational time that the studied model-
agnostic techniques take to generate an instance explanation
is at most one minute for all of the studied defect datasets.
This finding suggests that all of the studied model-agnostic
techniques is practical to be used in real-world deploy-
ments.

(RQ6) How do practitioners perceive the contrastive ex-
planations generated by model-agnostic techniques?

Motivation. Referring to a theory of explanations described
in Section Miller [67] and Lipton et al. [53] argue that
explanations can be presented as answers to why-questions
and humans tend to be cognitively attached to digest con-
trastive explanations. Contrastive explanations focus on only
the differences on properties within an object (Property-
contrast), between two Objects (Object-contrast), and within
an object over Time (Time-contrast) [107]. Thus, contrastive
explanations may be more valuable and more intuitive
to humans. Yet, little is known about whether contrastive
explanations generated by model-agnostic techniques can
answer why-questions.

Approach. To address RQ6, we conducted a survey study
of 20 software practitioners to investigate their perceptions
of instance explanations generated by model-agnostic tech-
niques. As suggested by Kitchenham and Pfleeger [45], we
performed the following steps when conducting this survey
study:

(Step-1) Setting the objectives: The survey aimed to
investigate whether instance explanations generated by
model-agnostic techniques (1) can be used to answer the
why-questions (i.e., Property-contrast, Objective-contrast,
and Time-contrast); (2) build appropriate trusts of the pre-
dictions of defect models; and (3) are necessary and useful.

(Step-2) Survey design: We first introduced a concept of
explainable defect models with respect to the literature of
eXplainable Artificial Intelligence (XAI). Then, we used the
Releases 2.10.0 and 2.11.0 of the Apache Camel project as
the subject of the study to generate instance explanations.
We presented 3 types of explanations for investigation,
i.e., Property-contrast explanation (e.g.,, why was file A
predicted as defective rather than clean?), Object-contrast
explanation (e.g., why was file A predicted as defective,
while file B was predicted as clean?), and Time-contrast
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explanation (e.g., why was file A predicted as defective
in version 1.2, but was subsequently predicted as clean
in version 1.3?). Figure illustrates an example of the
Time-contrast explanations generated by model-agnostic
techniques, while other examples of the Property-contrast
and Object-contrast explanations are provided in the online
appendix [1].

The survey design is a cross-sectional study where
participants provide their responses at one fixed point in
time. The survey consists of demographic and three sets of
questions with respect to the 3 objectives of the study. There
are 11 closed-ended questions and 20 open-ended questions.
The survey takes approximately 15 minutes to complete and
is anonymous.

(Step-3) Developing a survey instrument: For closed-
ended questions, we used agreement and evaluation ordinal
scales. To mitigate the inconsistency of the interpretation
of numeric ordinal scales, we labelled each level of the
ordinal scales with words as suggested by Krosnick [48],
i.e., strongly disagree, disagree, neutral, agree, and strongly
agree. The format of our survey instrument was an online
questionnaire. We used an online questionnaire service pro-
vided by Google Formsﬂ When accessing the survey, each
participant was provided with an explanatory statement
that describes the purpose of the study, why the participant
is chosen for this study, possible benefits and risks, and
confidentiality.

(Step-4) Evaluating the survey instrument: We care-
fully evaluated the survey (i.e., pre-testing [55]) prior to
recruiting participants. We evaluated it with focus groups
(i.e., practitioners) to assess the reliability and validity of
the survey. We re-ran it to identify and fix potential prob-
lems (e.g., missing, unnecessary, or ambiguous questions)
until reaching a consensus among the focus groups. Finally,
the survey has been rigorously reviewed and approved
by Monash University Human Research Ethics Committee
(MUHREC Project ID: 22542). We also provide the ethics
approval certificate in our online appendix [1].

(Step-5) Obtaining valid data: The target population
of our study is software practitioners. To reach the target
population, we used a recruiting service provided by the
Amazon Mechanical Turk to recruit 20 participants as a
representative subset of the target population. We also ap-
plied participant filter options of “Employment Industry -
Software & IT Services” and ”“Job Function - Information
Technology” to ensure that the recruited participants are
valid samples representing the target population.

(Step-6) Analysing the data: To analyse the data, we first

checked the completeness of the collected data (i.e., whether
all questions are appropriately answered). Then, we manu-
ally analysed the answers to the open-ended questions to
extract in-depth insights. For closed-ended questions, we
summarised and presented key statistical results.
Results. 65% of the participants agree that model-agnostic
techniques can generate the Time-contrast explanation
to answer the why-questions. Similarly, we found that
55% and 50% of the participants agree (and strongly agree)
that model-agnostic techniques can generate the Property-
contrast and Object-contrast explanations, respectively.

2. https:/ /www.google.com/forms
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Figure 12: An example of the Time-contrast explanations generated by model-agnostic techniques for explaining the

predictions of defect models.

55% and 65% of the participants perceived that the
Time-contrast explanations generated by model-agnostic
techniques are necessary and useful, respectively. Sim-
ilarly, we found that 40% and 30% of the participants
perceive that the Property-contrast and Object-contrast ex-
planations generated by model-agnostic techniques are nec-
essary, respectively. We found that 55% and 40% of the
participants perceive that the Property-contrast and Object-
contrast explanations generated by model-agnostic tech-
niques are useful, respectively. Finally, we found that 50%,
45%, and 70% of the participants agree (and strongly agree)
that instance explanations generated by model-agnostic
techniques can build appropriate trusts of the predictions
of defect models for the Property-contrast, Object-contrast,
and Time-contrast explanations.

6 DISCUSSION

In this section, we discuss the key differences between
model-agnostic techniques and a tree-based technique.

6.1 A Comparison of Model-Agnostic Techniques with
a Tree-based Technique

There are many approaches and granularity levels to explain
the predictions of defect models (i.e., global explanation,
subgroup explanation, instance explanation). Traditionally,
we can use tree-based models to predict and explain the
characteristics of defective files. For example, Tan et al. [93]]
use Alternative Decision Tree technique (ADTree) as pro-
vided by Weka [31] to explain the predictions of defect
models. Chen ef al. [14] use Fast-and-Frugal Trees (FFT)
technique to construct comprehensible defect models. An
explanation of each prediction can be generated by deriving
a decision node of the decision tree that matches with the
instance to explain. Below, we select the ADTree technique
as the subject of this discussion and discuss the strengths
and weakness of the tree-based technique with respect to
the model accuracy, the locality of the explanation, and the
visual explanation.

6.1.1 Model Accuracy

Practitioners often make decisions whether defect models
should be deployed in practice based on their model accu-
racy. We first evaluate the model accuracy of the decision
tree technique for predicting defective files with respect to
three performance measures (i.e., AUC, Initial False Alarm
(IFA), and Popt(20)) for all of the 32 studied defect datasets.
We report the evaluation results of ADTree in the online
appendix [1]].

We find that ADTree achieves a median AUC of 0.75,
a median IFA of 53, and a median Popt(20) of 0.02. When
comparing the model accuracy to other classification tech-
niques as shown in Figure[d} we find that ADTree is the least
top-performing classification technique in terms of AUC,
IFA, and Popt(20), raising concerns that the explanations
that are derived from such inaccurate models could be
misleading. However, such black-box AI/ML-based classifi-
cation techniques are complex and hard to explain. Thus,
model-agnostic techniques play a key role in explaining
the predictions of highly accurate yet complex classification
techniques.

6.1.2 Visual Explanation

Practitioners often make a decision whether the predictions
should be trusted based on the understand-ability of the
visual explanations. We conduct a preliminary survey with
20 practitioners to better understand which visual explana-
tions are the most preferred by practitioners. We find that
the visual explanation of ADTree is the most preferred by
practitioners (60% of practitioners agree or strongly agree),
as such visual explanation is simple to digest and involves
logical reasoning. While the visual explanation of LIME
also involves logical reasoning, practitioners are confused
about the bar colours of LIME that explain the supporting
and contradict scores (i.e., LIME uses the red colour to
explain contradicting scores, which imply that such met-
rics contribute towards a prediction as clean). Despite the
advantages of BreakDown that decompose the final prob-
ability score into each score for each feature, practitioners
raise concerns that the visual explanation lacks necessary



details (e.g., optimal threshold values for each metric) and
is difficult to understand. Therefore, future studies should
develop a novel visual explanation that is understandable
to domain experts using human-centred design approaches
(e.g., a co-creation design session and the Wizard-of-Oz
prototyping technique).

6.1.3 The Locality of Explanation

Practitioners often make a decision as to whether the pre-
dictions should be trusted based on the locality of the
explanations. The locality of explanations refers to the scope
that such explanations are derived from. For example, an
explanation generated by a variable importance technique
of the random forest technique is derived from the global
level of the prediction models. On the other hand, an
explanation generated by a model-agnostic technique (e.g.,
LIME) is derived from a local model that is constructed from
instances around their neighbours. Similarly, an explanation
generated by a decision tree technique is derived from a
decision node which can cover IV instances. Although the
locality of explanation between LIME and a decision tree
is similar, the key difference is the flexibility of the visual
representation and the choice of AI/ML-based classification
techniques. In other words, a decision node can be used to
explain only the decision tree technique. While the model
accuracy of such decision tree technique is not as com-
petitive as complex AI/ML-based classification techniques,
model-agnostic techniques can be used to explain any clas-
sification techniques.

Summary. Decision tree is easy to understand, but not
as accurate as other complex AI/ML learning algorithms.
Complex AI/ML learning algorithms (e.g., xGBTree, neural
network) are more accurate, but it is very hard to under-
stand their predictions. Thus, the main goal of our paper
is to leverage model-agnostic techniques to explain the
predictions of any accurate yet complex AI/ML learning
algorithms. However, practitioners perceive that decision
tree is the most preferred visual explanation, suggesting that
future studies should invent new visual explanations that
are directed towards practitioners’ needs.

7 RELATED WORK

We discuss key related work in order to situate the contri-
butions of our paper with respect to explainable software
analytics and analytical models for software defects.

7.1 Explainable Software Analytics

Despite the advances in analytical modelling in software
engineering, recent work raises a concern about a lack of
explainability of analytical models in software engineer-
ing [16]. Practitioners also share similar concerns that an-
alytical models in software engineering must be explainable
and actionable in order to be of practical use [16], [52], [65].
For example, Dam et al. [16] argue that making software
analytics models explainable to software practitioners is as
important as achieving accurate predictions. Lewis et al. [52]
emphasize that defect modelling should be more actionable
to help Google engineers debug their programs. Menzies
and Zimmermann [65] also emphasize that software analyt-
ics must be actionable.
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Key Difference. To the best of our knowledge, little research
in software analytics explores a theory of global explana-
tions, the differences of the goals, scopes, and targets of
global explanations and instance explanations. Moreover,
model-agnostic techniques, i.e. techniques for explaining an
individual prediction, have not yet been introduced in the
context of software engineering.

7.2 Analytical Models for Software Defects (i.e., Defect
Models)

Analytical models for software defects play a foundational
role in optimising the limited resources of software qual-
ity assurance activities and in building empirical theories
of software quality. Below, we discuss the literature with
respect to the two main purposes of defect models.

To predict software defects. First, defect models are
used to optimize the limited quality assurance resources
on the most risky software modules [17], [63], [99], [102].
There are a plethora of studies focus on investigating ad-
vanced features and advanced techniques in order to im-
prove the predictive ability of defect models. For example,
Wang et al. [109] leverage a multiple kernel learning to pro-
duce a multiple kernel classifier through ensemble learning
method, which has the advantages of both multiple kernel
learning and ensemble learning. Wang et al. [108] use a
deep belief network (DBN) to automatically learn semantic
features to improve the predictive ability of defect models.

The improvement of the predictive ability of defect mod-

els is critical to practitioners when deploying defect models
in practice.
Key Difference. Unlike prior studies that focused on im-
proving the predictive ability of defect models, this paper
focuses on investigating techniques to explain software de-
fect predictions.

To explain software defects. Second, defect models are
used (1) to understand factors that are associated with soft-
ware defects, (2) to establish effective quality improvement
plans, (3) to provide actionable guidance to avoid pitfalls
that lead to software defects in the past, and (4) to build
empirical theories of software quality [10], [58]], [104]. There
are a plethora of studies focusing on investigating the best
modelling workflow and advanced techniques in order to
improve the explainability of defect models, which will be
discussed below.

7.2.1 Investigating the best modelling workflow to improve
the explainability of defect models

Explanations of defect models may not be accurate and
reliable if care is not taken in the analytical modelling
workflow for software defects. Hall ef al. [32] raised a critical
concern that different researchers often develop different
analytical workflows, which makes it hard to derive prac-
tical guidelines of the best defect modelling workflows.
Recent studies demonstrate that if pitfalls are not mitigated
when collecting defect datasets [98], [112] and designing the
analytical workflow [64], [95], [96] for software defects, the
predictions and explanations that are derived from defect
models may be inaccurate and unreliable. For example,
Menzies and Shepperd [64] raised concerns that there are
many components that could potentially impact the predic-
tions of defect models.



Recent studies reveal many components of the analyt-

ical workflow that impact the predictions and explana-
tions of defect models [96]. For example, noise in defect
datasets [27], the quality of issue reports [98]], defect la-
belling techniques [112], feature selection techniques [28],
[42], collinearity analysis [39], [40], [42], class rebalancing
techniques [97], model construction [27]], parameter optimi-
sation [2], [3], [25], [99], [102], model evaluation [101], and
model interpretation [39].
Key Difference. While these studies focused on develop-
ing practical guidelines to develop the most accurate and
reliable analytical models to predict and explain software
defects, this paper focused on investigating advanced tech-
niques to improve the explainability of defect models.

7.2.2 Investigating advanced techniques to improve the ex-
plainability of defect models

As discussed in Section [3} there are techniques to generate
explanations with different goals, scopes, and target of
explanations. Below, we discuss prior studies focused on
(1) explaining a black-box model; (2) explaining a group of
predictions; and (3) explaining an individual prediction.

Explaining a black-box model

Prior studies have been leveraged well-established ex-
plainable classification techniques, such as regression mod-
els [80], [81], random forests [44], [76], decision trees [113],
decision rules [86]. In addition, Chen et al. [14] point out
that Fast-and-Frugal Tree is more accurate, comprehensible,
and operational than the well-established explainable clas-
sification techniques in the context of software defect pre-
diction. Moreover, a domain-specific classification technique
like Bellwether [47] has shown to mitigate the conclusion
instability when transferring knowledge from one software
project to another.

Despite the recent advances of well-established explain-
able classification techniques and domain-specific classifica-
tion techniques in the context of software engineering, such
techniques only derive knowledge of the learned models
from the whole training dataset without justifying an indi-
vidual prediction. Instead of explaining a black-box model,
prior studies [7], [62] proposed techniques with an attempt
to explain a smaller group of predictions with similar data
characteristics in order to improve the predictive ability and
explainability of defect models, such techniques still cannot
justify each individual prediction and uphold the privacy
laws (i.e., GDPR).

Explaining an individual prediction

Recently, model-agnostic algorithms that treat the original
model as a black-box have been proposed to explain the
predictions of any learners at the instance level. For ex-
ample, Ribeiro et al. [85] proposed a Local Interpretable
Model-Agnostic Explanations (LIME) that leverages the ap-
proximation of a simple linear model locally around the
prediction.

Key Difference. Unlike prior studies that focus on explain-
ing black-box models or a group of predictions, this paper
is the first to investigate model-agnostic techniques for
explaining an individual prediction from testing instances
in the domain of software engineering.
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8 THREATS TO VALIDITY
8.1 Construct Validity

Prior studies show that the parameters of learners have
an impact on the performance of defect models [25], [46],
[59], [61], [99]. While we use a default parameter setting of
100 trees for random forests, recent work [38], [99], [106]
find that the parameters of random forests are insensitive to
the performance of defect models. Thus, the parameters of
random forests do not pose a critical threat to the validity of
our study.

Due to the technical limitations of our studied classifica-
tion techniques, correlated metrics must be removed prior
to explaining the prediction models. One might suggest
that LASSO should be used to penalise collinearity (i.e.,
correlated metrics). We found that the top-rank metric that is
correlated with another will be less important by half when
using LASSO (as they penalise the important score by half
to another correlated metric). Yet, they are still correlated.
We noted that this is still an open problem for ML domains.
Thus, software practitioners should not draw implications
solely from the most important metric, but should also
consider its group of correlated metrics.

We use 100 iterations to draw reliable bootstrap esti-
mates of the studied measures in the experiments. However,
such high bootstrap iterations often come with a high com-
putation cost. Thus, 100 iterations of bootstrap validation
may not be practical for compute-intensive AI/ML algo-
rithms like deep learning.

To ensure that our survey is reliable and valid, we
carefully evaluated the survey (i.e., pre-testing [55]) prior to
recruiting participants. We evaluated it with focus groups
(i.e., practitioners) to assess the reliability and validity of
the survey. We re-ran it to identify and fix potential prob-
lems (e.g., missing, unnecessary, or ambiguous questions)
until reaching a consensus among the focus groups. Finally,
the survey has been rigorously reviewed and approved
by Monash University Human Research Ethics Committee
(MUHREC Project ID: 22542).

8.2

We studied a limited number of model-specific explanation
techniques (i.e., the ANOVA Type-II analysis for logistic
regression and the scaled Permutation Importance analysis
for random forests) and model-agnostic techniques (i.e.,
BreakDown and LIME). Our results, therefore, may not gen-
eralise to other defect explainers. However, other techniques
for generating explanations can be investigated in future
studies. In this paper, we provide a detailed methodology
for others who wish to revisit our study with other tech-
niques for generating explanations.

Internal Validity

8.3 External Validity

In this study, our experiments rely on one defect predic-
tion scenario, i.e., within-project defect prediction. However,
there are a variety of defect prediction scenarios in the
literature (e.g., cross-project defect prediction [13], [113],
just-in-time defect prediction [43], [74], and heterogenous
defect prediction [70]). Therefore, the results may differ in



other scenarios. Future studies should revisit our study in
other defect prediction scenarios.

The number of our studied datasets is limited and thus
may produce results that cannot be generalised to other
datasets and domains. However, it is a carefully curated
dataset where the ground truths were labelled based on the
affected releases. Future work can revisit and replicate our
study with other datasets.

The number of survey participants is limited to a recruit-
ment of 20 software practitioners from Amazon Mechanical
Turk. Thus, the results of the survey may not be representa-
tive to the perceptions of all software practitioners. Future
work can revisit and replicate the survey study with other
groups of software practitioners.

9 CONCLUSIONS

We investigate model-agnostic techniques for explaining
the predictions of defect models. Through a case study of
32 publicly-available defect datasets of 9 large-scale open-
source software systems, the experimental results lead us to
conclude that (1) model-agnostic techniques are needed to
explain individual predictions of defect models; (2) instance
explanations generated by model-agnostic techniques are
mostly overlapping with the global explanation of defect
models (except for LIME) and reliable when they are re-
generated (except for LIME); (3) model-agnostic techniques
take less than a minute to generate instance explanations;
and (4) more than half of the practitioners perceive that
the instance explanations are necessary and useful to under-
stand the predictions of defect models. Since the implemen-
tation of the studied model-agnostic techniques is readily
available in both Python and R, we recommend model-
agnostic techniques be used to explain the predictions of
defect models.
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