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Abstract—With the fast growth of applications of service-oriented architecture (SOA) in software engineering, there has been a 
rapid increase in demand for building service-based systems (SBSs) by composing existing Web services. Finding appropriate 
component services to compose is a key step in the SBS engineering process. Existing approaches require that system 
engineers have detailed knowledge of SOA techniques which is often too demanding. To address this issue, we propose KS3 
(Keyword Search for Service-based Systems), a novel approach that integrates and automates the system planning, service 
discovery and service selection operations for building SBSs based on keyword search. KS3 assists system engineers without 
detailed knowledge of SOA techniques in searching for component services to build SBSs by typing a few keywords that 
represent the tasks of the SBSs with quality constraints and optimisation goals for system quality, e.g., reliability, throughput 
and cost. KS3 offers a new paradigm for SBS engineering that can significantly save the time and effort during the system 
engineering process. We conducted large-scale experiments using a real-world Web service dataset to demonstrate the 
practicality, effectiveness and efficiency of KS3. 
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Computing. 
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1 INTRODUCTION
ervice-oriented architecture (SOA) has become a ma-
jor framework for building complex distributed soft-
ware systems by discovering and composing loosely 

coupled Web services provided by different organisations 
[5, 49]. Executed by a system engine, e.g., a BPEL engine 
[7], the component services of such a service-based sys-
tem (SBS) collectively realise the functionality of the SBS 
which is often offered as SaaS (Software-as-a-Service) in 
the cloud environment. The development and popularity 
of e-business, ecommerce, especially the pay-as-you-go 
business model promoted by cloud computing have 
fuelled the growth of Web services [21]. The statistics 
published by ProgrammableWeb1, an online Web service 
directory, and webservices.seekda.com, a Web service 
search engine, both indicate a rapid growth in the number 
of published Web services in the past few years. The pop-
ularity of Web services and SOA enables the engineering 

 
1http://www.programmableweb.com/ 

of various SBSs that fulfil different organisations’ increas-
ingly sophisticated business needs [9]. 

Fig. 1 shows the engineering process for a travel book-
ing SBS that consists of four component services perform-
ing four tasks: flight ticket booking, hotel booking, car rental 
and insurance quote. As depicted, the service composition 
process for engineering the SBS consists of three phases. 
The first phase is system planning where a system engineer 
determines the tasks needed to be performed to imple-
ment the functionality of the SBS, as well as the execution 
order of the tasks, by employing artificial intelligence 
techniques [24, 35, 43]. The second phase is service discov-
ery where, through service registries or service search en-
gines, the system engineer identifies a set of candidate 
services for each of the tasks based on the functional and 
semantic information on candidate services [34, 42, 44]. 
The third phase is service selection where the system engi-
neer selects one service from each set of candidate ser-
vices to fulfil the multi-dimensional constraints for sys-
tem quality, e.g., reliability, throughput, cost, etc. This is a 
NP-complete problem often referred to as quality-aware 
service selection [13, 23]. 

Building an SBS is very complicated and has become a 
major obstacle to further and broader applications of SOA. 
Even relatively simple tools designed by SOA vendors, 
e.g., Oracle BPEL Process Manager and IBM Process De-
signer, are already too complicated for non-experts and 
require substantial training [1]. Thus, there has been a 
rapid increase in the need for an approach that allows 
system engineers to find services to build SBSs without 
detailed knowledge of the system planning, service dis-
covery and service selection operations [6, 37]. 

Recently, some Web service repositories such as Pro-
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grammableWeb1, Mashape2, XMethods3 and WebService-
List4 emerged as simple service portals that allow users to 
search for Web services by keywords. Keyword search 
techniques have long been popularised by Web search 
engines like Google and Bing in locating information 
from Web documents. It has also been widely used to lo-
cate information from databases [10, 25, 30]. However, 
none of the existing keyword search techniques can be 
directly applied to effectively find multiple Web services 
for building SBSs. 

In this paper, we propose KS3 (Keyword Search for 
Service-based Systems), a novel approach that assists 
system engineers in searching for Web services to build 
SBSs by typing only a few keywords with quality con-
straints and quality optimisation goals, as shown in Fig. 1. 
KS3 integrates and automates the system planning, ser-
vice discovery and service selection operations, offering a 
novel paradigm for efficient SBS engineering. KS3 runs on 
directed data graph, where Web services are modelled as 
nodes connected by edges representing whether the ser-
vices can be composed. Given a set of keywords that de-
scribe the tasks of an SBS, KS3 returns a subgraph of the 
data graph that represents the solution to the service 
composition for the SBS. The solution includes the ser-
vices that perform the tasks of the SBS, the bridging ser-
vices (if any) needed however not specified by the key-
words, and the composability of those services, i.e., 
whether and how they can be composed. 

A system engineer without detailed knowledge of SOA 
techniques can easily use KS3 to find the Web services 
needed to build the travel booking SBS depicted in Fig. 1. 
They only need to enter a few keywords that describe the 
basic tasks of the system: flight ticket booking, hotel booking, 
care hire and insurance quote. KS3 will take those keywords, 
searches its Web service library, and returns an SBS solu-
 
2https://www.mashape.com/ 
3http://www.xmethods.com/ 
4http://www.webservicelist.com/ 

tion that specifies not only the services to use but also 
how they can be composed to build the SBS. Given the 
solution, the system engineer can deploy the SBS on a 
BPEL execution engine. KS3 can find an SBS solution even 
when the system engineer is not able to provide all the 
keywords for describing the SBS. For example, a system 
engineer enters two keywords loan application and loan 
approval, hoping to build a loan preapproval SBS. Howev-
er, a loan preapproval process also requires a credit check 
service that succeeds the loan application service and pre-
cedes the loan approval service. The search engine can au-
tomatically identify the missing credit check service and 
provide the system engineer with a complete SBS solution. 
Therefore, KS3 can save system engineers a lot of time 
and efforts for finding the component services to build 
their SBSs. 

The major contributions of this research are as follows: 
• KS3 offers a novel paradigm for efficiently engineer-

ing SBSs by integrating and automating the system 
planning, service discovery and service selection op-
erations and relieving system engineers of the de-
tailed knowledge of corresponding SOA techniques. 

• The existing network model for organising a Web 
service library is adapted into a data graph model, in 
which nodes represent Web services with keywords 
and quality values and directed edges represent ser-
vice composability. 

• Based on the data graph, constraint optimisation 
problem (COP) models are proposed to model and 
answer system engineers’ queries for services for 
building SBSs. Three types of queries are currently 
supported: normal queries, constraint queries, i.e., 
queries with quality constraints, and optimal queries, 
i.e., queries with quality constraints and optimisation 
goals. 

• Extensive experiments were conducted to evaluate 
the practicality, effectiveness and efficiency of KS3 us-
ing two datasets. The first dataset contains the func-
tional information about 1496 real-world Web ser-

   
Fig.1. An example travel booking service-based system.  
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vices and 2926 SBSs crawled from programmable-
web.com. The second dataset is a published one 
which contains the functional and quality infor-
mation about over 2500 real-world Web services. 

The rest of this paper is organised as follows: Section 2 
describes our graph model for constructing the Web ser-
vice library. Section 3 formally states the research problem. 
Section 4 presents how KS3 models and answers keyword 
queries for SBS solutions based on the graph model. Sec-
tion 5 evaluates the practicality, effectiveness and efficien-
cy of KS3 with experimental results. Section 6 reviews the 
related work. Section 7 concludes the paper. 

2 GRAPH MODEL FOR WEB SERVICE LIBRARY 
Many approaches have been proposed in recent years for 
organising a Web service library using a network model. 
In this network model, a node represents a Web service 
and a directed edge between two nodes represents the 
service composability, i.e., whether the two corresponding 
Web services can be composed in the order specified by 
the direction of the edge. Those approaches can be 
grouped into two major categories: data mining based [27, 
31, 38, 40] and semantics based [17, 19]. The data mining 
based approaches mine the service composability infor-
mation, which is needed for constructing a Web services 
data graph, from their collaboration history. The seman-
tics based approaches discover the service composability 
information by mining semantic associations and interac-
tions between services according to well-defined ontolo-
gies. Both categories of approaches construct the Web 
services network offline. Once completed, the service 
network remains relatively stable and can be updated 
with minimum overheads upon certain events, e.g., new 
services joining or old ones leaving. 

We adapt the above service network model into a data 
graph. KS3 is independent of the specific approach 
adopted for the generation of a data graph. It runs on any 
data graph that fulfils the simple and straightforward 
requirements specified by Definitions 1 and 2 below: 
DEFINITION 1. Nodes: For each Web service in the li-
brary, the data graph G has a corresponding node v. Each 
node in G contains one keyword k1 that represents the 
function offered by the corresponding Web service. A Web 
service that offers multiple functions is represented by 
multiple nodes with the same keyword in G. 

In the remainder of this paper, we will speak inter-
changeably of a Web service and its corresponding node 
in the graph, both denoted as v. Please also note that flight 
ticket booking has three terms, however is considered as 
one keyword, not three.  
DEFINITION 2. Edges: For each pair of composable Web 
services v1 and v2, the data graph contains an edge e(v1, v2) 
between v1 and v2. e(v1, v2) is directed, pointing from v1 to v2 
if v2 can be the succeeding node of v1 in the composition of 
v1, v2. An edge e can be bidirectional if v1 can also be the 
succeeding node of v2 in the composition. 

We use G(V, E) to denote the data graph where V is the 
set of nodes and E is the set of edges in G. The nodes in G 
are annotated with the quality values of the Web services 

obtained from their Service Level Agreements (SLAs), 
e.g., reliability and throughput, to enable quality-aware 
selection for service compositions - a critical and challeng-
ing problem in SBS engineering [5, 13, 23, 47, 49]. The an-
swer to such a query is a set of Web services that collec-
tively fulfil the functional and quality requirements for 
the SBS. 

According to Definition 2, relevant services in the same 
domain are connected, either directly or indirectly, form-
ing a connected data graph. However, a Web service li-
brary might contain Web services in different domains, 
e.g., car hire and image processing services, which belong to 
different data graphs. Thus, it is possible that a Web ser-
vice library has multiple data graphs that are not connect-
ed to each other.  

To answer different types of keyword queries (as will 
be detailed in Section 4), KS3 prebuilds and maintains an 
inverted index for a data graph G. For each keyword in G, 
the nodes covering the keyword are stored in this index. 
For example, if nodes v1, v8 and v35 cover keyword k6, there 
is V(k6)={v1, v8, v35} representing the set of nodes in G that 
cover keyword k6. 

3 PROBLEM STATEMENT 
Given a data graph G and a keyword query Q containing 
l (l ³ 2) keywords (Q={k1, …, kl}), the problem of answering 
the query over G consists of two steps: 1) to find an an-
swer tree, denoted as T(Q) in G, containing connected 
nodes that cover all the keywords in Q; 2) to induce the 
final answer based on the answer tree. Fig. 2 presents part 
of an example data graph G and Fig. 3 shows three an-
swer trees, i.e., T1(Q), T2(Q) and T3(Q), from G for query 
Q={flight ticket booking, insurance quote}. In T1(Q)={v3, v1, v5}, 
node v3 contains flight ticket booking and node v5 contains 
insurance quote. From Fig. 2, we can see that v3 and v5 are 
not directly connected. However, they can be connected 
via v1. Thus, v1 is included in T1(Q) as a bridging node 
(bridging service), indicating that v1, v3 and v5 can be com-
posed together to perform flight ticket booking and insur-
ance quote. Besides T1(Q), T2(Q)={v3, v8, v7, v5} and T3(Q)={v3, v2, 
v4, v6, v5} also cover flight ticket booking and insurance quote. 

 
Fig. 2. Part of an example data graph 
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Please note that there are other trees that cover flight ticket 
booking and insurance quote. However, we omit them and 
use only T1(Q), T2(Q) and T3(Q) as examples in the re-
mainder of the paper. We denote q(T(Q)) as the quality of 
the SBS built based on T(Q). Using the quality aggrega-
tion functions introduced in [5, 49], Table 1 presents the 
reliability and throughput offered by T1(Q), T2(Q) and 
T3(Q). Assume that the system engineer has a quality con-
straint for the SBS qrb(T(Q)) ≥ 0.7, i.e., at least 70% of the 
requests must be processed within a specified time period, 
T3(Q) is not a suitable solution because it does not fulfil 
the quality constraint. Both T1(Q) and T2(Q) fulfil this 
quality constraint, but T1(Q) will be selected as the answer 
tree because it contains the minimum number of nodes 
and can provide the best simplicity in the solution. 
Among the three answer trees, T(Q2) has the highest relia-
bility whilst T(Q3) has the largest system throughput. 
Thus, T(Q2) would be the optimal solution if the system 
engineer’s optimisation goal is maximised reliability, or 
T(Q3) if the system throughput needs to be maximised. 

Fig. 3 demonstrates that an answer tree T(Q) may con-
tain nodes that do not cover any of the keywords in Q, 
and is therefore a Steiner tree [28], defined as follows: 
DEFINITION 3. Steiner Tree. Given a graph G=(V, N) 
and V' VÍ  , T is a Steiner tree of V’ in G if T is a connect-
ed subtree in G that covers all nodes in V’. 

Using the inverted index introduced in Section 2, we 
can identify the groups of nodes in G corresponding to 
individual keywords in Q={k1, …, kl}, denoted as V1, …, Vl 
where Vr (1≤r≤l) is the set of nodes in G that cover kr 

(1≤r≤l). The problem is now to find an exact group Steiner 
tree, formally defined as follows: 
DEFINITION 4. Exact Group Steiner Tree: Given a 
graph G=(V, N) and groups V1, …, Vl ÍV, where Vi∩Vj=Ø,
" Vi, Vj (0≤i, j≤l and i≠j), T is an exact group Steiner tree of 
V1, …, Vl in G if T is a Steiner tree that contains exactly one 
node from each group Vr (1≤r≤l). 

KS3 answers three types of queries: 1) normal query; 2) 
constraint query; and 3) optimal query. A normal query 
aims to find an SBS solution without quality constraints. 
The answer tree for a normal query is an exact group 
Steiner tree. There are usually multiple exact group Stei-
ner trees. KS3 aims to find the minimum exact group Steiner 
tree that answers the query with the minimum number of 
nodes, including keyword nodes, i.e., nodes that contain the 
keywords in the query, and bridging nodes, i.e., nodes that 
do not contain the keywords but are necessary to connect 
the keyword nodes. A minimum exact group Steiner tree 
is defined as follows:  
DEFINITION 5. Minimum Exact Group Steiner Tree. 
Given a set of exact group Steiner trees in G, T1, …, Tn, Ti 
(0≤i≤n) is the minimum exact group Steiner tree if 
|Ti|=min(|T1|, …, |Tn|) where |Ti| (1≤i≤n) represents 
the cardinality of Ti, i.e., the number of nodes in Ti. 

Take Fig. 3 for example, for query Q={flight ticket book-
ing, insurance quote}, there are three exact group Steiner 
trees. T1(Q), the one with the minimum number of nodes, 
including two keyword nodes (v3 and v5) and one bridging 
node (v1), is the minimum exact group Steiner tree and the 
answer to the query. 

A constraint query is similar to a normal query, but 
with constraints for system quality, e.g., qrb(T(Q))>0.70 and 
qtp(T(Q))>70rps, i.e. the system must be able to process at 
least 70 requests per second. In KS3, each node v in G is 
annotated with the quality values of the corresponding 
Web service. The quality of an SBS based on an answer 
tree T(Q) can be calculated by aggregating the quality of 
its component services [5, 49]. Take T1(Q) in Fig. 3 for ex-
ample, its reliability can be calculated: qrb(T1(Q))= 
qrb(v3)×qrb(v1)×qrb(v5)=0.90×0.88×0.92=0.73 and its throughput: 
qtp(T1(Q))=min(qtp(v3), qtp(v1), qtp(v5))= min(100, 50, 
200)=50rps. The answer tree for a constraint query is the 
exact group Steiner tree that fulfils all quality constraints 
with minimum cardinality. Assume the query Q={flight 
ticket booking, insurance quote} with two quality con-
straints: crb: qrb(T(Q))>0.70 and ctp: qtp(T(Q))>70rps,. The only 
satisfactory answer trees among the three shown in Fig. 3 
is T2(Q) because T1(Q) does not fulfil the constraint for 
system throughput, i.e., ctp and T3(Q) does not fulfil the 
constraint for system reliability, i.e., crb. 

An optimal query is also a constraint query, but with 
the objective to optimise a system quality, e.g., to maxim-
ised system reliability or throughput, instead of minimum 
cardinality. With each group Steiner tree representing a 
potential answer tree that fulfils all quality constraints, 
the answer to an optimal query is the optimal exact group 

TABLE 1 
QUALITY VALUES OF ANSWERS TO QUERY Q={FLIGHT TICK-

ET BOOKING, INSURANCE QUOTE} 

Answer Tree T(Q) 
Reliability 

(qrb) 
Throughput 

(qtp) 
T1(Q)={v3, v1, v5} 0.73 50rps 

T2(Q)={v3, v8, v7, v5} 0.78 80rps 
T3(Q)={v3, v2, v4, v6, v5} 0.57 100rps 

 
 

 
Fig. 3. Answer trees to query Q={flight ticket booking, insurance 
quote} 
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Steiner tree, formally defined as follows: 
DEFINITION 6. Optimal Exact Group Steiner Tree. 
Given a set of exact group Steiner trees in G, T1, …, Tn, Ti 
(1≤j≤n) is the optimal exact group Steiner tree if 
q(Ti)=max(q(T1), …, q(Tn)) (or q(Ti)=min(q(T1), …, q(Tn)) for 
negative quality properties like cost) where q(Ti) repre-
sents the quality offered by Ti(Q). 

Take Fig. 3 for example, for query Q={flight ticket book-
ing, insurance quote} with quality constraints: qrb(T(Q))>0.70 
and qtp(T(Q))>50rps, and an optimisation goal on system 
throughput, T2(Q) is the answer tree as it fulfils both qual-
ity constraints and offers the maximum system through-
put. 

The computation of a minimum group Steiner tree is 
already NP-complete [11], and is made even more com-
plicated by the multi-dimensional constraints and the 
optimisation goal for system quality. KS3 models key-
word queries as COPs that can be solved by applying 
Integer Programming (IP) techniques. Next, we discuss 
how different queries are modeled and answered, fol-
lowed by a discussion of the answer induction. 

4 ANSWERING KEYWORD QUERIES 
In this section, we first discuss how different keyword 
queries for SBSs are modelled and answered based on the 
graph model presented in Section 2. Then we describe 
how the final answers to keyword queries are induced. As 
discussed in Section 2, a Web service library may have 
multiple data graphs for different domains. In this re-
search, we assume that system engineers would not 
search for services across different data graphs because 
the tasks of an SBS are usually in the same domain. 

4.1  Answering Normal Queries 
A normal keyword query contains a set of keywords, 
Q={k1, …, kl}. To answer a normal query Q over a data 
graph G, KS3 finds a minimum exact group Steiner tree 
T(Q) that contains all the keywords in Q. 

The first step of the answering process is to locate 
nodes that contain individual keywords in Q. For each 
keyword kr in Q (1≤k≤l), KS3 finds the set of nodes V(kr) 
that contain kr using the inverted index discussed in Sec-
tion 2. Next, KS3 models the problem of answering a 
normal query as a constraint satisfaction problem (CSP), 
which consists of a finite set of variables X={x1, …, xn}, 
with domain D={0, 1} listing the possible values for each 
variable in X, and a set of constraints C={c1, c2, …, ct} over 
X. A solution to a CSP is an assignment of a value to each 
variable in X from its domain such that all constraints in 
C are satisfied. The CSP model of answering a normal 
query is formally expressed as follows. 

For a G=(V, E), where V={v1, …, vm} and E={e1, …, en}, 
there are two sets of 0-1 variables X={x1, …, xm} and Y={y1, 
…, yn}, where D(xi)={0, 1} (i=1, …, m) and D(yj)={0, 1} (j=1, 
…, n), xi and yi being 1 if the ith node and the jth edge in G 
are selected as part of the answer tree for the query, 0 oth-
erwise. The constraints for the CSP model are: 

Keyword Constraints:  
 =1 [1, ..., ]i

v Vri
x r l

Î
" Îå  (1) 

where Vr is the set of nodes in G that contain keyword 
kr∈Q (1≤r≤l). The keyword constraints ensure that exactly 
one node is selected from each Vr (1≤r≤l) to cover each 
keyword in Q. 
Node Constraints: 
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where E(vi) is the set of edges connected to vi (1≤i≤m). 
Constraint family (2) ensures that if a node is not selected, 
none of the edge(s) connected to it are selected. Con-
straint family (3) ensures that, if a node is selected, at least 
one edge connected to it is selected.  
Edge Constraints: 
 [1, ..., ]j n" Î  and viÎV(ej) IF yj==1 THEN xi=1 (4) 
where V(ej) is the set of nodes connected to ej. The edge 
constraints ensure that if an edge is selected, both nodes 
connected to it must be selected. When integrated into the 
CSP model, constraints family (4) can be transformed into: 
 xi≥yj " Î £ £je E j n(1 )  and viÎV(ej)  (5) 

Connectedness Constraint: 
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The connectedness constraint guarantees that all the 
selected nodes and edges constitute a connected tree 
based on the well-known Miller–Tucker–Zemlin con-
straint [39]. 

Solving the above CSP can find the exact group Steiner 
tree(s) in G, each covering all the keywords in the query 
Q. Very often, there are many such exact group Steiner 
trees. Take Fig. 3 for example, there are three exact group 
Steiner trees for query Q={flight ticket booking, insurance 
quote} from G shown in Fig. 2. They all cover keywords 
flight ticket booking and insurance quote in the query. In fact, 
any spanning tree of G that contains one node from each 
V(kr) (1≤r≤l) is an exact group Steiner tree, e.g., {v1, v2, v3, v5}, 
{v1, v3, v5, v7}, etc. As discussed in Section 3, KS3 identifies 
the minimum exact group Steiner tree, i.e., the one with 
the minimum number of nodes, as the answer tree for the 
normal query. The objective function that captures this 
optimisation goal is as follows: 
Objective Function:  

 minimise(
m

i
ix

=
å
1

) (8) 

Given this objective function, the CSP turns into a COP. 
In a COP, each solution generated by solving the CSP is 
associated with a ranking value for the objective function. 
The solution with the optimal ranking value is the solu-
tion to the COP. 

4.2  Answering Constraint Queries 
A constraint query is a normal query with constraints for 
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system quality, e.g., qrb(T(Q))<0.7, qtp(T(Q))>70rps. The an-
swer tree for a constraint query is an exact group Steiner 
tree that: 1) covers all keywords in Q; and 2) fulfils all 
quality constraints. 

The quality offered by an answer tree T(Q) can be cal-
culated by using corresponding aggregation functions [5, 
49]. Some quality properties of an SBS are calculated in-
dependently of its structure and dynamics, based only on 
the quality of its component services, e.g., reliability, 
throughput, cost, etc. Those quality properties are named 
structure-independent system quality. Let T(Q)={v1, …, vm}, 
formulas (9)-(11) present the functions for the calculation 
of system reliability, throughput and cost as examples: 

 qrb(T(Q))=
1

( )
m

i
rbq

=
Õ iv  (9) 

 qtp(T(Q))=min(qtp(v1), …, qtp(vm)) (10) 

 qcost(T(Q))= 
1

( )
m

i
rbq

=
å iv  (11) 

The calculation of some quality properties must take 
into account the system structure, e.g., response time. If 
there are multiple execution paths from the entry service 
to the exit service of the system, the one with maximum 
execution time determines the response time of the sys-
tem. All existing approaches for quality-aware service 
composition require and presume a pre-specified and 
fixed structure for the target SBS [5, 13, 23, 47, 49]. The 
system engineers using such approaches are required to 
have the knowledge about system structure and business 
process specification. Aiming at relieving system engi-
neers of such expert knowledge, KS3 does not require a 
system structure as input. Instead, KS3 helps system en-
gineers identify a proper system structure. The system 
structure remains unknown to them until the solution is 
found. As a result, such quality properties, named struc-
ture-dependent system quality, cannot be integrated into the 
CSP model for answering a constraint query. 

Besides constraints families (1), (2), (3), (5) and (6), the 
following constraints can be included in the CSP model 
for answering a constraint query to take the quality con-
straints into consideration: 
Quality Constraints:  
 qp(T(Q))<cp  

[1, ]p t" Î  (12)  
where cp is the constraint for the pth quality property of the 
SBS. 

Similar to the COP model for answering normal que-
ries, objective function (8) is included in the COP model 
for answering a constraint query to minimise the number 
of nodes in the answer tree. If there are multiple exact 
group Steiner trees with the same minimum cardinality, 
one of them is randomly selected as the answer tree. Here 
the answer tree is not necessarily a minimum exact group 
Steiner tree, because it does not always have the mini-
mum cardinality among all. For example, assume a query 
Q={flight ticket booking, insurance quotee} with two quality 
constraints: qrb(T(Q))>0.50 and qtp(T(Q))>70rps,. Among the 
three exact group Steiner trees shown in Fig. 3, T1(Q) is the 
minimum exact group Steiner tree because it has the min-
imum cardinality. However, T1(Q) does not fulfil the 

throughput constraint. Both T2(Q) and T3(Q) fulfil all the 
quality constraints, but T2(Q) is the answer tree for Q be-
cause it has a lower cardinality than T3(Q). 

4.3  Answering Optimal Queries 
An optimal query is a constraint query with an optimisa-
tion goal for a system quality, e.g., reliability, throughput 
or cost. The answer tree for an optimal query Q is an op-
timal exact group Steiner tree that: 1) covers all the key-
words in Q; 2) fulfils all quality constraints; and 3) 
achieves the quality optimisation goal. Similar to quality 
constraints, the optimisation goal can only be specified 
for a structure-independent system quality. 

The COP model for answering an optimal query has 
constraint families (1), (2), (3), (5), (6), (11) and replaces 
objective function (8) with an objective function to opti-
mise a system quality. Reliability, throughput, cost and 
system optimality are used below as examples: 
Optimal System Reliability:  

 maximise(
n

i
i ix v

=
´Õ rbq

1
( )) (13) 

Optimal System Throughput: 
 maximise(min(x1×qtp(v1), …, xm×qtp(vm))) (14) 
Optimal System Cost:  

 minimise(
n

i
costi ix v

=
´å q

1
( ) ) (15) 

Optimal System Utility: 

 maximise(å
n

i
i ix u v

=1
× ( ) ) (16) 

where u(vi) is the multi-objective utility of vi calculated 
based on multiple dimensions of vi’s quality [13, 14]. 
 

4.4  Inducing Answers 
Due to the possible parallel, selective and loop structures 
[22], the service composition for an SBS can be cyclic. The 
answer tree obtained by solving one of the COP models 
discussed before is acyclic and thus may miss some edges 
that represent the composability of the services in the tree. 
Such edges must be identified and included into the an-
swer tree to induce an answer graph for the keyword query. 
Assume a normal query Q={flight ticket booking, restaurant 
booking, cruise ticket booking} over the data graph shown in 
Fig. 2. Fig. 4 presents the three minimum exact group 
Steiner trees for Q: T1(Q), T2(Q) and T3(Q). According to 
Fig. 2, in terms of missing edges, we can identify e(v4, v2) 
from T1(Q), e(v2, v3) from T2(Q), and e(v3, v4) and e(v4, v3) 
from T3(Q). Those missing edges must be included in the 
answer trees to induce the answer graph for Q. In fact, it 
can be observed in Fig. 4 that the answer graphs induced 
from T1(Q), T2(Q) and T3(Q) are the same one. Given an 
answer tree T(Q), a naïve method for inducing the answer 
graph is to inspect each pair of nodes in T(Q) for missing 
edges. The time complexity of the method is O(n2) where 
n is the number of nodes in T(Q). To induce the answer 
graph more efficiently, KS3 maintains an adjacent index 
that records the adjacent nodes of each node in data 
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graph G. Using the adjacent index, KS3 inspects only the 
nodes adjacent to each node in T(Q) for missing edges. 
The time complexity of this method is O(kn) where k is 
the maximum number of adjacent nodes of any nodes in 
T(Q). 

KS3 relieves system engineers of having to use pre-
specified system structures. The answer graph for a query 
indicates the services needed to perform all the tasks rep-
resented by the keywords in the query, as well as the 
composability of the services. However, an SBS always 
needs an entry service (e.g., v1,1 in Fig. 1) and an exit ser-
vice (e.g., v4,1 in Fig. 1) [5, 13, 49, 50]. Thus, KS3 will identi-
fy an entry node and an exit node in an answer graph 
G(Q) based on graph theory. KS3 first calculates: 1) the 
number of nodes in G(Q) without incoming edges; and 2) 
the number of nodes in G(Q) without outgoing edges. 
Next, we discuss how KS3 specifies the entry node and 
exit node using Fig. 5 as examples:  
1. If there is one node without incoming edges, it is 

identified as the entry node, e.g., v1 in G1(Q). If there 
are multiple such nodes, a dummy node is added to 
G(Q) as the entry node that precedes all the nodes 
without incoming edges, e.g., vet in G2(Q).  

2. If there is only one node without outgoing edges, it is 
specified as the exit node, e.g., v3 in G1(Q). If there are 
multiple such nodes, KS3 will converge them into an 
added dummy exit node, e.g., vex in G3(Q). 

3. If there is an exit node but no entry node, KS3 em-
ploys a unidirectional backward breadth-first algo-
rithm to traverse G(Q), starting from the exit node. It 
traverses G(Q) backwards through only incoming 
edges without reversing. This algorithm still marks 
an edge if the target node of an edge has already 
been visited in order to preserve that edge which 
represents the composability between its source node 
and target node. At the end, if there is only one node 
whose incoming nodes are never visited, it will be 
specified as the entry node, e.g., v1 in G4(Q). Other-

wise, the algorithm adds a dummy node as the entry 
node that precedes all the nodes whose incoming 
nodes are never visited, e.g., vet in G5(Q). 

4. If there is an entry node but no exit node, KS3 em-
ploys a unidirectional forward breadth-first algo-
rithm to traverse G(Q) through outgoing edges, start-
ing from the entry node. At the end, if there is only 
one node whose outgoing edges are never visited, it 
is specified as the exit node, e.g., v2 in G6(Q). Other-
wise, the algorithm adds a dummy exit node that 
succeeds all the nodes whose outgoing edges are 
never visited, e.g., vex in G7(Q). 

5. If there is no entry or exit node, the node with the 
minimum number of outgoing edges is selected as 
the entry node, e.g., v1 in G8(Q), and employs the uni-
directional forward breadth-first algorithm to trav-
erse G(Q), starting from the entry node, to specify the 
exit node, e.g., v5. 

The answer to a query indicates a potential system 
structure, which is not necessarily final. The system engi-
neer can further adjust the system structure to fulfil their 
needs. For example, they can run some of the services in 
parallel, create selective branches, iterate certain services 
and even specify a different entry service or exit service. 
The answer graph obtained from inducing the answer 
tree is also returned as part of the answer for the system 
engineer’s reference because it contains all the selectable 
edges that represent service composability. 

5 EXPERIMENTAL EVALUATION 
This section evaluates the practicality (measured by suc-
cess rate), effectiveness (measured also by success rate) 

 Fig. 5. Inducing answers from answer trees 
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and efficiency (measured by computational overhead) of 
KS3 in answering keyword queries for building SBSs. 

5.1  Prototype Implementation 
We have implemented a prototype of KS3 in Java using 
JDK 1.6.0 and Eclipse Java IDE. It implements the mecha-
nisms introduced in Section 4. In response to a query, it 
searches a given data graph and returns an answer graph 
that fulfills all the constraints specified in the query. 
Based on the answer graph, an SBS solution can be built. 
For solving the COPs introduced in Section 4, the proto-
type uses IBM CPLEX v12.2, a linear programming solver. 

5.2  Experiment Setup 
We have conducted three series of experiments, namely 
series A, B and C. Series A was conducted on the PW da-
taset, which contains the functional information about 
real-world Web services and SBSs crawled from pro-
grammableweb.com, a service portal that has been accu-
mulating a variety of Web services and SBSs since 2005 [2, 
8]. Series A demonstrates the practicality and efficiency of 
KS3 on a real-world Web service library and real system 
engineers’ potential queries.  
To evaluate KS3 more comprehensively, we have also 
conducted experiment series B and C on a publicly avail-
able and widely used dataset named QWS, which con-
tains not only the functional but also the quality infor-
mation about over 2500 real-world Web services [2]. Se-
ries B and C evaluate the effectiveness and efficiency of 
KS3 in comprehensive scenarios in addition to Series A. 
The service quality information in QWS used in series B 
and C enabled us to evaluate the ability of KS3 to handle 
constraint and optimal queries.   

All experiments are conducted on a machine with Intel 
i5-4570 CPU 3.20GHz and 8 GB RAM, running Windows 
7 x64 Enterprise. 

5.2.1 Experiment Series A 
The PW dataset contains the information about which of 
the 1496 Web services are used by each of the 2926 SBSs. 
Table 2 presents the relevant statistics of the PW dataset. 

In this experiment series, the data graph is generated 
based on the information retrieved from the PW dataset. 
There are a total number of 1496 nodes in the data graph, 
each corresponding to one of the 1496 Web services in the 
PW dataset. Two nodes are linked in the data graph if 
they are both used by the same SBS with one of them suc-
ceeding or preceding the other directly. For example, 
suppose an SBS in the PW dataset uses three consecutive 
services v1, v2 and v3. Two directional edges will be includ-
ed in the data graph, one pointing from v1 to v2 and the 
other from v2 to v3, but none from v1 to v3. In total, there are 
6899 edges in the data graph. This data graph accurately 
describes the composability of the 1496 real-world Web 
services used by the 2926 real-world SBSs that were built 

using those Web services. 
A total of 2926 normal queries are generated, each cor-

responding to one of the 2926 SBSs in the PW dataset. The 
keywords contained in each query are obtained from the 
first and the last services used by the corresponding SBS. 
Take an SBS in the PW dataset that uses four consecutive 
services, BitStamp HTTP, BTC-e, CoinDesk and Mt Gox as 
an example, the query generated based on this SBS will 
contain two keywords: BitStamp HTTP and Mt Gox. In 
this ways, we can evaluate the ability of KS3 to identify 
all necessary services needed for building an SBS, given 
only two keywords that represent the first and last tasks 
of that SBS. In this experiment series, the queries do not 
have quality constraints or optimisation objectives, and 
thus are all normal queries. The ability of KS3 to handle 
constraint and optimal queries is evaluated in experiment 
series B and C. As discussed in Section 3, KS3 finds the 
minimum exact group Steiner tree to answer a normal 
query. Thus, it is possible that KS3 finds new solutions 
with less services than the corresponding SBSs specified 
in the PW dataset. Given a query that contains two key-
words, a set of services identified by KS3 that is different 
from the ones used by the corresponding SBS as specified 
in the PW dataset is considered a new solution. Again, 
take the SBS that uses four services, BitStamp HTTP, BTC-
e, CoinDesk and Mt Gox as an example, a new solution 
must have BitStamp HTTP and Mt Gox as the starting 
and ending services, with only one service in between 
other than BTC-e and CoinDesk. In order to find out 
whether KS3 can identify the solutions as specified in the 
PW dataset, we have changed the way KS3 answers nor-
mal queries in this experiment series. It does not stop 
when a new solution is found. Instead, it will continue to 
search for an exact Steiner tree that matches the corre-
sponding SBS specified in the PW dataset. The success 
rate of answering all 2926 queries will demonstrate the 
practicality of KS3 as shown in Section 5.3. 

In this series of experiments, we also evaluate the abil-
ity of KS3 to identify new solutions. It has a capability of 
offering alternative solutions to users and the success rate 
of finding a new solution across 2926 queries will demon-
strate the practicality of KS3 from this perspective. 

In addition to success rate, we measure the computa-
tional overhead, i.e., the computation time taken by KS3 
to answer those queries, to evaluate the efficiency of KS3 
as shown in Section 5.5. KS3 integrates and automates the 
system planning, service discovery and service selection 
operations regardless of system engineers’ knowledge 
and experiences, achieving a similar goal as the keyword 
search techniques in the database community [11, 20, 29]. 
Inspired by [20, 29], we measure the computational over-
head of KS3 needed to identify an SBS solution to evalu-
ate the efficiency of KS3 from the software engineering 
perspective. 

TABLE 2 
THE PW DATASET 

Number of Services Used by SBS 2 3 4 5 6 7 8 9 10 11-15 16-20 20+ 
Number of SBSs 1490 623 313 195 85 57 34 40 21 49 12 7 
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5.2.2 Experiment Series B and C 
As discussed in Section 2, there are many approaches for 
the generation of data graphs for a Web service library. 
Given a set of Web services, the adoption of different ap-
proaches might result in different data graphs. In addi-
tion, different data graphs in different domains can be 
significantly different from many perspectives, e.g., the 
number of nodes and the number of edges. Thus, the ob-
servation and conclusion from experiment series A on one 
particular data graph (i.e., the one generated based on the 
PW dataset) might not be generally representative. To 
ensure the generality of the evaluation, in experiment set 
of series B and C, a random data graph is generated based 
on the well-known Erdős–Rényi model [18], which en-
sures that the nodes are randomly connected to each oth-
er in the data graph. 

The relevance between the keywords in a query de-
termines whether bridging nodes are needed to identify 
an SBS solution. In the data graph, directly relevant key-
words are composable and hence belong to adjacent 
nodes. Take Fig. 1 for example, the node containing key-
word flight ticket booking is adjacent to the one containing 
car hire and the one containing hotel booking in the data 
graph. Bridging services are needed when two keywords 
are not directly relevant. As discussed in Section 1, key-
words loan application and loan approval are not directly 
relevant because they can only be connected through 
nodes containing keyword credit check in the data graph. 
In the experiments, we use a measurement named key-
word distance to represent the relevance between two 
keywords, reflected by the number of hops they are away 
from each other in the data graph. Take Fig. 1 for example, 
the keyword distance between flight ticket booking and 
hotel booking is 1 and the keyword distance between flight 
ticket booking and insurance quote is 2. To evaluate the effec-
tiveness and efficiency of KS3 in response to queries with 
both irrelevant and relevant keywords, we have conduct-
ed two series of experiments, i.e., series B (except B#2, i.e., 
set #2 of series B) and C, where the keyword distances are 
fixed at 2 and 1 respectively, In simple words, in experiment 
series B, the keywords in a query never belong to adjacent nodes 
in the data graph; bridging nodes are always needed for an SBS 
solution, which however is not necessarily true in experiment 
series C. 

In experiment series B and C, queries are randomly 
generated by selecting keywords according to the pre-
specified keyword distance. A number of quality con-

straints are randomly generated for constraint and opti-
mal queries based on the pre-specified constraint strin-
gency. Different quality properties can be used with the 
corresponding quality aggregation functions to specify 
quality optimisation goals as discussed in Section 4.3. For 
the purpose of simplicity and consistency in the evalua-
tion, we use cost (see formula (11) for its aggregation func-
tion). According to the quality aggregation functions, an 
SBS solution that contains a large number of services usu-
ally has low reliability, high cost and low system 
throughput. Thus, to avoid excessively large SBS solu-
tions, we limit the maximum number of nodes to be in-
cluded in an SBS solution to twice the number of key-
words in the query. 

To comprehensively study the impact of different fac-
tors on the effectiveness and efficiency of KS3, we vary six 
factors in experiment series B, as presented in Table 3, and 
five in series C (same as series B except with keyword 
distance fixed at 1). For each set of experiments, we aver-
age the results obtained from 100 runs. 

For effectiveness evaluation as detailed in Section 5.4, 
we compare three KS3 methods, namely KS3 normal, KS3 
constraint, and KS3 optimal, that answer normal queries, 
constraint queries and optimal queries respectively, with 
their counterpart IP-based individual search methods that 
are assumed or adopted in most existing research on ser-
vice selection for engineering SBSs [3-5, 23, 32, 47-49]. The 
individual search methods look up multiple Web services 
individually to cover the keywords in a query. When 
bridging services are needed, the individual search meth-
ods cannot find any SBS solutions because they are not 
capable of identifying bridging services. As a result, the 
individual search methods can find an SBS solution only 
in experiment set B#1 when the keyword distance is 1. 
Thus, in Fig. 8 and Fig. 11, we omit the results of the individu-
al search methods in experiment series B. The success rate, 
i.e., the percentage of cases where an answer to the key-
word query for an SBS solution can be found, will 
demonstrate the effectiveness of KS3. 

For efficiency evaluation as detailed in Section 5.5, we 
also measure the computational overhead of KS3 in ex-
periment series B and C, in addition to experiment series 
A. The computational overheads of the individual search 
methods are omitted in both experiment series B and C 
for the following reasons. The individual search methods 
are used only in the service selection phase. A full com-
parison in efficiency between the KS3 methods and the 
individual search methods requires the measurement of 

TABLE 3 
EXPERIMENT CONFIGURATION (SERIES B) 

Factor 
Experiment Set 

B#1 B#2 B#3 B#4 B#5 B#6 
Keyword Distance 1 to 10 2 2 2 2 2 

Number of Keywords in Query 2 2 to 10 2 2 2 2 
Number of Quality Constraints 2 2 1 to 10 2 2 2 
Graph Size (Number of Nodes) 2000 2000 2000 2000 to 20000 2000 2000 

Graph Density (Number of Edges) 2000 2000 2000 4000 to 8000 4000 to 8000 2000 
Stringency of Quality Constraints 

(Higher means Harder) 20 20 20 20 20 10 - 100 
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the time and efforts saved by KS3 during all three phases 
during the SBS engineering process, i.e., system planning, 
service discovery and service selection. However, that is 
impossible because it is largely dependent on the system 
engineer’s knowledge and experience. 

5.3  Practicality Evaluation  
Fig. 6 demonstrates KS3’s success rate of answering 2926 
queries corresponding to the 2926 SBSs in the PW dataset 
in experiment series A. It shows that KS3 can answer all 
the queries regardless of the number of keywords in the 
queries. This demonstrates that a system engineer can 
indeed use KS3 to identify the services needed for build-
ing any of the SBSs in the PW dataset by entering the 
keywords that represent the tasks of the SBS – in the ex-
perimental cases: the first and the last tasks. 

Fig. 7 presents KS3’s success rate of finding new solu-
tions when answering the 2926 queries in experiment se-
ries A. In the cases of two tasks in the target SBS, KS3 
cannot find any new solutions. In those cases, only two 
services need to be identified to answer each query. The 
nodes corresponding to the two services are directly 
linked in the data graph. No bridging nodes are needed to 
identify an exact group Steiner tree that covers all the 
keywords in the query. Thus, there is no way a new solu-
tion with less than two services can be found to answer a 
query in those cases. As the number of tasks in the target 
SBS increases from 3 to 20+, KS3’s success rate increases 
from 0.50 to 1.0. As the number of tasks in the target SBS 
increases, the distance between the node containing the 
first keyword and the one containing the second keyword 
in the data graph increases as well. This increases the pos-
sibility of finding an exact group Steiner tree that has less 
nodes than the number of tasks in the target SBS as speci-

fied in the PW dataset. 
The results obtained from this series of experiments 

demonstrate that, given only a few keywords (2 in the 
experimental cases), KS3 can find SBS solutions as speci-
fied in the PW dataset, as well as new SBS solutions. 

5.4  Effectiveness Evaluation  
Fig. 8 shows the impact of different factors on the success 
rate of the KS3 methods in experiment series B. The KS3 
normal method obtains a consistent success rate of 1.0 in 
all experiments because it does not consider quality con-
straints and quality optimisation goals. This indicates that 
the KS3 normal method can always find an SBS solution. 
Thus, the following discussion mainly focuses on the KS3 con-
straint and optimal methods. Unlike the KS3 normal meth-
od, the KS3 constraint method and optimal method are 
not always able to find a solution due to the quality con-
straints. The two methods always have the same success 
rate in the same set of experiments. The reason is that 
their success rates are determined by whether or not they 
can find an SBS solution that fulfils all quality constraints 
despite of their different optimisation goals. 

Fig. 8(a) presents the results of experiment set B#1. It 
shows that the increase in keyword distance leads to a 
decrease in the success rates of the KS3 constraint and 
optimal methods. Even when the keywords in a query are 
only remotely relevant (reflected by a large keyword dis-
tance), the KS3 normal method can still identify all the 
bridging nodes needed for an exact group Steiner tree 
that covers all the keywords in the query. This observa-
tion indicates that even a system engineer only knows a 
few of the tasks required for the target SBS, e.g., the entry 
task and the exit task, KS3 can still find an SBS solution. 
Fig. 8(b) shows the results of experiment set B#2. A query 
with many keywords indicates that a potentially compli-
cated SBS is in need. To build such an SBS, the probability 
that bridging services are needed is high. KS3 can handle 
such queries. However, it takes time, as shown and dis-
cussed later in Section 5.5 based on Fig. 11(b). Fig. 8(c) 
shows the success rates obtained in experiment set B#3. 
As the number of quality constraints increases, it becomes 
harder for KS3 to find an SBS solution, as indicated by the 
decrease in the success rates of all methods except the KS3 
normal method. Fig. 8(d) shows the results of experiment 
set B#4, where the success rates decrease as the graph size 
increases. A bigger data graph with more nodes further 
distributes the keyword nodes in the data graph, directly 
making it harder to generate exact group Steiner trees 
using those keyword nodes. Fig. 8(e) presents the results 
of experiment set B#5, where the success rates increase 
slightly with the increase in graph density. A higher graph 
density means more neighbours for each node. As a re-
sult, for keyword nodes that are not directly connected, 
more exact group Steiner trees can be found, which in-
creases the probability of finding one that fulfils all the 
quality constraints. Fig. 8(f) shows that in experiment set 
B#6, the increase in the stringency of the quality con-
straints largely decreases the success rates. When the 
stringency reaches 90 and 100, no solution can be found. 
This indicates that it is hard to guarantee a satisfactory 

 
Fig. 6. Success rate of answering queries (experiment series A) 

Fig. 7. Success rate of finding new solutions (experiment series A) 
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solution when the quality constraints are stringent and 
bridging services are needed. 

Fig. 9 compares the success rates obtained by KS3 and 
the individual search methods from experiment series C 
where the keyword distance is fixed at 1. According to 
Fig. 8, the three major factors that impact the success rate 
are the graph size, the number and stringency of the qual-
ity constraints. Thus, we only present and discuss the 
results of experiment sets C#3, C#4 and C#6 where the 
above three factors vary. In this series of experiments, the 
keywords in a query are directly relevant. Thus, both the 
KS3 normal method and the individual normal method 
obtain a consistent success rate of 1.0 because they do not 
consider quality constraints. Hence, we only present and 
discuss the constraint and optimal methods. According to 
Fig. 9(a), the graph size does not impact the success rate 
significantly. It is because when the keyword nodes are 
directly connected, the success rate depends on only the 
exact group Steiner trees formed by those connected 

keyword nodes (and possibly some of their neighbours as 
bridging nodes) regardless of the graph size. Fig. 9(b) and 
Fig. 9(c) show that the quality constraints impact the suc-
cess rate in similar ways as in experiment series B. In ad-
dition, the KS3 methods always obtain higher success 
rates than the individual search methods because of the 
ability of KS3 to identify bridging nodes which allows the 
KS3 methods to explore more exact group Steiner trees for 
a satisfactory SBS solution. 

5.5  Efficiency Evaluation 
Fig. 10 shows the average computation time taken by KS3 
to answer different queries in experiment series A. The 
computation time increases from 64 milliseconds to 569 
milliseconds as the number of keywords in query increas-
es from 2 to 20+. Generally, the increase in computation 
time is stable. Please note that the rapid increase when the 
number of tasks reaches and exceeds 15 is because the 
results are the averages of all the cases of 16-20 tasks and 
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Fig. 9. Impact of factors on success rate (experiment series C, keyword distance =1) 

 

 
 (a) Keyword Distance (b) Number of Keywords in Query (c) Number of Quality Constraints 

  
 (d) Number of Nodes in Graph (e) Number of Edges in Graph (f) Stringency of Quality Constraints 
Fig. 8. Impact of Factors on success rate (experiment series B, keyword distance =2) 
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20+ tasks respectively. In this experiment series, there are 
only two keywords in a query corresponding to an SBS 
with a large number of tasks, which describe the first and 
the last tasks of the SBS. Thus, the distance between the 
nodes that contain the two keywords is large and KS3 
needs to identify a lot of bridging nodes in the data graph. 
This requires KS3 to find and inspect a potentially large 
number of exact group Steiner trees, and thus takes KS3 
more time to answer the query. However, our experi-
mental results show that, even in the largest scenario with 
29 tasks, KS3 takes only 2260 milliseconds to answer the 
query. This demonstrates that KS3 is fast enough in real-

world applications.  
Fig. 11 presents the results of experiment series B. Fig. 

11(a) shows the impact of keyword distance on the com-
putation time of KS3. The results demonstrate the ability 
of KS3 to identify the bridging nodes when the keywords 
in a query are not directly relevant. The KS3 normal and 
constraint methods can both quickly find an SBS solution 
with only slight increases in the computation time when 
the keyword distance increases. The performance of the 
KS3 optimal method is impacted more significantly by a 
large keyword distance. However, it is still capable of 
finding an SBS solution within a few seconds when the 
keyword distance is not very large. This is acceptable in 
most, if not all, cases. After all, not many system engi-
neers would enter irrelevant keywords (as reflected by a 
large keyword distance), e.g., car hire and image compres-
sion. In fact, such keywords might not even exist in the 
same data graph as discussed in Section 2. An important 
implication learned from this set of experiments is that 
the quality optimisation goal is conflicting with the irrele-
vance between the keywords for an SBS. System engi-
neers should not expect optimised system quality when 
they are not even able to identify all the tasks of the SBS. 
Instead, they can first enter the keywords without a quali-
ty optimisation goal. In response, the KS3 constraint 
method will quickly find an SBS solution that includes the 
keyword nodes and the bridging nodes. The engineer can 
then lodge an optimal query with all original keywords 
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Fig. 11. Impact of factors on computation time in milliseconds (experiment series B, keyword distance = 2) 
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and the bridging keywords (the keywords in the bridging 
nodes). The optimal solution can be found quickly be-
cause when the keyword distance is small, the KS3 opti-
mal method can find the optimal solution very fast, as 
demonstrated later in Fig. 12(b). 

Fig. 11(b) shows the efficiency of the KS3 methods 
where different numbers of relatively irrelevant keywords 
are entered. It demonstrates the ability of KS3 to find an 
SBS solution when multiple bridging nodes are needed to 
connect many keyword nodes. The KS3 normal method 
demonstrates great performance with only a slight in-
crease in computation time in response to the increase in 
the number of keywords in the query. On the other hand, 
the KS3 constraint and optimal methods have to explore a 
much larger search space. For example, to answer a query 
with 5 keywords, a keyword distance of 2 means that at 
least 9 services are needed to compose the target SBS, in-
cluding 5 keyword nodes and at least 4 bridging nodes. 
The KS3 constraint and optimal methods need to identify 
and inspect the exact group Steiner trees that contain 9 
nodes, as well as those that contain more than 9 nodes. 
The number of exact group Steiner trees to be identified 
and inspected is extremely large in such cases. As a result, 
the KS3 constraint and optimal methods need a much 
longer time to find the solution. This observation indi-
cates that the system engineer may need to be notified of 
the potentially long waiting time when searching for an 
SBS solution that requires many component services. 

Fig. 11(c) demonstrates that the increase in the number 
of quality constraints only slightly increases the computa-
tion time of the KS3 constraint and optimal methods. This 
indicates that KS3 can handle multiple quality constraint 
efficiently. 

Fig. 11(d) shows how the graph size impacts the effi-
ciency of KS3. As demonstrated, the KS3 methods take 
significant amounts of time (up to 129 seconds) to answer 
the queries on very large data graphs in extreme cases 
where none of the keywords are directly relevant. In a 
large data graph, the number of exact group Steiner trees 
that cover all the keyword nodes is extremely large even 
when the number of keywords to cover is small. The KS3 
methods need to identify and inspect all those trees. As 
discussed in Section 3, finding minimum Steiner tree is 
NP-complete, and is further complicated by the quality 
constraints and the quality optimisation goals in the con-
straint and optimal queries. The extremely large search 
space inevitably leads to long computation time of the 
KS3 methods. 

Fig. 11(e) shows that in a dense data graph, where each 
service has many neighbours, it takes a reasonable time 
for KS3 to find an SBS solution, within seconds in most 
cases. An interesting observation from comparing Fig. 
11(d) with Fig. 11(e) is that the graph density does not 
impact the computation time of KS3 as significantly as the 
graph size. A higher graph density means more neigh-
bours for each node, leading to more exact group Steiner 
trees to identify and inspect in response to a query. It is 
reflected by the increase in the computation time demon-
strated in Fig. 11(e). However, the many edges connecting 
each node and their neighbours make it easier to identify 

bridging nodes for keyword nodes that are not directly 
relevant. It results in potentially small exact group Steiner 
trees, which are preferable to all KS3 methods. 

Fig. 11(f) shows some interesting results. The computa-
tion times of the KS3 constraint and optimal methods de-
crease as the quality constraints become more stringent. 
After a further investigation on the results, we found out 
that it was because of the adoption of cost for specifying 
the quality constraints. Cost is a negative (lower means 
better) and additive quality property as presented by 
formula (11) in Section 4.2. An exact group Steiner tree 
with more nodes usually leads to a higher total cost. As a 
result, large Steiner trees are pruned quickly when the 
quality constraints are stringent. In those cases, the KS3 
constraint method and optimal method either find an SBS 
solution quickly or fail to find one. 

The results of experiment series C are shown in Fig. 12, 
where Fig. 12(a) is skipped on purpose for ease of com-
parison between Fig. 11 and Fig. 12. As demonstrated, 
KS3 can find an SBS solution very quickly upon queries 
with directly relevant keywords. It takes no more than 0.5 
second in all cases. An interesting and important observa-
tion is that the impact of the number of keywords, the 
graph size and the graph density on the computation time 
of KS3 becomes negligible or rather linear, as demonstrat-
ed in Fig. 12(b), Fig. 12(d) and Fig. 12(e). 

Overall, Fig. 11 and Fig. 12 demonstrate that KS3 can 
scale to the number of keywords in a query, the number 
of quality constraints, the graph size, the graph density 
and the stringency of the quality constraints. However, 
the ability of KS3 to identify bridging services comes at 
the price of extra computational overhead. This indicates 
that the system engineer should enter relevant keywords 
for KS3 to find an SBS solution fast. This is reasonable 
because in the real-world, they would not try to build SBS 
that performs irrelevant tasks. 

5.6  Threats to Validity 
Here we discuss the key threats to the validity of our 
evaluation of KS3. 

Threats to construct validity. The main threat to the con-
struct validity of our evaluation is comparison of success 
rate with the individual search methods. The individual 
search methods, based on Integer Programming (IP), is 
one of the most popular approaches to quality-aware ser-
vice selection for engineering SBSs [3-5, 23, 32, 47-49], and 
thus is used as baseline for comparison in our evaluation. 
KS3 can identify the needed bridging nodes to find an 
exact group Steiner tree for a satisfactory SBS solution. On 
the other hand, the individual search methods do not 
identify bridging nodes, and thus cannot find a solution 
when bridging nodes are needed. As a result, KS3 tends 
to obtain better experimental results, i.e., higher success 
rates, than the individual search methods. Thus, the main 
threat to construct validity is whether the comparison 
with the individual search methods can properly demon-
strate the effectiveness of KS3 in finding an SBS solution, 
especially in scenarios where bridging nodes are neces-
sary. To minimise this threat, we fixed the keyword dis-
tance at 1 to create scenarios where bridging nodes are 
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not necessary in finding an SBS solution. In such scenari-
os, KS3 and the individual search methods can be com-
pared objectively. In the meantime, we changed other 
configuration factors, as shown in Fig. 9, to simulate dif-
ferent scenarios. By doing so, we could evaluate KS3 by 
not only the comparison with the individual search meth-
ods, but also the demonstration of how the changes in 
different configuration factors impact the success rate 
obtained by KS3. 

Threats to external validity. The main threat to the exter-
nal validity of our evaluation is the representativeness of 
the data graphs and queries created in the experiment 
series B and C. In experiment series B and C, we generat-
ed data graphs based on the well-known Erdős–Rényi 
model, using Web services in QWS [2] - a dataset widely 
used in research on quality-aware service selection for 
engineering SBSs. As discussed in Section 2, different 
techniques can be adopted to analyse the composability 
of Web services, which will lead to potentially different 
data graphs. Thus, the data graphs randomly generated 
in the experiment series B and C might not be the exact 
representative of the real-world Web service data graphs. 
This threatens the external validity of our evaluation be-
cause two keywords relevant in one data graph might not 
be relevant in another data graph. To minimise this threat, 
we used the keyword distance to control the relevance 
between the keywords in the generated queries. By doing 
so, the relevance between the query keywords is inde-
pendent of the generation of the data graph. The repre-

sentativeness of the randomly generated queries also 
threatens the external validity of our evaluation. The rele-
vance between the query keywords in the real world is 
dependent on the system engineers’ understanding of the 
functional requirements for the target SBSs. A full user 
study has not been performed and the presented results 
are specific to the data graphs and queries used in the 
experiments. Thus, the queries generated in experiment 
series B and C might not be generally or fully representa-
tive. For example, a real-world case rare but not impossi-
ble is that a system engineer is able to provide only one or 
two keywords for the many actually needed tasks of an 
SBS. To minimise this threat, we made an assumption that 
a system engineer can provide at least half of the needed 
keywords. We believe that this assumption is reasonable 
in most, if not all, real-world cases. In the meantime, we 
changed various factors related to the query keywords. 
Using this approach, we comprehensively evaluated KS3 
by simulating query keywords provided by real-world 
system engineers with different levels of understanding 
of their target SBSs. Furthermore, the results of experi-
ment series A can also help minimise the above threats to 
the external validity of our evaluation. Experiment series 
A was conducted based on data (crawled from program-
mableweb.com) about 1496 real-world Web services and 
2926 real SBSs using those Web services. The data graph 
and queries generated in experiment series A are true rep-
resentation of a real-world Web service library and sys-
tem engineers’ potential queries for building SBSs. 
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Fig. 12. Impact of factors on computation time in milliseconds (experiment series C, keyword distance = 1) 
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Threats to internal validity. The main threat to the inter-
nal validity of our evaluation is the comprehensiveness of 
our experiments. In the experiment series B and C, we 
simulated scenarios where six factors changed individual-
ly, as shown in Table 3. More sophisticated scenarios 
could have been simulated, e.g., those where two or more 
of those factors change at the same time. In those scenari-
os, the results can be predicted in general based on the 
results that we have obtained. For example, if the number 
of quality constraints and the number of nodes increase at 
the same time, the declining trend of the success rate of 
KS3 would be similar to Fig. 8(c) and Fig. 8(d). It can also 
be predicted that the decline would be faster because of 
the cumulative effect caused by the simultaneous increas-
es in the number of quality constraints and the number of 
nodes. In the meantime, it can be predicted that the in-
crease in computation time would be similar to Fig. 11(d) 
and Fig. 12(d), because Fig. 11(c), Fig. 11(d), Fig. 12(c) and 
Fig. 12(d) indicate that the impact of the increase in the 
number of nodes on the computation time is much more 
significant than the number of quality constraints. 

Threats to conclusion validity. The main threat to the 
conclusion validity of our evaluation is the lack of statisti-
cal tests, e.g., chi-square tests. We could have conducted 
chi-square tests to draw conclusions when evaluating KS3. 
However, we ran the experiment for 100 times in each set 
and averaged the results each time we changed a configu-
ration factor. This led to a large number of test cases, 
which tend to result in a small p-value in the chi-square 
tests and lower the practical significance of the test results 
[36]. In the largest experiment set, there were 1,000 runs. 
This number is not even close to the number of observa-
tion samples that concern Lin et al. in [36]. Thus, the 
threat to the conclusion validity due to the lack of statisti-
cal tests might be high but not significant. 

6 RELATED WORK 
The service composition process for engineering an SBS 
consists of three phases: system planning, service discov-
ery and service selection. There has been a large body of 
work on solving the problems in each of the phases indi-
vidually. 

In the phase of system planning, the system engineer 
determines the tasks to be performed to implement the 
functionality of the SBS, as well as the execution order of 
the tasks. Most techniques adopted in this phase to identi-
fy the tasks needed to implement an SBS are based on 
artificial intelligence (AI) techniques [24, 41, 43, 51]. The 
general idea is to model the service composition as a 
planning problem which can be solved using the corre-
sponding planning problem solver. For example, in [51], 
the authors model the service composition problem as a 
cost sensitive temporally expressive (CSTE) planning 
problem, which is solved using a Supply Chain Planning 
(SCP) solver. At the end of the system planning phase, the 
tasks of an SBS are determined. 

In the phase of service discovery, through service regis-
tries or service portals, the system engineer identifies a set 
of candidate services for each of the tasks based on the 

functional and semantic information of candidate services. 
To improve the accuracy of service matching, several se-
mantic Web service languages have been proposed based 
on ontology techniques, e.g., DSD [35] and OWLS-MX 
[34]. These languages can semantically enrich the service 
description and SBS specification. The adoption of ontol-
ogy automates the service matching operation that identi-
fies the services that can perform the tasks of the SBS de-
termined in the system planning phase. For a task, there 
are usually many functionally-equivalent services that 
can perform the task [5, 49]. Those services differ in multi-
dimensional quality properties. To identify a huge num-
ber of such services, the service discovery operation must 
be automated. Many approaches have been proposed to 
address this issue [12, 16, 33]. Based on automatic service 
matching, these approaches adopt ontology techniques 
such as logical reasoning and temporal planning to auto-
mate the service discovery operation. At the end of this 
phase, a group of functionally-equivalent candidate ser-
vices are selected for each of the tasks required for the 
SBS. 

In the service selection phase, the system engineer se-
lects one service from each set of functionally-equivalent 
candidate services to compose the target SBS. In this 
phase, the selected services must collectively fulfil the 
multi-dimensional quality constraints for the SBS [5, 13, 
23, 47, 49], e.g., reliability, throughput, cost, etc., which is 
a NP-complete problem. Integer Programming (IP) is the 
main technique adopted in this phase. AgFlow [49] is one 
of the most representative approaches. Following the idea 
of AgFlow, many researchers have been trying to reduce 
the computation time for quality-aware service selection 
[4, 47] or to propose enhanced approaches for solving the 
problem in more complex environments [5, 23, 32]. 

There are a lot of complex techniques and approaches 
available for solving different problems in the above 
phases. A lot of time and effort are required for a system 
engineer to choose, learn and apply these techniques and 
approaches to eventually obtain an SBS solution. This has 
been a major obstacle to further and broader applications 
of SOA. An innovative approach is needed that can help 
system engineers find services to build SBSs fast without 
having to go through all the complicated phases. Some 
approaches have been proposed. Based on the idea of tag-
based search introduced in [45], the authors of [37] pro-
pose a planning technique that explore SBS solutions by 
looking up services whose tags match the tags describing 
the SBS. For each query, the engineer needs to enter a 
source tag and a destination tag. The proposed planning 
technique will heuristically identify the possible service 
compositions with an entry service according to the 
source tag and an exit service according to the destination 
tag. An approach is proposed in [26] for helping system 
engineers navigate from the entry service to the exit ser-
vice through multiple queries. There are two major limita-
tions to this planning technique. First, each query allows 
only two tags, i.e., one source tag and one destination tag. 
Multiple tags can only be entered one by one in different 
queries that are processed individually until a final solu-
tion is found. Second, quality constraints cannot be speci-
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fied. Thus, the planning technique is not suitable for 
building software systems with quality constraints. 

KS3 assists a system engineer without detailed 
knowledge of SOA techniques in identifying the services 
needed for building an SBS by entering only a few key-
words that represent the tasks of the SBS. By integrating 
and automating the system planning, service discovery 
and service selection operations, KS3 can significantly 
save the time and efforts during the SBS engineering pro-
cess. Furthermore, KS3 overcomes the limitations of the 
approaches proposed in [26, 37]. Firstly, KS3 can handle 
multiple keywords (i.e., multiple system tasks) in one 
query. Secondly, system engineers do not have to enter 
the keywords in a specific order. Thirdly, KS3 allows mul-
ti-dimensional quality constraints and a quality optimisa-
tion goal to be specified for the target SBS. 

7 CONCLUSIONS AND FUTURE WORK 
In this paper, we propose KS3, a novel approach that in-
tegrates and automates the system planning, service dis-
covery and service selection operations for building ser-
vice-based systems (SBSs). It assists system engineers 
without detailed knowledge of SOA techniques in identi-
fying SBS solutions with only a few keywords that de-
scribe the tasks of the SBSs. KS3 offers a new paradigm 
for efficient SBSs engineering that can significantly save 
the time and effort during the SBS engineering process. 
The comprehensive experimental analysis shows the 
practicality, effectiveness and efficiency of KS3. 

According to the experimental results, KS3 takes a sig-
nificant amount of time to find an SBS solution in re-
sponse to a query with irrelevant keywords when the 
number of keywords in the query or the graph size is 
large. Thus, it requires that system engineers have a prop-
er understanding of the functional requirements for their 
SBSs. In our future work, we will address this issue by 
recommending relevant keywords (i.e., relevant Web ser-
vices) to system engineers based on collaborative filtering 
techniques [50]. We will also enhance KS3 with automatic 
query expansion techniques [15] to handle synonymy, 
word inflections and polysemy. 
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