
IEEE TRANSACTIONS ON SOFTWARE ENGINERING, MANUSCRIPT ID 1

Reporting Usability Defects: A Systematic
Literature Review

Nor Shahida Mohamad Yusop, John Grundy, and Rajesh Vasa, Member, IEEE

Abstract—Usability defects can be found either by formal usability evaluation methods or indirectly during system testing or
usage. No matter how they are discovered, these defects must be tracked and reported. However, empirical studies indicate
that usability defects are often not clearly and fully described. This study aims to identify the state of the art in reporting of
usability defects in the software engineering and usability engineering literature. We conducted a systematic literature review of
usability defect reporting drawing from both the usability and software engineering literature from January 2000 until March
2016. As a result, a total of 57 studies were identified, in which we classified the studies into three categories: reporting usability
defect information, analysing usability defect data and key challenges. Out of these, 20 were software engineering studies and
37 were usability studies. The results of this systematic literature review show that usability defect reporting processes suffer
from a number of limitations, including: mixed data, inconsistency of terms and values of usability defect data, and insufficient
attributes to classify usability defects. We make a number of recommendations to improve usability defect reporting and
management in software engineering.

Index Terms—Systematic review, test management, user interface, usability testing, usability defect reporting

—————————— u ——————————

1 INTRODUCTION
OFTWARE usability is one of the prominent software
quality characteristics that determines acceptance of a

software product in today’s competitive market. Usable
software should not only have an attractive user interface,
but it should be easy to understand, learn, operate and
also control [1]. Usability defects are often reported by
end users, developers and customers who have limited
usability and human-computer interaction (HCI)
knowledge. For the purposes of this study we define a
usability defect as an unintended behavior by the product
that is noticed by the user and has an affect on the user experi-
ence. In this study we have also treated a usability defect
report as a specialized kind of software defect report, as
this is how they are currently treated in most software
development projects. However, there is some debate in
the usability and software engineering communities as to
whether these should be treated differently and indeed
managed separately. In fact, in the software development
industry usability defects have been said to receive less
attention than other non-usability defects [2].

Previous studies have reported that many usability de-
fect reports contain unclear descriptions [3], [4], [5], [6].
The lack of features in existing defect tracking systems for
capturing usability defect attributes does not help and
encourage reporters to submit a high quality usability
defect report [3]. These in turn lead to reporters some-
times providing irrelevant, incorrect and incomplete in-

formation and evidence.
As tracking and managing usability defects in a sepa-

rate database may in our view increase the complexity of
defect management processes, customizing the defect
report form to work best for usability defects would seem
to be a more fruitful solution. Thus, one important aspect
is to understand the current state of the art of reseach in
usability defect reporting. Since the nature of describing
usability defects in the software development and usabil-
ity-engineering lifecycle have demonstrated different ap-
proaches, this study considers both the software engineer-
ing and usability literature. We aim to identify similari-
ties, commonalities and differences in the way usability
defects are reported by these different communities.

In this paper, we report on how we carried out a sys-
tematic literature review to identify state of the art in usa-
bility defect reporting. We found a total of 57 studies to
analyse. To facilitate the review, we mapped the studies
into three categories: 1) reporting usability defect infor-
mation - which is related to research on reporting the us-
ability defect; 2) analyzing usability defect data - which is
related to researching the use of defect data; and 3) key
challenges – which refer to issues arised in usability de-
fect reporting and management. Each category is further
classified according to research areas and topics.

Our study aims to provide a comprehensive review on
the reporting of usability defects to date and the useful-
ness of different usability defect attributes for defect
management activities. We identify some key areas for
future research to improve the state of the art in usability
defect reporting. Through this study, reseachers will find
a review of current practices, key open issues and limita-
tions, and important areas for future research with respect
to reporting usability defects.

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

S

————————————————
• Nor Shahida Mohamad Yusop is with the Faculty of Computer and Math-

ematical Science, Universiti Teknologi MARA, Malaysia, and the Faculty
of Science, Engineering and Technology, Swinburne University of Technol-
ogy. PO Box 218, Hawthorn, Victoria 3122, Australia. E-mail:
nor_shahida@tmsk.uitm.edu.my, nmohamadyusop@swin.edu.au

• John C. Grundy and Rajesh Vasa are with the Faculty of Science, Engineer-
ing and Built Environment, Deakin University, Australia. E-mail:
j.grundy@deakin.edu.au, rajesh.vasa@deakin.edu.au

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

2 BACKGROUND
In modern software development, usability defects can be
reported through traditional defect tracking systems, user
evaluations, Q&A discussion forums and social media,
maling lists, and other means. Previous research found,
however, most of these prominent means of reporting
usability defects have limited methods of tracking usabil-
ity issues [2], [3], [8], [9], [10]. Structured discussions and
threaded comments in mailing lists and forums, for in-
stance, are less than ideal for tracking and managing de-
fect information as the content and topics frequently
change [11], [12]. Since informational content in defect
reports is important for archival value, in this study, we
only focus on usability defects submitted with or without
a predefined format. To this end, we limit our review on
usability defect reports originating from defect tracking
system and usability evaluation reports, as we depict in
Fig. 1.

2.1 Usability Defect Reporting

Usability defect reports originate from two primary
sources, as shown in Fig. 1. The first source results from
usability evaluation methods conducted by usability
evaluators. Examples of usability evaluation methods are
usability testing, usability inquiry, heuristic evaluation,
analytical modeling and simulation methods [13]. A usa-
bility evaluator in the usability-engineering field is re-
ferred to as the expert evaluator that has formal education,
experience and knowledge of usability and/ or HCI. Dur-
ing usability evaluation, raw usability data in the form of
video and audio, sometimes supported with images and
notes, are collected. Based on this raw data, the usability
evaluator will then write usability defect descriptions to
be included in the final usability evaluation reports, either
in the form of written documents or recorded via a digital
system. There are various formats to describe usability
defects and their uses depending on the usability evalua-
tor’s preferences and suitability of the usability evalua-
tion method.

The second source of usability defect reports results
from black box testing performed by software testers or
reported by software end-users. In the software engineer-
ing field, the software tester and end-user are referred to
as non-expert evaluators with often no or limited formal
education, training and experience in usability or HCI.
They assess the usability of the software product indirect-
ly while verifying the product functionality. In this case,
the actual users are not involved because the main pur-
pose is not to test the software usability. If a software test-
er discovers any frustrating or confusing task, they will
report it as a defect. This defect report is usually submitted
and managed digitally via defect repositories (e.g Bugzil-
la, Jira and Trac) or defect tracking systems, so that the
information can be shared with other stakeholders, such
as a software developer, interface designer and project
manager, and the defect correction actions tracked and
managed.

Ideally these usability defect reports should provide
abundant information for these different roles and re-

sponsibilities, from both managerial and technical as-
pects. From the managerial aspect, usability defect reports
serve as source of information for managing team sched-
ules and other resource allocation [14]. They also support
tracking effort related to satisfying nonfunctional re-
quirements on the project. For instance, if the project
manager wants to get quick summaries of software de-
velopers who worked on usability defect correction, they
just need to filter for usability- relevant defect reports
only. In this case, they may want to see the information in
the form of listings, summaries, distribution reports
(cross-tab or chart) or trend (time-based) reports [15]. In
contrast, interface designers and software developers use
usability defect information for the purpose of defect cor-
rection. In this respect, they are seeking information that
can give them support for the defect correction process,
such as event traces, proposed solutions [16] and steps to
reproduce the defect.

2.2 Summary of Previous Reviews
We found three published review papers that discussed
literature in the area of defect reporting [17], [18], [19].
Two papers cover software defect reporting in general
and the other one focus on open source project usability
defects. Only one paper used a systematic review ap-
proach while the others were based on traditional litera-
ture review methods. In contrast to our review in this pa-
per, none of these specifically reviewed usability defect
reporting, particularly in software engineering and the
HCI fields.

Strate et al. [17] presented a traditional review of soft-
ware defect reporting. This paper reviewed the common-
alities of the research in defect reporting and categorized
them into five areas. The goal of their survey was to re-
veal the state of the art in defect reporting and suggests
some open issues for further research. The review con-
tains a general breakdown of automatic defect fixing, au-
tomatic defect detection, metrics and prediction, quality
of defect reports and triaging defect reports. In contrast,
our study focuses on just one of these areas, which is the
quality of usability defect reports.

Cavalcanti et al. [19] conducted a systematic mapping
study on defect reports in software development. Their

Fig. 1. An overview of usability defect discovery and reporting in the
usability and software engineering fields

YUSOP ET AL: REPORTING USABILITY DEFECTS: A SYSTEMATIC LITERATURE REVIEW 3

paper provides a comprehensive review on challenges in
using defect repositories and opportunities to improve
software development quality with the use of defect data.
In addition, they also investigated the use of well-known
tools and online services for defect repositories, such as
Bugzilla, Jira, SourceForge, Trac and GitHub to under-
stand how the identified challenges and opportunities
have been considered in any of the tools. Similar to Strate
et al., they focus on software defects in general. Their re-
view covers only a small amount of the literature that we
are interested in that is applicable to software defect re-
positories.

Despalatović [18] presented a review of the challenges
and improvement of usability defects in
Free/Libre/Open Source (FLOSS) software. This review
was grouped into four general themes of usability as-
pects, such as user-centered design, HCI experts’ motiva-
tion for participation, automatic usability testing tools
and a suggestion for usability improvement. The review
has a different focus and scope from ours. It does not con-
sider how usability defect information is communicated
and reported. With its focus on usability defects and in-
clusion of defect reporting systems, it only covers a small
subset of the research in which we are interested.

2.3 Related Literature
Besides the related reviews described above there is other
literature related to usability defect and defect reporting
that did not include in our systematic review. This was
due to these not meeting our specific inclusion and exclu-
sion criteria detailed in Section 3.3. Here we summarize a
description of the major reseach contributions that were
excluded from our review. Nevertheless, we use these
works together with our systematic review findings in the
Discussion section of this paper.

Since the focus of our review is on usability defects,
there is literature that we excluded because it had a spe-
cific focus on some other specialized areas other than de-
fect reporting. Generally, usability studies focused in the-
se areas are concerned with aspects of usability that are
not related to defect reporting.

Usability maintenance – Research in this area looks at
post-deployment activities, challenges, opportunities and
practices to bridge the gap between software support and
maintenance teams [20], [21], [22]. The usability defects
found during post –deployment phase, which are usually
in the form of user requests and other error reporting, are
reported through project forums, mailing lists and track-
ers.

Automated usability testing – This research area aims to
develop automated testing methods for quickly identify-
ing usability defects in various applications, such as web-
based applications, mobile applications and haptic sys-
tems. Automated testing allows interfaces and user inter-
action with them to be captured automatically [23], [24],
[25]. However, apart from the screen captures and user
interaction records, no other usability defect information
was reported by these studies.

Usability evaluation methods – Research in this area con-
centrates on different methods for identifying usability

defects, such as think aloud, heuristic evaluation,
walkthrough and user observation. There is a significant
body of literature devoted to these methods describing
tools and methodologies for applying the methods [26],
[27], [28], [29], [30], [31], [32], [33], comparing different
evaluation methods [34], [35], [36], discussing usability
criteria, measurements and metrics [37], [38], [39], [40],
and sharing best practices, issues and challenges in indus-
trial [41], [42], [43], [44]. However, we excluded these pa-
pers because of their lack of explanation on how the usa-
bility defects are actually reported.

Evaluator effect – Research in this area studies the hu-
man aspects of performing usability evaluation. Most
research we found evaluated the performance of expert
and novice usability evaluators in identifying usability
defects [45], [46], [47], discussed the effect of single and
multiple user problems [35], [48], and investigated the
factors involved in the evaluator effect [49]. Unfortunate-
ly, these do not address the defect reporting aspect, par-
ticularly around how the evaluator effect influences the
level of details in a usability defect description and how
the usability defects are actually described. Nevertheless,
there are a few papers in this area that we included in our
review as they do help to answer our research questions
[4], [50], [51].

Characterization of usability defects – Research in this ar-
ea uses data from defect reports to propose usability tax-
onomies [52], [53] and to classify and prioritize usability
defects [54], [55], [56], [57]. This is related to our interests
in usability defect reporting approaches but most do not
address the actual reporting of usability defects.

Finally, we excluded a range of research in software
engineering fields that leverage defect reporting but do
not focus on usability defects. This includes defect-
reporting research to understand and improve software
development aspects, such as: general assessment and
improvement of existing defect tracking systems [15],
[58], [59], [60], [61], [11]; use of data from defect reposito-
ries for automatic defect fixing, automatic defect detec-
tion, metrics and prediction of defect reports, quality of
defect reports and triaging defect reports [17]; qualitative
study of different defect report types other than usability
[62], [63], [64], [65]; and usability practices in open source
projects [18], [66], [67]. However, as they fit the broader
literature, we use these in our Discussion section in map-
ping findings to recommendations where appropriate.

3 RESEARCH METHOD
In order to conduct our systematic literature review, we
used the guidelines of Kitchenham et al. [68] and Petersen
et al. [69]. Our review process consisted of three stages. In
the first stage, we defined a set of research questions and
prepared a review protocol. This review protocol assisted
supervision of the researchers conducting the review and
guided the researchers in the data collection. Next, we
conducted the searches and selected relevant papers
based on an agreed quality assessment. The selected pa-
pers were read thoroughly and data as in Table 4 and Ta-
ble 5 was extracted using a data extraction form created in

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

an Excel file. Finally, we analyzed and synthesized the
results for reporting.

3.1 Research Questions
The overarching aim of this systematic literature review
was to understand “To what extent is usability defect report-
ing considered in existing usability and software engineering
research?”

In usability engineering, usability defects are often
found through usability evaluation methods. These usa-
bility defects are normally described in the written evalu-
ation reports. On the other hand, usability defects that are
found during system testing or reported by end users are
reported in defect repositories, such as Bugzilla, Google
Chromium and JIRA. These usability defects have the
same underlying root cause but were found in a different
testing stages and were reported by a different mecha-
nism. This motivated us to review both the usability and
software engineering literature to understand how usabil-
ity defects are communicated in practice. Therefore, the
above high-level research question was further divided
into the following subquestions. These research questions
are structured based on PICOC criteria suggested by
Kitchenham et al. [70] as in Table 1:

1. How are usability defects communicated in the
usability and software engineering literature?
a. What mechanisms are used to report and

track usability defects?
b. What defect information and formats are used

for reporting usability defects?
c. Are there any guidelines available to assist the

reporting process?
2. Is there any evidence that usability defects have

been studied from the use of data in defect re-
ports?

3. What are the identified challenges of usability de-
fect reporting in the usability and software engi-
neering field?

The first question searched the usability, HCI and

software engineering literature to identify research works
that focus specifically on usability defect reporting. These
were then analysed and classified into topics of studies as
suggested by McInerney [71]. The second question identi-
fies studies that analysed data from usability defect report
or defect repositories. While the third research question
was aim to reveal any challenge in reporting usability
defects from the perspective of usability and software
engineering.

3.2 Search Strategy

3.2.1 Data Sources
Five electronic database resources were primarily used to
search usability defect reporting. These include: IEEE Ex-
plore, ACM Digital Library, ScienceDirect, Scopus and
Google Scholar. These electronic databases selection were
based on the recommendations in [13] and [72]. To facili-
tate the search process, an advanced search option was
used that allowed multiple keyword searches. Title and
abstract data field were primarily used to retrieve rele-
vant journal and conference proceeding papers. In this
research, we only reviewed papers published from the
year 2000 onwards. This is because we identified a few
studies that were reported prior to 2000 was extended in
other studies, which were included in our review.

3.2.2 Search Strings
To ensure a thorough search in both usability and soft-
ware engineering literature, a set of search strings was
created for each research question. The search strings
were formulated based on:

• Major terms from the research questions
• Relevant terms extracted from relevant papers, jour-

nals and books
• Synonyms, alternative terms and related concepts of

research questions
• Boolean AND and OR to link all the terms

Three different search strings were derived and exe-

cuted on different electronic databases. As the literature
search progressed, search terms were refined, discarded
and added. Any changes to the search strings were rerun
on the selected electronic databases to ensure all relevant
papers were retrieved. These strings are listed in Table 10
of Appendix B.

3.3 Study Selection
The primary search resulted in 609 studies. This set was
then filtered based on title and abstract analysis, which
reduced the total to 191. The significant difference from
the first and second filtration was partly due to duplica-
tion and irrelevant context of study. For instance, the
search on the term “usability defect” often returned stud-
ies that belonged to medical, engineering or telecommu-
nication topics, which were out of our research context.

We then conducted a secondary search using a reference
chaining technique. The reference chaining is commonly
used in other systematic literature reviews [73], [74], [75]
as supportive search approach to find any relevant stud-
ies that were not found during the primary search. This
resulted in 52 new studies being included in the second
filtration process.

These total of 243 studies were then analyzed by read-
ing the full paper text. At this stage, inclusion and exclu-
sion criteria as in Table 2 were applied to evaluate papers.
Since this study was surveying a blend of software engi-
neering, HCI and usability defect reporting literature, a
narrow inclusion criteria was used. We defined our inclu-
sion criteria to be specific to each research question [76],
while the exclusion criteria are common to all research

TABLE 1
SUMMARY OF PICOC

YUSOP ET AL: REPORTING USABILITY DEFECTS: A SYSTEMATIC LITERATURE REVIEW 5

questions. Reasons to include a paper are: 1) that it be-
longs to the area of defect reporting in general and usabil-
ity defect reporting in particular, and 2) that the defect
reports originated from defect tracking system and usabil-
ity evaluation reports, and not from other means of re-
porting usability defects. As discussd in the introduction
and background sections, while a range of means of de-
tecting usability defects exist, we were interested in how
they are described, reported and tracked by software de-
velopment teams, and hence papers that focus on these
aspects. This review only considered papers published
from January 2000 to March 2016. Finally, 57 studies were
included in this review. See Appendix A for the list of in-
cluded studies.

3.3.1 Quality Assessment of Selected Studies
All selected papers were assessed for their quality. Each of
these papers was also classified as either a software engi-
neering or a usability study.

Papers were evaluated using two sets of checklists that
were formulated to measure the research credibility and
validity. Each question was rated as 1 implies “Complete-
ly describe”, 0.5 implies “Exists but does not completely
describe” and 0 implies “Does not exist”. The total quali-
ty score for each paper was computed by summing up all
the scores. This ranged between 0 (very poor) and 5 (very
good). The checklist used is shown in Table 3. Based on
this quality assessment, we identified all of the selected
papers as being of high enough quality to include .

TABLE 2
INCLUSION AND EXCLUSION CRITERIA

TABLE 3
QUALITY ASSESSMENT QUESTIONS

TABLE 4
SPECIFIC DATA ITEMS EXTRACTED FROM ALL PAPERS

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

3.4 Data Extraction
We created a data extraction form to extract detailed con-
tents for each study. There are two categories of data ex-
tracted for each paper. First, common data such as biblio-
graphic references, type of study, aim, research methodol-
ogy and data analysis. Second, the specific data that an-
swered each research question. Table 4 and Table 5 show
the data that was extracted for both categories.

All extracted data was put into shared spreadsheets
that were reviewed by the second and third authors. The
first author was responsible for reading and extracting the
data. In order to validate the extraction validity, the se-
cond and third authors independently rated a random
sample of papers according to the inclusion and exclusion
criteria. All discrepancies on the data extracted were dis-
cussed among authors with the aim of reaching a consen-
sus. The reliability of the findings of this review was ac-
complished by considering only the quality score of rele-
vant studies that are greater than 2.5 (50% of the percent-
age score) [75]. We did not measure inter-rater reliability
since our review aimed for generalizability of the find-
ings, in particular, to clearly describe how conclusions
have been derived from the data instead of comparing
agreements of the same codes or themes [74], [77].

4 CLASSIFICATION SCHEME
A classification scheme was developed to organize the
retrieved studies on usability defect reporting. As shown
in Fig 2, the classification scheme was structured to map
onto our research questions. We categorized the studies
using the process defined by Petersen et al. We started the
classification process by analyzing the title, keywords,
abstracts and conclusions. We then compiled the key-
words and phrases to build a high-level set of categories
for classifying the papers. Finally, we grouped the
phrases, research objectives and research findings of the
papers in each category into a coherent set of themes.

The classification scheme is composed of three main
categories; 1) reporting usability defect information -
which is related to research on reporting usability defects;
2) analyzing usability defect data - which is related to
researching the use of defect data; and 3) challenges –
which refer to issues identified in usability defect report-
ing and management.

Table 6 summarizes the distribution of the studies per
topic. Studies that addressed more than one topic were
classified repeatedly in each topic. For example, Nørgaard
et al. [78] investigated mechanisms of usability defect re-
porting and challenges for each mechanism, and their
study is counted in both topics.

In the following section, we present our answers to the
review research questions based on analysis of the in-
cluded studies. Each study is identfied as Pm, where m
represents the study's number (see Appendix A for the list
of studies used in this systematic review).

5 RESULTS
5.1 Research Question 1
How are usability defects communicated in the usability and
software engineering literature?

a. What mechanisms are used to report and track usability
defects?

b. What defect information and formats are used for re-
porting usability defects?

c. Is there any guideline available to assist the reporting
process?

Much research in usability evaluation methods aims to
improve evaluation techniques. A technique that is able to
discover more defects is considered a good one. However,
it is not sufficient to identify usability defects without
communicating them effectively. In practical usability
work, the findings from usability evaluation are useful to
compare similar problems, prioritize the fixing task and
recommend to developers what to fix. Understanding the
characteristics and limitations of certain evaluation for-
mats may impact the comprehensible level of usability
defect description. The effectiveness of communicating
usability defect information depends on the mechanism
to report and track (RQ 1a), content and format (RQ 1b),
and guidelines (RQ 1c). A total of 35 papers addressed
this question and its sub-questions.

Key findings from our analysis include:
• Three key types of reporting mechanisms were iden-

tified in the usability and software engineering litera-

Fig. 2. Classification scheme

TABLE 5
COMMON DATA ITEMS EXTRACTED FROM ALL PAPERS

YUSOP ET AL: REPORTING USABILITY DEFECTS: A SYSTEMATIC LITERATURE REVIEW 7

ture: tool-based; end-user; and modeling-based.
Many tools use free format text to capture most usa-
bility defect infomation. Integration with the system
under test and defect tracking systems can be limited.

• A large range (13) of usability defect reporting for-
mats was found containing a wide variety of data.
Structured web-based forms are very common but
reporting can be impacted by information overload,
lack of checking of input, and bias due to form con-
tent. Conventional reports offer more unstructured
but often richer data. Problem lists and redesign pro-
posals are also common approaches.

• We found that problem description, severity, context
and redesign description were the four attributes
most commonly used to described usability defects.
A wide variety of attributes are used but many infre-
quently in reports. Problem descrition is widely used
but vague in its definition across the studies.

• A small number of studies (4) provide guidelines for
usability defect reporting. Two were experienced-
based and two empirically-based.

5.1.1 Reporting Mechanisms
Three key types of reporting mechanisms were identified
in the usability and software engineering literature. To
effectively capture usability defect data, each reporting
mechanism uses a variety of input designs, such as auto-

generated data, predefined data, free-text form, and
online help. Auto-generated data such as tester name,
timestamp, and problematic user interface can be automati-
cally recorded when the test is run and the report is sub-
mitted. In contrast, predefined data contains a variety of
categorical data that is dependent on the input from the
reporter. During a defect report submission, the reporter
will select some values, such as severity, type of defect, and
heuristics used. Some of these values can be changed over
the defect life cycle, such as severity. For a free-text form,
the reporter is allowed to write any description – com-
ments, feedback, complaints, feelings or disappointment,
steps to reproduce, expected and actual result – regarding
the problems. In summary, the description of three report-
ing mechanisms can be described as follows:

Tool-based reporting is the easiest way to record and
generate data as compared to a paper-based approach
[79]. Tool-based reporting allows data to be collected in-
stantly, and recorded data can be measured quantitatively,
analyzed for trends and used to generate feedback for the
quality improvement. A well-designed tool will assist
users to provide sufficient data, thus, in turn reduce miss-
ing data issues. Several tools in the usability evaluation
field were developed to assist in usability defect report-
ing. Some key examples are outlined below.

Data Collection, Analysis and Reporting Tool (DCART)
[P7] uses auto-generated data and free-text form input

TABLE 6
SUMMARIES OF RESEARCH AREAS AND TOPICS

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

design. The defect form was designed for collecting and
organizing usability defect data in lab-based usability
evaluation using a Usability Problem (UP) instance con-
cept. Each occurrence of a UP found by multiple evalua-
tors or multiple times by one evaluator is considered as
the same UP. However, given multiple instances of UPs,
evaluators must manually review and combine them to
determine the main UP experienced by the users.

Merging duplicate problem descriptions [P41] helps evalu-
ators to record usability problems into a database using
different usability evaluation methods, to search the data-
base for similar problems, exchange datasets, and to per-
form a meta-analysis of the datasets.

Web tool [P10] uses tooltips, predefined data and free-
form text input and was designed to record usability de-
fects found during heuristic evaluation only. By having
the tooltips and examples of usability problems, the eval-
uators get help on attributes and better guidance to assign
severity and heuristics used to find problems. However, a
non-integrated reporting tool with the software under test
may trouble some users in switching between these two
systems and users may bias certain values. In contrast,
Usability Reporting Manager [P17] uses predefined data
and free-text form input. Using a web interface, reporters
can enter, manage and export data in into defect tracking
system connected to a source code repository.

Usability Problem Inspector (UPI) [P15] uses auto-
generated data, predefined data and free-text form input
incorporating usability action framework (UAF) content.
UPI has two modes; task-based and free-based explora-
tion. Using the task based-approach, evaluators are pre-
sented with a series of questions from the UAF structure.
When a problem is identified, evaluator is presented with
a defect report form and the inspection path is automati-
cally recorded. However, for free-exploration mode, no
task information is recorded. DESTINE [P34] uses prede-
fined data input. The tool is limited to evaluate ergonom-
ic quality of websites and it can support two types of user
profile; expert and designer.

In the software engineering field, defect tracking sys-
tems are commonly used to record and track software
defects, including usability defects. Our review only
found four tools that explicitly assist in usability defect
reporting.

GUI monitoring and automated replaying [P45] uses a ge-
neric non-intrusive GUI usage monitoring mechanism
that can be integrated into existing applications. The mon-
itoring of usage can produce actual usage traces that can
be included in the defect reports and used as an input for
replaying purposes. The traces are triggered by user in-
teractions like mouse clicks or key presses.

GUI editor tool support [P49] was developed on the
Eclipse platform to support exploratory graphical user
interface testing. The tool uses Eclipse logging to record
uncaught exceptions during execution of a test and a
cheat sheet viewer to for evaluators to describe the ob-
served failures. The test results are available in form of
results file and can be automatically exported into the
defect repositories.

Timeline tool [P51] was developed to visualize moni-

tored interaction traces and application events preceeding
failures. Using the tool, software developers may analyze
the traces to derive steps to reproduce by manually re-
playing the monitored user interactions.

FUSION [P55] was developed to produce more repro-
ducible defect reports than traditional defect tracking sys-
tems. Using the event-driven paradigm of Android appli-
cation, the tool aids the reporter in constructing the steps
needed to reproduce a defect by making auto-completion
suggestions based on the potential GUI actions, such as
click (tap), long click (touch), type and swipe.
End-user reporting tools collect information in much sim-
pler forms to address users’ frustration and complaints
and the users report defects as part of their day-to-day
activities. We identified two approaches of designing end-
user reporting.

One-bit-feedback [P18] uses auto-generated data and a
free-text form input. It is a background process that moni-
tors certain system characteristics and packs them into an
incident report whenever the user clicks on the screen
button or punches the hardware button. The reports are
stored locally on the user’s system. Usability defect data
is collected using auto-generated data and user is given
the opportunity to provide comments and feedback
through a free-text form. Using this approach, defect inci-
dent is automatically recorded and less data entry.

Two-mouse-click [P30] uses auto-generated data, prede-
fined data and free-text form input design. The prototype
was developed to allow report submission with minimal
user click and supplements user comments with objective
program state information. The program only collects
information relating to the user’s interaction. No sensitive
information is sent.
Modeling-based reporting provides a standard descrip-
tion with more structured data. The reporter uses a mod-
eling language with defined notation to represent infor-
mation. For example, ErgoPNets [P28] uses a formalism
that combines Petri Nets and ergonomic criteria to de-
scribe ergonomic problems and their recommendations.
The method used icons, graphical representation and text
to describe problem. In this way, the complex usability
defect descriptions can be unified into a single model.

5.1.2 Defect Information Content and Format
13 usability defect description formats were identified
from the selected studies. Eleven out of the 13 formats are
presented in written documents, while the other two are
learning-oriented formats. These formats are associated
with a list of attributes for communication and report
keeping. Altogether, 33 attributes are identified across 13
formats by a total of 26 studies.

As shown in Table 12 (See Appendix B), we classify
these attributes into eight groups based on the defect de-
scription content objective, and we summarize all the
formats and attributes in Table 7. Note that the attributes
checked for each format does not mean that all these at-
tributes are present in the format at any one time. Rather,
it is a compilation of several studies that mention the use
of certain attributes for a particular format.

YUSOP ET AL: REPORTING USABILITY DEFECTS: A SYSTEMATIC LITERATURE REVIEW 9

The most reported format used to report usability
evaluation findings were web-based form and report. The
use of variety input design techniques such as auto-
generated data [P7, P15, P17, P18, P30], pre-defined data
selection [P10, P15, 17, P30], free-form text [P6, P7, P15,
P17, P18, P30, P47] and question-based [P6, P47] can pro-
duce more structured and consistent defect information.
Common attributes collected in the web-based form are
problem description, location of the problem user interface,
specific task where the problem observed, what trigger the
problems, and severity rating. There are several key fea-
tures of the web-based reporting that make it easy-to use
with little manual effort. Examples include features for
reminding users about key information to report [P7],
online help and tooltips for quick reference [P10], support
for data transformation into different formats [P17], and
automatically record system generated information
[P15]. However, users are exposed to erroneous data en-
try due to the cognitive load and biased use of default
data.

In contrast to web-based forms, conventional reports
contain unstructured content and a large amount of in-
formation. The report generally explain a detail descrip-
tion of usability evaluation methods that has been con-
ducted so that the content of the report will not only be

able to justify the situation of the problems encountered
but to present a good argument to management for re-
questing resources allocation [P9]. Other attributes com-
monly reported in conventional reports are problem de-
scription, severity rating, and attachment.

The Problem list, on the other hand provides light-
weight documentation. Even though the content is briefer
and lacks of context, it is useful to support ongoing dis-
cussions [P53], and helps to prioritize tasks during the
problems merging process [P37]. In this way, complex
problems could be described as multi-faceted without
going into a detailed report [P13]. This format usually
requires a problem description and severity rating.

The redesign proposal is more focused on problem solu-
tion. It gives ideas on complex problems by providing
concrete recommendations and arguments. The recom-
mendations are usually supplied with drawings or code
fragment [P53]. While software developers may prefer
redesign proposals, it is difficult to write useful recom-
mendations for major changes, especially problems that
involve business and technical constraints [P29].

The other nine formats are less commonly reported -
these include forum and diary [P6], multimedia [P6, P37],
human centered story [P37], screen dump [P37], digital
objects [P32], self-experience [P37], and redesign work-

TABLE 7
SUMMARY OF USABILITY DEFECT ATTRIBUTES USED IN 13 FORMATS

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

shop [P37]. Even though these formats do not use a varie-
ty of attributes, multimedia and redesign workshop format,
for example, provide persuasive and well-balanced defect
description [P37]. Two studies were categorized as “oth-
er” format as they do not clearly state the format used but
did mention attributes used to extract usability defect
data [P33, P36].

In terms of content, we found that problem description,
severity, context and redesign description were the four at-
tributes most commonly used to described usability de-
fects across formats. Attributes that rarely present in usa-
bility defect descriptions are product description, expected
result, type of defect, frequency, confidence, reproducibility,
evaluator, failure qualifier, user’s response and feelings, positive
findings, business goals, recovery steps, problem elimination,
usability specification and conclusion. These attributes are
often captured in report and web-based forms.

23 studies primarily used problem description to report
usability defects across ten formats, except multimedia,
self-experience and redesign workshop. However, it is
uncertain whether the problem description is mutually ex-
clusive – that is the attribute has only one value. This is
because problem description has a very vague definition in
which the reporter has a probability of mixing it with oth-
er attributes such as possible cause, type of defect and user’s
response and feelings [P7]. Sometimes, problem description is
very brief such as in the problem list format. To support
this issue, a redesign description can additionally persuade
the relevance of usability defects. We found twelve stud-
ies that addressed detailed redesign proposals, but only
four studies supplied an in depth justification for why the
proposed solution is necessary.

Fifteen studies emphasized the severity rating in eight
formats. However, there is no standard definition used to
indicate severity assessment. Some studies have used se-
riousness [P3, P13], category [P15] and impact [P33] to
describe the same meaning. Additionally, there are sever-
al severity schemes used for the rating purpose such as 1)
minor, serious, critical [P5], 2) major or minor [P8], and 3)
severe, moderate and minor [P10].

In terms of software context, fifteen studies mentioned
the problematic location of elements in the user interface.
This information can be either automatically collected
[P15, P18, P30] or manually specified by the reporters [P6,
P7, P10, P13, P14, P17, P33, P37].

Among the 13 formats, only redesign proposal, report,
web-based form, multimedia, screen dump, redesign
workshop provided attachments. The attachment can be
log files [P8], core dumps [P9], screen image [P12, P18],
webcam picture [P18] and video clip [P37].

5.1.3 Reporting Guidelines
The review uncovered four guidelines that suggest the
way that usability defects should be reported, as shown
in Table 8. Two studies provide experienced-based guide-
lines that were originated from practical lessons and usa-
bility experts’ point of view [P2, P52]. According to Du-
mas et al., they way the usability defect is communicated
to developers influences the acceptance of the usability
defects. Instead of complaining about the negative aspect

of the software product, the usability description should
also address the positive findings in a clear and precise
form.

Another two guidelines were constructed through em-
pirical studies [P5, P37]. Among the four guidelines, the
Capra et al. [P5] guideline is the most rigorous and com-
plements Dumas’s guideline. Capra’s guideline was de-
veloped based on a survey of usability practitioners. This
guideline is widely used as a criterion to evaluate the
quality of usability description [80],[81],[7]. Besides that,
the guideline may be used in training usability evaluators
and as a checklist when writing a usability defect descrip-
tion. Meanwhile, the Nørgaard et al. [P37] guideline is
based on Toulmin’s model of argumentation and Aristo-
tle’s three modes of persuasion.

5.2 Research Question 2
Is there any evidence that usability defects have been studied
from the use of data in defect reports?

There were 23 papers that studied the use of usability
defect data for understanding and improving defect man-
agement activities. We looked at the commonalities of the
research and found five branches of research regarding
usability defect reporting:

1. Quality of usability defect reports – research in this
area investigated the quality of usability defect de-
scriptions and ways to improve reporting.

2. Classification of usability defects – research in this
area analyzed the usability defect data to understand
the characteristics of usability defects.

3. Duplicate defect report analysis – research in this ar-
ea concentrated on approaches for identifying and
merging similar usability defects.

TABLE 8
GUIDELINES FOR WRITING A USABILITY DEFECT REPORT

YUSOP ET AL: REPORTING USABILITY DEFECTS: A SYSTEMATIC LITERATURE REVIEW 11

4. Estimation for usability defects – research in this area
used data from defect reports to estimate problem
discovery rates.

5. Discussion in usability defect reports - research in
this area examined the structure and content of defect
report discussion, how usability resolutions are dis-
cussed and how decision-making is made.

In terms of attributes that commonly used in empirical

research (refer Table 11 of Appendix B), problem descrip-
tion, impact, and title/ summary are most widely used. At-
tributes rarely used by researchers are type of defect, likely
difficulty, confidence, priority, software context, reporter, vio-
lated heuristic, business goals, assignee, milestone, time to fix,
and defect fixes. Research on classification and defect du-
plication favorably used title/summary and description,
while research on defect report quality often used observa-
ble user actions, impact, cause of the problem, and supplemen-
tary information. However, two studies do not report de-
fect attributes used as they employed other metrics such
as ISO/IEC 9126 quality model [P21] and IBM quality
measurement model [P46].

Key findings from the analysis include:
• Five areas have been studied using usability defect

data – report quality, classification of defects, dupli-
cate reports, effort estimation and resolution discus-
sion.

• 22 studies showed that expert evaluator defect re-
ports appear to have better quality than non-experts
(the later recruited from students in many studies),
though the non-experts are far more numerous. To
assess report quality most studies used observable
user action, impact, supplementary information,
cause of the problem and solution proposal. Two
studies used expert judgement assessment. Many
studies found that non-experts and even experts
struggled to describe many usability issues, especial-
ly impact and possible solutions. Six studies focused
on improving usability defect reports and provided a
range of recommendations, particularly focusing on
better support for non-expert reporters.

• Usability defect classification was a focus in five
studies, focusing mainly on one of defect characteris-
tics, cause and impact. Some studies used pre-
existing usability engineering definitions while some
introduced proposed new approaches. All found de-
ficiencies in existing defect reporting tools and usa-
bility defect reports in terms of classifying usability
defects effectively.

• A small number of studies have focused on usability
defect duplicate management, focusing on matching
and merging. Most focus on using observable impact
of the defect to determine similarity and manual
merging processes.

• Only one study used usability defect reports to esti-
mate defect discovery rates, and none were found us-
ing usability reports to estimate likely defect correc-
tion effort.

• Three studies were found investigating how defect
resolution is carried out using defect reports. The fo-

cus has been on discussing validity of reported usa-
bility defects and critiquing candidate solutions pro-
posed.

5.2.1 Quality of Usability Defect Reports
Of the 23 studies, 11 investigated the quality of the usabil-
ity defect reports produced by expert and non-expert us-
ability evaluators, and employed various assessment cri-
teria. We identified two key topics under this research
area: 1) measuring usability defect report quality; and 2)
improving usability defect reports.

5.2.1.1 Measuring Usability Defect Reports Quality
In general, defect report produced by an expert evaluator
had better quality than the defect reports produced by a
non-expert evaluator. In most studies, non-expert evalua-
tors are recruited from among students, while expert
evaluators are from industrial practitioners. Based on the
eight studies, we identified numerous criteria used to
measure the quality of usability defect reports (see Table
9). We classified criteria into three categories: report con-
tent, software quality model, and general categories. One
study did not mention any assessment criteria that were
used [P39].

Report content was used by six studies to measure
the quality of usability defect reports [P1, P3, P5, P7,
P8, P35]. The findings showed that observable user
action, impact, supplementary information, cause of
the problem and solution proposal were the most as-
sessed information. Only one study measured the
quality of the usability defect report content using test
procedure descriptions, executive summary and report
layout [P8] and business goals [P35]. Of the six studies,
five [P1, P4, P5, P8, P39] revealed that non-expert usa-
bility evaluators have difficulties in describing certain
usability defect information, particularly the impact,
solution, supplementary information, cause of the
problem, and recovery steps [P1, P5, P8, P39].

With regards to software quality criteria, seven of
the nine studies used clarity attributes to assess if the

TABLE 9
CATEGORIES OF ASSESSMENT CRITERIA TO MEASURE QUALI-

TY OF USABILITY DEFECT REPORTS

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

usability defects were described precisely, meaningful,
and contains unambiguous explanation [P1, P3, P5, P7,
P8, P35, P44]. We also observed that even non-expert
evaluators failed to fulfill all report content criteria, but
they can describe some information clearly [P1], and
provide positive findings for the evaluation [P39].
However, these studies did not indicate which infor-
mation non-expert evaluators can explain precisely.
Other studies uniquely defined their quality attributes
such as persistent [P3], justified [P3], persuasive [P44],
and usefulness [P35, P44].

The general category comprised of expert judgment.
Studies that relied upon expert judgment measured quali-
ty using criteria such as how similar problems were iden-
tified and use of appropriate claims to justify the prob-
lems. In order to minimize judges’ bias, measures of asso-
ciation, bias and distribution of the judgement were cal-
culated. In our review, two studies [P4, P7] employed
professional judge rating.

5.2.1.2 Improving Usability Defect Reports
There are six studies that emphasize the ways to improve
usability defect description. We break the research down
to the different aspects of improvement.

Defect report content and structure - Hornbaek and
Frøkjær [P3] recommend four elements for good usability
defect reports: 1) include solution proposal, 2) justify why
something is a problem by referring to the behavioral
consequences of a problem, 3) present descriptions of
problems that are complex and persistent for users, and 4)
make the problem description long enough. Hornbaek
and Frøkjær [P35] proposed the use of business goals in
justifying usability defects, as the information would give
higher utility and impact to the company. Furthermore,
they found that business goals help focus the evaluation.
Ko et al. [P48] suggested that the defect report title should
consists of software behavior, relevant quality attribute,
problem, execution context, and if the report is a defect or
feature request.

Defect report format – Norgaard and Hornbaek [P44]
found that software developers highly prefer a multime-
dia presentation, screen dump and redesign proposal for
presenting usability defects because they provide ideas on
the problem context.

Defect reporting tool – Faaborg and Schwartz [P27] pro-
posed the adaptation of usability heuristics when labeling
usability defects. Furthermore, a usability-shared vocabu-
lary (such as consistency, jargon, feedback) can be useful
in describing the cause and impact of user interface prob-
lems. However, this approach is highly dependent on the
clarity of each heuristic’s definition and use of good ex-
amples, as users of defect reporting tools may have lim-
ited HCI knowledge.

Approach to capture usability defects – Howarth et al. [P7]
proposed the usability problem instance approach to rec-
ord usability defects. Using this approach, they found out
that expert judgment provided higher ratings for describ-
ing the cause of the problem and solution proposal de-
scription. Hornbaek and Frøkjær [P3] found that usability
evaluation methods influence the level of detail of defect

description. For instance, problems identified with the
metaphor of human thinking are more justified compared
to problems found with testing aloud.

5.2.2 Classification of Usability Defects
In existing defect repositories, defects are classified as
either defect (blocker, critical, major, minor, normal) or
enhancement. However, this labeling scheme does not
have sufficient knowledge for understanding the
properties and features of various types of usability
defects. This is evidenced by a number of studies
available in the literature [P21, P22, P42, P46, P50]. We
group the research into different goals below.

Understanding usability defect characteristics - Lal and
Sureka [P22] investigated the differences, similarities
and correlation between terms and usability defect
types. They found that terms present in defect report
titles and description are related to usability defect
type. For instance, usability defects have most frequent
terms of “window”, “user”, “zoom”, “menu”, and
“click”. In relation to usability defects, they discovered
that 1) usability defects are the largest contributor to
regression defects, 2) the median mean time to repair
(MMTR) value for usability defects is fairly high com-
pared to other defect types (cleanup, crash, polish, per-
formance, regression and security), and 3) usability
defects are the second highest of duplicated defect re-
ports. Xia et al. [P50] studied the relationship between
types of defects and severity. They discovered that
most user interface and usability defects are assigned
as block and critical severity.

Understanding the cause of usability defects - Li et al.
[P42] developed a classification model for classifying
defects to root cause, impact and software component.
They found that graphical software is threatened by
graphical user interface (GUI) defects that are mostly
caused by semantic errors, such as missing features
and wrong functionality.

Understanding the impact of software defects– Vetro et al.
[P21] conducted an experiment to classify software de-
fects according to ISO/IEC 9216 quality model (function-
ality, reliability, usability, efficiency, maintainability and
portability). They found functionality and usability were
the most dominant impacted quality attributes. Kreyss et
al. [P46] used IBM quality measurement to categorize
defect report distribution. Across the nine quality attrib-
utes (capability, usability, performance, reliability, in-
stallability, maintanability, documentation, serviceability
and overall) usability was ranked as the second highest
problematic quality attributes. The results from the study
gave an overview of where improvements should be fo-
cused.

5.2.3 Duplicate Defect Report Analysis
Many previous studies have reported how duplicate de-
fect reports of any sort may slow down the defect fixing
process as more resources and time are needed to identify
and close duplicate defects [82]. However, duplicate de-
fects should not be ignored because they may contain
additional information that may be useful to resolve de-

YUSOP ET AL: REPORTING USABILITY DEFECTS: A SYSTEMATIC LITERATURE REVIEW 13

fects [59]. With regard to the latter concern, we identified
four studies that addressed a way usability detects in spe-
cific are detected and handled. In the usability engineer-
ing literature, duplicate defect report classification is re-
ferred to matching and merging, and does not appear to
be an area of active research.

Matching – a process to detect duplicate problems.
Vermeerena et al. [P12] analyzed the usability problem’s
similarity based on the situation in which the problem
occurred, the user’s observable behavior at the time the
difficulty occurred and how the user thought, felt or un-
derstood certain tasks. Hornbæk and Frøkjær [P13] stud-
ied four matching techniques (similar changes, practical
prioritization, a model of Lavery et al. (1997) and the User
Action Framework). Their experiment showed that simi-
lar changes produce more single problems than the other
techniques and practical prioritization reaches highest
level of agreement among novice evaluators. Hindle et al.
[P56] used the different contextual features – architecture
words, non-functional requirement words, LDA topic
words and random English words to improve the accura-
cy of defect report deduplication. Their experiments
demonstrated the effectiveness of domain-specific context
could improve the quality of duplicate defect detection.

Merging – a process to consolidate similar problems.
When similar problems are identified, they must be
linked to the primary report the current duplicate refers.
To address this process, Law and Hvannberg [P36] used a
manual merging process, where evaluators record every
change made to the usability problems in their own con-
solidated list. The results of their study found that the
merging process is influenced by the evaluator effect, in
which the merging rate and severity in increased when
evaluators performed merging process in a group. How-
ever, confidence level, which is influenced by personal
experience, does not fluctuate with the merging process.

5.2.4 Estimation for Usability Defects
In this research area, we only found one study that used
usability defect data to determine defect discovery rates.
Using Good-Turing discounting with a normalization
procedure, Lewis [P19] revealed that higher levels of de-
scription produce a higher estimate of discovery rate.

5.2.5 Design Discussion in Usability Defect Reports
We found only three studies in software engineering that
focus on correction discussion and had goals concerning
user interfaces and interaction design.

Addressing and resolving usability defects – Twidale and
Nichols [P21] identified two topics commonly discussed
by users: 1) debate about the validity of usability prob-
lems; and 2) critiques and refinement of candidate solu-
tions. They also express concern about usability defect
solutions that may introduce ripple effects.

Understanding structure and content of design discussion –
Ko and Chilana [P26] observed trends in online design
discussions include establishing scope, proposing ideas,
identifying design dimension, defending claims with ra-
tionale, moderating process, and making decisions. How-
ever, the temporal presentation of discussion comments

was inadequate to support proposals and critiques among
a broad range of users.

Supporting online forums – Raza et al. [P31] discovered
that the open source community works in a collaborative
environment to identify and find possible solutions to
usability defects. The number of active mailing lists and
messages posted on online forums indicated a significant
and active support from open source community.

5.3 Research Question 3
What are the identified challenges of usability defect reporting
in the usability and software engineering field?

Addressing the identified challenges of existing usabil-
ity defect reporting processes and tools serves as basis for
any improvement hoped for. We identified these reported
challenges from both software engineering and usability
engineering studies. From the software engineering per-
spective, these challenges include difficulties faced by
reporters to report, track and manage usability defects in
existing defect tracking systems. Most challenges identi-
fied in the usability engineering field are related to hu-
man factors and usability evaluation methods, while chal-
lenges in software engineering field are due to limitation
of existing defect repositories. Key reported challenges we
found from the analysed studies are summarized below.

Developer mindset – one of the prominent dillemmas
among evaluators is when their usability defects reported
get a lot less attention than they think they deserve from
software developers. This situation seems to happen
when software developers cannot understand the prob-
lems, especially when they do not participate in the eval-
uation or witnessed how users struggled to accomplish
certain tasks [P1, P9, P37]. In some cases, software devel-
opers do not always agree with the higher severity ratings
of usability defects given by reporters. In fact, software
developers usually assess severity somewhere differently
from reporters, and usability defects often end up with
low severity rating and lower priority than functional
defects [P37, P53]. Therefore, comparing usability defects
in the context of functional defects is impractical as usa-
bility defects can be overlooked [P54].

Subjective bias – evaluating usability aspects of a system
is highly subjective to an individual and thus the reporter
[P26, P40]. That is, one might see one aspect of an inter-
face is problematic, but others may be not. It is thus diffi-
cult to persuade software developers or designers that the
usability defects raised are indeed a real defect, that they
require the same attention as functional defects, and need
fixing. In fact, an agreement/disagreement between se-
verity ratings is also seen as an effect of subjective bias
when software developers or by designers evaluating
their own designs [P1, P23]. This has raised questions as
to whether usability defects should be reported into a
shared defect database or usability defects should have
their own database [P54].

Evaluator effect – our review observed that the way us-
ability defects are described is influenced by skill and
experience levels of the evaluator. From the usability en-
gineering literature, most authors reported that expert
usability evaluators are better at identifying and describ-

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

ing usability problems than the software developers or
novice evaluators [P1, P5, P7, P8, P14]. It should be noted
that inexperienced usability evaluators might feel that not
all problems should be reported, and when they found a
problem they do not know what information should be
reported. This challenge has led to incomplete usability
defect descriptions, in which a report usually does not
contain possible causes of the problems, recovery steps,
possible solutions and clear reasons why something is a
problem [P20, P39, P53].

Defect discovery methods – the completeness of usability
defect descriptions also depends on the defect discovery
methods used. [P3, P20] reported that certain methods,
such as metaphors of human thinking, are more likely to
have more information to justify a problem found com-
pared to think aloud. In other words, selection of appro-
priate testing techniques may help evaluators to identify
usability problems effectively and collect necessary usa-
bility defect information to report. However, in open
source projects where often no formal usability testing is
conducted, there is still a lack of mechanisms to discover
and report usability defects, especially those encountered
by typical or non-experienced users [P20].

Complexity management – the process of managing usa-
bility defects is a largely human task, especially when
discussing design solutions in defect repositories. There
are two aspects of complexity in managing usability de-
fects we found from literature. First, the linear temporal
discussion structure may not be sufficient to enable users
to keep track of all the discussion elements, such as elabo-
ration, confirmation, allocation of works, proposed fix,
and revision [P40]. This makes it difficult for users to
compare and critique a correction proposal, as they have
to read through the entire comments. One way to mini-
mize this challenge, is to use nested comments [3], [51],
[83] so that the critiques in design discussion can be more
explicit. Second, the changes to interface design might be
risky, as any changes may have impacts on the other
components of the system [P40], cause confusion to ex-
tisting users [P26], and may involve major changes to
business and technical constraints [P29, P53]. In this case,
some usability defects are difficult to explain and propos-
ing useful and usable recommendations may be hard.

Lack of appropriate channels for reporting usability defects –
existing defect repositories, such as Bugzila, Trac and JI-
RA, were designed as text-centric mediums for functional
defect reporting. This causes some usability defects that
relate to user’s feelings, emotions and “struggling” with
an interface to be difficult to explain textually [P20, P40,
P57]. To overcome this limitation, defect repositories, such
as Bugzilla could have a mechansim to easily and interac-
tively recod, upload, show, maintain and comment user
submitted videos, images and voice [P10, P38, P57]. Fur-
thermore, some defect repositories that were developed
by and for software developers have caused usability de-
fect reporters to fill in considerable amount of infor-
mation, much of them not relevant for usability defects
[P6, P38, P57]. Considering these challenges, several stud-
ies have suggested a mechanism to support non-expert
users in terms of automated collection contextual metada-

ta and cognitive information [P20, P23] and less user reg-
istration [P40].

Lack of specific guidelines for usability defect information
reporting – although generic defect report templates and
evaluation reports are available, most of them do not
clearly define specific information that should be reported
for usability defects in general and different kinds of usa-
bility defects [P29, P36, P54, P57]. For example, in assign-
ing usability defect severity, there is no standard guide-
lines and rules available. According to [P36], users usual-
ly use their personal experiences as a benchmark to judge
problem severity. Similarly, a lack of guidelines and ex-
emplary recommendations make the quality of fix rec-
ommendations highly varied [P29].

6 THREATS TO VALIDITY
Even though this systematic review was performed ac-
cording to a well accepted process [69], [70], we cannot
guarantee that we have covered all studies in this area.
Each systematic literature review process described in
section 3 was exposed to some threats. We describe the
threats associated with each process and the mitigation
strategies used for this review.

Data source and search strategy. This review is limited to
studies that were published from the year 2000 onwards.
Thus, it neglects studies that were published before the
year 2000. We were aware that a few studies on usability
defect reporting were published in 1997 [84] and 1999 [5],
but these studies were extended in other studies [85],
[86], which were included in our review. Other than that,
we cannot guarantee the selection of the search strings
covers all terms used in both software engineering and
the usability-engineering field. In this case, we tried to
derive a different set of search strings for different fields
of study and these are adjusted accordingly to each search
engine (as described in section 3.2.2 and Appendix B).
Additionally, we included a reference chaining search as a
secondary search to minimize this threat.

Study selection. The selection of studies was performed
by one researcher (PhD student) only, which may have
resulted in missing studies. However, the other authors
provided detailed feedback during the review process
and monitored the systematic literature review protocol
execution closely. We have used clear inclusion and exclu-
sion criteria to reduce selection bias.

Data extraction and synthesis. We found that some stud-
ies do not have clear details about the format used for
reporting usability defects. In this case, we had to make
assumptions on the basis of our judgment. Therefore,
there is a possibility that some of the extracted results are
partially inaccurate. In order to mitigate this, the other
authors randomly picked several studies, refined and
verified the extracted data. The earlier data extraction was
then rechecked by the first author. Overall agreement was
very high between the authors in terms of classification of
studies and agreement on extracted data.

YUSOP ET AL: REPORTING USABILITY DEFECTS: A SYSTEMATIC LITERATURE REVIEW 15

7 DISCUSSION
Section 5.3 summarised the key findings to date in terms
of current usability defect reporting limitations in the
software engineering and usability literature. Here we
draw on these findings, and the findings of other studies
and surveys from Section 2.3 to provide a set of key rec-
ommendations for further research in usability defect
reporting. These provide a road map for further usability
defect reporting research and while many are complimen-
tary, we order them roughly in our suggested priority
order to address.

Key challenges in usability defect reporting from our
systematic literature review and previous studies are that:

• existing usability defect reporting tools are not cap-
turing the needed information to fix the defects effec-
tively;

• many reporters are unsure what they need to capture
or how to capture information in usability defect re-
ports;

• there is a lot of manual effort going into usability de-
fect reporting;

• there is a difference between reporter and evaluator /
fixer points of view, in terms of information to cap-
ture and prioritization of usability defect severity;

• usability engineering methods and tools are distinct
from software engineering defect repositories result-
ing in unnecessary duplication of data and effort;

• existing taxonomies, classifications, severity ratings
and terminology are all limited and often incon-
sistent; and

• the community is unsure what information actually
influences fixing of reported usability defects.

Our key recommendations to address these issues in-

clude:
• development of a new, more comprehensive and

consistent usability defect taxnomony and associated
consistent terminology;

• identify what are the key usability defect attributes
that need to be captured to support defect correction
and ensure they are captured in sufficient detail and
quality;

• provide reporters, especially novice ones, contextual-
ized guidelines for reporting defects, including teas-
ing out user vs system usability “difficulties” in re-
ports;

• better define usability defect severity and prioritiza-
tion attributes;

• provide reporters more customized reporting forms
for different kinds of usability defect reporting; and

• provide higher degrees and more effective automa-
tion in usability defect reporting tools, including lev-
eraging usability engineering tool results better in
software engineering defect reporting tools.

Addressing these key issues will both improve the re-

porting of usability defects but also usability defect man-
agement and correction. Less effort will be involved in
reporting, more accurate reports will be produced, devel-
opers and reporters will both gain the information they

need to carry out their respective roles, and more im-
portant defects will be identified, prioritized and correct-
ed. We discuss each of these recommendations below,
including proposed research to undertake to address cur-
rent limitations and challenges in usability defect report-
ing. This research agenda requires a combination of both
HCI and Software Engineering research contributions that
we identify.

Recommendation R1 - Develop an improved taxonomy
for classifying usability defects
There are currently many usability defect taxonomies,
classifications and attributes of usability defects identified
in HCI literature and software engineering literature. We
found many studies identifying that many usability de-
fect reports lack sufficient attributes for classifying usabil-
ity defects. A key obstacle of using existing usability de-
fect report data is the widespread use of unstructured
textual features in most current defect tracking systems.
Lack of usability knowledge or different usability
knowledge amoung reporters has produced reports that
use a wide range of non-standard usability terms that
complicates usability defect classification and identifica-
tion. In addition, existing defect report attributes do not
capture usability related information that can be directly
used to filter usability defects. We observed only two
studies [P30, P32] that specify the types of defects to de-
scribe usability defects across the 13 formats we identi-
fied.

There are several reasons for classifying usability de-
fects: 1) to better identify and disclose the probable causes
of the defect; 2) to highlight the impact of usability defects
on the intended user task outcome; 3) to treat usability
defect priorities the same way as for other defects; and 4)
to quantitatively track usability defects, defect impact and
defect resolution over time.

We also observed a great deal of inconsistency in the
terms used in usability defect reports for specifying the
same usability defect across the 13 formats found. For
instance, a “severity” attribute was used in most of the
formats to denote the importance of the defects to be
fixed [87]. However, other than severity, some studies
used impact [P12, P16], seriousness [P13, P53] and catego-
ry [P5] to refer to severity. This variation of terms for one
usability attribute can also be found in use of “minor, ma-
jor, enhancement” for a defect’s severity, while others
used “severe, critical”, which resulted in inconsistent data
which was not comparable. Many other usability attrib-
utes are used inconsistently in terms of both name and
value. This leads to even within the same project incon-
sistent reports that are hard to read, understand, track
and prioritize.

To solve these issues, the HCI and software engineer-
ing communities need to develop a more comprehensive
and agreed usability defect taxonomy. Much of this work
has been established in terms of HCI usability evaluation
terminology and attributes, but has been inconsistently or
not applied in software engineering practice around usa-
bility defect reporting. Along with a comprehensive,
agreed usability defect taxonomy, an agreed set of names

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

and meanings for usability defect attributes are needed.

Recommendation R2 – Provision of key usability-related
defect attributes
Following on from R1, we observed that many of the usa-
bility defect description formats in use do not define sep-
arate attributes to indicate specific key information about
a usability defect. This results in many software develop-
ers with little experience reporting “usability” issues find-
ing difficulties in understanding the reported issue. This
means software developers do not always agree or under-
stand the usability defects actually reported, even if re-
ported at all. As a result, usability defects get less atten-
tion or are sometimes even closed off as not valid.

One way to overcome this issue is to define and cap-
ture usability defect attributes at a fine-grained level,
which can reveal more detailed issues with usability
characteristics, such as heuristics, defect category, location
and impact. Additionally, by introducing dedicated
fields/ attributes to address likely interaction difficulties,
the end user’s feeling, and how they see an interface as
problematic – so that the usability “struggles” exempli-
fied in the usability defect reported can better understood
and appreciated by software developers using the usabil-
ity defect report. This information can be used by project
managers and software developers for defect manage-
ment purposes, as well as provide researchers richer in-
formation on which to conduct empirical analysis of usa-
bility defect cause, impact, tracking and resolution.

In order to identify critical usability defect attributes to
report, research needs to be carried out to determine both:
(1) what reporters are reporting and think they should be
reporting, and what developers require in order to fix
usability defects; and (2) what usability defect attributes
actually impact defect understanding and correcting. This
could be done via surveys and interviews of reporters
and developers, to get opinions of attributes required,
and mining of existing defect repositories, to understand
what is being reported and its impact on resolution.

To minimize unnecessary or irrelevant attributes for a
particular usability defect, usability defect reporting
forms could be adjusted using e.g. a contextualised ques-
tion-based design so that a reporter can select specific
attributes that are relevant to them. We return to this is-
sue below.

Recommendation R3 – Provide good contextualized
guidelines for well-written usability defect reports
This study identified some research that defined guide-
lines for characterizing how usability defects should be
reported. However, these lack content-related criteria that
would assist reporters in collecting important and useful
information for describing the defect and correcting the
defect [P2, P5, P37, P52]. For instance, a good usability
defect report should describe the issue precisely, but often
the information that really needs to be reported is not
explained clearly or even not captured at all. Inexperi-
enced reporters in particular may think that their reports
are complete, but they may actually be providing irrele-
vant or inadequate information.

These issues require further research into what influ-
ences the fixing of usability defects. This might include
mining defect repositories for evidence of useful attrib-
utes and reports, and surveying and interviewing both
reporters and developers. The findings from these kinds
of studies could be used to produce better contextual
guidelines that assist both reporters and software devel-
opers. Another related area for both HCI and software
engineering research is studying the “evaluator effect” in
terms of how it impacts the usability defect reporting. A
related concept we call the “reader effect” – how software
developers read, interpret and action usability defect re-
ports – appears to be an as yet unstudied area, that with
better knowledge also may improve defect reporting.

Recommendation R4 - Prioritize usability defect attrib-
utes by their level of importance for software engineers
There are many separate usability defect attributes that
we have identified from usability engineering studies (33
attributes). Many of them are do not appear to be im-
portant for understanding, replicating or correcting the
usability defect from a software engineering perspective.
Since a key aim in our research was to simplify and im-
prove the defect reporting process, we have to identify
which of the attributes have the greatest influence on de-
fect fixing process. We could focus on capturing the ones
that will have the greatest impact in convincing software
developers of a problem and assisting them in prioritiz-
ing, diagnosing cause, and correcting. Related to this, we
found little work on how to best prioritize usability defect
reports to provide best value to end users i.e. fix those
most seriously impacting usability first. As above, this
requires better ways to characterise usability defects, clas-
sify, determine severity, and convey this to software pro-
ject managers and developers.

To advance this research and practice outcomes a de-
tailed survey and interviews with a large number of soft-
ware engineers to determine critical attributes for them is
needed. Additionally, understanding better the difference
between usability defect reporter and consumer perspec-
tives is essential. Improved usability attribute terminolo-
gy and understanding in terms of impact on usability
defect description and diagnosis is also needed. Mining
existing defect repositories to understand what attributes
seem to lead to improved correction may also assist this.

Recommendation R5 – Provide reporters customised usa-
bility defect report forms
The static reporting template offered by most functional
requirements-oriented software defect repositories is gen-
erally universal. These do not consider the influence of
the different types of reporters, different kind and use of
diverse usability evaluation methods, and the phase of
development where the usability defects are found. Al-
most all research shows that all defect types are reported
using the same generic defect reporting template. In some
cases the information requested on the form is simply not
relevant and some is beyond the reporter’s knowledge
[12]. Most are text only and do not support other forms of
input collection, or make it difficult to capture and attach.

YUSOP ET AL: REPORTING USABILITY DEFECTS: A SYSTEMATIC LITERATURE REVIEW 17

A number of enhancements to existing reporting tools
have been suggested in the literature [P45, P49, P51, P55],
or can be deduced from the related usability defect re-
porting issues discussed above. We think that using a
guided reporting method where reporters are assisted
with predefined attributes for input selection, online help
and question/wizard-based interaction may greatly im-
prove capture and quality of usability defect reports [33],
[32]. In this way, even if the reporter has less knowledge
about usability, they can still be guided to capture reason-
able quality defect reports. As a result, the recorded data
will be more structured, fine-grained and uniform for
usability defect report management. Users should be
prompted/allowed to capture relevant attributes based
on types of usability defects, the reporter’s profile (e.g.
non-technical user, technical user, usability experts and
etc), and usability defect report attributes be prioritized
based on the types of defects and relevancy.

Additionally, usability defect report form should be
simple. Simplicity – the art of minimizing the amount of
requested attributes in a usability defect report – is a nec-
essary quality focus, by including only what software
developers need rather than what reporters think – to
make it easier for software developers to understand, rep-
licate and fix the problems [P55]. Giving a reporter a sim-
ple set of explicitly usability-focused defect reporting
forms for different kinds of defects could encourage them
to report more usability defects with better outcomes,
rather than imposing on them many complex, irrelevant
attributes.

Another issue in usability defect reporting is that usa-
bility engineering tools and techniques are quite distinct
from software engineering defect repository reporting
and management tools and software engineering unit
testing methods. This can cause repeated defect reporting
effect when transferring usability defect information
found during formal usability evaluations to project de-
fect repositories, a waste of time, and possibility of infor-
mation loss. Having a standard format that can be shared
between the usability and software engineering commu-
nities would add value. However, further research to em-
pirically study the impact of using separate and shared
defect repositories would suggest a better usability defect
reporting approach.

A further area for future research is to investigate
what are the key factors influencing quality usability de-
fect reporting, from the perspective of non-technical re-
porters. Using this knowledge, how can next generation
usability defect reporting tools be better-designed to lev-
erage HCI knowledge, domain knowledge and end user
knowledge.

Recommendation R6 – Develop more automation in usa-
bility defect reporting
Much current usability defect reporting in software teams
is still highly text-based and manually captured. Apart
from better information capture for usability defect re-
ports, as discussed above, more automated data capture
and richer kinds of information capture are needed. Many
usability engineering tools provide both of these e.g. in-

strumenting applications to capture traces and user inter-
action, recording richer user interaction and mapping to
user task, and capture of video, audio, screenshots, di-
verse interaction (touch, sketch, guesture, accelerometer
etc as well as keyboard and mouse). However, most soft-
ware engineering defect tracking tools make capture of
this highly manual, uni-format (usually free format text),
or make adding and manipulating attachments difficult
(or impossible). There may be entirely novel approaches
to usability defect reporting possible combining HCI usa-
bility engineering methods and tools with software defect
reporting and management repositories.

Where possible, supporting automated capture of usa-
bility-related defect issues would enhance the reporting
process, but also the replication, solution discussion and
correction processes. Such data collection should include
structured, contextualized reporting forms as above, but
also event traces, interaction traces, screenshots, audio
and video, a variety of interaction styles, especially for
mobile applications, and enable software developers to
view this in context with the usability defect report at-
tributes captured. Attachments such as audio, video and
interaction recordings should be interactively manipulat-
able as in some HCI-oriented usability assessment tools.

8 CONCLUSIONS
The aim of this study was to identify the state of the art in
usability defect reporting in both the software engineer-
ing and usability studies areas for fruitful future research.
We performed a comprehensive literature search on five
reputable online databases using a multiple search strings
combination and two phase screening of papers. As a re-
sult, 57 papers were selected. We developed a classifica-
tion scheme (see Fig. 2) to classify these papers in accord-
ance to our research questions. This allowed us to exam-
ine the trends and motivations in this line of research.

We divided the papers into three main categories; 1)
reporting usability defect information - which is related to
research on reporting the usability defect, 2) analyzing
usability defect data - which is related to researching the
use of defect data, and 3) challenges – which refer to is-
sues identified in current approaches to usability defect
reporting and management.

In usability engineering and HCI studies, evidence
showed that various diverse mechanisms are used to cap-
ture and record usability defects. This is supported by
numerous defect report content and formats to present
the information. However, most of these mechanisms and
formats were used in isolation. That is, each mechanism
and format was designed to the specific usability evalua-
tion method and does not integrate with the central defect
database. Furthermore, existing guidelines to assist re-
porters in writing a good usability defect description lack
guidance for collecting usability defect data.

As far as quality of defect data is concerned, some
studies evaluated usability defect report quality. The
evaluations were conducted through comparative studies
between reports produced by an expert and a non-expert
evaluator. In general, defect reports produced by an ex-

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

pert usability evaluator had better quality than the defect
reports produced by a non-expert evaluator. In terms of
improving usability defect management, defect data was
used for matching, merging and estimation purposes.

However, usability defect reporting has been less in-
vestigated to date in the software engineering domain.
Existing studies that investigated usability defect report-
ing have focused especially on addressing the limitations
of open source defect repositories to support usability
defects. Other work focuses on improving the overall de-
fect data quality, and discussed defect forms for function-
al or non-functional defects (performance, reliability, se-
curity). In contrast, our focus blends HCI, usability and
software engineering needs to create defect informational
content.

We observe that usability defects reported in defect
tracking system and usability evaluation documents
commonly suffer from mixed, inconsistent terms and val-
ues of usability defect data and insufficient attributes to
classify usability defects. Although mailing lists and
online forums have become an alternative interaction hub
for users to discuss usability defects, especially in open
source development communities, the linear sequence of
communication makes it hard to extract the contextual
information for developers to fix the problems. For this
reason, a guided-defect reporting with more structured
non-textual information to augment the unstructured tex-
tual defect reporting approach may increase the infor-
mation archival value. In addition, usability defects by
their nature need richer feedback such as screen, video
and audio to describe and replicate. However, the use of
guided-defect reporting for reporters raises several chal-
lenges and new opportunities for research of new report-
ing approaches, as well as the investigation of what
makes a good usability defect report, what terminology to
use and what critical usability defect attributes to capture.

For future research, we plan to design new methods,
processes and tools for eliminating the aforementioned
limitations. In particular, we plan to develop an improved
usability defect taxonomy to characterise usability defects
and attributes; survey reporters and developers on their
respective usability defect report needs; mine existing
defect repositories to investigate more deeply what usa-
bility defect information is actually being captured; and
design and prototype extensions to existing defect reposi-
tories and tools to support improved usability defect re-
porting process to overcome key weaknesses of the exist-
ing approaches.

ACKNOWLEDGEMENT
Support for the first author from the Ministry of Higher
Education Malaysia, Universiti Teknologi MARA (UiTM),
and partial support from the ARC Discovery projects
scheme, the Deakin Software Technology Innovation Lab,
and Data61 for all authors, is gratefully acknowledged.

REFERENCES
[1] ISO/IEC, “Information technology — Software product quality

— Part 1: Quality model,” vol. 2000. 2000.
[2] C. Wilson and K. P. Coyne, “The whiteboard: Tracking usability

issues: to bug or not to bug?,” Interactions, pp. 15–19, 2001.
[3] M. B. Twidale, D. M. Nichols, and N. Zealand, “Exploring Usa-

bility Discussions in Open Source Development,” in Proceedings
of the 38th Annual Hawaii Internatioal Conference on System Scienc-
es, 2005, pp. 1–10.

[4] M. G. Capra, “Usability Problem Description and the
Evaluator Effect in Usability Testing,”. PhD Thesis. Viginia
Tech, Blacksburg, VA, 2006.

[5] S. L. Keenan, H. R. Hartson, Dennis G. Kafura, and R. S. Schul-
man, “The Usability Problem Taxonomy : A Framework for
Classification and Analysis,” Empir. Softw. Eng., vol. 4, pp. 71–
104, 1999.

[6] T. S. Andre, S. M. Belz, F. a. McCrearys, and H. R. Hartson,
“Testing a Framework for Reliable Classification of Usability
Problems,” in Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, 2000, vol. 44, no. 37, pp. 573–576.

[7] J. Howarth, T. Smith-jackson, and R. Hartson, “Supporting
novice usability practitioners with usability engineering tools,”
Int. J. Human-Computer Stud., vol. 67, no. 6, pp. 533–549, 2009.

[8] D. M. Nichols and M. B. Twidale, “Usability processes in open
source projects,” Softw. Process Improv. Pract., vol. 11, no. 2, pp.
149–162, Mar. 2006.

[9] F. P. Simões, “Supporting End User Reporting of HCI Issues
in Open Source Software,”. PhD Thesis. Pontificia
Universidade Catolica, Do Rio De Janeiro, 2013.

[10] A. Raza, L. F. Capretz, and F. Ahmed, “Usability bugs in open-
source software and online forums,” IET Softw., vol. 6, no. No-
vember 2011, p. 226, 2012.

[11] R. Lotufo and K. Czarnecki, “Improving Bug Report Compre-
hension,” 2012.

[12] G. Çetin, D. Verzulli, and S. Frings, “An Analysis of Involve-
ment of HCI Experts in Distributed Software Development:
Practical Issues,” Online Communities Soc. Comput., vol. 4564, pp.
32–40, 2007.

[13] A. Fernandez, E. Insfran, and S. Abrahão, “Usability evaluation
methods for the web: A systematic mapping study,” Inf. Softw.
Technol., vol. 53, no. 8, pp. 789–817, Aug. 2011.

[14] R. T. Høegh and J. Stage, “The Impact of Usability Reports and
User Test Observations on Developers ’ Understanding of Usa-
bility Data : An Exploratory Study,” Int. J. HUMAN–
COMPUTER Interact., vol. 21, no. 2, pp. 173–196, 2006.

[15] S. Blair, “A Guide To Evaluating a Bug Tracking System,”
MetaQuest Software, 2004.

[16] K. Hornbaek and E. Frokjaer, “What Kinds of Usability-
Problem Description are Useful to Developers?,” in Proceedings
of the Human Factors and Ergonomics Society Annual Meeting,
2006, vol. 50, no. 24, pp. 2523–2527.

[17] J. D. Strate and P. a. Laplante, “A Literature Review of Research
in Software Defect Reporting,” IEEE Trans. Reliab., vol. 62, no. 2,
pp. 444–454, Jun. 2013.

[18] L. Despalatović, “The Usability of Free / Libre / Open Source
Projects,” Int. J. Comput. Inf. Technol., vol. 02, no. 05, pp. 958–
963, 2013.

[19] Y. C. Cavalcanti, P. A. da M. S. Neto, I. do C. Machado, T. F.
Vale, E. S. de Almeida, and S. R. de L. Meira, “Challenges and
opportunities for software change request repositories: a sys-

YUSOP ET AL: REPORTING USABILITY DEFECTS: A SYSTEMATIC LITERATURE REVIEW 19

tematic mapping study,” J. Software-Evolution Process, pp. 1–37,
2013.

[20] P. K. Chilana, A. J. Ko, J. O. Wobbrock, T. Grossman, G. Fitz-
maurice, and K. S. E, “Post-Deployment Usability : A Survey of
Current Practices,” in CHI Conference on Human Factors in Com-
puting Systems, 2011, pp. 2243–2246.

[21] A. J. Ko, M. J. Lee, V. Ferrari, S. Ip, and C. Tran, “A Case Study
of Post-Deployment User Feedback Triage,” IBM Syst. J., pp. 1–
8, 2011.

[22] A. Raza, L. F. Capretz, and F. Ahmed, “Maintenance support in
open source software projects,” in Eighth International Conference
on Digital Information Management (ICDIM 2013), 2013, pp. 391–
395.

[23] J. Harty, “Finding Usability Bugs with Automated Tests,”
Communications of the ACM, vol. 54, pp. 44–49, 2011.

[24] F. T. W. Au, S. Baker, I. Warren, and G. Dobbie, “Automated
Usability Testing Framework,” Australas. User Interface Conf.,
vol. 76, pp. 55–64, 2008.

[25] S. Baker, F. Au, G. Dobbie, and I. Warren, “Automated usability
testing using HUI analyzer,” in Proceedings of the Australian
Software Engineering Conference, ASWEC, 2008, pp. 579–588.

[26] A. Alsumait and A. Al-Osaimi, “Usability heuristics evaluation
for child e-learning applications,” J. Softw., vol. 5, pp. 654–661,
2010.

[27] C. Gutwin and S. Greenberg, “The mechanics of collaboration:
Developing low cost usability evaluation methods for shared
workspaces,” in Proceedings of the Workshop on Enabling Technol-
ogies: Infrastructure for Collaborative Enterprises, WETICE, 2000,
vol. 2000-Janua, pp. 98–103.

[28] J. Mankoff, A. K. a. K. Dey, G. Hsieh, J. Kientz, S. Lederer, and
M. Ames, “Heuristic Evaluation of Ambient Displays,” Proc.
SIGCHI Conf. Hum. factors Comput. Syst., pp. 169–176, 2003.

[29] D. Pinelle, N. Wong, T. Stach, and C. Gutwin, “Usability heuris-
tics for networked multiplayer games,” in Proceedings of the
ACM 2009 international conference on Supporting group work,
2009, pp. 169–178.

[30] L. O. Bligård and A. L. Osvalder, “Enhanced cognitive
walkthrough: Development of the cognitive walkthrough
method to better predict, identify, and present usability prob-
lems,” Adv. Human-Computer Interact., vol. 2013, 2013.

[31] M. P. González, J. Lorésc, and A. Granollers, “Enhancing usabil-
ity testing through datamining techniques: A novel approach to
detecting usability problem patterns for a context of use,” Inf.
Softw. Technol., vol. 50, pp. 547–568, 2008.

[32] P. K. Chilana, A. J. Ko, and J. O. Wobbrock, “LemonAid : Selec-
tion-Based Crowdsourced Contextual Help for Web Applica-
tions,” Proc. SIGCHI Conf. Hum. Factors Comput. Syst., pp. 1549–
1558, 2012.

[33] J. Matejka, T. Grossman, and G. Fitzmaurice, “IP-QAT: In-
Product Questions, Answers, & Tips,” in Proceedings of the 24th
annual ACM symposium on User interface software and technology -
UIST’11, 2011, pp. 175–184.

[34] J. Itkonen, M. V. Mäntylä, and C. Lassenius, “Defect detection
efficiency: Test case based vs. exploratory testing,” in Proceed-
ings - 1st International Symposium on Empirical Software Engineer-
ing and Measurement, ESEM 2007, 2007, pp. 61–70.

[35] H. Yehuda and J. McGinn, “Coming to terms: comparing and
combining the results of multiple evaluators performing heuris-
tic evaluation,” in Proceedings of ACM CHI 2007 Conference on
Human Factors in Computing Systems, 2007, vol. 2, pp. 1899–1904.

[36] P. H. and P. C., “What do users really care about? A compari-
son of usability problems found by users and experts on highly
interactive websites,” in Conference on Human Factors in Compu-
ting Systems - Proceedings, 2012, pp. 2107–2116.

[37] H. R. Hartson, T. S. T. Andre, and R. R. C. Williges, “Criteria for
evaluating usability evaluation methods,” Int. J. Hum. Comput.
Interact., vol. 13, pp. 1–35, 2001.

[38] P. Koutsabasis, T. Spyrou, and J. Darzentas, “Evaluating usabil-
ity evaluation methods: criteria, method and a case study,”
Human-Computer Interact. Part I, HCII, pp. 569–578, 2007.

[39] A. Seffah, M. Donyaee, R. B. Kline, and H. K. Padda, “Usability
measurement and metrics: A consolidated model,” Softw. Qual.
J., vol. 14, pp. 159–178, 2006.

[40] J. Sauro and E. Kindlund, “A method to standardize usability
metrics into a single score,” in Proceedings of the SIGCHI confer-
ence on Human factors in computing systems (CHI ’05), 2005, pp.
401–409.

[41] R. T. H⊘egh, “Case study: integrating usability activities in a
software development process,” Behav. Inf. Technol., vol. 27, pp.
301–306, 2008.

[42] J. G. Redish, R. G. Bias, A. Usability, R. Bailey, R. Molich, J.
Dumas, and J. M. Spool, “Usability in Practice : Formative Usa-
bility Evaluations — Evolution and Revolution,” in Computer
Human Interaction, 2002, no. april, pp. 885–890.

[43] K. Hornbæk, “Current practice in measuring usability: Chal-
lenges to usability studies and research,” Int. J. Hum. Comput.
Stud., vol. 64, pp. 79–102, 2006.

[44] M. Y. Ivory and M. A. Hearst, “The state of the art in automat-
ing usability evaluation of user interfaces,” ACM Comput. Surv.,
vol. 33, no. 4, pp. 470–516, 2001.

[45] N. E. Jacobsen, M. Hertzum, and B. E. John, “The evaluator
effect in usability tests,” in CHI 1998, 1998, pp. 255–256.

[46] M. Hertzum and N. E. Jacobsen, “The Evaluator Effect: A
Chilling Fact About Usability Evaluation Methods,” Int. J. Hum.
Comput. Interact., vol. 15, pp. 183–204, 2003.

[47] A. Raza, L. F. Capretz, and F. Ahmed, “Improvement of Open
Source Software Usability: An Empirical Evaluation from De-
velopers’ Perspective,” Adv. Softw. Eng., vol. 2010, pp. 1–12,
2010.

[48] A. Følstad, E. L.-C. Law, and K. Hornbæk, “Outliers in usability
testing: how to treat usability problems found for only one test
participant?,” in Proceedings of the 7th Nordic Conference on Hu-
man-Computer Interaction Making Sense Through Design - Nor-
diCHI ’12, 2012, p. 257.

[49] K. Hornbæk and E. Frøkjær, “A Study of the Evaluator Effect in
Usability Testing.,” Human-Computer Interact., vol. 23, pp. 251–
277, 2008.

[50] E. L. Law and E. T. Hvannberg, “Consolidating Usability Prob-
lems with Novice Evaluators,” in Proceedings of the 5th Nordic
conference on Human-computer interaction: building bridges, 2008,
pp. 495–498.

[51] F. Botella and A. Peñalver, “A new proposal for improving
heuristic evaluation reports performed by novice evaluators,”
in Proceedings of the 2013 Chilean Conference on Human - Computer
Interaction, 2013, pp. 72–75.

[52] M. Aziz and R. D. Macredie, “Proposing a Perceived Ease of
Use Factors Taxonomy for Information System Use,” in Proceed-
ings. IEEE SoutheastCon, 2005., 2005, pp. 468–476.

[53] L. Gorlenko and P. Englefied, “Usability error classification:
qualitative data analysis for UX practitioners,” in Proceedings of

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

ACM CHI 2006 Conference on Human Factors in Computing Sys-
tems, 2006, vol. 2, pp. 803–808.

[54] R. Khajouei, L. W. P. Peute, a. Hasman, and M. W. M. Jaspers,
“Classification and prioritization of usability problems using an
augmented classification scheme,” J. Biomed. Inform., vol. 44, no.
6, pp. 948–957, 2011.

[55] D.-H. Ham, “A model-based framework for classifying and
diagnosing usability problems,” Cogn. Technol. Work, vol. 16,
pp. 373–388, 2014.

[56] M. Hassenzahl, “Prioritizing usability problems: Data-driven
and judgement-driven severity estimates,” Behav. Inf. Technol.,
vol. 19, pp. 29–42, 2000.

[57] A. Sureka, “Learning to Classify Bug Reports into Compo-
nents,” in Objects, Models, Components, Patterns, 2012, pp. 288–
303.

[58] S. Breu and J. Sillito, “Information Needs in Bug Reports : Im-
proving Cooperation Between Developers and Users,” in The
2010 ACM Conference on Computer Supported Cooperative Work,
2010, pp. 301–310.

[59] T. Zimmermann, R. Premraj, N. Bettenburg, C. Weiss, S. Just,
and A. Schro, “What Makes a Good Bug Report ?,” IEEE Trans.
Softw. Eng., vol. 36, no. 5, pp. 618–643, 2010.

[60] E. I. Laukkanen and M. V. Mantyla, “Survey Reproduction of
Defect Reporting in Industrial Software Development,” in 2011
International Symposium on Empirical Software Engineering and
Measurement, 2011, pp. 197–206.

[61] T. Zimmermann and S. Breu, “Improving Bug Tracking Sys-
tems,” in 31st International Conference on Software Engineering -
Companion Volume, 2009. ICSE-Companion 2009., 2009, pp. 247 –
250.

[62] S. Zaman, B. Adams, and A. E. Hassan, “Security Versus Per-
formance Bugs : A Case Study on Firefox,” in Proceedings of the
8th Working Conference on Mining Software Repositories, 2011.

[63] A. Nistor, T. Jiang, and L. Tan, “Discovering, reporting, and
fixing performance bugs,” in 2013 10th Working Conference on
Mining Software Repositories (MSR), 2013, pp. 237–246.

[64] S. Zaman, B. Adams, and a. E. Hassan, “A qualitative study on
performance bugs,” in 2012 9th IEEE Working Conference on Min-
ing Software Repositories (MSR), 2012, pp. 199–208.

[65] P. Anbalagan, M. Vouk, C. Science, and N. Carolina, “An Em-
pirical Study of Security Problem Reports in Linux Distribu-
tions,” in Third International Symposiumm on Empirical Software
Engineering and Measurement, 2009, pp. 481–484.

[66] M. Terry, M. Kay, and B. Lafreniere, “Perceptions and Practices
of Usability in the Free/Open Source Software (FOSS) Commu-
nity,” in Proceedings of the 28th international conference on Human
factors in computing systems CHI 10, 2010, pp. 1–10.

[67] D. M. Nichols and M. B. Twidale, “The Usability of Open
Source Software : analysis and prospects,” pp. 1–13, 2006.

[68] B. a. Kitchenham, P. Brereton, M. Turner, M. K. Niazi, S. Link-
man, R. Pretorius, and D. Budgen, “Refining the systematic lit-
erature review process—two participant-observer case studies,”
Empir. Softw. Eng., vol. 15, no. 6, pp. 618–653, Jun. 2010.

[69] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic
Mapping Studies in Software Engineering,” in Proceedings of the
12th international conference on Evaluation and Assessment in Soft-
ware Engineering, 2008, pp. 68–77.

[70] B. Kitchenham, “Guidelines for performing Systematic Litera-
ture Reviews in Software Engineering,” United Kingdom, 2007.

[71] P. Mclnerney, C. Pantel, and K. Melder, “Managing Usability
Defects from Identification to Closure,” in Extended Abstracts on
Human Factors in Computing Systems, 2001, pp. 497–498.

[72] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J.
Bailey, and S. Linkman, “Systematic literature reviews in soft-
ware engineering – A systematic literature review,” Inf. Softw.
Technol., vol. 51, no. 1, pp. 7–15, Jan. 2009.

[73] D. Maplesden, E. Tempero, J. Hosking, and J. C. Grundy, “Per-
formance Analysis for Object-Oriented Software: A Systematic
Mapping,” IEEE Trans. Softw. Eng., vol. 41, pp. 691–710, 2015.

[74] N. Salleh, E. Mendes, and J. Grundy, Empirical Studies of Pair
Programming for CS/SE Teaching in Higher Education: A Systemat-
ic Literature Review, vol. 37, no. 4. 2011, pp. 509–525.

[75] P. Achimugu, A. Selamat, R. Ibrahim, and M. Naz, “A system-
atic literature review of software requirements prioritization re-
search,” Inf. Softw. Technol., vol. 56, no. 6, pp. 568–585, 2014.

[76] G. S. Walia and J. C. Carver, “A systematic literature review to
identify and classify software requirement errors,” Inf. Softw.
Technol., vol. 51, no. 7, pp. 1087–1109, Jul. 2009.

[77] B. A. Kitchenham, E. Mendes, and G. H. Travassos, “Cross
versus within-company cost estimation studies: A systematic
review,” IEEE Trans. Softw. Eng., vol. 33, pp. 316–329, 2007.

[78] M. Nørgaard and R. T. Høegh, “Evaluating Usability – Using
Models of Argumentation to Improve Persuasiveness of Usabil-
ity Feedback,” in Proceedings of the 7th ACM conference on De-
signing interactive systems, 2008, pp. 212–221.

[79] E. T. Hvannberg, E. L.-C. Law, and M. K. Lárusdóttir, “Heuris-
tic evaluation: Comparing ways of finding and reporting usa-
bility problems,” Interact. Comput., vol. 19, no. 2, pp. 225–240,
Mar. 2007.

[80] A. Bruun and J. Stage, “Barefoot usability evaluations,” Behav.
Inf. Technol., vol. 33, no. 11, pp. 1148–1167, Feb. 2014.

[81] M. G. Capra, “Comparing Usability Problem Identification and
Description by Practitioners and Students,” in Proceedings of the
Human Factors and Ergonomics Society Annual Meeting, 2007.

[82] Y. C. Cavalcanti, P. A. da Mota Silveira Neto, D. Lucrédio, T.
Vale, E. S. de Almeida, and S. R. de Lemos Meira, “The bug re-
port duplication problem: An exploratory study,” Softw. Qual.
J., vol. 21, pp. 39–66, 2013.

[83] R. V. Lotufo, “Towards Next Generation Bug Tracking Sys-
tems,”. PhD Thesis. University of Waterloo, Canada, 2013.

 [84] D. Lavery, G. Cockton, and M. P. Atkinson, “Comparison of
evaluation methods using structured usability problem re-
ports,” Behaviour & Information Technology, vol. 16. pp. 246–266,
1997.

[85] T. S. Andre, H. R. Hartson, and R. C. Williges, “Determining the
Effectiveness of the Usability Problem Inspector: A Theory-
Based Model and Tool for Finding Usability Problems,” Hum.
Factors J. Hum. Factors Ergon. Soc., 2003.

[86] G. Cockton, A. Woolrych, and M. Hindmarch, “Reconditioned
Merchandise : Extended Structured Report Formats in Usability
Inspection,” in Extended Abstracts on Human Factors in Compu-
ting Systems, 2004, pp. 1433–1436.

[87] I. Herraiz, D. M. German, M. Jesus, U. Rey, and J. Carlos, “To-
wards a Simplification of the Bug Report form in Eclipse,” in
Mining Software Repositories, 2008, pp. 145–148.

YUSOP ET AL: REPORTING USABILITY DEFECTS: A SYSTEMATIC LITERATURE REVIEW 21

Appendix A

LIST OF INCLUDED PAPERS
The references listed below correspond to these prefaced
with the letter “P” throughout the paper.

[1] Bruun, A., & Stage, J. (2014). Barefoot usability evaluations.

Behaviour & Information Technology, 33(11), 1148–1167.
Doi:10.1080/0144929X.2014.883552

[2] Dumas, B. J. S., Molich, B. R., & Jeffries, B. R. (2004). Describ-
ing usability problems: Are we sending the right message?
Interactions, 0–4.

[3] Hornbaek, K., & Frokjaer, E. (2006). What Kinds of Usability-
Problem Description are Useful to Developers? In Proceedings
of the Human Factors and Ergonomics Society Annual Meeting
(Vol. 50, pp. 2523–2527). Doi:10.1177/154193120605002402

[4] Howarth, J., & Hall, M. (2006). Identifying Immediate Inten-
tion during Usability Evaluation. In Proceedings of the 44th An-
nual Southeast regional conference (pp. 274–279).

[5] Capra, M. G. (2007). Comparing Usability Problem Identifica-
tion and Description by Practitioners and Students. In Proceed-
ings of the Human Factors and Ergonomics Society Annual Meet-
ing (pp. 474–477).

[6] Bruun, A., Gull, P., Hofmeister, L., & Stage, J. (2009). Let Your
Users Do the Testing : A Comparison of Three Remote Asyn-
chronous Usability Testing Methods. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (pp.
1619–1628).

[7] Howarth, J., Smith-jackson, T., & Hartson, R. (2009). Support-
ing novice usability practitioners with usability engineering
tools. International Journal Human-Computer Studies, 67(6), 533–
549. Doi:10.1016/j.ijhcs.2009.02.003

[8] Skov, M. B., & Stage, J. (2009). Training software developers
and designers to conduct usability evaluations. Behaviour &
Information Technology, 31(4), 425–435.
Doi:10.1080/01449290903398208

[9] Høegh, R. T., & Stage, J. (2006). The Impact of Usability Re-
ports and User Test Observations on Developers ’ Under-
standing of Usability Data : An Exploratory Study. INTER-
NATIONAL JOURNAL OF HUMAN–COMPUTER INTERAC-
TION, 21(2), 173–196.

[10] Hvannberg, E. T., Law, E. L.-C., & Lárusdóttir, M. K. (2007).
Heuristic evaluation: Comparing ways of finding and report-
ing usability problems. Interacting with Computers, 19(2), 225–
240. Doi:10.1016/j.intcom.2006.10.001

[11] Morse, E. L. (2000). The IUSR project and the common indus-
try reporting format. In Proceedings on the 2000 conference on
Universal Usability – CUU ’00 (pp. 155–156). New York, New
York, USA: ACM Press. Doi:10.1145/355460.355556

[12] Vermeerena, A. P. O. S., Attemaa, J., PhDa, E. A., Riddera, H.
de, Doorna, A. J. von, Erbuğb, Ç., … Maguirec, M. C. (2008).
Usability problem reports for comparative studies : consisten-
cy and inspectability. Human–Computer Interaction, 23(4), 329–
380.

[13] Hornbæk, K., & Frøkjær, E. (2008a). Comparison of techniques
for matching of usability problem descriptions. Interacting with
Computers, 20(6), 505–514. Doi:10.1016/j.intcom.2008.08.005

[14] Skov, M. B., & Stage, J. (2005). Supporting problem identifica-
tion in usability evaluations. In Proceedings of OZCHI’05, the
CHISIG Annual Conference on Human-Computer Interaction (pp.

1–9). Retrieved from
http://portal.acm.org/citation.cfm?id=1108368.1108410

[15] Andre, T. S., Hartson, H. R., & Williges, R. C. (2003). Deter-
mining the Effectiveness of the Usability Problem Inspector: A
Theory-Based Model and Tool for Finding Usability Problems.
Human Factors : The Journal of the Human Factors and Ergonomics
Society, 45(3), 455–482. Doi:10.1518/hfes.45.3.455.27255

[16] Cockton, G., Woolrych, A., Hall, L., & Hindmarch, M. (2003).
Changing analysts’ tunes: The surprising impact of a new
instrument for usability inspection method assessment. Pro-
ceedings of HCI 2003 on People and Computers XVII, 145–162.
Retrieved from
http://www.cet.sunderland.ac.uk/~cs0awo/hci 2003 full.pdf

[17] Feiner, J., & Andrews, K. (2012). Usability Reporting with Us-
abML. Proceedings of the 4th International Conference on Human-
Centered Software Engineering, 7623, 342–351.

[18] Heller, F. (2011). Me Hates This : Exploring Different Levels of
User Feedback for (Usability) Bug Reporting. In Extended Ab-
stracts on Human Factors in Computing Systems (pp. 1357–1362).

[19] Lewis, J. R. (2006). Effect of Level of Problem Description on
Problem Discovery Rates: Two Case Studies. In Proceedings of
the Human Factors and Ergonomics Society Annual Meeting (pp.
2567–2571)

[20] Zhao, L., & Deek, F. P. (2005). Improving Open Source Soft-
ware Usability. In Proceeedings of the Eleventh Americas Confer-
ence on Information Systems (pp. 923–928).

[21] Vetro, A., Zazworka, N., Seaman, C., & Shull, F. (2012). Using
the ISO/IEC 9126 product quality model to classify defects: a
Controlled Experiment. In International Conferenece on Evalua-
tion and Assessment in Software Engineering (pp. 87–96).

[22] Lal, S., & Sureka, A. (2012). Comparison of Seven Bug Report
Types: A Case-Study of Google Chrome Browser Project. In
2012 19th Asia-Pacific Software Engineering Conference (pp. 517–
526). Ieee. Doi:10.1109/APSEC.2012.54

[23] Twidale, M. B., Nichols, D. M., & Zealand, N. (2005). Explor-
ing Usability Discussions in Open Source Development. In
Proceedings of the 38th Annual Hawaii Internatioal Conference on
System Sciences (pp. 1–10).

[24] Martin, S. (2007). Enhancing the Downstream Utility of Usa-
bility Evaluations with Pattern-based Recommendations. In
COST294-MAUSE Workshop on Downstream Utility (pp. 1–4).

[25] Botella, F., & Peñalver, A. (2013). A new proposal for improv-
ing heuristic evaluation reports performed by novice evalua-
tors. In Proceedings of the 2013 Chilean Conference on Human –
Computer Interaction (pp. 72–75).

[26] Ko, A. J., & Chilana, P. K. (2011). Design, Discussion, and Dis-
sent in Open Bug Reports. In Proceedings of the 2011 iConference
(pp. 106–113). Doi:10.1145/1940761.1940776

[27] Faaborg, A., & Schwartz, D. (2010). Using a Distributed Heu-
ristic Evaluation to Improve the Usability of Open Source
Software. In CHI Conference on Human Factors in Computing
Systems (pp. 4–5).

[28] Bernonville, S., Kolski, C., & Leroy, N. (2010). First Experi-
mentation of the ErgoPNets Method Using Dynamic Modeling
to Communicate Usability Evaluation Results. Human Error,
Safety and Systems Development, 5962, 81–95.

[29] Molich, R., Jeffries, R., & Dumas, J. S. (2007). Making Usability
Recommendations Useful and Usable. Journal of Usability Stud-
ies, 2(4), 162–179.

[30] Nichols, D. M., Mckay, D., Zealand, N., & Twidale, M. B.

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

(2003). Participatory Usability : supporting proactive users. In
Proceedings of the 4th Annual Conference of the ACM Special Interest
Group on Computer-Human Interaction (pp. 63–68).

[31] Raza, a., Capretz, L. F., & Ahmed, F. (2012). Usability bugs in
open-source software and online forums. IET Software,
6(November 2011), 226. Doi:10.1049/iet-sen.2011.0105

[32] Douglas, I. (2006). Collaborative International Usability Test-
ing : Moving from Document-based Reporting to Information
Object Sharing. In IEEE International Conference on Global Soft-
ware Engineering (pp. 0–4).

[33] Vilbergsdottir, S. G., Hvannberg, E. T., & Law, E. L. C. (2014).
Assessing the reliability, validity and acceptance of a classifi-
cation scheme of usability problems (CUP). Journal of Systems
and Software, 87, 18–37. Doi:10.1016/j.jss.2013.08.014

[34] Beirekdar, A., Keita, M., Noirhomme, M., & Randolet, F.
(2005). Flexible Reporting for Automated Usability and Acces-
sibility Evaluation of Web Sites. Human-Computer Interaction,
3585, 281–294.

[35] Hornbæk, K., & Frøkjær, E. (2008b). Making Use of Business
Goals in Usability Evaluation : An Experiment with Novice
Evaluators. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (pp. 903–912).

[36] Law, E. L., & Hvannberg, E. T. (2008). Consolidating Usability
Problems with Novice Evaluators. In Proceedings of the 5th Nor-
dic conference on Human-computer interaction: building bridges
(pp. 495–498).

[37] Nørgaard, M., & Høegh, R. T. (2008). Evaluating Usability –
Using Models of Argumentation to Improve Persuasiveness of
Usability Feedback. In Proceedings of the 7th ACM conference on
Designing interactive systems (pp. 212–221).

[38] Çetin, G., Verzulli, D., & Frings, S. (2007). An Analysis of In-
volvement of HCI Experts in Distributed Software Develop-
ment: Practical Issues. Online Communities and Social Compu-
ting, 4564, 32–40. Doi:10.1007/978-3-540-73257-0

[39] Äijö, R., & Mantere, J. (2001). Are non-expert usability evalua-
tions valuable ? In International Symposium on Human factors in
Telecommunications (pp. 1–5).

[40] Nichols, D. M., & Twidale, M. B. (2006). Usability processes in
open source projects. Software Process: Improvement and Prac-
tice, 11(2), 149–162. Doi:10.1002/spip.256

[41] Jonasson, G. F., & Hvannberg, E. T. (2009). Sharing Usability
Problem Sets within and between Groups. Human-Computer
Interaction, 5727, 596–599.

[42] Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., & Zhai, C. (2006).
Have Things Changed Now ? – An Empirical Study of Bug
Characteristics in Modern Open Source Software. In Proceed-
ings of the 1st workshop on Architectural and system support for
improving software dependability (pp. 25–33).

[43] Zhao, L., Deek, F. P., & Mchugh, J. A. (2010). Exploratory in-
spection — a user-based learning method for improving open
source software usability. Journal of Software Maintenance and
Evolution: Research and Practice, 22(8), 653–675.
Doi:10.1002/smr

[44] N⊘rgaard, M., & Hornbæk, K. (2009). Exploring the Value of
Usability Feedback Formats. International Journal of Human-
Computer Interaction. Doi:10.1080/10447310802546708

[45] S. Herbold, J. Grabowski, S. Waack, and U. Bünting, “Im-

proved Bug Reporting and Reproduction through Non-
intrusive GUI Usage Monitoring and Automated Replaying,”
in 2011 IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshops, 2011, pp. 232–241.

[46] Kreyss, J., White, M., Selvaggio, S., & Zakharian, Z. (2003).
Text Mining for a Clear Picture of Defect Reports : A Praxis
Report. In Third IEEE International Conference on Data Mining
(pp. 3–6).

[47] F. P. Simões, “Supporting End User Reporting of HCI Issues
in Open Source Software,”. PhD Thesis. Pontificia Univer-
sidade Catolica, Do Rio De Janeiro, 2013.

[48] Ko, A. J., Myers, B. A., & Chau, D. H. (2006). A Linguistic
Analysis of How People Describe Software Problems. In Visu-
al Languages and Human-Centric Computing (VL/HCC’06) (pp.
127–134). Ieee. Doi:10.1109/VLHCC.2006.3

[49] Pichler, J., & Ramler, R. (2008). How to test the intangible
properties of graphical user interfaces? In Proceedings of the 1st
International Conference on Software Testing, Verification and
Validation, ICST 2008 (pp. 494–497). Doi:10.1109/ICST.2008.52

[50] Xia, X., Zhou, X., Lo, D., & Zhao, X. (2013). An Empirical
Study of Bugs in Software Build Systems. In 13th International
Conference on Quality Software (pp. 200–203). Ieee.
Doi:10.1109/QSIC.2013.60

[51] T. Roehm, N. Gurbanova, B. Bruegge, C. Joubert, and W.
Maalej, “Monitoring user interactions for supporting failure
reproduction,” in 2013 21st International Conference on Program
Comprehension (ICPC), 2013, pp. 73–82.

[52] Avnon, Y., & Boggan, S. L. (2010). Fit and Finish using a bug
tracking system: challenges and recommendations. In Proceed-
ings of the 28th of the international conference extended abstracts on
Human factors in computing systems (pp. 4717–4720).
Doi:10.1145/1753846.1754219

[53] K. Hornbæk and E. Frokjær, “Comparing usability problems
and redesign proposals as input to practical systems devel-
opment,” CHI 2005 Technol. Safety, Community Conf. Proc. –
Conf. Hum. Factors Comput. Syst., pp. 391–400, 2005.

[54] C. Wilson and K. P. Coyne, “The whiteboard: Tracking usabil-
ity issues: to bug or not to bug?,” Interactions, pp. 15–19, 2001.

[55] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and D.
Poshyvanyk, “Auto-completing Bug Reports for Android Ap-
plications,” Proc. 2015 10th Jt. Meet. Found. Softw. Eng., pp.
673–686, 2015.

[56] A. Hindle, A. Alipour, and E. Stroulia, “A contextual ap-
proach towards more accurate duplicate bug report detection
and ranking,” Empir. Softw. Eng., pp. 368–409, 2015.

[57] N. Shahida, M. Yusop, J. Grundy, and R. Vasa, “Reporting
Usability Defects : Limitations of Open Source Defect Reposi-
tories and Suggestions for Improvement,” in Proceedings of the
ASWEC 2015 24th Australasian Software Engineering Conference,
2015, pp. 38–43.

YUSOP ET AL: REPORTING USABILITY DEFECTS: A SYSTEMATIC LITERATURE REVIEW 23

APPENDIX B

TABLE 11
LIST OF ATTRIBUTES USED ACROSS FIVE RESEARCH AREAS

TABLE 10
SEARCH STRINGS

24 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

TABLE 12
CATEGORIES OF USABILITY DEFECT ATTRIBUTES

