
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Predicting Delivery Capability in Iterative
Software Development

Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Aditya Ghose, and John Grundy

Abstract—Iterative software development has become widely practiced in industry. Since modern software projects require fast,
incremental delivery for every iteration of software development, it is essential to monitor the execution of an iteration, and foresee a
capability to deliver quality products as the iteration progresses. This paper presents a novel, data-driven approach to providing
automated support for project managers and other decision makers in predicting delivery capability for an ongoing iteration. Our
approach leverages a history of project iterations and associated issues, and in particular, we extract characteristics of previous
iterations and their issues in the form of features. In addition, our approach characterizes an iteration using a novel combination of
techniques including feature aggregation statistics, automatic feature learning using the Bag-of-Words approach, and graph-based
complexity measures. An extensive evaluation of the technique on five large open source projects demonstrates that our predictive
models outperform three common baseline methods in Normalized Mean Absolute Error and are highly accurate in predicting the
outcome of an ongoing iteration.

Index Terms—Mining software engineering repositories, Empirical software engineering, Iterative software development

F

1 INTRODUCTION

LATE delivery and cost overruns have been common
problems in software projects for many years. A recent

study on 5,400 large scale IT projects by Mckinsey and
the University of Oxford in 2012 [1] has found that on
average large software projects run 66% over budget and
33% overtime. One in six of the 1,471 software projects
studied by Flyvbjerg and Budzier [2] was a “black swan” – a
term used to refer to projects with a budget overrun of 200%
and a schedule overrun of almost 70%. These studies have
also suggested that ineffective risk management is one of
the main causes for such a high rate of overruns in software
projects. Central to risk management is the ability to predict,
at any stage in a project, if a software development team
can deliver on time, within budget, and with all planned
features.

Modern software development is mostly based on an
incremental and iterative approach in which software is
developed through repeated cycles (iterative) and in smaller
parts at a time (incremental), allowing software developers
to benefit from what was learned during development of
earlier portions or versions of the software. Incremental and
iterative development are essential parts of many popular
software development methodologies such as (Rational)
Unified Process, Extreme Programming, Scrum and other
agile software development methods [3]. This is achieved
by moving from a model where all software packages
are delivered together (in a single delivery) to a model
involving a series of incremental deliveries, and working
in small iterations. Uncertainties, however, exist in software

• M. Choetkiertikul, H. Dam, and A. Ghose are with the School of Comput-
ing and Information Technology, Faculty of Engineering and Information
Sciences, University of Wollongong, NSW, Australia, 2522.
E-mail: {mc650, hoa, aditya}@uow.edu.au

• T. Tran and J. Grundy is with the School of Information Technology,
Deakin University, Victoria, Australia, 3216.
E-mail: {truyen.tran, j.grundy}@deakin.edu.au

projects due to their inherent dynamic nature (e.g. con-
stant changes to software requirements) regardless of which
development process is employed. Therefore, an effective
planning, progress monitoring, and predicting are still criti-
cal for iterative software development, especially given the
need for rapid delivery [4]. Our focus here is on predicting
the delivery capability of a single iteration at a time, rather
than the whole software lifecyle as in traditional waterfall-
like software development processes.

There has been a large body of work on building various
prediction models to support software development. For
example, existing effort estimation models (e.g. [5], [6], and
[7]) was built to predict the effort required for developing
a whole software, not a single iteration at a time. Other
existing empirical work (e.g. [8], [9], [10], [11], and [12])
has only considered how prediction was done at the project
level. It would however be much more valuable for project
managers and decision makers to be provided with insight-
ful and actionable information at the level of iterations.
For example, being able to predict that an iteration is at
risk of not delivering what has been planned allows project
managers the opportunity adapt a current plan earlier, e.g.
moving some features from the current iteration to the next
one.

Our work in this paper aims to fill this gap. We focus
on predicting delivery capability as to whether the target
amount of work will be delivered at the end of an iteration.
Our proposal, with its ability to learn from prior iterations
to predict the performance of future iterations, represents an
important advance in our ability to effectively use the incre-
mental model of software development. To do so, we have
developed a dataset of 3,834 iterations in five large open
source projects, namely Apache, JBoss, JIRA, MongoDB, and
Spring. Each iteration requires the completion of a number
of work items (commonly referred to as issues), thus 56,687
issues were collected from those iterations.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

To build a feature vector representing an iteration, we
extracted fifteen attributes associated with an iteration (e.g.
its duration, the number of participants, etc.). In addition,
an iteration is also characterized by its issues, thus we
also extracted twelve attributes associated with an issue
(e.g. type, priority, number of comments, etc.) and a graph
describing the dependency between these issues (e.g. one
issue blocks another issue). The complexity descriptors of
the dependency graph (e.g. number of nodes, edges, fan
in and fan out) form a group of features for an iteration.
The attributes of the set of issues in an iteration are also
combined, using either statistic aggregation or bag-of-words
method, to form another group of features for an iteration.
Statistical aggregation looks for simple set statistics for each
issue attribute such as max, mean or standard deviation
(e.g. the maximum number of comments in all issues in a
iteration). On the other hand, the bag-of-words technique
clusters all the issues in a given project, then finds the closest
prototype (known as “word”) for each issue in an iteration
to build a feature vector. The bag-of-words method therefore
obviates the need for manual feature engineering. Our novel
approach of employing multiple layers of features and auto-
matic feature learning is similar to the notion of increasingly
popular deep learning methods.

From the above we then developed accurate models
that can predict delivery capability of an iteration (i.e. how
much work was actually completed in an iteration against
the target). Our predictive models are built based on three
different state-of-the-art randomized ensemble methods: Ran-
dom Forests, Stochastic Gradient Boosting Machines, and
Deep Neural Networks with Dropouts. An extensive eval-
uation was performed across five projects (with over three-
thousand iterations) and our evaluation results demonstrate
that our approach outperforms three common baselines and
performs well across all case studies.

The remainder of this paper is organized as follows.
Section 2 discusses the motivation and the prediction tasks
that our work addresses. Section 3 presents an overview of
our approach, while Section 4 presents a comprehensive set
of features and describes how these features are aggregated.
Section 5 presents the predictive models we have developed.
Section 6 reports on the experimental evaluation of our
approach. Related work is discussed in Section 7 before we
conclude and outline future work in Section 8.

2 MOTIVATION

In iterative, agile software development, a project has a
number of iterations (which are referred to as sprints in
Scrum [13]). An iteration is usually a short (usually 2–
4 weeks) period in which the development team designs,
implements, tests and delivers a distinct product increment,
e.g. a working milestone version or a working release. Each
iteration requires the resolution/completion of a number of
issues. For example, iteration Mesossphere Sprint 351 in the
Apache project (see Figure 1) requires the completion of
four issues: MESOS-5401, MESOS-5453, MESOS-5445, and
MESOS-2043. At the beginning of the iteration (i.e. May 14,

1. https://issues.apache.org/jira/secure/RapidBoard.jspa?
rapidView=62&view=reporting&chart=sprintRetrospective&sprint=
236

2016), all of these issues were placed in the Todo list (or also
referred to as the iteration or sprint backlog) . The iteration
was scheduled to finish on May 30, 2016.

Fig. 1. An example of an iteration (at the beginning)

Planning is done before an iteration starts and focuses
on determining its starting time, completion time and the
issues to be resolved in this iteration. Agile approaches
recommend that an iteration be time-boxed (i.e. have a fixed
duration) [4]. During an iteration, issues can be added and
removed from the iteration. At the end of an iteration, a
number of issues are completed and there may also be a
number of issues assigned to the iteration that remain in-
complete/unresolved. These incomplete/unresolved issues
may be assigned to future iterations.

Let tpred refer to the time at which a prediction is being
made (e.g. the third day of a 17-day iteration). Given time
tpred during an iteration, we would like to predict the
amount of work delivered at the end of an iteration (i.e.
the number of issues resolved), relative to the amount of
work which the team has originally committed to. More
specifically, let Committed be the set of issues that the team
commits to achieve in the current iteration before time tpred.
Let Delivered be the set of issues actually delivered at
the end of the iteration, and NonDelivered be the set of
issues that the team committed to delivering but failed to
deliver in this iteration. Note that NonDelivered includes
issues from the Committed set but are removed from the
iteration after prediction time tpred and/or issues that are
not completed when the iteration ends.

We illustrate and motivate this using the example in
Figure 1. At the beginning, a team planned to deliver 4
issues which are MESOS-5401, MESOS-5453, MESOS-5445,
and MESOS-2043 from iteration Mesossphere Sprint 35 which

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Fig. 2. An example of a closed iteration report

is a 17–day iteration. Assume that, on the second day,
the team added 2 new issues to the iteration: MESOS-
2201 and MESOS-3443. Let assume that three days after
the iteration started we would like to make a prediction;
i.e. tpred at day 3. The number of issues in Committed
is then 6 issues (MESOS-5401, MESOS-5453, MESOS-5445,
MESOS-2043, MESOS-2201, and MESOS-3443) at the time
tpred when the prediction is made. After the third day,
issue MESOS-2043 has been removed from the iteration,
and at the end of the iteration, a team completed only 3
issues which are MESOS-2201, MESOS-3443, and MESOS-
5453, while the remaining issues (MESOS-5401 and MESOS-
5445) were not resolved. Thus, the issues in Delivered
are MESOS-2201, MESOS-3443, and MESOS-5453 and the
issues in NonDelivered are MESOS-5401 and MESOS-
5445 which were not completed and MESOS-2043 which
was removed from the iteration (see Figure 2). We note that
an issue’s status (e.g. resolved or accepted) also corresponds
to the associated iteration’s report, e.g. MESOS-2201 was
resolved and was placed in the completed list while issue
MESOS-5445 was in the reviewing process.

Predicting which issues would belong to the Delivered
sets is difficult, and in some cases is impossible, e.g. some
new issues in the Delivered set could be added after
prediction time tpred. Hence, we propose to quantify the
amount of work done in an iteration and use this as the

basis for our prediction. This approach reflects common
practice in agile software development. For example, several
agile methods (e.g. Scrum) suggest the use of story points
to represent the effort, complexity, uncertainty, and risks
involving resolving an issue [4]. Specifically, a story point is
assigned to each issue in an iteration. The amount of work
done in an iteration is then represented as a velocity, which
is the total story points completed in the iteration. Velocity
reflects how much work a team gets done in an iteration.

Definition 1 (Velocity). Velocity of a set of issues I is the
sum story points of all the issues in I :

velocity(I) =
X

i2I
sp(i)

where sp(i) is the story point assigned to issue i.

For example, as can be seen from Figure 2, there are six
issues that were committed to be delivered from iteration
Mesossphere Sprint 35 in the Apache project at the prediction
time tpred (e.g. issue MESOS-2201 has 3 story points). Thus,
the committed velocity is 19, i.e. velocity(Committed) =
19. However, there are only three issues had been resolved
in iteration Mesossphere Sprint 35. Thus, the velocity deliv-
ered from this iteration is 7, i.e. velocity(Delivered) = 7
(two issues have the story points of 2 and one of them has
the story point of 3).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Archive of
past iterations

and issues

Learning phase Execution phase

Issues + DAG

Past iterations Extracting
features of iterations

Extracting
features of issues

Extracting
features of DAGs

Feature aggregation
Building

Classifiers

Trained
classifiers

Ongoing iterationsExtracting
features of iterations,

issues, and DAG

Predicted
Velocity

Fig. 3. An overview of our approach

We thus would like to predict the delivery capability in
an iteration. Our approach is able to predict, given the cur-
rent state of the project at time tpred, what is the difference
between the actual delivered velocity against the committed
(target) velocity, defined as velocity(Difference):

velocity(Difference) =
velocity(Delivered)� velocity(Committed)

For example, the difference between the actual
delivered velocity against the committed ve-
locity of iteration Mesossphere Sprint 35 was -
12, i.e. velocity(Difference) = �12, because
velocity(Delivered) was 7 and velocity(Committed) at
tpred was 19. This iteration delivered below the target, i.e.
velocity(Committed) > velocity(Delivered). Note that
velocity(Difference) = 0 does not necessarily imply that
an iteration has delivered on all its commitments (in terms
of the specific issues that were to be resolved) but instead it
assesses the quantum of work performed.

3 OVERVIEW OF OUR APPROACH

Our approach consists of two phases: the learning phase
and the execution phase (see Figure 3). The learning phase
involves using historical iterations to build a predictive
model (using machine learning techniques), which is then
used to predict outcomes, i.e. velocity(Difference), of
new and ongoing iterations in the execution phase. To apply
machine learning techniques, we need to engineer features
for the iteration. An iteration has a number of attributes
(e.g. its duration, the participants, etc.) and a set of issues
whose dependencies are described as a dependency graph.
Each issue has its own attributes and derived features (e.g.
from its textual description). Our approach separates the
iteration-level features into three components: (i) iteration
attributes, (ii) complexity descriptors of the dependency
graph (e.g. the number of nodes, edges, fan-in, fan-out,
etc.), and (iii) aggregated features from the set of issues
that belong to the iteration. A more sophisticated approach
would involve embedding all available information into an
Euclidean space, but we leave this for future work.

Formally, issue-level features are vectors located in the
same Euclidean space (i.e. the issue space). The aggregation
is then a map of a set points in the issue space onto a

point in the iteration space. The main challenge here is to
handle sets which are unordered and variable in size (e.g.
the number of issues is different from iteration to iteration).
We propose two methods: statistical aggregation and bag-
of-words (BoW). Statistical aggregation looks for simple set
statistics for each dimension of the points in the set, such
as maximum, mean or standard deviation. For example, the
minimum, maximum, mean, and standard deviation of the
number of comments of all issues in an iteration are part
of the new features derived for the iteration. This statistical
aggregation technique relies on manual feature engineering.
On the other hand, the bag-of-words method automatically
clusters all the points in the issue-space and finds the closest
prototype (known as “word”) for each new point to form
a new set of features (known as bag-of-words, similarly
to a typical representation of a document) representing an
iteration. This technique provides a powerful, automatic
way of learning features for an iteration from the set of
issues in the layer below it (similar to the notions of deep
learning).

For prediction models, we employ three state-of-the-
art randomized ensemble methods: Random Forests, Stochastic
Gradient Boosting Machines, and Deep Neural Networks
(DNNs) with Dropouts to build the predictive models.
Our approach is able to make a prediction regarding the
delivery capability in an iteration (i.e. the difference between
the actual delivered velocity against the committed (target)
velocity). Next we describe our approach in more detail.

4 FEATURE EXTRACTION AND AGGREGATION

In this section, we describe our feature extraction from
iteration and issue reports. Since an iteration has a set of
issues to be resolved, we extract not only features of an
iteration, but also features of an issue and the issue graph
(i.e. dependency of issues) in an iteration. Most modern
issue tracking systems (e.g. JIRA-Agile2) support an itera-
tive, agile development which enables teams to use agile
practices for their development to plan, collaborate, monitor
and organize iterations and issues. Dependencies between
issues are also explicitly recorded (i.e. issue links) in the
issues reports which both iterative and issue reports can

2. https://www.atlassian.com/software/jira/agile

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

be easily extracted from there. We then employ a number of
distinct techniques (feature aggregation using statistics, Bag-
of-Words, and graph measures) to characterize an iteration
using both features of an iteration and features of a number
of issues associated to an iteration. These details will be
discussed in this section.

4.1 Features of an iteration
Table 1 summarizes a range of features that are used to
characterize an iteration in our study. The features cover
three important areas of an iteration: the elapsed time (e.g.
the planned duration), the amount of work, and the team.
Prediction time (i.e. tpred) is used as a reference point to
compute a number of features reflecting the amount of
work. These include the set of issues assigned to an iteration
when it begins (i.e. start time), and the set of issues added
or removed from the iteration between the start time and
prediction time. In addition, we also leverage a number
of features reflecting the current progress of the team up
until prediction time: the set of issues which have been
completed, the set of work-in-progress issues (i.e. issues that
have been acted upon but not yet completed), and the set of
issues on which the team has not started working yet (i.e. to-
do issues). Agile practices also suggest using this approach
for monitoring the progress of an iteration [13].

Figure 4 shows an example of an on-going iteration
report (recorded in JIRA-Agile) of Mesosphere Sprint 343 in
the Apache project. This iteration started from April 27, 2016
to May 11, 2016. This iteration has two issues in the Todo
state (MESOS-5272 and MESOS-5222), three issues in the
In-progress state – those are all in the reviewing process
(MESOS-3739, MESOS-4781, and MESOS-4938), and one
issue has been resolved (MESOS-5312). These issues have
story points assigned to them. For each of those sets of
issues, we compute the set cardinality and velocity, and
use each of them as a feature. From our investigation,
among the under-achieved iterations across all case studies,
i.e. velocity(Difference) < 0, 30% of them have new
issues added after passing 80% of their planned duration
(e.g. after 8th day of a ten-day iterations), while those
iterations deliver zero-issue. Specifically, teams added more
velocity(Committed) while velocity(Delivered) was still
zero. This reflects that adding and removing issues affects
the deliverable capability of an on-going iteration. This can
be a good indicator to determine the outcome of an iteration.

These features were extracted by examining the list of
complete/incomplete issues of an iteration and the change
log of an issue, e.g. which iteration an issue was added
or removed on which date, and its status (e.g. an issue is
in the set of work-in-progress issues or in the set of to-do
issues) at prediction time. Figure 5 shows an example of an
iteration report for the iteration named Twitter Aurora Q2’
15 Sprint 3 in the Apache project. The report provides a list
of completed issues (e.g. AURORA-274) and uncompleted
issues (e.g. AURORA-698), a list of added and removed
issues during an iteration (e.g. AURORA-1267), and iteration
details (e.g. state, start date, and planned end date). We can
also identify when those issues were added or removed

3. https://issues.apache.org/jira/secure/RapidBoard.jspa?
rapidView=62

TABLE 1
Features of an iteration

Feature Description

Iteration duration The number of days from the start date to
planned completion date

No. of issues at start time The number of issues assigned to an itera-
tion at the beginning

Velocity at start time The sum of story points of issues assigned
to an iteration at the beginning

No. of issues added The number of issues added during an it-
eration (between start time and prediction
time)

Added velocity The sum of story points of issues added
during an iteration (between start time and
prediction time)

No. of issues removed The number of issues removed during an
iteration (between start time and predic-
tion time)

Removed velocity The sum of story points of issues removed
during an iteration (between start time and
prediction time)

No. of to-do issues The number of to-do issues in an iteration
by prediction time

To-do velocity The sum of story points of to-do issues by
prediction time

No. of in-progress issues The number of in-progress issues in an
iteration by prediction time

In-progress velocity The sum of story points of in-progress
issues by prediction time

No. of done issues The number of done issues in an iteration
by prediction time

Done velocity The sum of story points of done issues by
prediction time

Scrum master The number of Scrum masters
Scrum team members The number of team members working on

an iteration

from the iteration by examining their change logs. Figure
6 shows an example of a change log of issue AURORA-
1267 which records that this issue has been added to Twitter
Aurora Q2’ 15 Sprint 3 on May 16, 2015 while this iteration
was started one day earlier (i.e. May 15, 2015).

There are a number of features reflecting the team in-
volved in an iteration. These include the number of team
leads (e.g. Scrum masters) and the size of the team. Note
that the team structure information is not explicitly recorded
in most issue tracking systems. We thus conjecture that
the number of team members is the number of developers
assigned to issues in an iteration. The number of Scrum
masters is the number of authorized developers who can
manage issues (e.g. add, remove) in an iteration. Future
work could look at other characteristics of a team including
the expertise and reputation of each team member and the
team structure.

4.2 Features of an issue
The issues assigned to an iteration also play an important
part in characterizing the iteration. Figure 7 shows an exam-
ple of an issue report of issue AURORA-716 in the Apache
project which the details of an issue are provided such as
type, priority, description, and comments including a story
points and an assigned iteration. Hence, we also extract a
broad range of features representing an issue (see Table 2).
The features cover different aspects of an issue including
primitive attributes of an issue, issue dependency, changing
of issue attributes, and textual features of an issue’s descrip-
tion. Some of the features of an issue (e.g. number of issue
links) were also adopted from our previous work [14].

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Fig. 4. An example of an on-going iteration report

{"contents":{
"completedIssues":[

{"id": 12702203,
"key": "AURORA-274"},
{"id": 12724064,
"key": "AURORA-556"},
{"id": 12769421,
"key": "AURORA-1047"},...],

"incompletedIssues":[
{"id": 12740639,
"key": "AURORA-698"},...],

"puntedIssues": [], ...
"issueKeysAddedDuringSprint": {

"AURORA-1267": true,
"AURORA-1321": true,...}},

"sprint": {
"id": 127,
"sequence": 127,
"name": "Twitter Aurora Q2’15 Sprint 3",
"state": "CLOSED",
"startDate": "12/May/15 6:59 AM",
"endDate": "26/May/15 4:00 AM",...}}

Fig. 5. Example of an iteration report in JSON format of the iteration
named “Twitter Aurora Q2’15 Sprint 3” in the Apache project

It is important to note that we used the time when a
prediction is made (prediction time tpred) as the reference
point when extracting the values of all the features. By
processing an issue’s change log during both training and
testing phases we collected the value which a feature had
just before the prediction time. For example, if the final
number of comments on an issue is 10, and there were
no comments at the time when the prediction was made,
then the value of this feature is 0. The underlying principle
here is that: when making a prediction, we try to use only
information available just before the prediction time. The

{"key": "AURORA-1267",
"changelog": { "histories": [...
{"id": "14758778",
"created": "2015-05-16T00:31:55.018+0000",
"items": [{
"field": "Sprint",
"fieldtype": "custom",
"from": null,
"fromString": null,
"to": "127",
"toString":"Twitter Aurora Q2’15 Sprint 3"}
]},...]}}

Fig. 6. Example of a change log of an issue in JSON format of issue
AURORA-1267

purpose of doing this is to prevent using “future” data when
making a prediction – a phenomenon commonly referred in
machine learning as information leakage [15].

4.2.1 Primitive attributes of an issue

These features are extracted directly from the issue’s at-
tributes, which include type, priority, number of comments,
number of affect versions, and number of fix versions. Each
issue will be assigned a type (e.g task, bug, new feature,
improvement, and story) and a priority (e.g. minor, major,
and critical). These indicate the nature of the task associated
with resolving the issue (e.g. new feature implementation
or bug fixing) and the order in which an issue should be
attended with respect to other issues (e.g. a team should
concerns critical priority issues more than issues with major
and minor priority). These attributes might affect the de-
livery of an iteration. For example, in the Apache project
approximately 10% of the under-achieved iterations have at
least one critical priority issue.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 7. An example of an issue report of issue AURORA-716 in the Apache project

Previous studies (e.g. [16]) have found that the number
of comments on an issue indicates the degree of team collab-
oration, and thus may affect its resolving time. The “affect
version” attribute of an issue specifies versions in which
an issue (e.g. bug) has been found, while the “fix version”
attribute indicates the release version(s) for which the issue
was (or will be) fixed. One issue can be found in many ver-
sions. An issue with a high number of affect versions and fix
versions needs more attention (e.g. an intensive reviewing
process) to ensure that the issue is actually resolved in each
affect version and does not cause new problems for each fix
version. For example, in Apache, we found that 80% of the
over-achieved iterations have issues assigned to only one
fix version. We also found that 75.68% of the issues were
assigned at least one affect version and fix version.

4.2.2 Dependency of an issue

We extract the dependency between the issues in a term
of the number of issue links. Issue linking allows teams to
create an association between issues (e.g. an issue resolution
may depend on another issue). Figure 7 also shows an
example of issue links of issue AURORA-716 in the Apache
project for which it has been blocked by issue AURORA-
MESOS-2215. There are several relationship types for issue
links (e.g. relate to, depend on). In our approach we consider
all types of issue links and use the number of those links
as features. Moreover, blocker is one of the issue linking
types that indicates the complexity of resolving issue since
these blocker issues block other issues from being completed
(i.e. all blocker issues need to be fixed beforehand). As such
they directly affects the progress and time allocated to solve
other issues [17], [18], [19]. The blocker relationship is thus
treated separately as two features: number of issues that are
blocked by this issue and number of issues that block this
issue. We found that there are more than 30% of issues have
at least one relationship. We also note that when counting
the number of links between issues, we count each link type
separately. For example, if there are three different types of
links between issues A and B, the number of links counted
would be 3.

4.2.3 Changing of issue attributes

Previous research, e.g., [19], [20], has shown that changing
of an issue’s attribute (e.g. priority) may increase the issue
resolving time and decrease the deliverable capability which
it could be a cause of delays in software project. In our
study, there are three features reflecting changing of issue’s
attributes which are: the number of times an issue priority
was reassigned, the number of times in which a fix version
was changed, and the number of times in which an issue
description was changed. The changing of an issue’s priority
may indicate the shifting of its complexity. In addition,
the changing of the fix version(s) reflects some changes
in the release planning for which it affects directly the
planning of on-going iterations. In particular, changing the
description of an issue could indicate that the issue is not
stable and could also create misunderstanding. These may
consequently have an impact on the issue resolution time.

4.2.4 Textual features of an issue’s description

An issue’s description text can provide good features since
it explains the nature of an issue. A good description helps
the participant of an issue understand its nature and com-
plexity. We have a employed readability measure to derive
textual features from the textual description of an issue.
We used Gunning Fox [21] to measure the complexity level
of the description in terms of a readability score (i.e. the
lower score, the easier to read). Previous studies (e.g. [22])
have found that issues with high readability scores were
resolved more quickly. We acknowledge that there are more
advanced techniques with which to derive features from
textual data (e.g. word2vec), use of which we leave for our
future work.

4.3 Feature Aggregation

As previously stated, to characterize an iteration, we ex-
tracted both the features of an iteration and the features
of issues assigned to it (i.e. one iteration associates with a
number of issues). Feature aggregation derives a new set
of features from the issues (i.e. a number of issues) for

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 2
Features of an issue

Feature Description

Type Issue type
Priority Issue priority
No. of comments The number of comments
No. of affect versions The number of versions for which an issue

has been found
No. of fix versions The number of versions for which an issue

was or will be fixed
Issue links The number of dependencies of an issues
No. of blocking issues The number of issues that block this issue

for being resolved
No. of blocked issues The number of issues that are blocked by

this issue
Changing of fix versions The number of times in which a fix version

was changed
Changing of priority The number of times an issue’s priority

was changed
Changing of description The number of times in which an issue

description was changed
Complexity of description The read ability index (Gunning Fog [21])

indicates the complexity level of a descrip-
tion which is encoded to easy and hard

an iteration by aggregating those features of the issues as-
signed to the iteration. We discuss here two distinct feature
aggregation techniques (i.e. statistical aggregation and Bag-
of-Words) we use to characterize an iteration using features
of the issues assigned to it. The complexity descriptors of
a graph describing the dependencies among those issues
also form a set of features representing the iteration. These
aggregation approaches aim to capture the characteristics of
issues associated to an iteration in different aspects which
each of them could reflects the situation of an iteration.
The features of an iteration and its aggregated features of
the issues are then fed into a classifier to build a predictive
model that we discuss in Section 5.

4.3.1 Statistical aggregation
Statistical aggregation aggregates the features of issues us-
ing a number of statistical measures (e.g. max, min, and
mean) which aims to capture the statistical characteristics
of the issues assigned to an iteration. For each feature k

in the set of features of an issue (see Table 2), we have a
set of values Vk = {xk

1 , x
k
2 , ..., x

k
n} for this feature where

x

k
i (i 2 [1..n]) is the value of feature k of issue xi in

an iteration, and n is the number of issues assigned to
this iteration. Applying different statistics over this set Vk

(e.g. min, max, mean, median, standard deviation, variance,
and frequency) gives different aggregated features. Table
3 shows eight basic statistics that we used for our study.
Note that the categorical features (e.g. type and priority)
are aggregated by summing over the occurrences of each
category. For example, minimum, maximum, mean, and
standard deviation of number of comments, and frequency
of each type (e.g. number of issues in an iteration that are
“bug” type) are the features among the aggregated features
that characterize an iteration.

4.3.2 Feature aggregation using Bag-of-Words
The above-mentioned approach require us to manually en-
gineer and apply a range of statistics over the set of issues
in an iteration in order to derive new features characterizing

TABLE 3
Statistical aggregated features for an issue’s feature k

Function Description

min The minimum value in V

k

max The maximum value in V

k

mean The average value across V

k

median The median value in V

k

std The standard deviation of V
k

var The variance of V

k

(measures how far a set of
numbers is spread out)

range The difference between the lowest and highest
values in V

k

frequency The summation of the frequency of each cate-
gorical value

the iteration. Our work also leverages a new feature learning
approach known as Bag-of-Words, which has been widely
used in computer vision for image classification (e.g. [23]), to
obviate the need for manual feature engineering. Here, new
features for a project’s iteration can be automatically learned
from all issues in the project. We employ unsupervised K-
means clustering to learn features for an iteration. Specifi-
cally, we apply K-means clustering to all the issues extracted
from a given project, which gives us k issue clusters whose
centers are in {C1, C2, ..., Ck}. The index of the closest
center to each issue in an iteration forms a word in a bag-of-
words representing the iteration. The occurrence count of a
word is the number of issues closest to the center associated
with the word. For example, assume that an iteration has
three issues X, Y and Z, and the closest cluster center to X
is C1 while the closest center to Y and Z is C2. The bag-of-
words representing this iteration is a vector of occurrence
counts of the cluster centers, which in this case is 1 for C1,
2 for C2 and 0 for the remaining clusters’ centers. Note that
in our study we derived 100 issue clusters (k = 100) using
kmeans4 package from Matlab. Future work would involve
evaluation using a different number of issue clusters.

This technique provides a powerful abstraction over a
large number of issues in a project. The intuition here is
that the number of issues could be large (hundreds of
thousands to millions) but the number of issue types (i.e.
the issue clusters) can be small. Hence, an iteration can be
characterized by the types of the issues assigned to it. This
approach offers an efficient and effective way to learn new
features for an iteration from the set of issues assigned to
it. It can also be used in combination with the statistical
aggregation approach to provide an in-depth set of features
for an iteration.

4.3.3 Graph descriptors

Dependencies often exist between issues in an iteration.
These dependency of issues are explicitly recorded in the
form of issue links (e.g. relate to, depend on, and blocking).
Blocking is a common type of dependency that is recorded
in issue tracking systems. For example, blocking issues are
those that prevent other issues from being resolved. Such
dependencies form a directed acyclic graph (DAG) which
depicts how the work on resolving issues in an iteration

4. http://au.mathworks.com/help/stats/kmeans.html

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

should be scheduled (similar to the popular activity prece-
dence network in project management). Figure 8 shows an
example of a DAG constructed from nine issues assigned
to the iteration Usergrid 205 in the Apache project. However
note that we consider only the relationships among issues
in the same iteration.

start end

Usergrid 20 (129)

USERGRID-608

USERGRID-627

USERGRID-628

USERGRID-633

USERGRID-634

USERGRID-662

USERGRID-664

USERGRID-688 USERGRID-704

blocks

Fig. 8. Example of a DAG of issues in the iteration “Usergrid 20” in the
Apache project

The descriptors of complexity of such a DAG of issues
provide us with a rich set of features characterizing an
iteration. These include basic graph measures such as the
number of nodes in a graph, the number of edges, the total
number of incoming edges, and so on (see [24] for a compre-
hensive list). Table 4 lists a set of graph-based features that
we currently use. For example, from Figure 8, among the
aggregated features using graph-based feature aggregation
for the iteration Usergrid 20, the number of nodes equals
9 and the number of edges equals 7. We acknowledge
that the dependencies between issues in an iteration may
not exist (e.g. no issue link between issues in an iteration)
however the aggregated features from this approach can be
combined with the features from our other techniques to
characterize an iteration in terms of dependencies between
issues assigned to it. Future work would involve exploring
some other measures such as graph assortativity coefficient
[25].

5 PREDICTIVE MODELS

Our predictive models can predict the difference between
the actual delivered velocity against the committed (target)
velocity for an iteration, i.e. velocity(Difference). To do
so, we employ regression methods (supervised learning)
where the outputs reflect the deliverable capability in an
iteration e.g., the predicting of velocity(Difference) will
be equal to 12. The extracted features of the historical
iterations (i.e. training set) are used to build the predictive
models. Specifically, a feature vector of an iteration and an
aggregated feature vector of issues assigned to the iteration
are concatenated and fed into a regressor.

5. https://issues.apache.org/jira/secure/RapidBoard.jspa?
rapidView=23&view=reporting&chart=sprintRetrospective&sprint=
129

TABLE 4
Features of a DAG of issues in an iteration

Graph measure Description

number of nodes The number of issues in DAG
number of edges The number of links between issues in DAG
sum of fan in The total number of incoming links of issues in

DAG
sum of fan out The total number of outgoing links of issues in

DAG
max of fan in The maximum number of incoming links of

issues in DAG
max of fan out The maximum number of outgoing links of is-

sues in DAG
mean of fan in The average of numbers of incoming links

across all issues in DAG
mean of fan out The average of numbers of outgoing links across

all issues in DAG
mode of fan in The number of incoming links that appear most

often in DAG
mode of fan out The number of outgoing links that appear most

often in DAG
avg. node degree The degree distribution of nodes and edges of

DAG

We apply the currently most successful class of ma-
chine learning methods, namely randomized ensemble meth-
ods [26], [27], [28]. Ensemble methods refer to the use of
many regressors to make their prediction [28]. Randomized
methods create regressors by randomizing data, features,
or internal model components [29]. Randomizations are
powerful regularization techniques which reduce prediction
variance, prevent overfitting, are robust against noisy data,
and improve the overall predictive accuracy [30], [31].

We use the following high performing regressors that
have frequently won recent data science competitions (e.g.
Kaggle6): Random Forests (RFs) [32], Stochastic Gradient Boost-
ing Machines (GBMs) [33], [34] and Deep Neural Networks with
Dropouts (DNNs) [35]. All of them are ensemble methods
that use a divide-and-conquer approach to improve perfor-
mance. The key principle behind ensemble methods is that a
group of “weak learners” (e.g. classification and regression
decision trees) can together form a “strong learner”. Details
for these predictive models used are provided in Appendix
A.

The source code in Matlab of the three feature ag-
gregation techniques: Statistical aggregation, Bag-of-Words,
and Graph-based feature aggregation, and the three ran-
domized ensemble methods: Random Forests, Stochastic
Gradient Boosting Machines, and Deep Neural Networks
with Dropouts have been made available online at http:
//www.dsl.uow.edu.au/sasite/index.php/agile/.

6 EVALUATION
This section discusses an extensive evaluation that we have
carried out of our approach. We describe how data is col-
lected and processed for our study, the experimental setting,
discuss the performance measures, and report our results.
Our empirical evaluation aims to answer the following
research questions:

RQ1 Do the feature aggregation approaches improve the predic-
tive performance?

6. https://www.kaggle.com

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

We build predictive models using the three feature
aggregation approaches and compare them against
a predictive model using only the information ex-
tracted directly from the attributes of an iteration (i.e.
features of an iteration). This is to evaluate whether
the aggregated features of issues offer significant im-
provement. We also investigate which combinations
of the feature aggregation approaches are the best
performer (e.g. combining the aggregated features
from statistical feature aggregation and Bag-of-words
aggregation approach).

RQ2 Do randomized ensemble methods improve the predictive
performance compared to a traditional regression model?
We employ Support Vector Machine (SVM) as a rep-
resentative for traditional regression models. SVM
is the most important (deterministic) classifier in
the year 2000s [36]. Its predictive power has been
challenged, only recently, by randomized and en-
semble techniques (e.g, see the recent comparative
study proposed by Fernández-Delgado et al [37]).
SVM has been widely used in software analytics,
such as defect prediction, effort estimation, and bug
localization. Its regression version, Support Vector
Regression (SVR), is also known for being highly
effective for regression problems. Thus, we employ
SVR to build predictive models to evaluate whether
our randomized ensemble methods perform better
than the traditional regression model. We also find
the best randomized ensemble method in predicting
the difference between actual achieved and target
velocity in an iteration.

RQ3 Are the purposed randomized ensemble method and the
feature aggregation suitable for predicting the difference
between the actual delivered velocity against the target
velocity of an iteration?
This is our sanity check as it requires us to com-
pare our purposed prediction model with three com-
mon baseline benchmarks used in the context of ef-
fort estimation: Random Guessing, Mean Effort, and
Median Effort. Random guessing performs random
sampling (with equal probability) over the set of
iterations with known difference (between target and
actual achieved velocity), chooses randomly one iter-
ation from the sample, and uses the target vs. actual
difference velocity of that iteration as the prediction
of the new iteration. Random guessing does not use
any information associated with the new iteration.
Thus any useful prediction model should outperform
random guessing. Mean and Median Effort predic-
tions are commonly used as baseline benchmarks for
effort estimation. They use the mean or median target
vs. actual difference of the past iterations to predict
the difference of the new iterations.

RQ4 Does the time of making a prediction (tpred) affect the
predictive performance?
We want to evaluate the predictive performance from
the different prediction times (tpred) to confirm our
hypothesis that the later we predict, the more accu-
racy we gain. Specifically, we evaluate the predictive
performance from four different prediction times: at
the beginning of an iteration, and when it progresses

to 30%, 50%, and 80% of its planned duration. We
acknowledge that making a prediction as late as at
80% of an iteration duration may not be particularly
useful in practice. However, for the sake of com-
pleteness we cover this prediction time to sufficiently
test our hypothesis. Note that our experiments in
RQ1-RQ3 were done at the prediction time when
an iteration has progressed to 30% of its planned
duration (e.g. make a prediction at the third day of a
10-day iteration).

RQ5 Can the output from the predictive model (i.e. the dif-
ference between the actual delivered velocity against the
target velocity) be used for classifying the outcomes of an
iteration (e.g. an under-achieved iteration)?
Rather than the difference between the actual
achieved and the target velocity, the outcomes
of iterations can also be classified into three
classes: below the target – under achieved, i.e.
velocity(Committed) > velocity(Delivered),
or above the target – over achieved, i.e.
velocity(Committed) < velocity(Delivered),
or the same as the target – achieved, i.e.
velocity(Committed) = velocity(Delivered).
We want to evaluate whether the output from
the predictive models (i.e. the difference veloc-
ity) can be used to classify the outcome of an
iteration in terms of the three classes: negative
outputs, i.e. velocity(Difference) < 0 , are
in the under-achieved class, positive outputs, i.e.
velocity(Difference) > 0, are in the over-achieved
class, and zero, i.e. velocity(Difference) = 0, is in
the achieved class. This method can also accommodate
a tolerance margin e.g. outputs from -1 to 1 are
considered in the achieved class. A finer-grained
taxonomy (e.g. different levels of over achieved or
under achieved) for classifying iterations can also
be accommodated to reflect the degree of difference
between the target and the actual delivered velocity.

6.1 Data collecting and processing

We collected the data of past iterations (also referred to as
sprints in those projects) and issues from five large open
source projects which follow the agile Scrum methodology:
Apache, JBoss, JIRA, MongoDB, and Spring. The project
descriptions and their agile adoptions have been reported
in Table 5.

All five projects use JIRA-Agile for their development
which is a well-known issue and project tracking tool that
supports agile practices. We use the Representational State
Transfer (REST) API provided by JIRA to query and collect
iteration and issue reports in JavaScript Object Notation
(JSON) format. Note that the JIRA Agile plug-in supports
both the Scrum and Kanban practices, but we collected only
the iterations following the Scrum practice. From the JIRA
API, we were also able to obtain issues’ change log and the
list of complete/incomplete issues of each iteration.

We initially collected 4,301 iterations from the five
projects and 65,144 issues involved with those iterations
from February 28, 2012 to June 24, 2015. The former date is
the date when the first iteration (among all the case studies)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 5
Project description

Project Brief description Agile adoption Year of adoption Repository

Apache A web server originally designed
for Unix environments. There are
more than fifty sub-projects un-
der the Apache community um-
brella (i.e. Aurora, Apache Helix,
and Slider).

Almost 50% of the issues in the sub-
projects that are applied the Scrum
method (e.g. Aurora) have been as-
signed to at least one iteration.

2006 https://issues.apache.org/jira/

JBoss An application server program
which supports a general enterprise
software development framework.

JBoss community has described
their iterative development process
in the developer guide.+ There are
more than ten sub-projects that are
applied agile methods.

2004* https://issues.jboss.org/

JIRA A project and issue tracking sys-
tem including the agile plug-in
that provides tools to manage it-
erations following agile approaches
(e.g. Scrum, Kanban) provided by
Atlassian.

Recently, Atlassian reported their
success in applying agile meth-
ods to improve their development
process.x

N/A https://jira.atlassian.com/

MongoDB A cross platform document-
oriented database (NoSQL
database) provided by MongoDB
corporation and is published as free
and open-source software.

More than 70% of the issues in the
main sub-projects (e.g. Core Mon-
goDB, MongoDB tool) have been
assigned to at least one iteration

2009 https://jira.mongodb.org/

Spring An application development frame-
work that contains several sub-
projects in their repository i.e.
Spring XD and Spring Data JSP.

Almost 70% of the issues in the core
sub-projects (e.g. Spring XD) have
been assigned to at least one itera-
tion.

N/A https://jira.spring.io/

+:http://docs.jboss.org/process-guide/en/html/, *: identified from the developer guided published date,
x:http://www.businessinsider.com.au/atlassian-2016-software-developer-survey-results-2016-3

TABLE 6
Descriptive statistics of the iterations of the projects in our datasets

Project # iterations # issues # days/iteration # issues/iteration # team members
/iteration

min/max mean median SD min/max mean median SD min/max mean median SD

Apache 348 5,826 3/21 12.02 14 10.12 3/128 15.39 7 8.24 3/21 4.6 4 3.4
JBoss 372 4,984 3/49 12.52 13 7.4 4/122 7.14 5 8.54 2/20 2.6 2 3.11
JIRA 1,873 10,852 4/60 10.5 9 6.03 3/88 5.5 5 6.2 2/12 3.71 2 2.07
MongoDB 765 17,528 3/43 20 18 36 3/180 15 9 21.4 2/30 4.12 3 5.02
Spring 476 17,497 3/49 14.28 14 7.21 3/161 20.71 17 20.11 3/15 5.4 4 4.37

Total 3,834 56,687
iterations: number of iterations, # issues: number of issues, # days/iteration: number of days per iteration,

issues/iteration: number of issues per iteration, # team members/iteration: number of team members per iteration

was created and the later is the date when we finished
collecting the data. Hence, this window ensures that we
did not miss any data up to the time of our collection. The
data was preprocessed by removing duplicate and demon-
stration iterations as well as future and ongoing iterations.
We also removed iterations that have zero resolved issues
where those iterations are ignored by teams (e.g. no activity
recorded in the issue report, all issues have been removed).

In total, we performed our study on 3,834 iterations from
the five projects, which consist of 56,687 issues. Table 6
shows the number of iterations and issues in our datasets
and summarizes the characteristics of the five projects in
terms of the iteration length, number of issues per iteration,
number of team members per iteration in terms of the
minimum, maximum, mean, median, and standard devi-
ations (STD). The iteration length across the five projects
tends to be in the range of 2 to 4 weeks. All projects have

almost the same team size, while the number of issues per
iteration varies. For example, the mean number of issues
per iteration in MongoDB is 15 issues, while it is only 5.5
issues in JIRA. We have made our dataset publicly available
at http://www.dsl.uow.edu.au/sasite/index.php/agile/.

6.2 Experimental setting

All iterations and issues collected in each of the five case
studies were used in our evaluations. As discussed in Sec-
tion 2, we would like to predict the difference between
the actual delivered velocity against the target velocity. For
example, if the output of our model is -5, it predicts that
the team will deliver 5 story points below the target. Table 7
shows the statistical descriptions of the difference between
the actual delivered against the target velocity of the five
projects in terms of the minimum, maximum, mean, median,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE 7
Descriptive statistics of the difference between the actual delivered

velocity against the target velocity in each project

Project velocity(Difference)

min max mean median mode SD IQR

Apache -81 49 -9.05 -5 0 17.16 15.00
JBoss -96 30 -6.03 -1 0 14.83 4.00
JIRA -83 117 -2.82 0 0 11.37 3.00
MongoDB -67 50 -0.99 0 0 11.54 5.00
Spring -135 320 23.77 8.50 4 51.66 32.00

mode, standard deviations (SD), and interquartile range
(IQR).

We used ten-fold cross validation in which all iterations
were sorted based on their start date. After that, an iteration
i

th in every ten iterations is included in fold i

th. With larger
data sets, we could choose the sliding window setting,
which mimics a real deployment scenario, to ensure that
prediction on a current iteration is made by using knowl-
edge from the past iterations. We leave for future work since
we believe that our findings in the current experimental
setting still hold [38]. The time when the prediction is
made may affect its accuracy and usefulness. The later we
predict, the more accurate our prediction gets (since more
information has become available) but the less useful it is
(since the outcome may become obvious or it is too late to
change the outcome). We later address the varying of the
prediction time in RQ4.

6.3 Performance Measure

We adapted a recently recommended measure: Mean Abso-
lute Error (MAE) [6] to measure the predictive performance
of our models in a term of the errors between the actual and
the predicted velocity(Difference). However, different
projects have different velocity(Difference) ranges (see
Table 7). Thus, we needed to normalize the MAE (by divid-
ing it with the interquartile range) to allow for comparisons
of the MAE across the studied project. Similarly to the work
in [39], we refer to this measure as Normalized Mean Ab-
solute Error (NMAE). To compare the performance of two
predictive models, we also applied statistical significance
testing on the absolute errors predicted by the two models
using the Wilcoxon Signed Rank Test [40] and employed the
Vargha and Delaneys Â12 statistic [41] to measure whether
the effect size is interesting. Later in RQ5, we used a number
of traditional metrics: precision, recall, F-measure, Area
Under the ROC Curve (AUC) to measure the performance
in classifying the outcome of an iteration. We also used
another metric called Macro-averaged Mean Absolute Error
(MMAE) [42] to assess the distance between actual and pre-
dicted classes since the classes is ordinal, we can order them,
e.g. over achieved is better than achieved. The traditional class-
based measures (Precision/Recall) do not take into account
the ordering between classes, and Matthews Correlation
Coefficient (MCC) [43], which performs well on imbalanced
data. Details of these measures and our statistical testing
used are provided in Appendix B.

6.4 Results
We report here our evaluation results in answering our
research questions RQs 1-5.

6.4.1 Benefits of the feature aggregations of issues (RQ1)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SA BoWs GA None
N
M
A
E

Fig. 9. Evaluation results on the three aggregated features and the
features of iterations (None). X is a mean of NMAE averaging across
all projects and all regression models (the lower the better).

We compared the predictive performance (using NMAE)
achieved for the three feature aggregation approaches: sta-
tistical aggregation (SA), Bag-of-Words (BoWs), and graph-
based aggregation (GA) against the predictive model using
only the features of an iteration (None). Figure 9 shows
the NMAE achieved for each of the aggregated features,
averaging across all the projects and all the regression mod-
els. The analysis of NMAE suggests that the predictive
performance achieved from using the feature aggregation
approaches (i.e. SA, BoWs, and GA) consistently outper-
forms the predictive model using only the features of
iterations (i.e. None). The predictive models using statistical
aggregation, Bag-of-Words, and graph-based aggregation
achieve an accuracy of 0.371, 0.372, and 0.446 NMAE respec-
tively, while the predictive models using only the features
of iterations achieve only 0.581 NMAE.

Table 8 shows the results of the Wilcoxon test (together
with the corresponding A

12 effect size) to measure the
statistical significance and effect size (in brackets) of the
improved accuracy achieved by the aggregated features
over the features of iterations. In all cases, the predictive
models using the feature aggregation approaches signif-
icantly outperform the predictive models using only the
features of iterations (p < 0.001) with effect size greater
than 0.5.

We also performed a range of experiments to explore
the best combination of aggregated features. There are four
possible combinations: SA+GA, BoWs+GA, SA+BoWs, and
the combination of all of them (All). For example, SA+GA
combines a feature vector of an iteration, a feature vec-
tor of issues obtained from statistical aggregation (SA),
and a feature vector of issues obtained from graph-based
aggregation (GA). As can be seen in Figure 10, in most
cases the combination of two or more feature aggregation
approaches produced better performance than a single ag-
gregation approach. However, the best performer varies

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

0.2

0.3

0.4

0.5

0.6

0.7

0.8
SA

*

B
o
W
s

G
A

SA
+G

A

B
o
W
s+
G
A

SA
+B

o
W
s

A
ll

SA

B
o
W
s

G
A

SA
+G

A
*

B
o
W
s+
G
A

SA
+B

o
W
s

A
ll

SA

B
o
W
s

G
A

SA
+G

A

B
o
W
s+
G
A

SA
+B

o
W
s* A
ll

SA

B
o
W
s

G
A

SA
+G

A

B
o
W
s+
G
A

SA
+B

o
W
s* A
ll

SA

B
o
W
s

G
A

SA
+G

A

B
o
W
s+
G
A

SA
+B

o
W
s

A
ll*

Apache JBoss JIRA MongoDB Spring

N
M
A
E

Fig. 10. Evaluation results on all the combinations of the aggregated features of issues. In each project, the best performer is marked with *. X is a
mean of NMAE averaging across all regression models (the lower the better).

TABLE 8
Comparison of the predictive models between with and without the

aggregated features using Wilcoxon test and A

12 effect size (in
brackets)

Project With agg. vs Without agg.

Apache SA <0.001 [0.61]
BoWs <0.001 [0.60]
GA <0.001 [0.56]

JBoss SA <0.001 [0.59]
BoWs <0.001 [0.60]
GA <0.001 [0.54]

JIRA SA <0.001 [0.62]
BoWs <0.001 [0.56]
GA <0.001 [0.52]

MongoDB SA <0.001 [0.61]
BoWs <0.001 [0.60]
GA <0.001 [0.53]

Spring SA <0.001 [0.60]
BoWs <0.001 [0.61]
GA <0.001 [0.54]

between projects. For example, SA+GA outperforms the
others in JBoss – it achieves 0.555 NMAE while the others
achieve 0.558 - 0.598 NMAE (averaging across all regression
models), while SA+BoWs is the best performer in JIRA –
it achieves 0.265 NMAE while the others achieve 0.285 -
0.366 NMAE (averaging across all regression models). These
results suggest that the three approaches are distinct and
complementary to each other: the statistical aggregation
covers the details, the Bag-of-Words technique addresses
the abstraction, while the graph-based approach reflects the
network nature of issues in an iteration as also shown in
our previous work [18]. We rely not just on features coming
directly from the attributes of an object (i.e. an iteration), like

most of existing software analytics approaches, but also the
features from the parts composing the object (i.e. the issues).
The latter features are powerful since they are automatically
learned and aggregated, and capture the graphical structure
of the object.

Answer to RQ1: Feature aggregation offers significant
improvement in predictive performance.

6.4.2 Benefits of the randomized ensemble methods (RQ2)

TABLE 9
Comparison of the three randomized ensemble methods against the
traditional SVR using Wilcoxon test and A

12 effect size (in brackets)

Project Method vs SVR

Apache RF <0.001 [0.61]
Deep Nets. <0.001 [0.61]
GBMs <0.001 [0.67]

JBoss RF <0.001 [0.58]
Deep Nets. <0.001 [0.59]
GBMs <0.001 [0.66]

JIRA RF <0.001 [0.63]
Deep Nets. <0.001 [0.63]
GBMs <0.001 [0.71]

MongoDB RF <0.001 [0.66]
Deep Nets. <0.001 [0.70]
GBMs <0.001 [0.82]

Spring RF <0.001 [0.64]
Deep Nets. <0.001 [0.66]
GBMs <0.001 [0.73]

To answer RQ2, we focus on the predictive perfor-
mance achieved from different regression models. For a fair
comparison we used only one combination of aggregated

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

TABLE 10
Comparison of GBMs against RF and Deep nets. using Wilcoxon test

and A

12 effect size (in brackets)

Project Method vs RF Deep Nets.

Apache GBMs <0.001 [0.62] <0.001 [0.60]
JBoss GBMs <0.001 [0.60] <0.001 [0.60]
JIRA GBMs <0.001 [0.59] <0.001 [0.62]
MongoDB GBMs <0.001 [0.75] <0.001 [0.71]
Spring GBMs <0.001 [0.67] <0.001 [0.65]

features that performs best in most cases, SA+BoWs, as
reported in RQ1. Figure 11 shows the NMAE achieved by
the three randomized ensemble methods: Random Forests
(RF), Deep Neural Networks with Dropouts (Deep Net.),
and Stochastic Gradient Boosting Machines (GBMs), and
the traditional Support Vector Regression (SVR), averaging
across all projects.

Overall, all the three ensemble methods that we
have employed performed well, producing much better
predictive performance than the traditional SVR. They
achieve 0.392 NMAE averaging across the three ensemble
methods, while SVR achieves 0.621 NMAE. The results
for the Wilcoxon test to compare the ensemble methods
against the tradition regression model is shown in Table
9. The improvement of the ensemble methods over the
traditional regression model is significant (p < 0.001) with
the effect size greater than 0.5 all cases. The best per-
former is Stochastic Gradient Boosting Machines (GBMs).
GBMs achieved 0.369 NMAE averaging across all projects
as confirmed by the results of the Wilcoxon test with the
corresponding A

12 effect size in Table 10: GBMs perfomed
significantly better than RF and Deep Nets. (p < 0.001) with
effect size greater than 0.5 in all cases.

Answer to RQ2: Randomized ensemble methods signif-
icantly outperform traditional methods like SVR in pre-
dicting delivery capability.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RF Deep Nets. GBMs* SVR

SA+BoWs

N
M

A
E

Fig. 11. Evaluation results on different regression models with
SA+BoWs. The best performer is marked with *. X is a mean of NMAE
averaging across all projects (the lower the better).

6.4.3 Sanity check (RQ3)
To answer RQ3, we employed the best randomized en-
semble method: GBMs (identified by RQ2), and the best
combination of the aggregated features in each project: SA
for Apache, SA+GA for JBoss, SA+BoWs for JIRA and Mon-
goDB, and the combined of all (All) for Spring (identified by
RQ1). Figure 12 shows the predictive performance achieved
from GBMs with the best aggregated features and the three
baseline methods: Random, Mean, and Median in each
project. Our analysis of this evaluation result suggests that
the predictive performance obtained with our approach is
better than those achieved by using Random, Mean, and
Median in all projects. Averaging across all the project,
our approach (GBMs with the best aggregated features in
each project) achieves an accuracy of 0.349 NMAE, while
the base of the baselines achieve only 0.702 NMAE. The
NMAE produced by our model is higher for JBoss than
that for other projects. JBoss is also the project that the
baseline methods (Random, Mean and Median) struggled
with the most. There are a few reasons which explain
this phenomenon. Firstly, JBoss has the smallest number of
issues among the five studied projects. Small training data
may affect the predictive power of a model. Secondly, JBoss
has the largest range of story points assigned to issues –
it has a standard deviation of 3.27, comparing to 1.71–2.34
standard deviation in the other projects. The high standard
deviation indicates that the issue story points in JBoss are
spread out over a large range of values. This could make all
the models struggle since issue story points directly affect
the velocity of an iteration.

Table 11 shows the results of the Wilcoxon test (together
with the corresponding A

12 effect size) to measure the
statistical significance and effect size (in brackets) of the
improved accuracy achieved by our approach over the
baselines: Random Guessing, Mean, and Median. In all
cases, our approach significantly outperforms the baselines
(p < 0.001) with (large) effect sizes greater than 0.65.

Answer to RQ3: our approach significantly outperforms
the baselines, thus passing the sanity check required by
RQ3.

6.4.4 The impact of prediction time (RQ4)
We also varied the prediction time (at the beginning of the
iteration, and when it progresses to 30%, 50% and 80% of
its planned duration) to observe its impact on predictive
performance. Note that the extracted features also corre-
spond to the prediction time (e.g. the number of comments
of an issue when an iteration progresses to 80% may greater
than that at the beginning of the iteration). Moreover, the
difference between the target velocity and actual delivered
velocity could be dynamic at different prediction times.

For example, the actual delivered velocity of the iter-
ation named Mesosphere Sprint 13 in the Apache project
is 72, i.e. velocity(Delivered) = 72. At the beginning
of this iteration, team planned to deliver 15 velocity, i.e.
velocity(Committed) = 15. The difference between actual
delivered velocity and target velocity of this iteration when
the prediction is done at the beginning of the iteration (0%)
is 57, i.e. velocity(Difference) = 57. When this iteration

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

TABLE 11
Comparison on the predictive performance of our approach against the baseline benchmarks using Wilcoxon test and A

12 effect size (in brackets)

Project Model vs Random Mean Median

Apache GBMs (SA) <0.001 [0.82] <0.001 [0.81] <0.001 [0.77]
JBoss GBMs (SA+GA) <0.001 [0.86] <0.001 [0.86] <0.001 [0.66]
JIRA GBMs (SA+BoWs) <0.001 [0.88] <0.001 [0.86] <0.001 [0.67]
MongoDB GBMs (SA+BoWs) <0.001 [0.86] <0.001 [0.85] <0.001 [0.80]
Spring GBMs (All) <0.001 [0.83] <0.001 [0.83] <0.001 [0.79]

0.0

0.5

1.0

1.5

2.0

2.5

G
B

M
s

(S
A

)

R
an

d
o

m

M
ea

n

M
ed

ia
n

G
B

M
s

(S
A

+G
A

)

R
an

d
o

m

M
ea

n

M
ed

ia
n

G
B

M
s

(S
A

+B
o

W
s)

R
an

d
o

m

M
ea

n

M
ed

ia
n

G
B

M
s

(S
A

+B
o

W
s)

R
an

d
o

m

M
ea

n

M
ed

ia
n

G
B

M
s

(A
ll)

R
an

d
o

m

M
ea

n

M
ed

ia
n

Apache JBoss JIRA MongoDB Spring

N
M

A
E

Fig. 12. Evaluation result of the GBMs with the best aggregated features in each project and the three baseline benchmarks

TABLE 12
The descriptive statistics of the difference between actual delivered
velocity against the target velocity from the different prediction time

Project Prediction
Time(%)

velocity(Difference)

min max mean median STD

Apache 0 -81 57 -7.25 -4 17.56
30 -81 49 -9.05 -5 17.16
50 -81 40 -10.00 -5 16.97
80 -81 30 -10.86 -6 16.69

JBoss 0 -89 30 -5.12 -1 14.78
30 -96 30 -6.03 -1 14.83
50 -96 30 -6.20 -2 15.05
80 -106 10 -6.35 -2 13.97

JIRA 0 -74 147 -1.61 0 12.19
30 -83 117 -2.82 0 11.37
50 -83 96 -3.28 0 11.09
80 -86 72 -4.07 0 10.68

MongoDB 0 -67 88 1.61 0 12.78
30 -67 50 -0.99 0 11.54
50 -67 48 -2.27 -1 11.16
80 -85 44 -3.65 -1 11.29

Spring 0 -131 332 34.72 15 63.57
30 -135 320 23.77 8.5 51.66
50 -135 316 18.79 4 47.92
80 -147 312 11.07 1 42.13

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0% 30% 50% 80%

GBMs (SA+BoWs)

N
M

A
E

Fig. 13. Evaluation results on varying prediction time. X is a mean of
NMAE averaging across all projects (the lower the better).

progressed to 80% of its planned duration, 33 velocity
were added and planned to deliver in this iteration, i.e.
velocity(Committed) = 48. Thus, velocity(Difference)
of this iteration when the prediction is done at 80% of
the planned duration is 24. Table 12 shows the statistical
description of velocity(Difference) in the different pre-
diction time. The decreasing of STD of the different velocity
in the later prediction time in all cases shows that teams may
adjust the target velocity of ongoing iterations correspond-
ing to the remaining time of iterations rather than extend
the duration.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

We again used the best performer (i.e. GBMs
with SA+BoWs) in most cases to perform this exper-
iment. Figure 13 shows NMAE achieved in predicting
velocity(Difference) from the four different prediction
times (i.e. at the beginning of the iteration, and when it
progresses to 30%, 50%, and 80% of its planned duration)
obtained from running GBMs using the combination of
statistical aggregation and Bag-of-Words aggregation ap-
proaches averaging across all projects. We observe that
the predictive performance achieved from the predictions
made at a later time in an iteration is better than those that
the predictions made at the beginning of the iterations
(0%) – the prediction at 30%, 50%, and 80% of the iteration’s
duration achieves an average of 0.348 NMAE while the
prediction at the beginning of the iteration achieves 0.390
NMAE, averaging across all projects. This confirms our ear-
lier hypothesis that the latter we predict, the more accuracy
we could gain since more information has become available.
That phenomenon is however not consistently seen with the
predictive performance of the prediction made at 50% of
the iterations duration being slightly lower than those that
made at 30% of the iterations duration. The prediction made
at 80% of the iterations duration does however achieve the
highest predictive performance it achieves 0.318 NMAE,
averaging across all projects. For the sake of completeness,
our experiments covered a range of prediction times from
0% to 80% to sufficiently test a hypothesis that the latter
we predict, the more accuracy we could gain. We however
acknowledge that making a prediction at 80% might be less
useful in practice since the outcomes have become obvious
and/or it might be too late to change the outcomes.

We investigated further to see when predictions could
be made while not losing too much predictive power. To
do so, we analyzed the improvement of the predictive
performance between different prediction time intervals. We
found that when we delayed making a prediction by 30%,
we gained only 7-12% improvement in predictive perfor-
mance. In fact, there was not much difference in terms of
predictive power when making a prediction at the 30% or
50% marks. This result suggests that it is reasonably safe
to make a prediction early, even at the beginning of an
iteration.

Answer to RQ4: The time when a prediction is made af-
fects the predictive performance, but only small improve-
ment is gained when we delay making the prediction.

6.4.5 Classifying the outcomes of an iteration (RQ5)
We defined a tolerance margin to classify the out-
comes of an iteration based on the statistical character-
istics of each project. To maintain a relative balance be-
tween the classes, we used the 33th and the 66th per-
centile of velocity(Difference) as the tolerance mar-
gin: an iteration having velocity(Difference) below the
33th percentile falls into under-achieved class, an itera-
tion having velocity(Difference) above the 66th per-
centile falls into over-achieved class, otherwise an iteration
falls into achieved class. Table 13 shows the number of
iterations in each class according to the 33th and the
66th percentile from each project. For example, in the

Apache project, an iteration falls into under-achieved class
if velocity(Difference) is below -11, and falls into over-
achieved class if velocity(Difference) is over 0.

In this experiment we also used GBMs with SA+BoWs
and applied these margins to the predicted value of
velocity(Difference). For example, in the Apache project,
an iteration is predicted as under-achieved if the predicted
value is below -11 (i.e. the 33th percentile). Figure 14 shows
the precision, recall, F-measure, and AUC achieved for
each of five open source projects. These evaluation results
demonstrate the effectiveness of our predictive models
in predicting the outcomes of iterations across the five
projects, achieving on average 0.79 precision, 0.82 recall,
and 0.79 F-measure. The degree of discrimination achieved
by our predictive models is also high, as reflected in the
AUC results – the average of AUC across all projects is 0.86.
The AUC quantifies the overall ability of the discrimination
between classes. Our model performed best for the Spring
project, achieving the highest precision (0.87), recall (0.85), F-
measure (0.86), and AUC (0.90). The result from using MCC
as a measure (Figure 15) also corresponds to the other mea-
sures. As can be seen from Figure 15, our approach achieved
over 0.5 MCC in all cases – our approach achieves 0.71,
averaging across all projects. MMAE is used to assess the
performance of our models in terms of predicting ordered
outcomes. As can be seen from Figure 16, our approach
achieved 0.20 MMAE, averaging across all projects.

Answer to RQ5: Our predictive model is also highly
accurate in classifying the outcomes of an iteration.

TABLE 13
Number of iterations in each class in each project

Project Percentile Class

33th 66th Over Achieved Under

Apache -11 0 105 135 108
JBoss -4 0 47 233 92
JIRA -3 0 218 1211 444
MongoDB -2 0 244 273 248
Spring 0 20 162 162 152

0.5

0.6

0.7

0.8

0.9

1.0

Apache JBoss JIRA MongoDB Spring

Precision Recall F-measure AUC

Fig. 14. Evaluation results on predicting the outcomes of iterations in
terms of precision, recall, F-measure, and AUC from each project (the
higher the better)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

TABLE 14
Top–10 most important features with their normalized weight

Apache JBoss JIRA

To-do velocity 1.00 To-do velocity 1.00 To-do velocity 1.00
Velocity at start time 0.93 Velocity at start time 0.65 Cluster 5 (BoWs) 0.61
No. of issues at start time 0.53 No. of to-do issues 0.45 Cluster 53 (BoWs) 0.37
No. of to-do issues 0.50 No. of issues at start time 0.37 Cluster 93 (BoWs) 0.35
Type (Epic) 0.32 Priority (Critical) 0.27 Type (Story) 0.28
Changing of desc. (var) 0.23 Changing of fix versions (max) 0.19 Velocity at start time 0.26
Changing of desc. (mean) 0.20 Type (Feature Request) 0.16 Type (Major) 0.25
In-progress velocity 0.19 No. of comments (std) 0.15 Type (Improvement) 0.24
Type (Story) 0.19 No. of team mem. 0.14 No. of comments (std) 0.22
No. of team mem. 0.18 No. of fix versions (var) 0.14 Cluster 27 (BoWs) 0.20

MongoDB Spring

Velocity at start time 1.00 Type (Major) 1.00
In-progress velocity 0.95 Done velocity 0.85
To-do velocity 0.94 In-progress velocity 0.82
No. of in-progress issues 0.71 No. of edges 0.76
Added velocity 0.67 Sum of fan in 0.75
No. of issues at start time 0.47 Sum of fan out 0.74
Cluster 43 (BoWs) 0.46 No. of comments (std) 0.68
Priority (Hard) 0.38 Cluster 56 (BoWs) 0.59
Cluster 21 (BoWs) 0.36 Mean of fan in 0.58
Done velocity 0.35 Added velocity 0.53

0.5

0.6

0.7

0.8

0.9

1.0

Apache JBoss JIRA MongoDB Spring

M
CC

Fig. 15. Matthews Correlation Coefficient (MCC) results from each
project (the higher the better)

6.4.6 Important features

Table 14 reports the top-10 most important features and
their weight obtained from running Random Forests with
the combination of all aggregated features of issues. The
weights here reflect the discriminating power of a feature
since they are derived from the number of times the feature
is selected (based on information gain) to split in a decision
tree [44]. The weights are normalized in such a way that
the most important feature has a weight of 1 and the
least important feature has a weight of 0. We observe that
iteration features and statistical aggregation features are
dominant in the top-10 list. In many projects (e.g. Apache,
JBoss, and MongoDB) iteration features such as the number
of to-do issues, to-do velocity, and velocity at start time,
are good predictors for foreseeing how an iteration will
achieve against the target. It also corresponds to our results
for finding the best combinations of aggregated features
in RQ1. For example, in the JIRA and MongoDB projects,

0.0

0.1

0.2

0.3

0.4

Apache JBoss JIRA MongoDB Spring

M
M
AE

Fig. 16. Macro-averaged Mean Absolute Error (MMAE) results (the
lower the better)

there are several aggregated features from statistical aggre-
gation (SA) and Bag-of-Words aggregation (BoWs) that have
high discriminating power since SA+BoWs performs best in
those projects. In addition, the changing of the other issue
attributes (e.g. fix versions, description) are also in the top-
10 in several projects (e.g. Apache and JBoss). In Spring, the
graph-based aggregated features (e.g. sum of fan in/out)
are good predictors. In the JBoss project, the features related
to comments and number of team members are important
for predicting the difference between the actual delivered
velocity and the target velocity which may suggests that
team collaboration is an important factor.

6.5 Implications and lessons learned
Results from our evaluations on five large open source
projects suggest that our approach is highly reliable in
predicting delivery capability at the iteration level. It allows
project managers and other decision makers to quickly

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

foresee, at any given time during an ongoing iteration, if
their team is at risk of not meeting the target deliverable set
for this iteration. Predicting delivery capability early allows
the team to deploy mitigation measures such as appropriate
changes affecting the values of the top-5 predictors pre-
sented the previous section. Effective project management
should also identify situations where an unexpected future
event might present an opportunity to be exploited. Our
approach supports iterative software development by fore-
casting whether the team is likely to deliver more than what
has been planned for in an iteration. Knowing these oppor-
tunities early allows the team to plan for accommodating
extra high-priority issues into the current iteration.

Story points are used to compute velocity, a measured
use for the teams delivery capability per iteration. In prac-
tice, story points are however developed by a specific team
based on the teams cumulative knowledge and biases, and
thus may not be useful outside the team (e.g. in comparing
performance across teams). Hence, the trained models are
specific to teams and projects.

Our evaluation also demonstrates the high performance
of the three ensemble methods used in building our pre-
diction models. This suggests that ensemble methods such
as Random Forests or Gradient Boosting Machines can be
highly recommended for building software analytics mod-
els. Deep learning neural networks are only effective where
there are significantly large amounts of data for training,
which might not be the case for a range of software engi-
neering problems.

One of the key novelties in our approach is deriving new
features for an iteration from aggregating the features of its
issues and their dependencies. These features can be derived
by using a range of statistics over the issues’ features or
automatically learned using the bag-of-word approach. Our
experimental results demonstrate the effectiveness of this
approach and that they are complementary to each other.
These results suggest that these feature aggregations tech-
niques can be useful in other software analytics settings
where features are located in different layers (similarly to
iterations and issues).

In addition, there is well-established knowledge in ma-
chine learning that model accuracy depends critically on in-
formative and comprehensive features extracted from data.
It is also known that features are more useful when there are
less redundancies. In our data, there are two main separate
structures: the attributes associated within each issue and
the dependency structure between issues. Our three feature
sets are obtained through (a) aggregation of issue attributes,
hence capturing the salient characteristics within a sprint,
(b) building Bag-of-Words which is essentially the well-
known vector quantization technique by finding distinct
exemplars via k-means, hence reducing redundancies, and
(b) exploiting graph characteristics, hence adding comple-
mentary information. Our experiments demonstrate that
combining those three feature sets yields the best perfor-
mance, thus confirming the prior knowledge. The increase
in performance cannot be explained just by the increase in
model complexity. This is because a more complex model
will definitely fit the training data better, but it is more
likely to hurt performance on test data due to the classic
problem known as overfitting. If our goal is to derive a

highly accurate model, then model complexity should not
be a problem, as long as the model generalises better than
simpler alternatives.

A major contribution of our work is demonstrating the
utility of randomized methods to avoid the need for feature
selection and reduction. While we acknowledge that a small
set of independent features would be easy to understand,
realistic problems are often complex enough to warrant a
comprehensive feature set. The use of feature aggregation
techniques has given us an extensive set of features to
characterize a software development iteration. Although
feature selection could be employed to filter out “weak”
predictors, feature selection can be unstable: each selection
method, running on different data samples, can produce a
different subset of features. In modern machine learning
techniques, feature correlation is no longer a crucial issue
[26]. Randomized methods such as those used in this paper
need neither feature selection nor dimensionality reduction.
This is because at each training step, only a small random
subset of features is used – this also breaks the correlation
between any feature pair since correlated features are much
less likely to be in the same subset [45], [46], [47]. In
addition, when making a prediction, a combination of many
classifiers are used, each of which works on a smaller feature
set.

6.6 Threats to validity
There are a number of threats to the validity of our study,
which we discuss below.

Threats to construct validity: Construct validity con-
cerns whether independent and dependent variables from
which the hypothesized theory is constructed are relevant.
We mitigated these threats by using real world data from
iterations and issues recorded in several large open source
projects. We collected iterations, all issues associated to these
iterations, and all the relevant historical information avail-
able to ensure. The ground-truth (i.e. the difference between
the actual delivered velocity and the target velocity) is based
on the story points assigned to issues. Those story points
were estimated by teams, and thus may contain human
biases. However, story points are currently the best practices
for measuring the delivery capability of a team, and are
widely used in the industry. Hence, using story points
makes our approach relevant to current industry practices.

Threats to conclusion validity: We tried to minimize
threats to conclusion validity by carefully selecting unbiased
error measures and applied a number of statistical tests
to verify our assumptions [41] and following recent best
practices in evaluating and comparing predictive models
regarding effort estimation [41], [48]. In terms of predicting
the three outcomes of an iteration (i.e. classification), our
performance measures were also carefully designed against
reporting bias towards majority classes. For example, while
the F-measure is a balance between recall (often low for
minority class) and precision (often high for minority class),
we also employed the MCC performance measure which is
insensitive to class imbalance. We used the MMAE perfor-
mance measure for ordered classes. We however acknowl-
edge that other techniques could also be used such as
doing statistical undersampling, or artificially creating more
samples for the undersampled class.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 19

Threats to internal validity: Our great concern for
threats to internal validity is data preprocessing. We found
that around 30% of the issues across the five projects have
not been assigned a story point (missing data). We filled
those missing values using the mean of story points in
each project. Our future work will investigate the use of
other imputation techniques to handle such missing data.
We also removed outliers (i.e. the difference velocity) and
iterations involved with zero issue. We carefully processed
the issue’s change log to extract the features regard to a
prediction time to prevent the leaking [15]. In addition,
we also tried to avoid instability from applying additional
data preprocessing algorithms (e.g. feature engineering) [49]
by employing the ensemble randomized methods which
overcome these problems (e.g. feature correlation, feature
selection) [26].

Threats to external validity: We have considered almost
4,000 iterations and 60,000 issues from five large open source
projects, which differ significantly in size, complexity, team
of developers, and the size of community. All iteration
and issue reports are real data that were generated during
from the software development in open source settings.
We however acknowledge that our data set may not be
representative of all kinds of software projects, especially
in commercial settings (although open source projects and
commercial projects are similar in many aspects). Further
investigation to confirm our findings for other open source
and for closed source projects is needed.

7 RELATED WORK

Today’s agile, dynamic and change-driven projects require
different approaches to planning and estimating [4]. A
number of studies have been dedicated to effort estimation
in agile software development. Estimation techniques that
rely on experts’ subjective assessment are commonly used
in practice, but they tend to suffer from the underestima-
tion problem [50], [51]. Some recent approaches leverage
machine learning techniques to support effort estimation
for agile projects. The work in [52] developed an effort
prediction model for iterative software development setting
using regression models and neural networks. Differing
from traditional effort estimation models (e.g. COCOMO
[53], [54]), this model is built after each iteration (rather than
at the end of a project) to estimate effort for the next itera-
tion. The work in [55], [56] built a Bayesian network model
for effort prediction in software projects which adhere to the
agile Extreme Programming method. Their model however
relies on several parameters (e.g. process effectiveness and
process improvement) that require learning and extensive
fine tuning.

Bayesian networks are also used [57] to model de-
pendencies between different factors (e.g. sprint progress
and sprint planning quality influence product quality) in
a Scrum-based software development project in order to
detect problems in the project. Our work predicts not only
the committed velocity against the actual achieved velocity
but also the delivered against non-delivered velocity. More
importantly, we use a comprehensive aggregation of fea-
tures at both the iteration and issue levels, which represents
the novelty of our work.

In our previous work [14] we developed models for
characterizing and predicting delays at the level of issues.
Several approaches have also been proposed to predict
the resolving time of a bug or issue (e.g. [16], [58], [59],
[60], [61]). Those work however mainly focus on waterfall
software development processes. This work, in contrast,
aims to predict the quantum of achieved works at the
level of iterations (and can be extended to releases as
well) in agile software development. Here, we leverage
feature/representation learning techniques which were not
used in those previous work.

Graph-based characterization, one of the techniques we
employed here, has also been used for building predictive
models in software engineering. The study in [62] shows
the impact of dependency network measures on post-release
failures. The work in [25] built graphs representing source
code, module and developer collaboration and used a num-
ber of metrics from those graphs to construct predictors
for bug severity, frequently changed software parts and
failure-prone releases. Similarly, Zimmermann and Nagap-
pan [63] built dependency graphs for source code and
used a number of graph-based measures to predict defects.
Those approaches mostly work at the level of source code
rather than at the software task and iteration level as in
our work. Our recent work [18] proposed an approach to
construct a network of software issues and used networked
classification for predicting which issues are a delay risk.
Those approaches however did not specifically look at the
iterative and agile software development settings as done
here in our work.

Our work is also related to the work on predicting
and mining bug reports, for example, blocking bug predic-
tion (e.g. [19]), re-opened bug prediction (e.g. [64], [65]),
severity/priority prediction (e.g. [66], [67]), delays in the
integration of a resolved issue to a release (e.g. [68]), bug
triaging (e.g. [69], [70], [71]), duplicate bug detection ([72],
[73], [74], [75], [76], [77]), and defect prediction (e.g. [78],
[79].

8 CONCLUSIONS AND FUTURE WORK

Iterative software development methodologies have quickly
gained popularity and gradually become the mainstream
approach for most software development. In this paper, we
have proposed a novel approach to delivery-related risk
prediction in iterative development settings. Our approach
is able to predict how much work gets done in the iteration.
Our approach exploits both features at the iteration level
and at the issue level. We also used a combination of three
distinct techniques (statistical feature aggregation, bag-of-
words feature learning, and graph-based measures) to de-
rive a comprehensive set of features that best characterize an
iteration. Our prediction models also leverage state-of-the-
art machine learning randomized ensemble methods, which
produce a strong predictive performance.

In terms of future work, we plan to enrich our feature
set with more features characterizing a development team,
e.g. team structure, and a developer’s skill, and workload.
We will also explore how to use graph embedding to map
a graph of issues into a vector using unsupervised learn-
ing. This is an alternative way to characterize an iteration

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 20

using features of the issues (and their inter-dependencies)
assigned to it. Performing additional experiments with dif-
ferent training and test sets (using the sliding window
approach) is also part of our future work. We will also
look into expanding our study to commercial, closed source
software projects.

REFERENCES

[1] B. Michael, S. Blumberg, and J. Laartz, “Delivering large-scale IT
projects on time, on budget, and on value,” Tech. Rep., 2012.

[2] B. Flyvbjerg and A. Budzier, “Why Your IT Project May Be Riskier
Than You Think,” Harvard Business Review, vol. 89, no. 9, pp. 601–
603, 2011.

[3] L. Williams, “What agile teams think of agile principles,” Commu-
nications of the ACM, vol. 55, no. 4, p. 71, 2012.

[4] M. Cohn, Agile estimating and planning. Pearson Education, 2005.
[5] A. Mockus, D. Weiss, and P. Z. P. Zhang, “Understanding and

predicting effort in software projects,” in Proceedings of the 25th In-
ternational Conference on Software Engineering (ICSE), vol. 6. IEEE,
2003, pp. 274–284.

[6] F. Sarro, A. Petrozziello, and M. Harman, “Multi-objective Soft-
ware Effort Estimation,” in Proceedings of the 38th International
Conference on Software Engineering (ICSE), 2016, pp. 619–630.

[7] E. Kocaguneli, T. Menzies, and J. W. Keung, “On the value of
ensemble effort estimation,” IEEE Transactions on Software Engi-
neering, vol. 38, no. 6, pp. 1403–1416, 2012.

[8] L. Huang, D. Port, L. Wang, T. Xie, and T. Menzies, “Text mining in
supporting software systems risk assurance,” in Proceedings of the
IEEE/ACM international conference on Automated software engineering
(ASE). New York, USA: ACM Press, 2010, pp. 163 – 167.

[9] Z. Xu, B. Yang, and P. Guo, “Software Risk Prediction Based
on the Hybrid Algorithm of Genetic Algorithm and Decision
Tree,” Advanced Intelligent Computing Theories and Applications. With
Aspects of Contemporary Intelligent Computing Techniques, vol. 2, pp.
266–274, 2007.

[10] Y. Hu, X. Zhang, E. Ngai, R. Cai, and M. Liu, “Software project
risk analysis using Bayesian networks with causality constraints,”
Decision Support Systems, vol. 56, pp. 439–449, 2013.

[11] C. Fang and F. Marle, “A simulation-based risk network model
for decision support in project risk management,” Decision Support
Systems, vol. 52, no. 3, pp. 635–644, 2012.

[12] M. N. Moreno Garcı́a, I. R. Román, F. J. Garcı́a Peñalvo, and
M. T. Bonilla, “An association rule mining method for estimating
the impact of project management policies on software quality,
development time and effort,” Expert Systems with Applications,
vol. 34, no. 1, pp. 522–529, 2008.

[13] H. F. Cervone, “Understanding agile project management methods
using Scrum,” OCLC Systems & Services: International digital library
perspectives, vol. 27, no. 1, pp. 18–22, 2011.

[14] M. Choetkiertikul, H. K. Dam, T. Tran, and A. Ghose, “Character-
ization and prediction of issue-related risks in software projects,”
in Proceedings of the 12th Working Conference on Mining Software
Repositories (MSR). IEEE, 2015, pp. 280–291.

[15] S. Kaufman and C. Perlich, “Leakage in Data Mining : Formulation
, Detection , and Avoidance,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 6(4), no. 15, pp. 556–563, 2012.

[16] L. D. Panjer, “Predicting Eclipse Bug Lifetimes,” in Proceedings of
the 4th International Workshop on Mining Software Repositories (MSR),
2007, pp. 29–32.

[17] X. Xia, D. Lo, E. Shihab, X. Wang, and X. Yang, “ELBlocker:
Predicting blocking bugs with ensemble imbalance learning,”
Information and Software Technology, vol. 61, pp. 93–106, 2015.

[18] M. Choetkiertikul, H. K. Dam, T. Tran, and A. Ghose, “Predicting
delays in software projects using networked classification,” in Pro-
ceedings of the 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2015, pp. 353 – 364.

[19] H. Valdivia Garcia, E. Shihab, and H. V. Garcia, “Characterizing
and predicting blocking bugs in open source projects,” in Proceed-
ings of the 11th Working Conference on Mining Software Repositories
(MSR). ACM Press, 2014, pp. 72–81.

[20] X. Xia, D. Lo, M. Wen, E. Shihab, and B. Zhou, “An empirical study
of bug report field reassignment,” in Proceedings of the Conference on
Software Maintenance, Reengineering, and Reverse Engineering, 2014,
pp. 174–183.

[21] D. R. McCallum and J. L. Peterson, “Computer-based readability
indexes,” in Proceedings of the ACM’82 Conference. ACM, 1982, pp.
44–48.

[22] P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in
Proceedings of the 22 IEEE/ACM international conference on Automated
software engineering (ASE). ACM Press, nov 2007, pp. 34 – 44.

[23] P. Tirilly, V. Claveau, and P. Gros, “Language modeling for bag-
of-visual words image categorization,” in Proceedings of the 2008
international conference on Content-based image and video retrieval,
2008, pp. 249–258.

[24] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an
internetwork,” in Proceedings of the 15th Annual Joint Conference of
the IEEE Computer Societies Networking the Next Generation (INFO-
COM), vol. 2, 1996, pp. 594–602.

[25] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos,
“Graph-based Analysis and Prediction for Software Evolution,”
in Proceedings of the 34th International Conference on Software Engi-
neering (ICSE). IEEE Press, 2012, pp. 419–429.

[26] L. Rokach, “Taxonomy for characterizing ensemble methods in
classification tasks: A review and annotated bibliography,” Com-
putational Statistics and Data Analysis, vol. 53, no. 12, pp. 4046–4072,
2009.

[27] D. O. Maclin and R., “Popular Ensemble Methods: An Empirical
Study,” vol. 11, pp. 169–198, 1999.

[28] T. Dietterich, “Ensemble methods in machine learning,” in Proceed-
ings of the 1st International Workshop on Multiple Classifier Systems,
vol. 1857. Springer, 2000, pp. 1–15.

[29] T. G. Dietterich, “An experimental comparison of three methods
for constructing ensembles of decision trees: Bagging, boosting,
and randomization,” Machine learning, vol. 40, no. 2, pp. 139–157,
2000.

[30] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Her-
rera, “A review on ensembles for the class imbalance problem:
Bagging-, boosting-, and hybrid-based approaches,” IEEE Trans-
actions on Systems, Man and Cybernetics Part C: Applications and
Reviews, vol. 42, no. 4, pp. 463–484, 2012.

[31] S. M. Halawani, I. A. Albidewi, and A. Ahmad, “A Novel Ensem-
ble Method for Regression via Classification Problems,” Journal of
Computer Science, vol. 7, no. 3, pp. 387–393, 2011.

[32] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[33] J. H. Friedman, “Greedy function approximation: a gradient boost-
ing machine,” Annals of Statistics, vol. 29, no. 5, pp. 1189–1232,
2001.

[34] J. H. Friedsman, “Stochastic gradient boosting,” Computational
Statistics & Data Analysis, vol. 38, no. 4, pp. 367–378, 2002.

[35] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” Journal of Machine Learning Research,
vol. 15, pp. 1929–1958, 2014.

[36] X. Wang and A. McCallum, “Topics over time: a non-markov
continuous-time model of topical trends,” in Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 2006, pp. 424–433.

[37] M. Fernández-Delgado, E. Cernadas, S. Barro, D. Amorim, and
D. Amorim Fernández-Delgado, “Do we Need Hundreds of Clas-
sifiers to Solve Real World Classification Problems?” Journal of
Machine Learning Research, vol. 15, pp. 3133–3181, 2014.

[38] K. H. Esbensen and P. Geladi, “Principles of proper validation: Use
and abuse of re-sampling for validation,” Journal of Chemometrics,
vol. 24, pp. 168–187, 2010.

[39] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, “Eigentaste:
A Constant Time Collaborative Filtering Algorithm,” Information
Retrieval, vol. 4, no. 2, pp. 133–151, 2001.

[40] K. Muller, “Statistical power analysis for the behavioral sciences,”
Technometrics, vol. 31, no. 4, pp. 499–500, 1989.

[41] A. Arcuri and L. Briand, “A Hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering,”
Software Testing, Verification and Reliability, vol. 24, no. 3, pp. 219–
250, 2014.

[42] S. Baccianella, A. Esuli, and F. Sebastiani, “Evaluation measures for
ordinal regression,” in Proceedings of the 9th International Conference
on Intelligent Systems Design and Applications (ISDA). IEEE, 2009,
pp. 283–287.

[43] D. M. W. Powers, “Evaluation: From Precision, Recall and F-Factor
to ROC, Informedness, Markedness & Correlation David,” Journal
of Machine Learning Technologies, vol. 2, no. 1, pp. 37–63, 2011.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 21

[44] R. Genuer, J.-M. Poggi, and C. Tuleau-Malot, “Variable selection
using random forests,” Pattern Recognition Letters, vol. 31, no. 14,
pp. 2225–2236, 2010.

[45] K. Tumer and N. C. Oza, “Input decimated ensembles,” Pattern
Analysis and Applications, vol. 6, no. 1, pp. 65–77, 2003.

[46] K. Tumer and J. Ghosh, “Error Correlation and Error Reduction in
Ensemble Classifiers,” Connection Science, vol. 8, no. 3-4, pp. 385–
404, 1996.

[47] E. Tuv, “Feature Selection with Ensembles , Artificial Variables
, and Redundancy Elimination,” Journal of Machine Learning Re-
search, vol. 10, pp. 1341–1366, 2009.

[48] M. Shepperd and S. MacDonell, “Evaluating prediction systems in
software project estimation,” Information and Software Technology,
vol. 54, no. 8, pp. 820–827, 2012. [Online]. Available: http:
//dx.doi.org/10.1016/j.infsof.2011.12.008

[49] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
Classification Models for Software Defect Prediction: A Proposed
Framework and Novel Findings,” IEEE Transactions on Software
Engineering, vol. 34, no. 4, pp. 485–496, jul 2008.

[50] M. Usman, E. Mendes, F. Weidt, and R. Britto, “Effort Estimation
in Agile Software Development: A Systematic Literature Review,”
in Proceedings of the 10th International Conference on Predictive Models
in Software Engineering (PROMISE), 2014, pp. 82–91.

[51] M. Usman, E. Mendes, and J. Börstler, “Effort estimation in agile
software development: A survey on the state of the practice,” in
Proceedings of the 19th International Conference on Evaluation and
Assessment in Software Engineering, 2015, pp. 1–10.

[52] P. Abrahamsson, R. Moser, W. Pedrycz, A. Sillitti, and G. Succi,
“Effort prediction in iterative software development processes
– incremental versus global prediction models,” 1st International
Symposium on Empirical Software Engineering and Measurement
(ESEM), pp. 344–353, 2007.

[53] B. W. Boehm, R. Madachy, and B. Steece, Software cost estimation
with Cocomo II. Prentice Hall PTR, 2000.

[54] O. Benediktsson, D. Dalcher, K. Reed, and M. Woodman,
“COCOMO-Based Effort Estimation for Iterative and Incremental
Software Development,” Software Quality Journal, vol. 11, pp. 265–
281, 2003.

[55] P. Hearty, N. Fenton, D. Marquez, and M. Neil, “Predicting Project
Velocity in XP Using a Learning Dynamic Bayesian Network
Model,” IEEE Transactions on Software Engineering, vol. 35, no. 1,
pp. 124–137, 2009.

[56] R. Torkar, N. M. Awan, A. K. Alvi, and W. Afzal, “Predicting
software test effort in iterative development using a dynamic
Bayesian network,” in Proceedings of the 21st IEEE International
Symposium on Software Reliability Engineering – (Industry Practice
Track). IEEE, 2010.

[57] M. Perkusich, H. De Almeida, and A. Perkusich, “A model to
detect problems on scrum-based software development projects,”
The ACM Symposium on Applied Computing, pp. 1037–1042, 2013.

[58] P. Bhattacharya and I. Neamtiu, “Bug-fix time prediction models:
can we do better?” in Proceedings of the 8th working conference on
Mining software repositories (MSR). ACM, 2011, pp. 207–210.

[59] E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time of bugs,”
in Proceedings of the 2nd International Workshop on Recommendation
Systems for Software Engineering (RSSE). ACM, 2010, pp. 52–56.

[60] L. Marks, Y. Zou, and A. E. Hassan, “Studying the fix-time for bugs
in large open source projects,” in Proceedings of the 7th International
Conference on Predictive Models in Software Engineering (Promise).
ACM Press, 2011, pp. 1–8.

[61] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How Long
Will It Take to Fix This Bug?” in Proceedings of the 4th International
Workshop on Mining Software Repositories (MSR), 2007, pp. 1–8.

[62] N. Bettenburg and A. E. Hassan, “Studying the impact of depen-
dency network measures on software quality,” in Proceedings of the
International Conference on Software Maintenance (ICSM), 2012, pp.
1–10.

[63] T. Zimmermann and N. Nagappan, “Predicting defects using
network analysis on dependency graphs,” in Proceedings of the
13th international conference on Software engineering (ICSE), 2008, pp.
531–540.

[64] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy, “Charac-
terizing and predicting which bugs get reopened,” in Proceedings
of the 34th International Conference on Software Engineering (ICSE).
IEEE Press, jun 2012, pp. 1074–1083.

[65] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams,
A. E. Hassan, and K.-i. Matsumoto, “Studying re-opened bugs

in open source software,” Empirical Software Engineering, vol. 18,
no. 5, pp. 1005–1042, sep 2012.

[66] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting
the severity of a reported bug,” in Proceedings of the 7th IEEE
Working Conference on Mining Software Repositories (MSR). IEEE,
2010, pp. 1–10.

[67] T. Menzies and A. Marcus, “Automated severity assessment of
software defect reports,” in Proceedings of the International Confer-
ence on Software Maintenance (ICSM). IEEE, 2008, pp. 346–355.

[68] D. Alencar, S. L. Abebe, S. Mcintosh, D. Alencar da Costa, S. L.
Abebe, S. Mcintosh, U. Kulesza, and A. E. Hassan, “An Empirical
Study of Delays in the Integration of Addressed Issues,” in Pro-
ceedings of the International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2014, pp. 281–290.

[69] J. Anvik and G. C. Murphy, “Reducing the effort of bug report
triage,” ACM Transactions on Software Engineering and Methodology,
vol. 20, no. 3, pp. 1–35, 2011.

[70] M. M. Rahman, G. Ruhe, and T. Zimmermann, “Optimized as-
signment of developers for fixing bugs an initial evaluation for
eclipse projects,” 3rd International Symposium on Empirical Software
Engineering and Measurement (ESEM), pp. 439–442, oct 2009.

[71] G. Murphy and D. Čubranić, “Automatic bug triage using text
categorization,” in Proceedings of the 16th International Conference
on Software Engineering & Knowledge Engineering (SEKE), 2004, pp.
92–97.

[72] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of
Duplicate Defect Reports Using Natural Language Processing,”
in Proceedings of the 29th International Conference on Software Engi-
neering (ICSE). IEEE, 2007, pp. 499–510.

[73] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach
to detecting duplicate bug reports using natural language and
execution information,” in Proceedings of the 30th International
Conference on Software Engineering (ICSE), 2008, pp. 461–470.

[74] N. Bettenburg, R. Premraj, and T. Zimmermann, “Duplicate bug
reports considered harmful . . . really?” in Proceedings of the Inter-
national Conference on Software Maintenance (ICSM), 2008, pp. 337–
345.

[75] C. Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” in Proceedings of the 26th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2011, pp. 253–262.

[76] N. Jalbert and W. Weimer, “Automated duplicate detection for bug
tracking systems,” in Proceedings of the International Conference on
Dependable Systems and Networks With FTCS and DCC (DSN). IEEE,
2008, pp. 52–61.

[77] A. T. Nguyen, T. T. T. N. Nguyen, D. Lo, and C. Sun, “Duplicate
bug report detection with a combination of information retrieval
and topic modeling,” in Proceedings of the 27th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), 2012, pp.
70–79.

[78] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
and D. Poshyvanyk, “Detecting bad smells in source code using
change history information,” in Proceeding of the 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2013, pp. 268–278.

[79] T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,” Pro-
ceedings of the 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 279–289, 2013.

[80] S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software Engineer-
ing Metrics and Models. Redwood City, CA, USA: Benjamin-
Cummings Publishing Co., Inc., 1986.

[81] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit, “A simulation
study of the model evaluation criterion MMRE,” IEEE Transactions
on Software Engineering, vol. 29, no. 11, pp. 985–995, 2003.

[82] B. Kitchenham, L. Pickard, S. MacDonell, and M. Shepperd, “What
accuracy statistics really measure,” IEE Proceedings - Software, vol.
148, no. 3, p. 81, 2001.

[83] M. Korte and D. Port, “Confidence in software cost estima-
tion results based on MMRE and PRED,” Proceedings of the 4th
international workshop on Predictor models in software engineering
(PROMISE), pp. 63–70, 2008.

[84] D. Port and M. Korte, “Comparative studies of the model eval-
uation criterions mmre and pred in software cost estimation re-
search,” in Proceedings of the 2nd ACM-IEEE international symposium
on Empirical software engineering and measurement. ACM, 2008, pp.
51–60.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 22

[85] A. Arcuri and L. Briand, “A practical guide for using statistical
tests to assess randomized algorithms in software engineering,”
in Proceedings of the 33rd International Conference on Software Engi-
neering (ICSE), 2011, pp. 1–10.

[86] R. M. Everson and J. E. Fieldsend, “Multi-class ROC analysis from
a multi-objective optimisation perspective,” Pattern Recognition
Letters, vol. 27, no. 8, pp. 918–927, 2006.

[87] B. W. Matthews, “Comparison of the predicted and observed sec-
ondary structure of T4 phage lysozyme,” Biochimica et Biophysica
Acta (BBA)-Protein Structure, vol. 405, no. 2, pp. 442–451, 1975.

[88] G. Jurman, S. Riccadonna, and C. Furlanello, “A comparison of
MCC and CEN error measures in multi-class prediction,” PLoS
ONE, vol. 7, no. 8, pp. 1–8, 2012.

Morakot Choetkiertikul is a PhD candidate in
Computer Science and Software Engineering in
Faculty of Engineering and Information Sciences
(EIS) at University of Wollongong (UOW), Aus-
tralia. He received his BS and MS in Computer
Science from Faculty of Information and Com-
munication Technology (ICT), Mahidol Univer-
sity, Thailand. He is a part of Decision Systems
Lab (DSL) in UOW. His research interests in-
clude empirical software engineering, software
engineering analytics, mining software reposito-

ries, and software process improvement. For more details, see his home
page: http://www.dsl.uow.edu.au/sasite/.

Dr Hoa Khanh Dam is a Senior Lecturer in the
School of Computing and Information Technol-
ogy, University of Wollongong (UOW) in Aus-
tralia. He is Associate Director for the Decision
System Lab at UOW, heading its Software En-
gineering Analytics research program. His re-
search interests lie primarily in the intersection
of software engineering, business process man-
agement and service-oriented computing, focus-
ing on such areas as software engineering an-
alytics, process analytics and service analytics.

He holds PhD and Master degrees in Computer Science from RMIT
University, and Bachelor of Computer Science degree from the Uni-
versity of Melbourne in Australia. His research has won multiple Best
Paper Awards (at WICSA, APCCM, and ASWEC) and ACM SIGSOFT
Distinguished Paper Award (at MSR).

Truyen Tran is a lecturer at Deakin University,
Australia. His research interests are in machine
learning, healthcare, genomics and software an-
alytics. He received multiple paper awards and
prizes including UAI 2009, CRESP 2014, Kaggle
2014, PAKDD 2015, ACM SIGSOFT 2015 and
ADMD 2016. He obtained a Bachelor of Science
from University of Melbourne and a PhD in Com-
puter Science from Curtin University in 2001 and
2008, respectively.

Aditya Ghose is Professor of Computer Science
at the University of Wollongong. He leads a team
conducting research into knowledge representa-
tion, agent systems, services, business process
management, software engineering and opti-
mization and draws inspiration from the cross-
fertilization of ideas from this spread of research
areas. He works closely with some of the lead-
ing global IT firms. Ghose is President of the
Service Science Society of Australia and served
as Vice-President of CORE (2010-2014), Aus-

tralia’s apex body for computing academics. He holds PhD and MSc
degrees in Computing Science from the University of Alberta, Canada
(he also spent parts of his PhD candidature at the Beckman Institute,
University of Illinois at Urbana Champaign and the University of Tokyo)
and a Bachelor of Engineering degree in Computer Science and Engi-
neering from Jadavpur University, Kolkata, India.

John Grundy is Pro Vice-chancellor ICT Inno-
vation and Translation and Professor of Soft-
ware Engineering at Deakin University, Australia.
He has published widely in automated software
engineering, domain-specific visual languages,
model-driven engineering, software architecture,
and empirical software engineering, amoung
many other areas. He is Fellow of Automated
Software Engineering and Fellow of Engineers
Australia.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 23

APPENDIX A
PREDICTIVE MODELS

A.1 Random Forests
Random forests (RFs) [32] uses decision trees as weak learn-
ers and typically works as follows. First, a subset of the full
dataset is randomly sampled (i.e. 200 out of 1,000 iterations)
to train a decision tree. At each node of the decision tree, we
normally search for the best feature across all the features
(predictor variables) to split the training data. Instead of
doing so, at each node of a decision tree, RFs randomly
selects a subset of candidate predictors and then find the
best splitting predictor for the node. For example, if there
are 200 features, we might select a random set of 20 in each
node, and then split using the best feature among the 20
available, instead of the best among the full 200 features.
Hence, RFs introduces randomness not just into the training
samples but also into the actual trees growing.

This process is repeated: a different random sample of
data is selected to train a second decision tree. The predic-
tions made by this second tree is typically different from
those of the first tree. RFs continues generating more trees,
each of which is built on a slightly different sample and
producing slightly different predictions each time. We could
continue this process indefinitely, but in practice 100 to 500
trees are usually generated. To make predictions for a new
data, RFs combines all separate predictions made by each
of the generated decision tree typically by averaging the
outputs across all trees.

In our work, we trained 500 regression trees using the
randomeforest-matlab7 package for Matlab.

A.2 Stochastic Gradient Boosting Machines
RFs grows independent decision trees (which thus can be
done in parallel) and simply takes the average of the predic-
tions produced by those trees as the final prediction. On the
other hand, gradient boosting machines (GBMs) [33], [34]
generates trees and adds them to the ensemble in a sequential
manner. The first tree is generated in the same way as done
in RFs. The key difference here is the generation of the
second tree which aims at minimizing the prediction errors
produced by the first tree (thus the trees are not independent
to each other as in RFs). Both the first and second trees are
added to the ensemble but different weights are assigned
to each of them. This process is repeated multiple times: at
each step, a new tree is trained with respect to the error
of the whole ensemble learnt so far and is then added to
the ensemble. The final ensemble is used as a model for
predicting the outcome of new inputs.

Unlike RFs, a weak learner in GBMs can be not just
only regression trees but also any other regression learning
algorithms such as neural networks or linear regression.
In our implementation, regression trees are used as weak
learners and 100 trees were generated.

A.3 Deep Neural Networks with Dropouts
Neural networks have long been used in many prediction
tasks where the input data has many variables and noises.

7. https://code.google.com/archive/p/randomforest-matlab/

The neural network is organized in a series of layers: the
bottom layer accepting the input, which is projected to a
hidden layer, which in turn projects to an output layer. Each
layer consists of a number of computation units, each of
which is connected to other units in the next layer. Deep
neural networks (DNNs) are traditional artificial neural
networks with multiple hidden layers, which make them
very expressive models that are capable of learning highly
complicated relationships between their inputs and out-
puts. Limited training data may however cause overfitting
problem, where many complicated relationships exist in the
training data but does not occur in the real test data.

Building an ensemble of many differently trained neural
networks would alleviate the overfitting problem (as seen
in RFs and GBMs). To achieve the best performance, each
individual neural network in the ensemble should be differ-
ent from each other in terms of either the architecture or the
data used for training. Dropout [35] is a simple but scalable
technique which, given a main network, builds an ensemble
from many variants of this network. These variant networks
are generated by temporarily removing one random unit
(and its incoming and outgoing connections) at a time from
the main network. Hence, a neural network with n units can
be used to generate an ensemble of 2n networks. After being
trained, those 2n networks can be combined into a single
neural network to make predictions for the new inputs.

APPENDIX B
PERFORMANCE MEASURES
B.1 Normalized Mean Absolute Error (NMAE)
There are a range of measures used in evaluating the
accuracy of a predictive model in teams of effort esti-
mation. Most of them are based on the Absolute Error,
(i.e. |ActualDiff � EstimatedDiff |). where AcutalDiff

is the real velocity(Difference) and EstimatedDiff is
the predicted velocity(Difference) given by a predictive
model. Mean of Magnitude of Relative Error (MRE) and
Prediction at level l [80], i.e. Pred(l), have also been used
in effort estimation. However, a number of studies [81],
[82], [83], [84] have found that those measures bias towards
underestimation and are not stable when comparing the
models. Thus, the Mean Absolute Error (MAE) has recently
been recommended to compare the performance of effort
estimation models [6].

Since different projects have different
velocity(Difference) ranges, we need to normalize
the MAE (by dividing it with the interquartile range) to
allow for comparisons of the MAE across the studied
project. The Normalized Mean Absolute Error (NMAE) [39]
is defined as:

NMAE =
1
N

P
N

i=1 |ActualDiff
i

� EstimatedDiff
i

|
IQR

where N is the number of iterations used for evaluating
the performance (i.e. test set), ActualDiffi is the actual
velocity(Difference), EstimatedDiffi is the predicted
velocity(Difference) for the iteration i, and IQR is the
distance between the velocity(Difference) at 75th and
25th percentile (i.e. 75thpercentile� 25thpercentile).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 24

We assess the velocity(Difference) produced by the
predictive models using NMAE. To compare the perfor-
mance of two predictive models, we tested the statistical
significance of the absolute errors achieved with the two
models using the Wilcoxon Signed Rank Test [40]. The
Wilcoxon test is a safe test since it makes no assumptions
about underlying data distributions. The null hypothesis
here is: “the absolute errors provided by a predictive model
are significantly less that those provided by another predic-
tive model”. We set the confidence limit at 0.05 (i.e. p <

0.05).
In addition, we also employed a non-parametric effect

size measure, the Vargha and Delaney’s Â12 statistic [41]
to assess whether the effect size is interesting. The Â12

measure is chosen since it is agnostic to the underlying
distribution of the data, and is suitable for assessing ran-
domized algorithms in software engineering generally [85]
and effort estimation in particular [6]. Specifically, given a
performance measure (e.g. the Absolute Error from each
prediction in our case), the Â12 measures the probability that
predictive model M achieves better results (with respect to
the performance measure) than predictive model N using
the following formula: Â12 = (r1/m� (m+ 1)/2)/n where
r1 is the rank sum of observations where M achieving
better than N , and m and n are respectively the number
of observations in the samples derived from M and N . If
the performance of the two models are equivalent, then
Â12 = 0.5. If M perform better than N , then Â12 > 0.5
and vice versa. All the measures we have used here are
commonly used in evaluating effort estimation models [6],
[85].

B.2 Precision/Recall/F-measures/AUC

A confusion matrix is used to store the correct and incorrect
classifications for each individual class made by a predictive
model. For example, the confusion matrix for class under
achieved in predicting the target velocity against the actual
velocity delivered is constructed as follows. If an iteration
is classified as under achieved when it truly delivered below
than the target, the classification is a true positive (tp). If the
iteration is classified as under achieved when it is actually over
achieved or achieved, then the classification is a false positive
(fp). If the iteration is classified as not under achieved when it
in fact deliver below than the target, then the classification
is a false negative (fn). Finally, if the iteration is classified as
not under achieved and it in fact is did not deliver below the
target, then the classification is true negative (tn). The values
of each individual class classification stored in the confusion
matrix are used to compute the widely used Precision,
Recall, and F-measure [86]. In addition, we used another
measure, Area Under the ROC Curve (AUC), to evaluate
the degree of discrimination achieved by the model.

• Precision: The ratio of correctly predicted as a given
class over all the iteration predicted as a given class.
It is calculated as:

precision =
tp

tp+ fp

• Recall: The ratio of correctly predicted as a given
class over all of the actually iteration in a given class.
It is calculated as:

recall =
tp

tp+ fn

• F-measure: Measures the weighted harmonic mean
of the precision and recall of a given class. It is
calculated as:

F �measure =
2 ⇤ precision ⇤ recall
precision+ recall

• Area Under the ROC Curve (AUC) is used to eval-
uate the degree of discrimination achieved by the
model. The value of AUC is ranged from 0 to 1 and
random prediction has AUC of 0.5. The advantage
of AUC is that it is insensitive to decision threshold
like precision and recall. The higher AUC indicates a
better predictor.

B.3 Matthews correlation coefficient (MCC)

To compare the performance between two cases, using
only F-measure can mislead the interpretation (e.g. very
high precision but very poor recall), especially in cases of
class imbalance. We thus also used Matthews correlation
coefficient (MCC) [87]. MCC takes into account all true and
false positives and negatives values (tp, tn, fp, and fn) and
summarizes into a single value. It is also generally known
as a balanced measure which can be used even if the classes
are very different sizes [88]. MCC is defined as:

MCC =
tp⇥ tn� fp⇥ fnp

(tp+ fp)⇥ (tp+ fn)⇥ (tn+ fp)⇥ (tn+ fn)

MCC has a range of -1 to 1 where -1 indicates a
completely wrong classifier while 1 indicates a completely
correct classifier, and 0 is expected for a prediction that no
better than random.

B.4 Macro-averaged Mean Absolute Error (MMAE)

Since the classes in each prediction task could be considered
as ordinal, we can order them, e.g. over achieved is better than
achieved, and achieved is better than under achieved. However,
the traditional class-based measures (e.g. Precision and Re-
call) do not take into account the ordering between classes.
Hence, we also used another metric called Macro-averaged
Mean Absolute Error (MMAE) [42] to assess the distance
between actual and predicted classes. MMAE is suitable
for ordered classes and insensitive to class imbalance. For
example, as we discussed that the ordering of our classes
is based on the performance of an outcome. Let y

i be the
true class and ŷ

i be the predicted class of iteration i in the
task. Let nk be the number of true cases with class k where
k 2 {1, 2, 3} – there are 3 classes in our classification – i.e.,
nk =

Pn
i=1 �

⇥
y

i = k

⇤
and n = n1 + n2 + n3. The Macro-

averaged Mean Absolute Error is computed as follows.

MMAE =
1

3

3X

k=1

1

nk

nX

i=1

��
ŷ

i � k

��
�

⇥
y

i = k

⇤

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 25

For example, if the actual class is over achieved (k = 1),
and the predicted class is under achieved (k = 3), then an
error of 2 has occurred. Here, we assume that the predicted
class is the one with the highest probability, but we ac-
knowledge that other strategies can be used in practice. We
however note that the ordering of the classes can be changed
based on the project settings. For example, the achieved
class may be more preferred than the over achieved class
since over-achieving is not suggested over staying within
budget.

