
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 1

Automatic feature learning for predicting
vulnerable software components

Hoa Khanh Dam, Truyen Tran, Trang Pham, Shien Wee Ng, John Grundy, and Aditya Ghose

Abstract—Code flaws or vulnerabilities are prevalent in software systems and can potentially cause a variety of problems including
deadlock, hacking, information loss and system failure. A variety of approaches have been developed to try and detect the most likely
locations of such code vulnerabilities in large code bases. Most of them rely on manually designing code features (e.g. complexity
metrics or frequencies of code tokens) that represent the characteristics of the potentially problematic code to locate. However, all
suffer from challenges in sufficiently capturing both semantic and syntactic representation of source code, an important capability for
building accurate prediction models. In this paper, we describe a new approach, built upon the powerful deep learning Long Short Term
Memory model, to automatically learn both semantic and syntactic features of code. Our evaluation on 18 Android applications and the
Firefox application demonstrates that the prediction power obtained from our learned features is better than what is achieved by state
of the art vulnerability prediction models, for both within-project prediction and cross-project prediction.

Index Terms—Software vulnerability prediction, Mining software engineering repositories, Empirical software engineering

F

1 INTRODUCTION

A software vulnerability – a security flaw, glitch, bug, or
weakness found in software systems – can potentially cause
significant damage to businesses and people’s lives, espe-
cially with the increasing reliance on software in all areas
of our society. For instance, the Heartbleed vulnerability in
OpenSSL exposed in 2014 has affected billions of Internet
users [1]. Cyberattacks are constant threats to businesses,
governments and consumers. The rate and cost of a cyber
breach is increasing rapidly with annual cost to the global
economy from cybercrime being estimated at $400 billion
[2]. In 2017, it is estimated that the global security market is
worth $120 billion [3]. Central to security protection is the
ability to detect and mitigate software vulnerabilities early,
especially before software release to effectively prevent at-
tackers from exploit them.

Software has significantly increased in both size and
complexity. Identifying security vulnerabilities in software
code is very difficult as they are rare compared to other
types of software defects. For example, the infamous Heart-
bleed vulnerability was caused only by two missing lines
of code [4]. Finding software vulnerabilities is commonly
referred to as “searching for a needle in a haystack” [5].
Static analysis tools have been routinely used as part of
the security testing process but they commonly generate a
large number of false positives [6], [7]. Dynamic analysis
tools rely on detailed monitoring of run-time properties

• H. K. Dam, S. W. Ng and A. Ghose are with the School of Computing and
Information Technology, Faculty of Engineering and Information Sciences,
University of Wollongong, NSW, Australia, 2522.
E-mail: {hoa,swn881,aditya}@uow.edu.au

• T. Tran, T. Pham are with the School of Information Technology, Deakin
University, Victoria, Australia, 3216.
E-mail: {truyen.tran,phtra}@deakin.edu.au

• J. Grundy is with the Faculty of Information Technology, Monash Uni-
versity, Victoria, Australia, 3800.
E-mail: john.grundy@monash.edu.au

including log files and memory, and require a wide range of
representative test cases to exercise the application. Hence,
standard practice still relies heavily on domain knowledge
to identify the most vulnerable part of a software system for
intensive security inspection.

Software engineers can be supported by automated tools
that explore the remaining parts of the software code which
are more likely to contain vulnerabilities and raise an alert
on these. Such predictive models and tools can help prior-
itize effort and optimize inspection and testing costs. They
aim to increase the likelihood of finding vulnerabilities and
reduce the time required by software engineers to discover
vulnerabilities. In addition, a predictive capability that iden-
tifies vulnerable components early in the software lifecycle
is a significant achievement since the cost of finding and
fixing errors increases dramatically as the software lifecycle
progresses [8].

A common approach to building vulnerability prediction
models is by using machine learning techniques. A number
of features representing software code are selected for use as
predictors for vulnerability [5], [9], [10], [11], [12], [13], [14].
The most commonly used features in previous work are soft-
ware metrics (e.g. size of code, number of dependencies, and
cyclomatic complexity) (e.g. [11]), code churn metrics (e.g.
the number of code lines changed) and developer activity
(e.g. [10]), and dependencies and organizational measures
(e.g. [5]). However, using those features does not help us
recognize the code that is semantically different and hence
potentially vulnerable [15]. In many cases, two pieces of
code may have the same complexity metrics but they behave
differently and thus have a different likelihood of vulnera-
bility to attack. Furthermore, the choice of which features are
selected as predictors is manually chosen by knowledgeable
domain experts. This has the disadvantage that it may carry
outdated experience and underlying biases. In addition, in
many situations the handcrafted features do not generalize
well: features that work well for a certain software project

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 2

may not perform as well in other projects [16].
An emerging approach is treating software code as a

form of text and leveraging Natural Language Processing
(NLP) techniques to automatically extract features. Recent
work (e.g. [8]) has used Bag-of-Words (BoW) to represent
a source code file as a collection of code tokens associated
with frequencies. The terms are the features which are used
as the predictors for their vulnerability prediction model.
BoW features rely on the code tokens used by the develop-
ers, and thus they are not fixed or pre-determined (as seen
in the software metric model). However, the BoW approach
has two major weaknesses. Firstly, it ignores the semantics
of code tokens, e.g. fails to recognize the semantic relations
between “for” and “while”. Secondly, a bag of code tokens
does not necessarily capture the semantic structure of code,
especially its sequential nature.

Software programs not only follow a well-defined syn-
tax, but also have semantics which describe what the pro-
grams mean and how they execute. Thus, approaches that
do not capture the semantics of code structure or individual
code tokens may miss important information about the
programs [17]. In fact, previous studies have demonstrated
that semantic information hidden in a program is useful
for various software engineering tasks such as code com-
pletion, bug detection and defect prediction [15], [18], [19],
[20], [21]. This semantic information can also help provide
richer representations for vulnerable code and thus improve
vulnerability prediction.

The recent advances of deep learning techniques [22] in
machine learning offer a powerful alternative to software
metrics and BoW in representing software code. One of
the most widely-used deep learning models is Long Short-
Term Memory (LSTM) [23], a special kind of recurrent
neural network that is highly effective in learning long-term
dependencies in sequential data such as text and speech.
LSTMs have demonstrated ground-breaking performance
in many applications such as machine translation, video
analysis, and speed recognition [22] .

This paper presents a novel deep learning-based ap-
proach to automatically learn features for predicting vulner-
abilities in software code. We leverage LSTM to capture the
long context relationships in source code where dependent
code elements are scattered far apart. For example, pairs
of code tokens that are required to appear together due
to programming language specification (e.g. try and catch
in Java) or due to API usage specification (e.g. lock() and
unlock()), but that do not immediately follow each other
in the textual code files. Our previous work [24] has pro-
vided a preliminary demonstration of the effectiveness of
a language model based on LSTM. However, that work
merely sketched the use of LSTM in predicting the next
code tokens. Our current work in this paper presents a
comprehensive framework where features are learned and
combined in a novel way, and are then used in a novel ap-
plication, i.e. building vulnerability prediction models. The
learned features represent both the semantics of code tokens
(semantic features) and the sequential structure of source code
(syntactic features). Our automatic feature learning approach
eliminates the need for manual feature engineering which
occupies most of the effort in traditional approaches. Results
from our experiments on 18 Java applications [8] for the

Android OS platform and Firefox application [12] from
public datasets demonstrate that our approach is highly
effective in predicting vulnerabilities in code.

The outline of this paper is as follows. In the next section,
we provide a motivation example. Section 3 provides a
brief background on vulnerability prediction and the neural
networks used in our model. We then present an overview
of our approach in Section 4, the details of how features are
automatically learned in Section 5, and the implementation
our approach in Section 6. We report the experiments to
evaluate it in Section 7, and discuss the threats to validity
in Section 8. In Section 9, we discuss related work before
summarizing the contributions of the paper and outlines
future work in Section 10.

2 MOTIVATION

In this section, we present a motivating example which
demonstrates some major limitations of existing approaches
in representing software components for vulnerability pre-
diction. Figure 1 shows two code listings in Java that we
adapted from [25]. Both pieces of code aim to avoid data
corruption in multi-threaded Java programs by protecting
shared data from concurrent modifications and accesses (e.g.
file f in this example). They do so by using a reentrant
mutual exclusion lock l in order to enforce exclusive access
to the file f . Here, a thread executing this code means to: (i)
acquire the lock before reading file f ; and then (ii) release
the lock when it finishes reading the file so that other threads
are able to access the file.

1 t r y {
2 l . lock ()
3 r e a d F i l e (f) ;
4 l . unlock () ;
5 }
6 catch (Exception e) {
7 // Do something
8 }
9 f i n a l l y {

10 c l o s e F i l e (f) ;
11 }

Listing 1: File1.java

1 l . lock ()
2 t r y {
3 r e a d F i l e (f) ;
4 }
5 catch (Exception e) {
6 // Do something
7 }
8 f i n a l l y {
9 l . unlock () ;

10 c l o s e F i l e (f) ;
11 }

Listing 2: File2.java

Fig. 1: A motivating example

The use of such locking can however result in deadlocks.
Listing 1 in Figure 1 demonstrates an example of deadlock
vulnerability. While it reads file f , an exception (e.g. file not
found) may occur and control transfers to the catch block.
Hence, the call to unlock() never gets executed, and thus it
fails to release the lock. An unreleased lock in a thread will
prevent other threads from acquiring the same lock, leading
to a deadlock situation. Deadlock is a serious vulnerability,
which can be exploited by attackers to organise Denial of
Service (DoS) attacks. This type of attack can slow or prevent
legitimate users from accessing a software system.

Listing 2 in Figure 1 rectifies this vulnerability. It fixes the
problem of the lock not being released by calling unlock()
in the finally block. Hence, it guarantees that the lock is
released regardless of whether or not an exception occurs.
In addition, the code ensures that the lock is held when the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 3

finally block executes by acquiring the lock (calling lock())
immediately before the try block.

The two code listings are identical with respect to both
software metric and Bag-of-Words measures used by most
current predictive and machine learning approaches to
code-level vulnerability detection. The number of code lines,
the number of conditions, variables, and branches are the
same in both listings. The code tokens and their frequencies
are also identical in both pieces of code. Hence, the two
code listings are indistinguishable if either software metrics
or BoW are used as features for a vulnerability detection
or analysis recommendation approach. Existing work which
relies on those features would fail to recognize that the left-
hand side listing contains a vulnerability while the right-
hand side does not.

3 BACKGROUND

3.1 Vulnerability prediction
Vulnerability prediction involves determining whether a
software component is likely to be vulnerable or not. Most
of existing work (e.g. [5], [8], [9], [10], [11], [26], [27], [28])
in vulnerability prediction refer to a component as a source
file (e.g. a “.java” file) in a software system. Hence, this level
of granularity has become a standard in the literature of
predicting vulnerabilities in software code in terms of both
benchmark techniques and datasets. The objective here is to
alert software engineers with parts of the software system
require special focus (e.g. manual inspection or running
targeted test case suites), rather than pinpointing exactly the
code line(s) where a vulnerability resides [8]. Hence, we also
chose to work at the level of files since this is also the scope
of most existing work (e.g. [8], [10]) with which we would
like to compare our approach against.

f1, f2, f3, …, fn X
f1, f2, f3, …, fn √
f1, f2, f3, …, fn √
f1, f2, f3, …, fn X
f1, f2, f3, …, fn X
f1, f2, f3, …, fn X

Training components

Classifierf1, f2, f3, …, fn ?

Feature and label extraction

Predicted
outcome

Cross-project
prediction

Project A

Project B

New component

Features Known outcome
(vulnerable or clean)

(vulnerable or clean)

Training

Within-project prediction
(within-version or cross-version)

Fig. 2: Vulnerability prediction (adapted from [15])

Determining if a component is likely to be vulnerable can
be considered as a function vuln(x) which takes as input a
file x and returns a boolean value: true indicates that the
component is likely to be vulnerable, while false indicates
that the component is likely to be clean. Vulnerability pre-
diction is therefore to approximate this classification func-
tion vuln(x) by learning from a number of examples (i.e.
components known to be vulnerable or clean) provided in a
training set (see Figure 2). After training, the learned function
(or also referred to as the model) is used to automatically
determine the vulnerability of new components in the same

project (within-project prediction) or in a different project
(cross-project prediction). Within-project prediction also has
two settings: within-version (new components are from the
same version as the training components) and cross-version
(new components are from a later version).

To date, various machine learning techniques have been
widely used to learn function vuln(x). To make it math-
ematically and computationally convenient for machine
learning algorithms, file x needs to be represented as a
n-dimensional vector where each dimension represents a
feature (or predictor).

3.2 Long Short Term Memory
The feature vector representation of file x is critical in
building an accurate vulnerability prediction model. While
high-level representations such as code complexity metrics
are useful, they do not reveal the semantics hidden deeply
in source code (as demonstrated in the motivation example
in Section 2). Long Short-Term Memory, a deep learning
architecture, offers a powerful representation of source code.
It is able to automatically learn both syntactic and semantic
features which represent long-term dependencies (e.g. a
code element may depend on other code elements which
are not immediately before it) in source code.

Long Short-Term Memory (LSTM) [23], [29] is a recurrent
neural network [30], which maps a sequence of input vectors
into a sequence of output vectors (see Figure 3). A Long
Short-Term Memory (LSTM) neural network architecture is
a special variant of a Recurrent Neural Network (RNN),
which is capable of learning long-term dependencies. This is
the key difference from a feedforward neural network which
maps an input vector into an output vector.

An LSTM network can be considered as a sequence of
LSTM units. Let w1, ...,wn be the input sequence (e.g. code
tokens), which has a sequence of corresponding labels (e.g.
the next code tokens). At each step t, an LSTM unit reads the
input wt, the previous output state st−1 and the previous
memory ct−1 and uses a set of model parameters to compute
the output state st. The output state is used to predict the
output (e.g. the next code token based on the previous ones)
at each step t.

LSTM LSTM LSTM ...

w1 w2 w3

s1 s2 s3

LSTM

w4

s4

try { l .

LSTM

wn

sn

... }

{ llock <eos>

Fig. 3: A recurrent neural network

Each LSTM unit has a memory cell ct which stores ac-
cumulated memory of the context (see Figure 4). This is
the key feature allowing an LSTM model to learn long-
term dependencies. The information stored in the memory
is refreshed at each time step through partially forgetting
old, irrelevant information and accepting fresh new input.
Specifically, the amount of information flowing through the
memory cell is controlled by three gates (an input gate it, a

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 4

*

ct

ft

ct-1 *

it

ot*

st

wt

st-1

wt

st-1

wt

st-1

wt st-1

output gate

input gate

forget gate

memory cell

Fig. 4: The internal structure of an LSTM unit

forget gate ft, and an output gate ot), each of which returns a
value between 0 (i.e. complete blockage) and 1 (full passing
through).

All those gates are learnable, i.e. are trained with the
whole code corpus. All LSTM units in the same network
share the same parameters since they perform the same
task (e.g. predicting the next code token), just with different
inputs. Hence, comparing this to traditional feedforward
networks, using an LSTM network significantly reduces the
total number of model parameters which we need to learn.

An LSTM model is trained using many input sequences
with known true output sequences. The errors between the
true outputs and the predicted outputs are passed back-
wards through the network (i.e. backpropagation) during
training to adjust the model parameters such that the errors
are minimized. More details about LSTMs can be found in
the seminal paper [23].

LSTM is highly effective in learning representations of
sequential data, such as natural text and speech, as demon-
strated in many recent breakthroughs in machine translation
and speed recognition [22]. Since software code is also
typically produced by humans, it shares many important
properties with natural language text (e.g. repetitive, pre-
dictable, and long-term dependencies) [20]. In this study we
investigate how a LSTM can be used to learn representa-
tions of software code and then use these for vulnerability
prediction.

4 ARCHITECTURAL OVERVIEW

Our process of automatic feature learning goes through
multiple steps (see Figure 5). We consider each Java source
file as consisting of a header (which contains a declaration
of class variables) and a set of methods. We treat a header
as a special method (method 0). We parse the code within
each method into a sequence of code tokens (step 1 in Figure
5), which is fed into a Long Short-Term Memory (LSTM)
system to learn a vector representation of the method (i.e.
method features – step 2 in Figure 5). This important step
transforms a variable-size sequence of code tokens into
a fixed-size feature vector in a multi-dimensional space.

In addition, for each input code token, the trained LSTM
system also gives us a so-called token state, which captures
the distributional semantics of the code token in its context
of use.

After this step, we obtain a set of method feature vectors,
one for each method in a file. The next step is aggregating
those feature vectors into a single feature vector (step 3 in
Figure 5). The aggregation operation is known as pooling.
Pooling aims to transform the joint feature representation
(e.g. method features) into a new, more usable one (e.g.
file features) that maintain important information while re-
moving irrelevant detail. For example, the simplest statistical
pooling method is mean-pooling where we take the sum of
the method vectors and divide it by the number of methods
in a file. More complex pooling methods can be used and
we will discuss these in more detail. This step produces a
set of local features for a file.

Those learned features are however local to a project.
For example, method names and variables are typically
project-specific. Hence, using only those features alone may
be effective for within-project prediction but may not be
sufficient for cross-project settings. Our approach therefore
learns another set of features to address this generalization
issue. To do so, we build up a universal bag of token states
from all files across all the studied projects (step 4 in Figure
5). We then automatically group those code token states
into a number of clusters based on their semantic closeness
(step 5). The centroids in those clusters form a so-called
“codebook”, which is used for generating a set of global
features for a file through a centroid assignment process (step
6). The two sets of learned features are fed into a classifier,
which is then trained to predict vulnerable components.

Vulnerability prediction in new projects is often very
difficult due to the lack of suitable training data. One
common technique to address this issue is training a model
using data from a (source) project and applying it to the new
(target) project. Since our approach requires only the source
code of the source and target projects, it is readily applicable
to both within-project prediction as well as for cross-project
prediction.

5 FEATURE LEARNING, GENERATION, AND USAGE

In this section, we describe in detail how our approach
automatically learns and generates features representing a
source code file and uses them for vulnerability prediction
and recommendation to software engineers.

5.1 Parsing source code

To use our approach we must convert programs into vectors
for our LSTM. To begin, we build Abstract Syntax Trees
(AST) to extract key syntactic information from the source
code of each source file in a project. To do so, we utilize
a parser to lexically analyze each source file and obtain an
AST. Each source file is parsed into a set of methods and
each method is parsed into a sequence of code tokens. All
class attributes (i.e. the header) are grouped into a sequence
of tokens.

During this processing comments and blank lines are
ignored as they do not contribute to the actual behaviour of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 5

Header (Method 0)

Method 1

Method 2

Method N

.

.

.

LSTM

Statistical Pooling

Token sequence

Vulnerability
outcome

.

.

.

Source code file

LSTM

Prediction

Token sequence

Local
featuresTokenize

Tokenize

Classifier

CodebookBag of token states

Centroid assignment

Method
features

Global
features

Method
features

(Step 1)
(Step 2)

(Step 6)

(Step 4) (Step 5)

(Step 3)

Fig. 5: Overview of our approach for automatic feature learning for vulnerability prediction based on LSTM. The codebook
is constructed from all bags of token states in all projects, and the process is detailed in Figure 7.

the code. Following standard practice (e.g. as done in [17]),
we replace integers, real numbers, exponential notation, and
hexadecimal numbers with a generic 〈num〉 token, and
replace constant strings with a generic 〈str〉 token. Doing
this allows us to generalize from the numbers and strings
that are specific to a source file or project. We also replace
less popular tokens (e.g. occurring only once in the corpus)
and tokens which exist in test sets but do not exist in the
training set with a special token 〈unk〉 since learning is
limited for these tokens. A fixed-size vocabulary V is con-
structed based on top N popular tokens, and rare tokens are
assigned to 〈unk〉. Doing this makes our corpus compact to
the computation costs, but still provides sufficient semantic
information.

5.2 Learning code token semantics

After the parsing and tokenizing process, each method is
now a sequence of code tokens 〈w1, w2, ..., wn〉. We then
perform the following steps to learn a vector representation
for each code token.

1) We first represent each code token as a low di-
mensional, continuous and real-valued vector. This
process is known as code token embedding, which
is described in detail in Section 5.2.1.

2) Each sequence of code tokens is then input into a
sequence of LSTM units. We then train each LSTM
unit by predicting the next code token in a sequence
(see Section 5.2.2 for details).

3) The trained LSTM is used to generate an output
vector (the so-called code token state) for each code
token. This vector representation captures the dis-
tribution of semantics of a code token in terms of its
context of use (see Section 5.2.3 for details).

5.2.1 Code token embedding
An LSTM unit takes as its input a vector representing a
code token. Hence, we need to convert each code token
into a fixed-length continuous vector. This process is known
as code token embedding. We do so by maintaining a token
embedding matrix M ∈ Rd×|V | where d is the size of a
code token vector and |V | is the size of vocabulary V .
Each code token has an index in the vocabulary, and this
embedding matrix acts as a look-up table: each column ith in
the embedding matrix is an embedded vector for the token
ith. We denote xt as a vector representation of code token
wt. For example, token “try” is converted in vector [0.1, 0.3,
-0.2] in the example in Figure 6.

LSTM

try

[0.1 0.3 ‐0.2]

{

[‐1 ‐2.1 0.5]

l

[1.5 0.5 ‐1.2]

{ l .

[1 ‐0.5 ‐3] [‐1.3 0 2] [‐0.5 ‐0.5 ‐1]

[‐0.27 ‐0.33 ‐0.67]

LSTMLSTM
Sequence embedding

Code token embedding

Output token states

Statistical Pooling

Fig. 6: An example of how a vector representation is ob-
tained for a code sequence.

5.2.2 Model training
The code sequence vectors that make up each method are
then input to a sequence of LSTM units. Specifically, each
token vector xt in a sequence 〈x1,x2, ...,xn〉 is input into
an LSTM unit (see Figure 6). As LSTM is a recurrent net,
all the LSTM units share the same model parameters. Each

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 6

unit computes the output state st for an input token xt. For
example in Figure 6, the output state vector for code token
“try” is [1, -0.5, -3]. The size of this vector can be different
from the size of the input token vector (i.e. d 6= d′), but
for simplicity in training the model we assume they are the
same. The state vectors are used to predict the next tokens
using another token weight matrix denoted as U ∈ Rd′×|V |.

Our LSTM automatically learns both model parameters,
the token weight matrix U and the code token embedding
matrix M by maximizing the likelihood of predicting the
next code token in the training data. Specifically, we use the
output state vector of code token wt to predict the next code
token wt+1 from a context of earlier code tokens w1:t by
computing a posterior distribution:

P (wt+1 = k | w1:t) =
exp

(
U>k st

)∑
k′

exp
(
U>k′st

) (1)

where k is the index of token wt+1 in the vocabulary, U>
is the transpose of matrix U , and U>k indicates the vector
in column kth of U>, and k′ runs through all the indices
in the vocabulary, i.e. k′ ∈ {1, 2, ..., |V |}. This learning
style essentially estimates a language model of code. In fact,
our previous work [24] has demonstrated a good language
model can be built based on LSTM, which suggest LSTM’s
capability to automatically learn a grammar for code [31].

Our LSTM is automatically trained using code sequences
from all of the methods extracted from our dataset. During
training, for every token in a sequence 〈w1, w2, ..., wn〉, we
know the true next token. For example, the true next token
after “try” is “{” in the example Figure 6. We use this
information to learn the model parameters which maximize
the accuracy of our next token predictions. To measure
the accuracy, we use the log-loss (i.e. the cross entropy)
of each true next token, i.e. − logP (w1) for token w1,
− logP (w2 | w1) for token w2, ..., − logP (wn | w1:n−1) for
token wn. The model is then trained using many known
sequences of code tokens in a dataset by minimizing the
following sum log-loss in each sequence:

L(P) = − logP (w1)−
n−1∑
t=1

logP (wt+1 | w1:t) (2)

which is essentially − logP (w1, w2, ..., wn).
Learning involves computing the gradient of L(P) dur-

ing the back propagation phase, and updating the model
parameters P , which consists of M, U and other internal
LSTM parameters, via stochastic gradient descent.

5.2.3 Generating output token states
Once the training phase has been completed we use the
learned LSTM to compute a code token state vector st for
every code token wt extracted in our dataset. The use of
LSTM ensures that a code token state contains information
from other code tokens that come before it. Thus, a code
token state captures the distributional semantics, a Natural
Language Processing concept which dictates that the mean-
ing of a word (code token) is defined by its context of use
[32]. The same lexical token can theoretically be realized in
infinite number of usage contexts. Hence a token semantics

is a point in the semantic space defined by all possible token
usages. Code tokens that share common usage contexts
in the corpus have their token semantics located in close
proximity to one another in the space. Hence, the token
states capture both syntactic and semantic of code tokens.
The token states are thus used for generating two distinct
sets of features for a file.

5.3 Generating local features
Generating local features for a file involves two steps.
First, we generate a set of features for each method in the
file. To do so, we first extract a sequence of code tokens
〈w1, w2, ..., wn〉 from a method, feed it into the trained
LSTM system, and obtain an output sequence of token
states 〈s1, s2, ..., sn〉 (see Section 5.2.3). We then compute
the method feature vector by aggregating all the token states
in the same sequence so that all information from the start
to the end of a method is accumulated (see Figure 6). This
process is known as pooling and there are multiple ways to
perform pooling, but the main requirement is that pooling
must be length invariant, that is, pooling is not sensitive to
variable method lengths.

We employ a number of simple but often effective statis-
tical pooling methods:

(1) Mean pooling, i.e. s̄ = 1
n

n∑
t=1
st;

(2) Variance pooling, i.e., σ =√
1
n

n∑
t=1

(st − s̄) ∗ (st − s̄), where ∗ denotes element-wise

multiplication; and
(3) A concatenation of both mean pooling and variance

pooling, i.e. [s̄,σ].
After the previous step, we obtain the method features

for each method in a file. Since a file contains multiple meth-
ods, the next step involves aggregating all these method
vectors a single vector for file. We employ again another
statistical pooling mechanism to generate a set of local
features for the file.

5.4 Generating global features
Local features are useful for within-project vulnerability
prediction since they are capture the local usage context
and thus tend to be project-specific. To enable effective
cross-project vulnerability prediction, we need another set
of features for a file which reflect how the file positions in a
semantic space across all projects. We refer to these features
as global features, similarly to the spirit of local and global
models for defect prediction in [33].

We view a file as a set of code token states (generated
from the LSTM system), each of which captures the semantic
structure of the token usage contexts. This is different from
viewing the file as a Bag-of-Words where a code token is
nothing but an index in the vocabulary, regardless of its us-
age. We partition this set of token states into subsets, each of
which corresponds to a distinct region in the semantic space.
Suppose there are k regions, each file is then represented as
a vector of k dimensions. Each dimension is the number of
token state vectors that fall into the respective region.

The next challenge is how to partition the semantic space
into a number of regions. To do so, we borrow the concept

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 7

from computer vision by considering each token in a file
as an analogy for a salient point (i.e. the most informative
point in an image). The token states are akin to the set of
point descriptors such as SIFT [34]. The main difference here
is that in vision, visual descriptors are calculated manually,
whereas in our setting token states are learnt automatically
through LSTM. In vision, descriptors are clustered into a
set of points called codebook (not to be confused with the
software source code), which is essentially the descriptor
centroids.

11

33

22

Codebook = {centroids}

11

33

22

(C) A new file

(D) Centroid assignment

[3,2,5]
(E) File global features

(B) Codebook construction (k=3)

All token states in training set

Token states

(A) Training files

Fig. 7: An example of using “codebook” to automatically
learn and generate global features of a new source file

Similarly, we can build a “codebook” that summarizes all
token states, i.e. the semantic space, across all projects in our
dataset. Each “code” in the codebook represents a distinct
region in the semantic space. We construct a codebook by
using k-means (with Euclidian distance measure) to cluster
all state vectors in the training set, where k is the pre-defined
number of centroids, and hence the size of the codebook (see
Part A in Figure 7, each small circle representing a token
state in the space). The example in Figure 7 uses k = 3 to
produce three state clusters. For each new file, we obtain
all the state vectors (Part B in Figure 7) and assign each
of them to the closest centroids (Part C in Figure 7). The
file is represented as a vector of length k, whose elements
are the number of centroid occurrences. For example, the
new file in Figure 7 has 10 token vectors. We then compute
the distances between those vectors to the three centroids
established in the training set. We find that 3 of them are
closest to centroid #1, 2 to centroid #2 and 5 to centroid #3.
Hence, the feature vector for the new file is [3, 2, 5].

This technique provides a powerful abstraction over a
number of code tokens in a file. The intuition here is that
the number of code tokens in an entire dataset could be large
but the number of usage context types (i.e. the token state
clusters) can be small. Hence, a file can be characterized
by the types of the usage contexts which it contains. This
approach offers an efficient and effective way to learn new
features for a file from the code tokens constituting it. In
effect, a file is a collection of distinct regions in the semantic
space of code tokens. To the best of our knowledge, our
work is the first to utilize the concepts of a “codebook”
from computer vision to automatically learn and generate
features for software code.

5.5 Vulnerability prediction

The above process enables us to automatically generate
both local and global features for all the source files in
the training set. These files with their features and labels
(i.e. vulnerable or clean) are then used to train machine
learning classifiers. The trained model is used to predict the
vulnerability of new files followed the standard process de-
scribed in Section 3.1. Previous studies (e.g. [35]) conducted
in industry have demonstrated that vulnerability prediction
at the file level is indeed actionable. Although large source
code files sometimes exist, the average file size is in the
range of the hundreds of lines. Hence, inspecting a predicted
source file to locate the exact locations of vulnerabilities
is still feasible [35]. Although predictions at a finer level
of granularity (e.g. line-level) potentially decrease manual
inspection effort, they may well come with the cost of a
severe reduction in accuracy. For example, the study in [35]
shows that predicting vulnerabilities at the binary level (i.e.
collections of source files) was more accurate than doing
that at the file level. Predicting many false positives may
reduce the usefulness of the machinery, and thus the user
trust in the results. In addition, our approach learns features
at the code token level. Those features can be aggregated
to represent a line of code, or at a method and a whole
source file level as we have demonstrated in this paper. We
chose to apply our approach at the file level because almost
all existing work and datasets in vulnerability prediction
operates at this level of granularity. This facilitated us in
training our models and performing comparisons.

To evaluate the impact of a classifier, we tested our ap-
proach with four widely-used classifiers: Random Forests,
Decision Tree, Naive Bayes, and Logistic Regression. Ran-
dom Forests has been shown to be an effective classifier for
vulnerability prediction in previous studies [8], [26]. Ran-
dom Forests belongs to a family of randomized ensemble
methods which combines the estimates from many “weak
classifiers” to make their prediction. Random Forests (RFs)
[36] uses decision trees as weak learners. Those trees are
trained using randomly sampled subsets of the full dataset.
At each node of a decision tree, RFs find the best splitting
feature (i.e. predictor) for the node from a randomly selected
subset of features. For example, we might select a random
set of 10 features (among 200 features) in each node, and
then split using the best feature among these 10 features.
Thus, RFs randomizes both training samples and feature
selection to grow the trees. The same process is applied to
generate more trees, each of which is trained using a slightly
different sample each time. In practice, 100 to 500 trees are
usually generated. To make predictions for a new instance,
RFs combines all separate predictions made by each of the
generated decision tree typically by averaging the outputs
across all trees. Decision Tree (C4.5) generates decision
nodes based on the information gain using the value of each
factors. Decision tree classifier is widely used in practice
due to its explainability. Naive Bayes works based the as-
sumption that features are conditionally independent when
the outcome is known. Despite of this naive assumption,
Naive Bayes has been found to be an effective classifier.
Logistic Regression uses the logistic sigmoid function to
return a probability value for a given set of input features.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 8

This probability is then mapped into two or more discrete
classes for classification purposes.

6 IMPLEMENTATION

The proposed approach is implemented in Theano [37] and
Keras [38] frameworks, running in Python. Theano supports
automatic differentiation of the loss in Eq. (2) and a host
of powerful adaptive gradient descent methods. Keras is a
wrapper making model building much easier.

6.1 Training details
We use RMSprop as the optimizer and use the standard
learning rate of 0.02, and smoothing hyper-parameters: ρ =
0.99, and ε = 1e−7. The model parameters are updated in a
stochastic fashion, i.e. after every mini-batch of size 50. We
use |V | = 5, 000 most frequent tokens for learning the code
language model discussed in Section 5.2. We use dropout rate
of 0.5 at the hidden output of LSTM layer. These parameter
settings are the standard ones used in the literature.

The main classifier used is Random Forest implemented
using the scikit-learn toolkit. Hyper-parameters are tuned
for best performance and include (i) the number of trees,
(ii) the maximum depth of a tree, (iii) the minimum number
of samples required to split an internal node and (iv) the
maximum number of features per tree. The code is run on
Intel(R) Xeon(R) CPU E5-2670 0 @ 2.6GHz. There machine
has two CPUs, each has 8 physical cores or 16 threads, with
a RAM of 128GB.

6.2 Handling large vocabulary
To evaluate the prediction probability in Equation (1) we
need to iterate through all unique tokens in the vocabulary.
Since the vocabulary’s size is large, this can be highly
expensive. To tackle the issue, we employ an approximate
method known as Noise Contrastive Estimation [39], which
approximates the vocabulary at each probability evaluation
by a small subset of words randomly sampled from the
vocabulary. We use 100 words, as it is known to work well
in practice [24].

The Noise Contrastive Estimation method replaces the
expensive normalization through all tokens in the vocabu-
lary by a simple logistic model on a small set of tokens. This
ensures theoretically that the proper probability of each seen
token is maintained given enough data. Hence, for large
datasets, there is little loss in accuracy. This is a simple
mathematical technique to improve the computation time
of using an expensive normalization in a probabilistic model
(e.g. the softmax), not a way to trade off quality for speed.
Please note that we did not split long tokens into short ones.

6.3 Handling long methods
Methods are variable in size. This makes learning inefficient
because we need to handle each method separately, not
making use of recent advances in Graphical Processing
Units (GPUs). A better way is to handle methods in mini-
batches of fixed size. A typical way is to pad short methods
with dummy tokens so that all methods in the same mini-
batch have the same size. However, since some methods

are very long, this approach will result in a waste of
computational effort to handle dummy tokens. Here we
use a simple approach to split a long method into non-
overlapping sequences of fixed length T , where T = 100
is chosen in this implementation due to the faster learning
speed. For simplicity, features of a method are simply the
mean features of its sequences.

7 EVALUATION

7.1 Datasets
To carry out our empirical evaluation, we exploited two
publicly available datasets that have been used in previous
work for vulnerability prediction

7.1.1 Android dataset
This dataset [40] that has been used in previous work [8] for
vulnerability prediction. This dataset originally contained
20 popular applications which were collected from F-Droid
and Android OS in 2011. The dataset covers a diversity of
application domains such as education, book, finance, email,
images and games. However, the provided dataset only
contained the application names, their versions (and dates),
and the file names and their vulnerability labels (i.e. clean
or vulnerable files). It did not have the source code for the
files, which is needed for our study. Using the provided file
names and version numbers, we then retrieved the relevant
source files from the code repository of each application.

TABLE 1: Dataset statistics

App #Versions #Files Mean files Mean LOC Mean Vuln % Vuln

Crosswords 16 842 52 12,138 24 46
Contacts 6 787 131 39,492 40 31
Browser 6 433 72 23,615 27 37
Deskclock 6 127 21 4,384 10 47
Calendar 6 307 51 21,605 22 44
AnkiAndroid 6 275 45 21,234 27 59
Mms 6 865 144 35,988 54 37
Boardgamegeek 1 46 46 8,800 11 24
Gallery2 2 545 272 68,445 75 28
Connectbot 2 104 52 14,456 24 46
Quicksearchbox 5 605 121 15,580 26 22
Coolreader 12 423 35 14,708 17 49
Mustard 11 955 86 14,657 41 47
K9 19 2,660 140 50,447 65 47
Camera 6 457 76 16,337 29 38
Fbreader 13 3,450 265 32,545 78 30
Email 6 840 140 51,449 75 54
Keepassdroid 12 1,580 131 14,827 51 39

We could not find the code repository for two applica-
tions since they appeared no longer available1. For some
apps, the number of versions we could retrieve from the
code repository is less than that in the original datasets.
For example, we were able to retrieve the source files for
16 versions of Crossword while the original dataset had 17
versions. The source files for some older versions were no
longer maintained in the code repository.

Our resultant dataset contains applications from two
sources: 9 applications from F-Droid repository and 9 ap-
plications pre-installed with Android OS. All the nine F-
Droid applications had over 10,000 downloads, and five of
them had more than 1 million downloads. There were 21

1. We had tried to contact the owners of the original dataset, but
did not receive any response. We also contacted the owners of some
applications in the dataset. Some of them helped us locate the source
code of the correct versions

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 9

types of vulnerabilities existing across all of the applications
in the dataset, such as log forging, information leak, unre-
leased resource, denial of service, race condition, cross-site
scripting, command injection, privacy violation and header
manipulation. Among them, privacy violation, log forging
and denial of service are the top three common vulnerabili-
ties found in the dataset. Table 1 provides some descriptive
statistics for 18 apps in our dataset, including the number
of versions, the total number of files, the average number of
files in a version, the average number of lines of code in a
version, the average number of vulnerable files in a version,
and the ratio of vulnerable files. The dataset contains more
than 240K sequences, in which, 200k sequences are used for
training and the others are used for validation. The LSTM
which achieved the best perplexity on the validation set was
finally kept for feature extraction.

7.1.2 Firefox dataset
The Firefox vulnerabilitity dataset was previously built

by Shin and Williams [12]. They collected vulnerabilities
reported for Firefox 2.0 from the Mozilla Foundation Secu-
rity Advisories (MFSAs). They linked these MFSA reports
with bug reports in Firefox, and used this information to
identify the files in Firefox 2.0 that contain the reported
vulnerabilities. The dataset has all 11,051 source files, all
of them from Firefox 2.0. There are 363 vulnerable files,
accounting for 3% of the total files. From the dataset they
provided, we retreived the code of those source files from
the archived Firefox code repository.
7.2 Research questions

We followed previous work in vulnerability prediction [8]
and aimed to answer the following standard research ques-
tions:

1) RQ1. Within-project prediction: Are the automati-
cally learned features using our LSTM-based approach
suitable for building a useful vulnerability prediction
model?

2) RQ2. Cross-version prediction: How does our pro-
posed approach perform in predicting future versions,
i.e. when the model is trained using an older version in
application and tested on a newer version in the same
application?

3) RQ3. Cross-project prediction: Is our approach suit-
able for cross-project predictions where the model is
trained using an application and tested on a different
application?

7.3 Experimental settings

We designed three different experimental settings to answer
the above research questions.

7.3.1 Within-project prediction
In this setting, both training and testing data is from the
same version of an application. Specifically, for each appli-
cation in our dataset, we select all the source files in the first
version, and use them for training and testing a prediction
model. We employ stratified cross-fold validation by divid-
ing the files into 10 folds {fo1, fo2, ..., fo10}, each of which
has the approximately same ratio between vulnerable files

and clean files. For each fold foi, we select it as the test set,
and the remaining folds {fo1, ..., foi−1, foi+1, ..., fo10} are
used for training a prediction model. We then measure the
performance of the prediction model using the source files
in the fold foi. We repeat this process for each of the 10
folds, and then compute the average performance.

7.3.2 Cross-version prediction
In this second experimental setting, a prediction model
is trained using all the source files in one version of an
application. It is then tested using the source files from
all subsequent versions. For example, the first version in
the Crosswords app is used to training and each of the
remaining 15 versions is used as a test set.

We also experimented with another setting in which
the model training is updated over time. Specifically, the
model is trained using all of the previous releases rather
than only the first one. For example, if an application has
10 versions, we conduct 9 different runs. In first run, the
model is trained using the version 1 and tested using the
remaining 9 versions. In the second run, the model is trained
using versions 1 and 2, and tested using the remaining 8
versions. We repeat this process and compute the average
performance.

7.3.3 Cross-project prediction
In this third experiment, we used all the source files in the
first version of each application to train a prediction model.
The model is then tested on the first version of the remaining
17 applications, i.e. it is tested 17 times. We compute the
performance in each test and use the average performance.
We repeat this procedure for all applications, resulting in 18
different prediction models, one for each application used
for training.

7.4 Benchmarks
We compare the performance of our approach against the
following benchmarks:

Software metrics: Complexity metrics have been exten-
sively used for defect prediction (e.g. [41]) and vulnerability
prediction (e.g. [9], [10], [11]). This is resulted from the intu-
ition that complex code is difficult to understand, maintain
and test, and thus has a higher chance of having vulnerabili-
ties than simple code. We have implemented a vulnerability
prediction models based on 60 metrics. These features are
commonly used in existing vulnerability prediction models.
They covers 7 categories: cohesion metrics (i.e. measure to
what extent the source code elements are coherent in the
system), complexity metrics (i.e. measure the complexity of
source code elements such as algorithms), coupling metrics
(i.e. measure the amount of interdependencies of source
code elements), documentation metrics (i.e. measure the
amount of comments and documentation of source code
elements), inheritance metrics (i.e. measure the different
aspects of the inheritance hierarchy), code duplication met-
rics (i.e.), and size metrics (e.g. number of code lines, and
number of classes or methods).

Bag of Words: This technique has been used in previous
work [8], which also considers source code as a special form
of text. Hence, it treats a source code file as a collection

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 10

of terms associated with frequencies. The term frequencies
are the features which are used as the predictors for a
vulnerability prediction model. Lexical analysis is done to
source code to break it into a vector of code tokens and
the frequency of each token in the file is counted. We also
followed previous work [8] by discretizing the BoW features
since they found that this method significantly improved
the performance of the vulnerability prediction models. The
discretization process involves transforming the numerical
BoW features into two bins. If a code token occurs more
than a certain threshold (e.g. 5 times) than it is mapped to
one bin, otherwise it is mapped to another bin.

Deep Belief Network: Recent work [15] has demon-
strated that Deep Belief Networks (DBN) [42] work well for
defect prediction. DBN is a family of stochastic deep neural
networks that extract multiple layers of data representation.
In our implementation, DBN takes the word counts per file
as input and produces a latent posterior as output, which is
then used as a new file representation. Since the standard
DBN accepts only input in the range [0,1], we normalize the
word counts by dividing each dimension to its maximum
value accross the entire training data. The DBN is then
built in a stage-wise fashion as follows. At the bottom layer,
a Restricted Boltzmann Machine (RBM) is trained on the
normalized word count. An RBM is a special two-layer
neural network with binary neurons. Unlike the standard
neural networks, which learn a mapping from an input to an
output in an supervised manner, RBM learns a distribution
of data using unsupervised learning (i.e. without labels).
Following the standard practice in the literature, the RBM
is trained using Contrastive Divergence [42]. After the first
RBM is trained, its posterior is used as the input for the next
RBM, and the training is repeated. Finally, the two RBMs
are stacked on top of each other to form a DBN with two
hidden layers. The posterior of the second RBM is used as
the new file representation. In our implementation, the two
hidden layers have the size of 500 and 128, respectively.

To enable a fair comparison, we used the same classifier
for our prediction models and all the benchmarks. We
chose Random Forests (RF), an ensemble method which
combines the estimates from multiple estimators since it has
been shown to be one of the most effective classifiers for
vulnerability prediction [8]. We used the implementation of
RF provided with the scikit-learn2 toolkit. We performed
tuning with the following hyper-parameters: the number of
trees, the maximum depth of a tree, the minimum number
of samples required to split an internal node, and the maxi-
mum number of features. The same hyper-parameter tuning
was done for our prediction models and all the benchmarks.

7.5 Performance measures
A confusion matrix is used to evaluate the performance of
our predictive models. The confusion matrix is then used to
store the correct and incorrect decisions made by a classifier.
For example, if a file is classified as vulnerable when it was
truly vulnerable, the classification is a true positive (tp). If
the file is classified as vulnerable when actually it was not
vulnerable, then the classification is a false positive (fp). If
the file is classified as clean when it was in fact vulnerable,

2. http://scikit-learn.org

then the classification is a false negative (fn). Finally, if
the file is classified as clean and it was in fact clean, then
the classification is true negative (tn). The values stored
in the confusion matrix are used to compute the widely-
used Precision, Recall, and F-measure for the vulnerable
files. These measures have also been widely used in the
literature (e.g. [5], [8], [10], [11]) for evaluating the predictive
performance of vulnerability prediction models.

• Precision (Prec): The ratio of correctly predicted de-
layed issue over all the issues predicted as delayed
issue. It is calculated as:

pr =
tp

tp+ fp

• Recall (Re): The ratio of correctly predicted delayed
issue over all of the actually issue delay. It is calcu-
lated as:

re =
tp

tp+ fn

• F-measure: Measures the weighted harmonic mean
of the precision and recall. It is calculated as:

F −measure =
2 ∗ pr ∗ re
pr + re

• Area Under the ROC Curve (AUC) is used to eval-
uate the degree of discrimination achieved by the
model. The value of AUC is ranged from 0 to 1 and
random prediction has AUC of 0.5. The advantage
of AUC is that it is insensitive to decision threshold
like precision and recall. The higher AUC indicates a
better predictor.

7.6 Results

7.6.1 Learned code token semantics

An important part of our approach is learning the semantics
of code tokens using the context of its usage through a
LSTM approach. Figure 8 shows the top 2,0003 frequent
code tokens used in our dataset. They were automatically
grouped in 100 clusters (only 10 are shown in Figure 8) using
K-means clustering based on their token states learned
through LSTM. Recall that these clusters are the basis for
us to construct a codebook (discussed in Section 5.4). We
used t-distributed stochastic neighbor embedding (t-SNE)
[43] to display high-dimensional vectors in two dimensions.
We show here some representative code tokens from some
clusters for a brief illustration. Code tokens that are seman-
tically related are grouped in the same cluster. For exam-
ple, code tokens related to exceptions such as IllegalArgu-
mentException, FileNotFoundException, and NoSuchMeth-
odException are grouped in one cluster. This indicates, to
some extent, that the learned token states effectively capture
the semantic relations between code tokens, which is useful
for us to later learn both syntactic and semantic features.

3. We choose to show the top 2,000 frequent code tokens used in our
dataset as this number of code tokens allows us to easily see how they
are grouped into clusters in Figure 8. We could display a significantly
larger number of code tokens in the figure, but it would affect the
visibility of the figure.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 11

20 15 10 5 0 5 10 15 20
20

15

10

5

0

5

10

15

20
onCreate

(

SQLException

.about

openDatabase
null

TAG

queryScalar

Cursor

long
scalar

try
throw

finally

>queryColumn

,

String

do

int

Exception

KEY_CHECK_URI

Editor

Intent

File

MODE_READ_ONLY

FileNotFoundException getType
insert

query
update

onCheckedChanged

onClick

case

ease1

VIBRATOR_SERVICE

ease2ease3ease4

AnkidroidApp

>=

<NUM>

-

DECK_LOADED

DECK_NOT_LOADED

DECK_EMPTY

OPT_DB

IOException

MENU_PREFERENCES

MENU_DECKOPTS

MENU_SUSPEND

MENU_EDIT

RESULT_OK

/
:

Fact

<STR>

spaceUntil
absPath

FINISHED

trueEQUAL
JSONException

NoSuchMethodException

IllegalArgumentException

IllegalAccessException

Fig. 8: Top 2,000 frequent code tokens were automatically grouped into clusters (each cluster has a distinct color)

7.6.2 Within-project prediction (RQ1)
We experimented with a number of variations of our ap-
proach by varying the pooling techniques (mean pooling
and standard deviation pooling) and the use of local and
global features. We report here the results of using Random
Forests as the classifier (the same for RQ2 and RQ3). For
space reasons, the detailed results of using Decision Tree,
Naive Bayes, and Logistic Regression are reported in Ap-
pendix A. Table 2 reports the precision, recall, F-measure
and AUC for the three variations of our approach: using
only local features, using only global features, and using
a joint set of both features types. Note that both the local
feature option and the joint feature option we reported
here used mean pooling for generating method features
and standard deviation pooling for generating syntactic file
features.

Our approach obtained a strong result: in all 18 Android
applications, they all achieved well above 80% in across all
the four measures: precision, recall, F-measure, and AUC
(see Table 2). Among the three variations of our approach,
using only local features appeared to be the best option
for vulnerability prediction. This result is consistent with
our underlying theory that local features are project-specific
and are thus useful for within-project prediction. This option
delivered the highest precision, recall, F-measure, and AUC
averaging across 18 applications. The prediction model us-
ing local features achieved over 90% F-measure in 13 out of
18 applications and over 90% AUC in all 18 applications.

Our approach outperforms the three benchmarks to
varying extents (see Figure 9). Figures 9 shows an number
of box plots to demonstrate the performance improvement
of our approach over an existing technique. Each box

plot shows the distribution of the improvement across the
seventeen projects used in our dataset (e.g. AnkiAndroid,
Boardgamegeek, etc.) for a specific performance indicator
(e.g. F-measure). The bottom and top of a box are the first
and third quartiles, and the band inside the box indicate the
second quartile (i.e. the median). The lines extending paral-
lel from the boxes indicate variability outside the upper and
lower quartiles, and individual dots indicate outliers. For
example, the first box plot on the left-hand-side of Figure
9 shows the improvement distributed across the seventeen
projects of our model over the software metrics approach in
terms of F-measure. As can also be seen in Figure 9, across
the 17 projects, the median improvement is approximately
45% (refer to Appendix C for the distribution of the absolute
values of a given performance measure).

For all 18 Android applications, our local feature ap-
proach consistently outperformed the software metric ap-
proach in all performance measures. For over half of the
applications, our approach offered over 50% improvement
in F-measure over the software metrics approach. In some
applications (e.g. Boardgamegeek and Deskclock), the im-
provements were over 200%. The Bag-of-Words (BoW) and
Deep Belief Network approaches also achieved good results
(on average 89–90% F-measure). This is consistent with the
findings in previous work [8] in the case of BoW. Hence,
the improvements brought by our approach over these two
benchmarks were not as big as those over the software
metric approach (see Figure 9). Our approach outperformed
the BoW approach in 15 out of 18 applications, and in
most cases the improvements ranged from 4% to 20%.
The results show that Random Forests clearly outperform
Decision Tree, Logistic Regression and Naive Bayes for

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 12

TABLE 2: Within-project results (RQ1) for the three variations of our approach. “Joint features” indicates the use of both
local features and global features.

Application Local features Global features Joint features
P R F AUC P R F AUC P R F AUC

AnkiAndroid 1.00 1.00 1.00 1.00 1.00 0.94 0.96 1.00 1.00 0.94 0.96 1.00
Boardgamegeek 0.95 0.95 0.93 0.95 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
Browser 1.00 1.00 1.00 1.00 0.96 1.00 0.98 0.92 0.96 1.00 0.98 0.95
Calendar 1.00 1.00 1.00 0.96 0.96 0.94 0.94 0.97 1.00 1.00 1.00 1.00
Camera 0.88 1.00 0.93 0.94 0.92 0.98 0.94 0.93 0.92 0.98 0.94 0.92
Connectbot 1.00 0.97 0.98 0.96 0.93 0.93 0.93 0.97 0.97 0.93 0.93 0.95
Contacts 0.96 0.94 0.95 0.90 0.89 0.94 0.89 0.92 0.87 0.97 0.90 0.90
Coolreader 1.00 0.94 0.96 0.97 1.00 0.94 0.96 0.96 1.00 0.94 0.96 0.96
Crosswords 0.89 0.89 0.89 0.96 0.89 0.83 0.85 0.86 0.89 0.83 0.85 0.91
Deskclock 1.00 1.00 1.00 1.00 1.00 0.92 0.94 0.90 1.00 0.92 0.94 0.84
Email 0.93 0.95 0.93 0.93 0.95 0.90 0.92 0.93 0.94 0.93 0.93 0.96
Fbreader 0.83 0.82 0.82 0.96 0.85 0.83 0.84 0.90 0.82 0.86 0.83 0.95
Gallery2 0.83 0.88 0.84 1.00 0.83 0.87 0.84 0.94 0.80 0.89 0.83 0.95
K9 0.89 1.00 0.94 0.92 0.88 0.97 0.91 0.92 0.88 0.98 0.92 0.95
Keepassdroid 0.93 0.97 0.94 0.95 0.90 0.91 0.89 0.90 0.88 0.89 0.88 0.89
Mms 0.87 0.85 0.85 0.92 0.87 0.88 0.87 0.94 0.87 0.92 0.89 0.95
Mustard 0.96 0.99 0.97 1.00 0.97 0.93 0.94 0.93 0.95 0.99 0.96 0.98
Quicksearchbox 0.93 0.90 0.88 0.98 0.89 0.77 0.82 0.88 0.89 0.79 0.82 0.93
Firefox 0.33 0.15 0.20 0.57 0.30 0.49 0.37 0.89 0.28 0.48 0.35 0.88

F-measure Precision Recall AUC

0

100

200

300

400

500

%
 d

iff
er

en
ce

Software metrics

F-measure Precision Recall AUC

20

10

0

10

20

Bag of Words

F-measure Precision Recall AUC

0

20

40

60

80

100

120

140

Deep Belief Network

Fig. 9: The percentage performance difference when applying the three benchmarks (software metrics, Bag of Words and
Deep Belief Network) against using our local feature approach for each performance measure in within-project prediction.

within-project vulnerability prediction in all three settings:
using local features, global features, and both of them. The
other three classifiers (Logistic Regression, Naive Bayes and
Decision Tree) produced mixed results (see Figures 12, 13,
and 14 in Appendix A). The improvement brought by our
approach over BoW and DBN was not as clear for using
those classifiers as it was for using Random Forests.

For the Firefox application, the dataset is highly unbal-
anced4 in that only 3% of the 11,051 files are vulnerable (i.e.
minor class). Thus, a classification model tends to have a
bias towards predicting files as being clean (i.e. major class)
in order to reducing training errors. This may result in the

4. Unbalanced data is not uncommon in vulnerability prediction.

vulnerable class having high false negatives. To deal with
this issue, previous studies (e.g. [12]) often employ class
rebalancing techniques (e.g. oversampling or undersam-
pling) to make the training set balanced. Those resampling
techniques however create an artificial bias towards minor
classes. An alternative is imposing an additional cost on
the model for making classification mistakes on the minor
class during training (i.e. penalized classification). These
costs enable the model to pay more attention to the mi-
nority class. We have conducted experiments using under-
sampling, oversampling and penalized classification. The
results of using penalized classification are reported here,
while the results of using undersampling and oversampling

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 13

0

0.2

0.4

0.6

0.8

1

0.
01

0.
06

0.
11

0.
16

0.
21

0.
26

0.
31

0.
36

0.
41

0.
46

0.
51

0.
56

0.
61

0.
66

0.
71

0.
76

0.
81

0.
86

0.
91

Joint features

AUC Precision Recall

0

0.2

0.4

0.6

0.8

1

0.
01

0.
08

0.
15

0.
22

0.
29

0.
36

0.
43 0.
5

0.
57

0.
64

0.
71

0.
78

0.
85

Global features

AUC Precision Recall

0

0.2

0.4

0.6

0.8

1
0.
01

0.
08

0.
15

0.
22

0.
29

0.
36

0.
43 0.
5

0.
57

0.
64

0.
71

0.
78

0.
85

Local features

AUC Precision Recall

Fig. 10: Within-project results (RQ1) for the three variations of our approach on the Firefox dataset with classification
threshold varying from 0.01 to 0.91. “Joint features” indicates the use of both local features and global features.

techniques are reported in Appendix D.
Similarly to previous study [12] on this Firefox dataset,

we have performed a sensitivity analysis on the classifica-
tion threshold in which we evaluated our prediction models
at 91 classification thresholds, ranging from 0.01 to 0.91
at an interval of 0.01 (instead of selecting a single default
threshold). The classification threshold is used by the model
to classify files based on the predicted probabilities.

Overall, the models using global features and joint fea-
tures outperformed the model using local features. Using
global or joint features consistently achieved well above 0.8
AUC for all classification thresholds while the AUC pro-
duced by the model using local features is below 0.6. Using
local features produced high recall but low precision at the
threshold up to 0.45, but recall dramatically decreases and
precision rapidly increases when the threshold is set above
0.45. The model using global or joint features produced a
more balance between precision and recall although there
are also regions where recall or precision is optimized and
vice versa. If the security engineers are reluctant to take risks
and they have sufficient resources for testing and inspection,
it is recommended that they select a model which has a
good performance at a low threshold. On the other hand,
if they have limited resource for testing and inspection,
they can select a model which produces high precision
at a high threshold. Compared to the model developed
in [12], our models using joint or global features consis-
tently produced higher precision at all the thresholds. For
example, at threshold 0.91, our model using joint features
achieved 0.60% precision, offering 15% improvement over
the model developed in [12], while the improvement was
130% at threshold 0.5. Our model also produced a better
balance between precision and recall, resulting in higher F-
measure at most of the thresholds compared to the Shin and
Williams’ models.

Answer to RQ1: Features automatically learned from
source code using LSTM can be used to build highly
accurate prediction models for detecting vulnerabilities in
software applications.

7.6.3 Cross-version prediction (RQ2)
Table 3 reports the results in a cross-version setting where
a prediction model was trained using the first version of

an application and tested using the subsequent versions of
the same applications. Note that the Boardgamegeek appli-
cation had only one version and thus was excluded from
this experiment. Hence, there were 17 application evaluated
in this experiment. The results demonstrate that the three
variations of our approach again achieved strong predictive
performance in all criteria. Average precision, recall and F-
measure values are approximately 85%, while average AUC
values are above 90%.

The use of global features has improved the generaliza-
tion of the prediction models in the cross-version setting.
Using both local features and global features appeared to be
the best option in this setting. This approach has achieved
well above 80% in all the four performance measures in 14
out of 17 applications. Our approach (using joint features)
outperformed the software metrics approach with respect
to all performance measures in all 17 applications (see
Figure 21 and refer to Appendix C for the distribution of
the absolute values of a given performance measure). The
average improvement over the software metric approach is
15% for F-measure and 20% for AUC.

Our approach outperformed the BoW approach in 16
out of 17 cases in terms of F-measure and AUC, and the
DBN approach in 15 out of 17 cases in F-measure (and 16
cases for AUC). Note that the BoW and DBN approaches
also performed well in cross-version prediction, i.e. their
average F-measure are above 80%. In some cases (e.g. the
Camera application), they achieved high recall (e.g. 88% for
DBN and 90% for BoW) but low precision (e.g. 58% and
59%). In those cases, our approach achieved a more balance
performance between recall and precision. For example,
in the Camera application, our approach achieved lower
recall (i.e. 71%) than BoW and DBN did, but it produced
a higher precision (i.e. 79%), and thus lead to 10–12% im-
provement in F-measure and 8–10% improvement in AUC.
The results show that Random Forests clearly outperform
Decision Tree, Logistic Regression and Naive Bayes for
cross-version vulnerability prediction in all three settings:
using local features, global features, and both of them. When
using Logistic Regression and Decision Tree as the classifier,
similar improvements were also observed (see Figures 15
and 16 in Appendix A). The improvement brought by our
approach over BoW and DBN was not as clear for Naive

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 14

TABLE 3: Cross-version results (RQ2) for the three variations of our approach. “Joint features” indicates the use of both
local features and global features.

Application Local features Global features Joint features
P R F AUC P R F AUC P R F AUC

AnkiAndroid 0.83 0.90 0.87 0.90 0.91 0.84 0.87 0.90 0.89 0.87 0.88 0.91
Browser 0.59 0.64 0.61 0.84 0.84 0.57 0.68 0.83 0.82 0.58 0.68 0.72
Calendar 0.73 0.81 0.77 0.87 0.79 0.89 0.83 0.89 0.79 0.84 0.82 0.83
Camera 0.65 0.84 0.73 0.86 0.67 0.88 0.76 0.92 0.84 0.80 0.82 0.90
Connectbot 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Contacts 0.60 0.80 0.69 0.88 0.69 0.72 0.70 0.86 0.73 0.69 0.71 0.85
Coolreader 0.94 0.89 0.91 0.93 0.89 0.85 0.87 0.93 0.92 0.86 0.89 0.94
Crosswords 0.85 0.89 0.87 0.91 0.88 0.90 0.89 0.95 0.92 0.83 0.87 0.94
Deskclock 0.93 0.80 0.86 0.90 0.90 0.86 0.88 0.89 0.89 0.82 0.86 0.94
Email 0.77 0.93 0.84 0.87 0.86 0.89 0.87 0.91 0.83 0.90 0.86 0.90
Fbreader 0.84 0.81 0.83 0.93 0.91 0.84 0.88 0.96 0.86 0.84 0.85 0.95
Gallery2 0.95 0.97 0.96 0.98 0.96 0.99 0.97 1.00 0.96 0.97 0.97 1.00
K9 0.80 0.94 0.87 0.88 0.84 0.98 0.90 0.96 0.89 0.92 0.90 0.93
Keepassdroid 1.00 0.99 0.99 0.94 0.98 0.91 0.94 0.97 0.99 0.92 0.95 1.00
Mms 0.93 0.89 0.91 0.95 0.93 0.93 0.93 0.97 0.92 0.96 0.94 0.97
Mustard 0.98 0.98 0.98 0.98 0.99 0.95 0.97 0.99 0.99 0.95 0.97 1.00
Quicksearchbox 0.76 0.80 0.78 0.91 0.74 0.87 0.80 0.95 0.77 0.88 0.82 0.94

Average 0.83 0.87 0.85 0.92 0.87 0.87 0.87 0.93 0.88 0.86 0.87 0.94

F-measure Precision Recall AUC

0

20

40

60

%
 d

iff
er

en
ce

Software metrics

F-measure Precision Recall AUC

20

10

0

10

20

30

40

50

Bag of Words

F-measure Precision Recall AUC

20

10

0

10

20

30

40

50

Deep Belief Network

Fig. 11: The percentage performance difference when applying the three benchmarks (software metrics, Bag of Words and
Deep Belief Network) against using our local feature approach for each performance measure in cross-version prediction.

Bayes (see Figure 17 in Appendix A) as it was for using the
other three classifiers.

Table 4 shows the results in the setting which the model
training is updated over time. Here, the model was trained
using using all the previous releases (rather than only the
first one). The results were averaged of all runs in each
project. The results are slightly improved, suggesting that
updating model training over time is helpful.

Answer to RQ2: Our predictive model, which is trained
using an older version of a software application, can
produce highly accurate predictions of vulnerable com-
ponents in the new versions of the same application.

7.6.4 Cross-project prediction (RQ3)

This experiment followed the setup in previous work [8].
We first built 18 prediction models, each of which use the
first version of each application for training. Each model
was then tested using the first version of the other 17
applications. Hence, for each prediction method, there are 18
x 17 (i.e. 306) different settings. We ran this experiment with
the three benchmarks and variations of our approach. In this
experiment, we do not focus on the raw performance in each
setting. Instead, we follow the same procedure as previously
done in our benchmark [8], and focus on assessing how
many applications a model can be effectively applied to. We
used the same baseline as in previous work [8]: a model is
applicable to a tested application if both precision and recall

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 15

TABLE 4: Cross-version results (RQ2) for the three variations of our approach, using Random Forest in the updated training
setting. “Joint features” indicates the use of both local features and global features.

Application Local features Global features Joint features
P R F AUC P R F AUC P R F AUC

Ankiandroid 0.84 0.92 0.88 0.91 0.86 0.91 0.88 0.9 0.87 0.91 0.89 0.92
Browser 0.72 0.64 0.67 0.78 0.81 0.6 0.69 0.83 0.83 0.59 0.68 0.83
Calendar 0.78 0.8 0.79 0.84 0.78 0.87 0.82 0.89 0.79 0.83 0.8 0.89
Camera 0.8 0.8 0.79 0.9 0.82 0.79 0.8 0.9 0.87 0.78 0.82 0.9
Connectbot 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Contacts 0.62 0.75 0.68 0.85 0.69 0.77 0.73 0.89 0.66 0.76 0.71 0.85
Coolreader 0.95 0.89 0.92 0.97 0.95 0.87 0.91 0.95 0.96 0.87 0.91 0.95
Crosswords 0.86 0.94 0.9 0.94 0.88 0.93 0.91 0.94 0.88 0.94 0.91 0.95
Deskclock 0.92 0.85 0.88 0.94 0.92 0.88 0.9 0.92 0.92 0.87 0.89 0.92
Email 0.79 0.94 0.86 0.9 0.85 0.9 0.87 0.92 0.83 0.91 0.86 0.91
Fbreader 0.91 0.87 0.89 0.97 0.93 0.89 0.91 0.97 0.93 0.88 0.9 0.97
Gallery2 0.95 0.97 0.96 0.99 0.96 0.96 0.96 0.99 0.96 0.96 0.96 0.99
K9 0.89 0.96 0.92 0.96 0.91 0.97 0.94 0.97 0.9 0.97 0.93 0.97
Keepassdroid 1.0 0.98 0.99 0.99 0.99 0.94 0.97 0.99 0.99 0.94 0.97 0.99
Mms 0.96 0.95 0.95 0.98 0.97 0.94 0.96 0.97 0.97 0.95 0.96 0.97
Mustard 0.98 0.98 0.98 0.99 0.99 0.96 0.97 0.99 0.99 0.96 0.98 0.99
Quicksearchbox 0.85 0.84 0.85 0.96 0.8 0.92 0.85 0.97 0.88 0.88 0.88 0.97

Average 0.87 0.89 0.88 0.93 0.89 0.89 0.89 0.94 0.9 0.88 0.89 0.94

are above 80%.

TABLE 5: Cross-project results (RQ3) for the three bench-
marks and three variations of our approach. Numbers are
the number of other applications to which learned models
can be applied.

App Metrics BoW DBN Local Global Joint

AnkiAndroid 1 2 2 3 7 5
Boardgamegeek 0 1 1 0 1 1
Browser 0 1 2 0 0 1
Calendar 0 1 1 1 4 5
Camera 1 3 2 3 6 6
Connectbot 0 2 2 4 4 5
Contacts 0 1 3 1 2 2
Coolreader 1 2 3 4 4 6
Crosswords 0 3 3 2 1 1
Deskclock 0 1 1 0 1 1
Email 1 2 2 4 4 4
Fbreader 0 2 2 4 6 6
Gallery2 0 3 2 3 3 2
K9 1 3 3 2 7 8
Keepassdroid 0 3 1 4 2 4
Mms 0 4 2 3 5 6
Mustard 0 3 3 3 8 8
Quicksearchbox 0 2 2 1 3 3

Average 0.3 2.2 2.1 2.3 3.8 4.1

For each application, Table 5 reports the number of
other applications to which the corresponding models can
be applied. The results show that using global features
improves the general applicability of prediction models. All
the models using both semantic and syntactic features were
successfully applicable to at least one other application.
Some of them (e.g. K9 and Mustard) are even applicable to
8 other applications. In this cross-project prediction setting,
our approach also offers bigger improvements over the BoW
and DBN benchmarks. On average, a joint-feature model
is applicable to around 4 other applications, approximately
doubling the number of applications achieved by BoW or
DBN models. The results also show that Random Forests
clearly outperform Decision Tree, Logistic Regression and

Naive Bayes for cross-project vulnerability prediction in all
three settings: using local features, global features, and both
of them. In addition, our approach also outperforms BoW
and DBN when using Decision Tree and Naive Bayes as the
classifier (see Tables 12 and 14 in Appendix A), but this was
not the case when using Logistic Regression as the classifier
(see Table 13 in Appendix A).

Cross-project prediction is always challenging due to
the potentially significant differences (e.g. coding styles
and functionalities) between projects. Although the result is
encouraging, we however acknowledge that further work is
needed to improve this result to make it more applicable in
practice. One potential improvement is learning the features
from a set of diverse applications (rather than one single
application).

Answer to RQ3: Some predictive models, which were
trained and used features automatically learnt from a
software application, can predict vulnerable software com-
ponents in other software applications.

7.7 Discussion

The high performance of BoW on within-project prediction
(RQ1 and RQ2) is not totally surprising for two reasons.
One is that BoW has been known as a strong representation
for text classification, and source code is also a type of
text representing an executable programming language. The
other reason is that although the training files and testing
files are not identical, a project typically has many versions,
and the new versions of the same file may carry a significant
amount of information from the old versions. The repeated
information used can come from multiple forms: fully re-
peated pieces of code, the same BoW statistics, or the same
code convention and style. Thus any representation that
is sufficiently expressive and coupled with highly flexible
classifiers such as Random Forests, will likely to work well.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 16

However, this is not the case for cross-project prediction
(RQ3). This is when the BoW statistics are likely to be
different between projects, and knowledge learned from one
project may not transfer well to others. In machine learning
and data mining, this problem is known as domain adapta-
tion, where each project is a domain. The common approach
is to learn the common representation across domains, upon
which classifiers will be built. This is precisely what is
done using the LSTM-based language model and codebook
construction. Note that the LSTM and codebook are learned
using all available data without supervision. This suggests
that we can actually use external data, even if there are
no vulnerability labels. The competitive performance of the
proposed deep learning approach clearly demonstrates the
effectiveness of this representation learning. To conclude,
when doing within-project prediction, it is useful to use
BoW due to its simplicity. But when generalizing from
one project to another, it is better to use representation
learning. We recommend using LSTM for language model,
and codebook for semantic structure discovery.

Finally, almost all existing work (e.g. [5], [8], [9], [10],
[11], [26], [27], [28]) in vulnerability prediction operates at
the file level. Since this type of prediction (i.e. with the
file granularity) is standard in the related work, we chose
to work at the file level to leverage existing datasets and
facilitate comparison against state-of-the-arts. However, our
approach is able to learn features at the code token level,
and thus it may work beyond the file granularity. In fact,
since we consider a method as a sequence of code tokens,
our current model is already able to automatically learn and
generate features for the method. These features can be used
to build a model for predicting vulnerabilities at the method
level (discussed in Section 5). In the same manner, we can
treat each line of code as a sequence of code tokens and
use aggregation to obtain features for each code line. Thus,
our approach is also potentially applicable to vulnerability
prediction at line level. Training a prediction model at those
levels of granularity requires corresponding groundtruths,
i.e. methods or code lines which have been labelled as
vulnerable or clean. The existing vulnerability datasets (like
the one we used from [8] and others used in previous
studies) unfortunately do not contain labels at the method
or code line levels. Once such datasets become available, our
model is readily extensible to leverage them. Alternatively,
some recent studies in the general defect prediction area
target at the method level (e.g. [44]) and the line level (e.g.
[45]). Hence, another possibility, which we will investigate
in our future work, is extending our model to general defect
prediction and making use of those datasets.

8 THREATS TO VALIDITY

There are a number of threats to the validity of our study,
which we discuss below.

Construct validity: We mitigated the construct validity
concerns by using a publicly available dataset that has been
used in previous work [8]. The dataset contains real appli-
cations and vulnerability labels of the files in those appli-
cations. The original dataset did not unfortunately contain
the source files. However, we have carefully used the infor-
mation (e.g. application details, version numbers and date)

provided with the dataset to retrieve the relevant source
files from the code repository of those applications. We
acknowledge that this dataset may contain false positives
and one approach to deal with this is manually removing
them from the dataset. However, the dataset from [8] does
not provide detailed reports of the vulnerabilities, and thus
we were unable to remove the false positives. However, as
reported in [8], they have removed the false positives in
two applications (AnkiDroid and Mustard) and found that
it did not negatively affect the result in these two cases. This
may suggest that the performance of our approach would
not also be negatively affected by removing false positives
from the dataset. In addition, as can be seen in Appendix
B our models also produce highly accurate predictions of
clean components (i.e. negative cases) in all three settings
(within-project, cross-version and cross-projects).

Conclusion validity: We tried to minimize threats to
conclusion validity by using standard performance mea-
sures for vulnerability prediction [8], [10], [11], [26]. We
however acknowledge that a number of statistical tests [46]
can be applied to verify the statistical significance of our
conclusions. Although we have not seen those statistical
tests being used in previous work in vulnerability predic-
tion, we plan to do this investigation in our future work.
The benchmarks (Software Metrics, Bag of Words, Deep
Belief Network) are techniques that have been proposed
and implemented in existing work (e.g. [8], [15]). However,
their original implementations (e.g. the tools) were not made
publicly available, and thus we were not able to have
access to them. Hence, we had to re-implement our own
version of those techniques. Although we closely followed
the procedures described in their work, we acknowledge
that our implementation might not have all of the details,
particularly those not explicitly described in their papers,
of the original implementation. However, to ensure that
our implementation reflects the original implementation, we
tested our implementation using the same dataset, and our
implementation produces similar and consistent results.

Internal validity: The dataset we used contains vulnera-
bility labels only for Java source files. In practice, other files
(e.g. XML manifest files) may contain security information
such as access rights. Another threat concerns the cross-
version prediction where we replicated the experiment done
in [8] and allowed that the exactly same files might be
present between versions. This might have inflated the
results, but all the prediction models which we compared
against in our experiment benefit from this.

External validity: We have considered a large number
of applications which differ significantly in size, complex-
ity, domain, popularity and revision history. We however
acknowledge that our data set may not be representative
of all kinds of software applications. Further investigation
to confirm our findings for other types of applications
such as web applications and applications written in other
programming languages such as PHP and C++.

9 RELATED WORK

9.1 Vulnerability prediction
Machine learning techniques have been widely used to
build vulnerability prediction models. Early approaches

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 17

(e.g. [9]) employed complexity metrics such as (e.g. Mc-
Cabe’s cyclomatic complexity, nesting complexity, and size)
as the predictors. Later approaches enriched this software
metric feature set with coupling and cohesion metrics (e.g.
[11]), code churn and developer activity metrics (e.g. [10])),
and dependencies and organizational measures (e.g. [5]).
Those approaches require knowledgeable domain experts
to determine the metrics that are used as predictors for
vulnerability.

Recent approaches treat source code as another form
of text and leverage text mining techniques to extract the
features for building vulnerability prediction models. The
work in [8] used the Bag-of-Words representation in which
a source code file is viewed as a set of terms with as-
sociated frequencies. They then used the term-frequencies
as the features for predicting vulnerability. BoW models
produced higher recall than software metric models for PHP
applications [26]. A recent case study [27] for the Linux
Kernel also suggested the superiority of BoW in vulnerabil-
ity prediction compared to using code metrics as features.
However, the BoW approach carries the inherent limitation
of BoW in which syntactic information such as code order is
disregarded. These approaches also rely on manual feature
engineering in which discriminative features are extracted
by a deliberate process of combining primitive components
such as tokens. Examples of such features are n-grams,
topics, special selection of keywords, types of expression,
etc. These features are often sufficient for shallow models
such as Naive Bayes, SVM and Random Forests to perform
well. In deep learning, tokens are used as the starting point
because they are the smallest unit readily available in code
(we can argue that characters are the smallest, but tokens
are easier to reason about). No further domain knowledge
is assumed other than the fact that code is a sequence of
tokens. The higher level features are learnt automatically
by estimating parameteric neurons at multiple levels of
abstraction.

9.2 Defect prediction

Predicting vulnerabilities is related to software defect pre-
diction, which is a very active area in software analytics.
Since defect prediction is a broad area, we highlight some
of the major work here, and refer the readers to other com-
prehensive reviews (e.g. [47], [48]) for more details. Code
metrics were commonly used as features for building defect
prediction models (e.g. [41]). Various other metrics have also
been employed such as change-related metrics [49], [50],
developer-related metrics [51], organization metrics [52],
and change process metrics [53]. The study in [12] found
that some defect prediction models can be adapted for
vulnerability prediction. However, most of those models are
not directly transferred to predicting secutiry vulnerabilities
[8].

Recently, a number of approaches (e.g. [15], [54]) have
leveraged a deep learning model called Deep Belief Net-
work (DBN) [55] to automatically learn features for de-
fect prediction and have demonstrated an improvement in
predictive performance. DBN however does not naturally
capture the sequential order and long-term dependencies in
source code. Most of the studies in defect prediction operate

at the file level. Recent approaches address this issue at the
method level (e.g. [44]) and the line level (e.g. [45]). Since our
approach is able to learn features at the code token level, it
may work at those finer levels of granularity. However, this
would require the development of a vulnerability dataset
for training that contains methods and codelines with vul-
nerability labels, which do not currently exist.

9.3 Deep learning in code modeling

Deep learning has recently attracted increasing interests in
software engineering. In our recent vision paper [56], we
have proposed DeepSoft, a generic deep learning frame-
work based on LSTM for modeling both software and its
development and evolution process. We have demonstrated
how LSTM is leveraged to learn long-term temporal de-
pendencies that occur in software evolution and how such
deep learned patterns can be used to address a range of
challenging software engineering problems ranging from
requirements to maintenance. Our current work realizes one
of those visions.

The work in [17] demonstrated the effectiveness of
using recurrent neural networks (RNN) to model source
code. Their later work [57] extended these RNN models
for detecting code clones. The work in [58] uses a special
RNN Encoder–Decoder, which consists of an encoder RNN
to process the input sequence and a decoder RNN with
attention to generate the output sequence, to generate API
usage sequences for a given API-related natural language
query. The work in [59] also uses RNN Encoder–Decoder
but for fixing common errors in C programs. The work in
[60] uses Convolutional Neural Networks (CNN) [61] for
bug localization. Preliminary results from our earlier work
[24] also suggest that LSTM is a more effective language
model for source code. Our work is built on this language
model to automatically learn both syntactic and semantic
features for predicting vulnerable code components.

10 CONCLUSIONS AND FUTURE WORK

This paper proposes to leverage Long-Short Term Memory,
a representation deep learning model, to automatically learn
features directly from source code for vulnerability predic-
tion. The learned syntactic features capture the sequential
structure in code at the method level, while semantic fea-
tures characterize a source code file by usage contexts of its
code tokens. We performed an evaluation on 18 Android ap-
plications from a public dataset provided in previous work
[8]. The results for within-project prediction demonstrate
that our approach achieved well above 80% in all perfor-
mance measures (precision, recall, F-measure, and AUC) in
all 18 Android applications. When using Random Forests as
the classifier, our approach also outperforms the traditional
software metrics approach (74% improvement on average),
the Bag-of-Words approach (4.5% improvement on average)
and another deep learning approach, Deep Belief Network
(5.2% improvement on average). For cross-project predic-
tion, the results suggest that a predictive model, which was
trained from an Android application using our approach,
can predict vulnerable software components in (on average)
4 other Android applications with both precision and recall

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 18

above 80% – doubling the number of applications achieved
by either Bag-of-Words or Deep Belief Network. An evalu-
ation on the Firefox application also demontrates that our
models improved from 23% to 175% in precision compared
to existing models.

Our future work involves applying this approach to
other types of applications (e.g. Web applications) and pro-
gramming languages (e.g. PHP or C++) where vulnerability
datasets are available. We also aim to leverage our approach
to learn features for predicting vulnerabilities at the method
and code change levels. In addition, we plan to explore how
our approach can be extended to predicting general defects
and safety-critical hazards in code. Finally, our future in-
vestigation involves building a fully end-to-end prediction
system from raw input data (code tokens) to vulnerability
outcomes.

ACKNOWLEDGEMENT

The authors gratefully acknowledge support from Samsung
through its 2016 Global Research Outreach Program. We
would also thank Yonghee Shin for sharing with us the
Firefox vulnerability dataset.

REFERENCES

[1] R. Hackett, “On Heartbleed’s anniversary, 3 of
4 big companies are still vulnerable,” Fortunue,
http://fortune.com/2015/04/07/heartbleed-anniversary-
vulnerable, April 2015.

[2] McAfee, C. for Strategic, and I. Studies, “Net Losses: Estimating
the Global Cost of Cybercrime,” June 2014.

[3] C. Ventures, “Cybersecurity market report,”
http://cybersecurityventures.com/cybersecurity-market-report,
Accessed on 01 May 2017, March 2017.

[4] C. Williams, “Anatomy of OpenSSL’s Heartbleed:
Just four bytes trigger horror bug,” The Register,
http://www.theregister.co.uk/2014/04/09/heartbleed explained,
Accessed on 01 May 2017, April 2014.

[5] T. Zimmermann, N. Nagappan, and L. Williams, “Searching for
a needle in a haystack: Predicting security vulnerabilities for
windows vista,” in Proceedings of the 2010 Third International
Conference on Software Testing, Verification and Validation, ser. ICST
’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 421–
428. [Online]. Available: http://dx.doi.org/10.1109/ICST.2010.32

[6] A. Austin and L. Williams, “One technique is not enough: A
comparison of vulnerability discovery techniques,” in Proceedings
of the 2011 International Symposium on Empirical Software
Engineering and Measurement, ser. ESEM ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 97–106. [Online].
Available: http://dx.doi.org/10.1109/ESEM.2011.18

[7] M. Ceccato and R. Scandariato, “Static analysis and penetration
testing from the perspective of maintenance teams,” in Proceedings
of the 10th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ser. ESEM ’16. New
York, NY, USA: ACM, 2016, pp. 25:1–25:6. [Online]. Available:
http://doi.acm.org/10.1145/2961111.2962611

[8] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen,
“Predicting vulnerable software components via text mining.”
IEEE Trans. Software Eng., vol. 40, no. 10, pp. 993–1006,
2014. [Online]. Available: http://dblp.uni-trier.de/db/journals/
tse/tse40.html#ScandariatoWHJ14

[9] Y. Shin and L. Williams, “An empirical model to predict security
vulnerabilities using code complexity metrics,” in Proceedings
of the Second ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, ser. ESEM ’08. New
York, NY, USA: ACM, 2008, pp. 315–317. [Online]. Available:
http://doi.acm.org/10.1145/1414004.1414065

[10] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as
indicators of software vulnerabilities,” IEEE Trans. Softw. Eng.,
vol. 37, no. 6, pp. 772–787, Nov. 2011. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2010.81

[11] I. Chowdhury and M. Zulkernine, “Using complexity, coupling,
and cohesion metrics as early indicators of vulnerabilities,” J. Syst.
Archit., vol. 57, no. 3, pp. 294–313, Mar. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.sysarc.2010.06.003

[12] Y. Shin and L. Williams, “Can traditional fault prediction
models be used for vulnerability prediction?” Empirical Software
Engineering, vol. 18, no. 1, pp. 25–59, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10664-011-9190-8

[13] J. Stuckman, J. Walden, and R. Scandariato, “The Effect of Dimen-
sionality Reduction on Software Vulnerability Prediction Models,”
IEEE Transactions on Reliability, vol. 66, no. 1, pp. 17–37, March
2017.

[14] K. Z. Sultana, “Towards a software vulnerability prediction
model using traceable code patterns and software metrics,”
in Proceedings of the 32Nd IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE 2017. Piscataway,
NJ, USA: IEEE Press, 2017, pp. 1022–1025. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3155562.3155700

[15] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic
features for defect prediction,” in Proceedings of the 38th
International Conference on Software Engineering, ser. ICSE ’16.
New York, NY, USA: ACM, 2016, pp. 297–308. [Online]. Available:
http://doi.acm.org/10.1145/2884781.2884804

[16] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: A large scale experiment on data
vs. domain vs. process,” in Proceedings of the the 7th Joint Meeting
of the European Software Engineering Conference and the ACM SIG-
SOFT Symposium on The Foundations of Software Engineering, ser.
ESEC/FSE ’09. New York, NY, USA: ACM, 2009, pp. 91–100.

[17] M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk,
“Toward deep learning software repositories,” in Proceedings of the
12th Working Conference on Mining Software Repositories, ser. MSR
’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 334–345.

[18] Z. Tu, Z. Su, and P. Devanbu, “On the localness of software,”
in Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2014. New
York, NY, USA: ACM, 2014, pp. 269–280. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635875

[19] A. T. Nguyen and T. N. Nguyen, “Graph-based statistical
language model for code,” in Proceedings of the 37th International
Conference on Software Engineering - Volume 1, ser. ICSE ’15.
Piscataway, NJ, USA: IEEE Press, 2015, pp. 858–868. [Online].
Available: http://dl.acm.org/citation.cfm?id=2818754.2818858

[20] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12. Piscataway, NJ,
USA: IEEE Press, 2012, pp. 837–847.

[21] Z. Li and Y. Zhou, “Pr-miner: Automatically extracting implicit
programming rules and detecting violations in large software
code,” in Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. ESEC/FSE-
13. New York, NY, USA: ACM, 2005, pp. 306–315. [Online].
Available: http://doi.acm.org/10.1145/1081706.1081755

[22] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, 2015.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[24] H. K. Dam, T. Tran, and T. Pham, “A deep language model for
software code,” in Workshop on Naturalness of Software (NL+SE), co-
located with the 24th ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE), 2016.

[25] D. Mohindra, “SEI CERT Oracle Coding Standard for Java,”
https://www.securecoding.cert.org/confluence/display/java/LCK08-
J.+Ensure+actively+held+locks+are+released+on+exceptional+conditions,
Accessed on 01 May 2017.

[26] J. Walden, J. Stuckman, and R. Scandariato, “Predicting vulnerable
components: Software metrics vs text mining,” in Proceedings
of the 2014 IEEE 25th International Symposium on Software
Reliability Engineering, ser. ISSRE ’14. Washington, DC, USA:
IEEE Computer Society, 2014, pp. 23–33. [Online]. Available:
http://dx.doi.org/10.1109/ISSRE.2014.32

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 19

[27] M. Jimenez, M. Papadakis, and Y. L. Traon, “Vulnerability
prediction models: A case study on the linux kernel,” in
16th IEEE International Working Conference on Source Code
Analysis and Manipulation, SCAM 2016, Raleigh, NC, USA,
October 2-3, 2016, 2016, pp. 1–10. [Online]. Available: https:
//doi.org/10.1109/SCAM.2016.15

[28] F. Massacci and V. H. Nguyen, “An empirical methodology to
evaluate vulnerability discovery models,” IEEE Transactions on
Software Engineering (TSE), vol. 40, no. 12, pp. 1147–1162, 2014.

[29] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to for-
get: Continual prediction with lstm,” Neural computation, vol. 12,
no. 10, pp. 2451–2471, 2000.

[30] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, “Gra-
dient flow in recurrent nets: the difficulty of learning long-term
dependencies,” 2001.

[31] C. L. Giles, S. Lawrence, and A. C. Tsoi, “Noisy time series predic-
tion using recurrent neural networks and grammatical inference,”
Machine learning, vol. 44, no. 1, pp. 161–183, 2001.

[32] M. Baroni, G. Dinu, and G. Kruszewski, “Don’t count, predict! a
systematic comparison of context-counting vs. context-predicting
semantic vectors.” in ACL (1), 2014, pp. 238–247.

[33] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull,
B. Turhan, and T. Zimmermann, “Local versus global lessons
for defect prediction and effort estimation,” IEEE Trans. Softw.
Eng., vol. 39, no. 6, pp. 822–834, Jun. 2013. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2012.83

[34] D. G. Lowe, “Object recognition from local scale-invariant fea-
tures,” in Computer vision, 1999. The proceedings of the seventh IEEE
international conference on, vol. 2. Ieee, 1999, pp. 1150–1157.

[35] P. Morrison, K. Herzig, B. Murphy, and L. Williams, “Challenges
with applying vulnerability prediction models,” in Proceedings
of the 2015 Symposium and Bootcamp on the Science of Security,
ser. HotSoS ’15. New York, NY, USA: ACM, 2015, pp. 4:1–4:9.
[Online]. Available: http://doi.acm.org/10.1145/2746194.2746198

[36] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[37] Theano, “Theano,” http://deeplearning.net/software/theano/,
Accessed on 01 May 2017.

[38] Keras, “Keras: Deep Learning library for Theano and TensorFlow,”
https://keras.io/, Accessed on 01 May 2017.

[39] M. U. Gutmann and A. Hyvärinen, “Noise-contrastive estimation
of unnormalized statistical models, with applications to natural
image statistics,” Journal of Machine Learning Research, vol. 13, no.
Feb, pp. 307–361, 2012.

[40] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Android
study dataset,” https://sites.google.com/site/textminingandroid,
Accessed on 15 Jan 2017, 2014.

[41] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A
systematic literature review on fault prediction performance
in software engineering,” IEEE Trans. Softw. Eng., vol. 38,
no. 6, pp. 1276–1304, Nov. 2012. [Online]. Available: http:
//dx.doi.org/10.1109/TSE.2011.103

[42] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–
507, 2006.

[43] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research, vol. 9, no. 2579-2605, p. 85,
2008.

[44] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall, “Method-level
bug prediction,” in Proceedings of the ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement,
ser. ESEM ’12. New York, NY, USA: ACM, 2012, pp. 171–180.
[Online]. Available: http://doi.acm.org/10.1145/2372251.2372285

[45] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and
P. Devanbu, “On the “naturalness” of buggy code,” in Proceedings
of the 38th International Conference on Software Engineering, ser. ICSE
’16. New York, NY, USA: ACM, 2016, pp. 428–439. [Online].
Available: http://doi.acm.org/10.1145/2884781.2884848

[46] A. Arcuri and L. Briand, “A Hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering,”
Software Testing, Verification and Reliability, vol. 24, no. 3, pp.
219–250, 2014. [Online]. Available: http://dx.doi.org/10.1002/
stvr.1486

[47] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating
defect prediction approaches: A benchmark and an
extensive comparison,” Empirical Softw. Engg., vol. 17,

no. 4-5, pp. 531–577, Aug. 2012. [Online]. Available:
http://dx.doi.org/10.1007/s10664-011-9173-9

[48] C. Catal and B. Diri, “A systematic review of software fault
prediction studies,” Expert Syst. Appl., vol. 36, no. 4, pp.
7346–7354, May 2009. [Online]. Available: http://dx.doi.org/10.
1016/j.eswa.2008.10.027

[49] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis
of the efficiency of change metrics and static code attributes
for defect prediction,” in Proceedings of the 30th International
Conference on Software Engineering, ser. ICSE ’08. New York,
NY, USA: ACM, 2008, pp. 181–190. [Online]. Available:
http://doi.acm.org/10.1145/1368088.1368114

[50] N. Nagappan and T. Ball, “Use of relative code churn measures
to predict system defect density,” in Proceedings of the 27th
International Conference on Software Engineering, ser. ICSE ’05.
New York, NY, USA: ACM, 2005, pp. 284–292. [Online]. Available:
http://doi.acm.org/10.1145/1062455.1062514

[51] M. Pinzger, N. Nagappan, and B. Murphy, “Can developer-
module networks predict failures?” in Proceedings of the
16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. SIGSOFT ’08/FSE-16. New York,
NY, USA: ACM, 2008, pp. 2–12. [Online]. Available: http:
//doi.acm.org/10.1145/1453101.1453105

[52] N. Nagappan, B. Murphy, and V. Basili, “The influence of
organizational structure on software quality: An empirical
case study,” in Proceedings of the 30th International Conference
on Software Engineering, ser. ICSE ’08. New York, NY,
USA: ACM, 2008, pp. 521–530. [Online]. Available: http:
//doi.acm.org/10.1145/1368088.1368160

[53] A. E. Hassan, “Predicting faults using the complexity of code
changes,” in Proceedings of the 31st International Conference on
Software Engineering, ser. ICSE ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 78–88. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2009.5070510

[54] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep
learning for just-in-time defect prediction,” in Proceedings of
the 2015 IEEE International Conference on Software Quality,
Reliability and Security, ser. QRS ’15. Washington, DC, USA:
IEEE Computer Society, 2015, pp. 17–26. [Online]. Available:
http://dx.doi.org/10.1109/QRS.2015.14

[55] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504 –
507, 2006.

[56] H. K. Dam, T. Tran, J. Grundy, and A. Ghose, “DeepSoft: A
vision for a deep model of software,” in Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE ’16. ACM, To Appear., 2016.

[57] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk,
“Deep learning code fragments for code clone detection,”
in Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE 2016. New
York, NY, USA: ACM, 2016, pp. 87–98. [Online]. Available:
http://doi.acm.org/10.1145/2970276.2970326

[58] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2016. New
York, NY, USA: ACM, 2016, pp. 631–642. [Online]. Available:
http://doi.acm.org/10.1145/2950290.2950334

[59] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix:
Fixing common C language errors by deep learning,” in
Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, February 4-9, 2017, San Francisco, California, USA.
AAAI Press, 2017, pp. 1345–1351. [Online]. Available: http:
//aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14603

[60] X. Huo, M. Li, and Z.-H. Zhou, “Learning unified features
from natural and programming languages for locating buggy
source code,” in Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, ser. IJCAI’16. AAAI Press,
2016, pp. 1606–1612. [Online]. Available: http://dl.acm.org/
citation.cfm?id=3060832.3060845

[61] Y. L. Cun, B. Boser, J. S. Denker, R. E. Howard, W. Habbard,
L. D. Jackel, and D. Henderson, “Advances in neural information
processing systems 2,” D. S. Touretzky, Ed. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1990, ch. Handwritten
Digit Recognition with a Back-propagation Network, pp.
396–404. [Online]. Available: http://dl.acm.org/citation.cfm?id=
109230.109279

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 20

APPENDIX A
PERFORMANCE OF OTHER CLASSIFIERS

The local and global features that our approach automatically generates are used to develop machine learning classifiers
for vulnerability prediction. We have reported the result of using Random Forests as the classifier in Section 7.6. We present
here the results of using Decision Tree, Logistic Regression and Naive Bayes as the classifier in all the three experiments.

A.1 Experiment 1 (RQ1)

TABLE 6: Within-project results (RQ1) for the three variations of our approach using Decision Tree. “Joint features” indicates
the use of both local features and global features.

Application Local features Global features Joint features
P R F AUC P R F AUC P R F AUC

Ankiandroid 1.0 0.94 0.96 0.97 0.82 0.9 0.85 0.86 0.94 0.94 0.93 0.94
Boardgamegeek 0.8 0.95 0.83 0.91 0.83 0.86 0.81 0.87 0.58 0.75 0.63 0.7
Browser 0.78 0.83 0.76 0.78 0.91 0.94 0.92 0.95 0.85 0.89 0.87 0.83
Calendar 0.94 0.96 0.94 0.96 0.93 0.93 0.9 0.89 0.9 1.0 0.94 0.91
Camera 0.76 0.97 0.83 0.71 0.85 0.93 0.86 0.89 0.89 0.83 0.84 0.82
Connectbot 0.78 0.9 0.82 0.81 0.74 0.92 0.8 0.87 0.88 0.93 0.89 0.88
Contacts 0.84 0.88 0.85 0.81 0.95 0.88 0.9 0.9 0.92 0.94 0.92 0.88
Coolreader 0.89 1.0 0.93 0.92 0.95 0.96 0.95 0.96 0.89 0.94 0.89 0.89
Crosswords 0.8 0.83 0.79 0.81 0.74 0.82 0.75 0.78 0.83 0.83 0.81 0.83
Deskclock 0.42 0.42 0.39 0.37 0.91 0.93 0.89 0.87 0.92 0.83 0.83 0.82
Email 0.87 0.92 0.89 0.86 0.8 0.88 0.82 0.89 0.91 0.88 0.88 0.87
Fbreader 0.67 0.87 0.75 0.81 0.75 0.83 0.78 0.86 0.73 0.83 0.77 0.82
Gallery2 0.71 0.83 0.74 0.83 0.89 1.0 0.92 0.91 0.66 0.88 0.73 0.87
K9 0.84 0.89 0.85 0.88 0.86 0.83 0.83 0.88 0.88 0.93 0.89 0.91
Keepassdroid 0.76 0.93 0.83 0.84 0.83 0.86 0.84 0.84 0.79 0.89 0.84 0.86
Mms 0.75 0.84 0.78 0.82 0.81 0.88 0.83 0.81 0.8 0.85 0.82 0.87
Mustard 0.89 0.93 0.9 0.91 0.86 0.94 0.89 0.92 0.92 0.96 0.93 0.92
Quicksearchbox 0.83 0.83 0.78 0.88 0.89 0.87 0.87 0.9 0.7 0.71 0.67 0.76
Firefox 0.30 0.15 0.19 0.57 0.30 0.28 0.29 0.63 0.27 0.33 0.28 0.65

F-measure Precision Recall AUC

0

100

200

300

400

%
 d

iff
er

en
ce

Software metrics

F-measure Precision Recall AUC

50

40

30

20

10

0

10

20

Bag of Words

F-measure Precision Recall AUC

50

25

0

25

50

75

100

125

150

Deep Belief Network

Fig. 12: The percentage performance difference when applying the three benchmarks (software metrics, Bag of Words
and Deep Belief Network) against using our local feature approach (Decision Tree as the classifier) for each performance
measure in within-project prediction.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 21

TABLE 7: Within-project results (RQ1) for the three variations of our approach using Logistic Regression. “Joint features”
indicates the use of both local features and global features.

Application Local features Global features Joint features
P R F AUC P R F AUC P R F AUC

Ankiandroid 0.69 0.78 0.72 0.61 0.38 0.55 0.43 0.49 0.78 0.89 0.77 0.78
Boardgamegeek 0.25 0.25 0.23 0.27 0.73 0.78 0.71 0.79 0.38 0.55 0.43 0.49
Browser 0.89 0.89 0.85 0.89 0.71 0.89 0.77 0.87 0.89 0.83 0.85 0.89
Calendar 0.76 0.76 0.71 0.78 0.88 0.86 0.83 0.86 0.7 0.63 0.65 0.63
Camera 0.68 0.53 0.58 0.48 0.84 0.89 0.82 0.86 0.81 0.78 0.78 0.72
Connectbot 0.72 0.91 0.75 0.8 0.68 0.68 0.66 0.67 0.84 0.92 0.85 0.89
Contacts 0.89 0.74 0.78 0.76 0.86 0.81 0.8 0.84 0.66 0.61 0.61 0.65
Coolreader 0.85 1.0 0.9 0.83 0.86 0.81 0.83 0.86 0.94 0.94 0.93 0.83
Crosswords 0.83 0.83 0.81 0.89 0.61 0.68 0.61 0.57 0.8 0.78 0.77 0.78
Deskclock 0.58 0.67 0.61 0.67 0.81 0.87 0.81 0.81 0.67 0.83 0.72 0.5
Email 0.82 0.89 0.85 0.82 0.53 0.66 0.56 0.67 0.88 0.84 0.84 0.87
Fbreader 0.62 0.83 0.69 0.79 0.73 0.79 0.74 0.87 0.73 0.7 0.7 0.78
Gallery2 0.56 0.83 0.65 0.82 0.8 0.94 0.83 0.81 0.67 0.76 0.69 0.83
K9 0.82 0.91 0.84 0.85 0.72 0.77 0.73 0.78 0.79 0.87 0.81 0.85
Keepassdroid 0.68 0.95 0.79 0.83 0.69 0.68 0.68 0.66 0.78 0.8 0.77 0.79
Mms 0.6 0.83 0.69 0.78 0.88 0.88 0.88 0.88 0.77 0.71 0.7 0.73
Mustard 0.78 0.92 0.82 0.87 0.83 0.85 0.83 0.83 0.85 0.87 0.84 0.85
Quicksearchbox 0.6 0.92 0.68 0.85 0.74 0.77 0.75 0.76 0.66 0.71 0.66 0.7
Firefox 0.14 0.16 0.15 0.56 0.15 0.66 0.24 0.84 0.15 0.66 0.24 0.83

F-measure Precision Recall AUC

0

500

1000

1500

2000

2500

3000

%
 d

iff
er

en
ce

Software metrics

F-measure Precision Recall AUC

60

40

20

0

20

Bag of Words

F-measure Precision Recall AUC

60

40

20

0

20

40

60
Deep Belief Network

Fig. 13: The percentage performance difference when applying the three benchmarks (software metrics, Bag of Words and
Deep Belief Network) against using our local feature approach (Logistic Regression as the classifier) for each performance
measure in within-project prediction.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 22

TABLE 8: Within-project results (RQ1) for the three variations of our approach using Naive Bayes. “Joint features” indicates
the use of both local features and global features.

Application Local features Global features Joint features
P R F AUC P R F AUC P R F AUC

Ankiandroid 0.67 0.67 0.67 0.67 0.53 0.65 0.57 0.59 0.78 0.94 0.83 0.78
Boardgamegeek 0.32 0.45 0.36 0.42 0.77 0.72 0.71 0.77 0.63 0.85 0.71 0.78
Browser 0.69 0.67 0.64 0.64 0.71 0.61 0.62 0.84 0.63 0.72 0.64 0.64
Calendar 0.7 0.8 0.7 0.74 0.88 0.93 0.88 0.89 0.8 0.94 0.83 0.84
Camera 0.77 0.67 0.68 0.75 0.73 0.79 0.72 0.84 0.79 0.63 0.66 0.75
Connectbot 0.67 0.83 0.72 0.77 0.64 0.35 0.44 0.62 0.73 0.79 0.72 0.83
Contacts 0.67 0.72 0.63 0.73 0.89 0.64 0.7 0.82 0.82 0.56 0.6 0.71
Coolreader 0.67 0.78 0.7 0.72 0.74 0.69 0.66 0.78 0.72 0.89 0.78 0.75
Crosswords 0.67 0.69 0.64 0.69 0.71 0.72 0.67 0.78 0.76 0.89 0.8 0.78
Deskclock 0.5 0.5 0.5 0.5 0.65 0.89 0.73 0.71 0.75 0.67 0.67 0.66
Email 0.79 0.85 0.81 0.86 0.54 0.53 0.49 0.74 0.89 0.72 0.78 0.84
Fbreader 0.55 0.86 0.67 0.82 0.71 0.57 0.62 0.82 0.54 0.44 0.46 0.69
Gallery2 0.46 0.85 0.58 0.81 0.81 0.94 0.85 0.81 0.66 0.72 0.67 0.87
K9 0.73 0.81 0.75 0.85 0.68 0.43 0.51 0.81 0.8 0.68 0.71 0.82
Keepassdroid 0.63 0.85 0.72 0.79 0.83 0.49 0.6 0.75 0.72 0.53 0.58 0.76
Mms 0.49 0.76 0.59 0.74 0.56 0.5 0.5 0.49 0.6 0.52 0.54 0.74
Mustard 0.72 0.8 0.74 0.8 0.77 0.49 0.59 0.77 0.84 0.7 0.74 0.85
Quicksearchbox 0.59 0.92 0.69 0.88 0.69 0.38 0.46 0.65 0.69 0.71 0.65 0.76
Firefox 0.07 0.20 0.11 0.56 0.16 0.35 0.22 0.79 0.11 0.37 0.17 0.77

F-measure Precision Recall AUC

0

50

100

150

200

%
 d

iff
er

en
ce

Software metrics

F-measure Precision Recall AUC

50

0

50

100

150

200

250
Bag of Words

F-measure Precision Recall AUC

0

100

200

300

400

Deep Belief Network

Fig. 14: The percentage performance difference when applying the three benchmarks (software metrics, Bag of Words and
Deep Belief Network) against using our local feature approach (Naive Bayes as the classifier) for each performance measure
in within-project prediction.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 23

A.2 Experiment 2 (RQ2)

TABLE 9: Cross-version results (RQ2) for the three variations of our approach, using Decision Trees. “Joint features”
indicates the use of both local features and global features.

Application Local features Global features Joint features
P R F AUC P R F AUC P R F AUC

Ankiandroid 0.77 0.81 0.79 0.72 0.62 0.8 0.7 0.8 0.57 0.76 0.65 0.79
Browser 0.51 0.55 0.53 0.62 0.86 0.76 0.81 0.84 0.9 0.75 0.82 0.85
Calendar 0.69 0.74 0.71 0.75 0.92 0.72 0.81 0.83 0.96 0.77 0.86 0.87
Camera 0.58 0.8 0.67 0.75 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Connectbot 1.0 1.0 1.0 1.0 0.99 0.94 0.96 0.99 0.97 0.94 0.96 0.98
Contacts 0.5 0.72 0.59 0.7 0.97 0.95 0.96 0.97 0.97 0.94 0.95 0.96
Coolreader 0.73 0.86 0.79 0.78 0.76 0.72 0.74 0.8 0.73 0.57 0.64 0.72
Crosswords 0.76 0.85 0.8 0.82 0.78 0.8 0.79 0.83 0.82 0.73 0.77 0.8
Deskclock 0.74 0.78 0.76 0.77 0.79 0.9 0.85 0.85 0.77 0.89 0.82 0.83
Email 0.76 0.86 0.81 0.78 0.83 0.84 0.84 0.9 0.82 0.88 0.85 0.91
Fbreader 0.74 0.79 0.76 0.84 0.95 0.96 0.95 0.97 0.94 0.99 0.96 0.99
Gallery2 0.91 0.96 0.94 0.97 0.87 0.81 0.84 0.85 0.8 0.9 0.84 0.78
K9 0.8 0.88 0.83 0.83 0.84 0.85 0.85 0.9 0.78 0.87 0.83 0.89
Keepassdroid 0.93 0.96 0.94 0.96 0.89 0.82 0.85 0.85 0.84 0.86 0.85 0.84
Mms 0.82 0.84 0.83 0.86 0.85 0.9 0.87 0.88 0.78 0.86 0.82 0.83
Mustard 0.97 0.95 0.96 0.96 0.98 0.91 0.95 0.95 0.97 0.9 0.93 0.93
Quicksearchbox 0.61 0.75 0.67 0.81 0.9 0.96 0.93 0.95 0.9 0.92 0.91 0.93

Average 0.75 0.83 0.79 0.82 0.87 0.86 0.86 0.89 0.85 0.85 0.85 0.88

F-measure Precision Recall AUC

10

0

10

20

30

%
 d

iff
er

en
ce

Software metrics

F-measure Precision Recall AUC

20

10

0

10

20

Bag of Words

F-measure Precision Recall AUC

15

10

5

0

5

10

15

20
Deep Belief Network

Fig. 15: The percentage performance difference when applying the three benchmarks (software metrics, Bag of Words
and Deep Belief Network) against using our local feature approach (Decision Tree as the classifier) for each performance
measure in cross-version prediction.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 24

TABLE 10: Cross-version results (RQ2) for the three variations of our approach, using Logistic Regression. “Joint features”
indicates the use of both local features and global features.

Application Local features Global features Joint features
P R F AUC P R F AUC P R F AUC

Ankiandroid 0.79 0.86 0.82 0.84 0.62 0.67 0.64 0.73 0.62 0.67 0.64 0.74
Browser 0.45 0.64 0.53 0.61 0.81 0.78 0.8 0.81 0.82 0.76 0.79 0.82
Calendar 0.58 0.78 0.67 0.71 0.92 0.79 0.85 0.9 0.93 0.79 0.85 0.9
Camera 0.5 0.77 0.61 0.78 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Connectbot 0.75 0.88 0.81 0.94 0.99 0.93 0.96 0.99 0.99 0.94 0.96 0.99
Contacts 0.5 0.7 0.58 0.73 0.97 0.93 0.95 0.98 0.97 0.93 0.95 0.98
Coolreader 0.75 0.84 0.79 0.86 0.82 0.58 0.67 0.72 0.82 0.58 0.67 0.72
Crosswords 0.82 0.69 0.75 0.86 0.71 0.8 0.75 0.78 0.7 0.8 0.74 0.78
Deskclock 0.84 0.9 0.87 0.91 0.78 0.95 0.85 0.93 0.79 0.95 0.86 0.93
Email 0.73 0.85 0.79 0.82 0.84 0.86 0.85 0.89 0.84 0.84 0.84 0.9
Fbreader 0.61 0.77 0.68 0.86 0.91 0.96 0.94 0.97 0.92 0.97 0.95 0.98
Gallery2 0.63 0.92 0.75 0.92 0.84 0.83 0.83 0.84 0.84 0.82 0.83 0.82
K9 0.64 0.94 0.76 0.77 0.83 0.85 0.84 0.89 0.83 0.86 0.85 0.9
Keepassdroid 0.74 0.87 0.8 0.93 0.77 0.75 0.76 0.75 0.77 0.75 0.76 0.75
Mms 0.69 0.8 0.74 0.9 0.8 0.96 0.87 0.9 0.8 0.96 0.87 0.9
Mustard 0.82 0.91 0.86 0.94 0.99 0.88 0.93 0.92 0.98 0.89 0.94 0.94
Quicksearchbox 0.53 0.93 0.67 0.91 0.9 0.92 0.91 0.94 0.9 0.92 0.91 0.94

Average 0.67 0.83 0.73 0.84 0.85 0.85 0.85 0.88 0.85 0.85 0.85 0.88

F-measure Precision Recall AUC

0

20

40

60

80

100

%
 d

iff
er

en
ce

Software metrics

F-measure Precision Recall AUC
30

20

10

0

10

20

Bag of Words

F-measure Precision Recall AUC

30

20

10

0

10

20

30

40

50

Deep Belief Network

Fig. 16: The percentage performance difference when applying the three benchmarks (software metrics, Bag of Words and
Deep Belief Network) against using our local feature approach (Logistic Regression as the classifier) for each performance
measure in cross-version prediction.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 25

TABLE 11: Cross-version results (RQ2) for the three variations of our approach, using Naive Bayes. “Joint features” indicates
the use of both local features and global features.

Application Local features Global features Joint features
P R F AUC P R F AUC P R F AUC

Ankiandroid 0.84 0.81 0.82 0.87 0.63 0.62 0.62 0.82 0.63 0.69 0.66 0.8
Browser 0.61 0.66 0.64 0.77 0.72 0.61 0.66 0.83 0.67 0.73 0.7 0.81
Calendar 0.6 0.85 0.7 0.8 0.8 0.85 0.82 0.87 0.81 0.92 0.86 0.87
Camera 0.56 0.83 0.67 0.84 0.89 0.67 0.76 0.86 0.89 0.67 0.76 0.87
Connectbot 0.71 0.92 0.8 0.92 0.81 0.46 0.59 0.79 0.82 0.62 0.7 0.84
Contacts 0.5 0.78 0.61 0.8 0.97 0.65 0.78 0.87 0.87 0.69 0.77 0.87
Coolreader 0.83 0.78 0.81 0.91 0.79 0.59 0.67 0.82 0.72 0.68 0.7 0.81
Crosswords 0.71 0.8 0.76 0.85 0.72 0.76 0.74 0.84 0.72 0.81 0.76 0.83
Deskclock 0.86 0.82 0.84 0.91 0.75 0.86 0.8 0.85 0.71 0.91 0.8 0.82
Email 0.65 0.86 0.74 0.76 0.63 0.5 0.55 0.85 0.64 0.82 0.72 0.9
Fbreader 0.49 0.9 0.64 0.85 0.68 0.57 0.62 0.83 0.67 0.71 0.69 0.85
Gallery2 0.48 0.87 0.62 0.85 0.8 0.89 0.84 0.78 0.79 0.87 0.83 0.79
K9 0.69 0.88 0.77 0.83 0.68 0.43 0.53 0.81 0.63 0.57 0.6 0.81
Keepassdroid 0.64 0.88 0.74 0.86 0.9 0.52 0.66 0.82 0.88 0.6 0.71 0.85
Mms 0.55 0.86 0.67 0.8 0.74 0.8 0.76 0.81 0.71 0.8 0.75 0.8
Mustard 0.74 0.88 0.81 0.85 0.92 0.48 0.63 0.81 0.86 0.55 0.68 0.85
Quicksearchbox 0.46 0.88 0.61 0.88 0.68 0.4 0.51 0.76 0.66 0.6 0.63 0.79

Average 0.64 0.84 0.72 0.84 0.77 0.63 0.68 0.83 0.75 0.72 0.72 0.83

F-measure Precision Recall AUC
20

0

20

40

60

80

%
 d

iff
er

en
ce

Software metrics

F-measure Precision Recall AUC

30

20

10

0

10

20

30

40
Bag of Words

F-measure Precision Recall AUC
40

20

0

20

40

60

80

100

120

Deep Belief Network

Fig. 17: The percentage performance difference when applying the three benchmarks (software metrics, Bag of Words and
Deep Belief Network) against using our local feature approach (Naive Bayes as the classifier) for each performance measure
in cross-version prediction.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 26

A.3 Experiment 3 (RQ3)

TABLE 12: Cross-project results (RQ3) for the three benchmarks and three variations of our approach using Decision Tree.
Numbers are the number of other applications to which learned models can be applied (i.e. with both precision and recall
higher than 80%).

App BoW DBN Local Global Joint

AnkiAndroid 1 0 0 3 1
Boardgamegeek 0 0 0 0 0
Browser 0 0 0 0 0
Calendar 1 1 0 1 0
Camera 1 2 0 5 2
Connectbot 1 1 0 1 1
Contacts 1 1 0 1 0
Coolreader 1 0 0 3 0
Crosswords 1 2 0 2 0
Deskclock 0 0 0 1 1
Email 1 1 1 3 1
Fbreader 2 0 0 2 2
Gallery 1 1 0 2 1
K9 3 1 1 3 1
Keepassdroid 1 1 1 1 1
Mms 1 1 0 2 1
Mustard 1 1 0 2 1
Quicksearchbox 0 1 1 1 1

Average 0.94 0.78 0.22 1.83 0.78

TABLE 13: Cross-project results (RQ3) for the three benchmarks and three variations of our approach using Logistic
Regression. Numbers are the number of other applications to which learned models can be applied (i.e. with both precision
and recall higher than 80%).

App BoW DBN Local Global Joint

AnkiAndroid 1 0 0 0 0
Boardgamegeek 1 1 0 0 0
Browser 0 0 0 0 0
Calendar 0 1 0 1 1
Camera 2 1 0 0 0
Connectbot 1 0 0 0 0
Contacts 0 1 0 0 0
Coolreader 2 1 0 0 0
Crosswords 2 2 0 1 0
Deskclock 1 0 0 0 0
Email 1 0 0 1 1
Fbreader 0 0 0 0 0
Gallery 1 0 0 1 1
K9 1 2 0 1 1
Keepassdroid 0 0 0 0 0
Mms 1 1 0 1 1
Mustard 2 2 0 1 1
Quicksearchbox 1 1 0 1 1

Average 0.94 0.72 0 0.44 0.39

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 27

TABLE 14: Cross-project results (RQ3) for the three benchmarks and three variations of our approach using Naive Bayes.
Numbers are the number of other applications to which learned models can be applied (i.e. with both precision and recall
higher than 80%).

App BoW DBN Local Global Joint

AnkiAndroid 0 0 0 0 0
Boardgamegeek 0 0 0 0 0
Browser 0 0 0 0 0
Calendar 0 2 0 0 0
Camera 0 1 0 0 0
Connectbot 0 0 1 0 1
Contacts 0 0 1 1 0
Coolreader 0 0 0 1 2
Crosswords 0 0 0 0 0
Deskclock 0 0 0 2 1
Email 0 1 0 1 1
Fbreader 0 0 0 2 3
Gallery 0 2 1 3 3
K9 0 0 0 1 1
Keepassdroid 0 1 1 0 0
Mms 0 0 1 1 1
Mustard 2 0 0 1 3
Quicksearchbox 0 0 0 0 0

Average 0.11 0.39 0.28 0.72 0.89

APPENDIX B
PERFORMANCE OF PREDICTING “NEGATIVE” CASES

We report here the results of our approach (using Random Forests as the classifier) in predicting negative cases (i.e. clean
files) for Android applications (since this dataset is fairly balanced) in all three settings: within-project prediction (Table
15), cross-version prediction (Table 16), and cross-project prediction (Table 17).

TABLE 15: Within-project results (RQ1) for the three variations of our approach, using Random Forest with NEGATIVE
samples. “Joint features” indicates the use of both local features and global features.

Application Local features Global features Joint features
P R F AUC P R F AUC P R F AUC

Ankiandroid 0.91 1.0 0.94 0.97 0.94 0.93 0.92 0.82 0.94 1.0 0.96 0.94
Boardgamegeek 0.9 0.97 0.92 0.85 0.82 0.84 0.82 0.84 0.94 0.97 0.94 0.89
Browser 0.96 1.0 0.98 0.92 0.91 0.97 0.93 0.9 0.89 0.89 0.89 0.89
Calendar 0.89 0.83 0.85 0.86 0.93 1.0 0.95 0.96 0.82 0.78 0.78 0.83
Camera 0.6 0.53 0.54 0.56 0.93 0.94 0.92 0.92 0.77 0.7 0.72 0.75
Connectbot 0.9 0.94 0.9 0.89 0.91 0.92 0.91 0.89 0.91 0.97 0.92 0.87
Contacts 0.87 0.89 0.83 0.88 0.94 0.84 0.86 0.91 0.71 0.86 0.77 0.78
Coolreader 0.89 0.89 0.89 0.89 0.9 0.9 0.87 0.92 0.83 0.89 0.85 0.89
Crosswords 0.93 0.94 0.92 0.85 0.8 0.83 0.79 0.85 0.93 0.94 0.92 0.86
Deskclock 0.5 0.67 0.56 0.42 0.87 1.0 0.91 0.93 0.33 0.33 0.33 0.33
Email 0.89 0.81 0.83 0.91 0.91 0.96 0.93 0.91 0.79 0.87 0.82 0.88
Fbreader 0.85 0.93 0.88 0.83 0.9 0.93 0.91 0.88 0.85 0.95 0.89 0.87
Gallery2 0.88 0.93 0.9 0.87 0.64 0.61 0.61 0.57 0.88 0.93 0.9 0.88
K9 0.93 0.82 0.85 0.9 0.91 0.93 0.91 0.88 0.84 0.91 0.86 0.91
Keepassdroid 0.95 0.88 0.91 0.89 0.79 0.89 0.84 0.82 0.87 0.88 0.87 0.85
Mms 0.85 0.92 0.88 0.84 0.56 0.63 0.58 0.5 0.86 0.91 0.88 0.86
Mustard 0.91 0.88 0.86 0.91 0.9 0.92 0.9 0.93 0.88 0.95 0.9 0.89
Quicksearchbox 0.9 0.99 0.93 0.89 0.89 0.89 0.88 0.87 0.91 0.96 0.93 0.86

Average 0.86 0.88 0.85 0.84 0.86 0.88 0.86 0.85 0.83 0.87 0.84 0.84

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 28

TABLE 16: Cross-version results (RQ2) for the three variations of our approach, using Random Forest with NEGATIVE
samples. “Joint features” indicates the use of both local features and global features.

Application Local features Global features Joint features
P R F AUC P R F AUC P R F AUC

Ankiandroid 0.74 0.82 0.78 0.89 0.9 0.87 0.88 0.88 0.89 0.88 0.88 0.88
Browser 0.77 0.81 0.79 0.72 0.87 0.94 0.9 0.91 0.87 0.93 0.9 0.92
Calendar 0.83 0.81 0.82 0.83 0.81 0.93 0.87 0.91 0.86 0.94 0.9 0.94
Camera 0.83 0.72 0.77 0.82 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Connectbot 1.0 1.0 1.0 1.0 0.96 1.0 0.98 0.98 0.97 1.0 0.98 0.98
Contacts 0.86 0.8 0.83 0.82 0.94 0.99 0.97 0.98 0.94 0.99 0.96 0.98
Coolreader 0.87 0.85 0.86 0.9 0.8 0.91 0.85 0.84 0.8 0.9 0.85 0.85
Crosswords 0.92 0.86 0.89 0.94 0.94 0.76 0.84 0.9 0.91 0.83 0.87 0.91
Deskclock 0.82 0.95 0.88 0.92 0.94 0.87 0.9 0.93 0.93 0.86 0.89 0.93
Email 0.87 0.66 0.75 0.86 0.95 0.97 0.96 0.96 0.96 0.99 0.97 0.98
Fbreader 0.91 0.95 0.93 0.95 0.98 0.98 0.98 0.99 0.99 0.98 0.98 0.99
Gallery2 0.99 0.98 0.98 0.99 0.83 0.78 0.8 0.89 0.79 0.89 0.83 0.88
K9 0.91 0.76 0.83 0.93 0.96 0.95 0.95 0.96 0.94 0.96 0.95 0.96
Keepassdroid 0.99 0.98 0.99 0.99 0.84 0.89 0.86 0.91 0.88 0.89 0.88 0.93
Mms 0.93 0.96 0.94 0.96 0.94 0.83 0.88 0.9 0.91 0.83 0.87 0.89
Mustard 0.98 0.97 0.97 0.99 0.93 0.99 0.96 0.97 0.93 0.99 0.96 0.98
Quicksearchbox 0.94 0.94 0.94 0.93 0.98 0.93 0.96 0.97 0.98 0.93 0.96 0.97

Average 0.89 0.87 0.88 0.91 0.92 0.92 0.91 0.93 0.91 0.93 0.92 0.94

TABLE 17: Cross-project results (RQ3) for the three variations of our approach, using Random Forest with NEGATIVE
samples. Numbers are the number of other applications to which learned models can be applied.

App Local Global Joint

AnkiAndroid 3 8 6
Boardgamegeek 1 3 2
Browser 2 1 1
Calendar 3 6 5
Camera 2 8 6
Connectbot 5 6 6
Contacts 4 5 3
Coolreader 4 8 6
Crosswords 3 3 5
Deskclock 1 4 3
Email 2 5 5
Fbreader 5 4 5
Gallery2 3 5 4
K9 1 4 3
Keepassdroid 3 2 4
Mms 3 9 5
Mustard 5 7 7
Quicksearchbox 1 5 3

Average 2.8 5.2 4.4

Summary: The results suggest that our approach also produces highly accurate predictions of clean components (i.e.
negative cases) in all three settings (within-project, cross-version and cross-projects).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 29

APPENDIX C
PERFORMANCE DISTRIBUTION

Figures 18 and 19 present the box plots which show the distribution of the F-measure, Precision, Recall, and AUC values
achieved by software metrics, Bag-of-Words, Deep Belief Network, and our approach (all using Random Forests as the
classifier) across the Android applications used study.

F-measure Precision Recall AUC
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Software metrics

F-measure Precision Recall AUC

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Our approach

F-measure Precision Recall AUC

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Bag of Words

F-measure Precision Recall AUC

0.2

0.4

0.6

0.8

1.0

Deep Belief Network

Fig. 18: The distribution of the F-measure, Precision, Recall, and AUC values across the projects used our dataset (RQ1).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 30

F-measure Precision Recall AUC
0.5

0.6

0.7

0.8

0.9

Software metrics

F-measure Precision Recall AUC

0.6

0.7

0.8

0.9

1.0

Our approach

F-measure Precision Recall AUC

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Bag of Words

F-measure Precision Recall AUC

0.6

0.7

0.8

0.9

1.0

Deep Belief Network

Fig. 19: The distribution of the F-measure, Precision, Recall, and AUC values across the projects used our dataset (RQ2).

APPENDIX D
THE RESULTS OF EMPLOYING OVERSAMPLING AND UNDERSAMPLING TECHNIQUES ON FIREFOX DATASET

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X NO. Y, ACCEPTED 7 NOV 2018 31

0

0.2

0.4

0.6

0.8

1

0.
01

0.
06

0.
11

0.
16

0.
21

0.
26

0.
31

0.
36

0.
41

0.
46

0.
51

0.
56

0.
61

0.
66

0.
71

0.
76

0.
81

0.
86

0.
91

Joint features

AUC Precision Recall

0

0.2

0.4

0.6

0.8

1

0.
01

0.
08

0.
15

0.
22

0.
29

0.
36

0.
43 0.
5

0.
57

0.
64

0.
71

0.
78

0.
85

Global features

AUC Precision Recall

0

0.2

0.4

0.6

0.8

1

0.
01

0.
08

0.
15

0.
22

0.
29

0.
36

0.
43 0.
5

0.
57

0.
64

0.
71

0.
78

0.
85

Local features

AUC Precision Recall

Fig. 20: Within-project results (RQ1) for the three variations of our approach on the Firefox dataset using oversampling
with classification threshold varying from 0.01 to 0.91. “Joint features” indicates the use of both local features and global
features.

0

0.2

0.4

0.6

0.8

1

1.2

0.
01

0.
06

0.
11

0.
16

0.
21

0.
26

0.
31

0.
36

0.
41

0.
46

0.
51

0.
56

0.
61

0.
66

0.
71

0.
76

0.
81

0.
86

0.
91

Joint features

AUC Precision Recall

0

0.2

0.4

0.6

0.8

1

0.
01

0.
08

0.
15

0.
22

0.
29

0.
36

0.
43 0.
5

0.
57

0.
64

0.
71

0.
78

0.
85

Global features

AUC Precision Recall

0

0.2

0.4

0.6

0.8

1

0.
01

0.
08

0.
15

0.
22

0.
29

0.
36

0.
43 0.
5

0.
57

0.
64

0.
71

0.
78

0.
85

Local features

AUC Precision Recall

Fig. 21: Within-project results (RQ1) for the three variations of our approach on the Firefox dataset using undersampling
with classification threshold varying from 0.01 to 0.91. “Joint features” indicates the use of both local features and global
features.

