
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Keyword Search for Building Service-Based
Systems

Qiang He, Member, IEEE, Rui Zhou, Xuyun Zhang, Yanchun Wang, Dayong Ye, Feifei Chen,
John Grundy Member, IEEE, Yun Yang, Senior Member, IEEE

Abstract—With the fast growth of applications of service-oriented architecture (SOA) in software engineering, there has been a
rapid increase in demand for building service-based systems (SBSs) by composing existing Web services. Finding appropriate
component services to compose is a key step in the SBS engineering process. Existing approaches require that system
engineers have detailed knowledge of SOA techniques which is often too demanding. To address this issue, we propose KS3
(Keyword Search for Service-based Systems), a novel approach that integrates and automates the system planning, service
discovery and service selection operations for building SBSs based on keyword search. KS3 assists system engineers without
detailed knowledge of SOA techniques in searching for component services to build SBSs by typing a few keywords that
represent the tasks of the SBSs with quality constraints and optimisation goals for system quality, e.g., reliability, throughput
and cost. KS3 offers a new paradigm for SBS engineering that can significantly save the time and effort during the system
engineering process. We conducted large-scale experiments using a real-world Web service dataset to demonstrate the
practicality, effectiveness and efficiency of KS3.

Index Terms—Service-Based System, Keyword Search, Service Composition, Web Service, Quality of Service, Cloud
Computing.

——————————u——————————

1 INTRODUCTION
ervice-oriented architecture (SOA) has become a ma-
jor framework for building complex distributed soft-
ware systems by discovering and composing loosely

coupled Web services provided by different organisations
[5, 49]. Executed by a system engine, e.g., a BPEL engine
[7], the component services of such a service-based sys-
tem (SBS) collectively realise the functionality of the SBS
which is often offered as SaaS (Software-as-a-Service) in
the cloud environment. The development and popularity
of e-business, ecommerce, especially the pay-as-you-go
business model promoted by cloud computing have
fuelled the growth of Web services [21]. The statistics
published by ProgrammableWeb1, an online Web service
directory, and webservices.seekda.com, a Web service
search engine, both indicate a rapid growth in the number
of published Web services in the past few years. The pop-
ularity of Web services and SOA enables the engineering

1http://www.programmableweb.com/

of various SBSs that fulfil different organisations’ increas-
ingly sophisticated business needs [9].

Fig. 1 shows the engineering process for a travel book-
ing SBS that consists of four component services perform-
ing four tasks: flight ticket booking, hotel booking, car rental
and insurance quote. As depicted, the service composition
process for engineering the SBS consists of three phases.
The first phase is system planning where a system engineer
determines the tasks needed to be performed to imple-
ment the functionality of the SBS, as well as the execution
order of the tasks, by employing artificial intelligence
techniques [24, 35, 43]. The second phase is service discov-
ery where, through service registries or service search en-
gines, the system engineer identifies a set of candidate
services for each of the tasks based on the functional and
semantic information on candidate services [34, 42, 44].
The third phase is service selection where the system engi-
neer selects one service from each set of candidate ser-
vices to fulfil the multi-dimensional constraints for sys-
tem quality, e.g., reliability, throughput, cost, etc. This is a
NP-complete problem often referred to as quality-aware
service selection [13, 23].

Building an SBS is very complicated and has become a
major obstacle to further and broader applications of SOA.
Even relatively simple tools designed by SOA vendors,
e.g., Oracle BPEL Process Manager and IBM Process De-
signer, are already too complicated for non-experts and
require substantial training [1]. Thus, there has been a
rapid increase in the need for an approach that allows
system engineers to find services to build SBSs without
detailed knowledge of the system planning, service dis-
covery and service selection operations [6, 37].

Recently, some Web service repositories such as Pro-

xxxx-xxxx/0x/$xx.00 © 201x IEEE

S

————————————————
• Qiang He is with the State Key Laboratory of Software Engineering, Wu-

han University, Wuhan 430072, China and the School of Software Engi-
neering and Electrical Engineering, Swinburne University of Technology,
Melbourne, VIC 3122, Australia. Email: qhe@swin.edu.au.

• Rui Zhou is with the Centre for Applied Informatics, Victoria University,
Melbourne, Australia. E-mail: rui.zhou@vu.edu.au.

• Xuyun Zhang is with the University of Auckland, Auckland, New Zealand.
E-mail: xuyun.zhang@auckland.ac.nz.

• Yanchun Wang, Dayong Ye, Feifei Chen and Yun Yang are with the School
of Software and Electrical Engineering, Swinburne University of Technolo-
gy, Melbourne, Australia 3122. E-mail:
{yanchunwang, dye, feifeichen, yyang}@swin.edu.au.

• John Grundy is with Deakin University, Geelong, Victoria, Australia 3125,
in the School of Information Technology,. Email: j.grundy@deakin.edu.au.

Manuscript received (insert date of submission if desired). Please note that all
acknowledgments should be placed at the end of the paper, before the bibliog-
raphy.

 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

grammableWeb1, Mashape2, XMethods3 and WebService-
List4 emerged as simple service portals that allow users to
search for Web services by keywords. Keyword search
techniques have long been popularised by Web search
engines like Google and Bing in locating information
from Web documents. It has also been widely used to lo-
cate information from databases [10, 25, 30]. However,
none of the existing keyword search techniques can be
directly applied to effectively find multiple Web services
for building SBSs.

In this paper, we propose KS3 (Keyword Search for
Service-based Systems), a novel approach that assists
system engineers in searching for Web services to build
SBSs by typing only a few keywords with quality con-
straints and quality optimisation goals, as shown in Fig. 1.
KS3 integrates and automates the system planning, ser-
vice discovery and service selection operations, offering a
novel paradigm for efficient SBS engineering. KS3 runs on
directed data graph, where Web services are modelled as
nodes connected by edges representing whether the ser-
vices can be composed. Given a set of keywords that de-
scribe the tasks of an SBS, KS3 returns a subgraph of the
data graph that represents the solution to the service
composition for the SBS. The solution includes the ser-
vices that perform the tasks of the SBS, the bridging ser-
vices (if any) needed however not specified by the key-
words, and the composability of those services, i.e.,
whether and how they can be composed.

A system engineer without detailed knowledge of SOA
techniques can easily use KS3 to find the Web services
needed to build the travel booking SBS depicted in Fig. 1.
They only need to enter a few keywords that describe the
basic tasks of the system: flight ticket booking, hotel booking,
care hire and insurance quote. KS3 will take those keywords,
searches its Web service library, and returns an SBS solu-

2https://www.mashape.com/
3http://www.xmethods.com/
4http://www.webservicelist.com/

tion that specifies not only the services to use but also
how they can be composed to build the SBS. Given the
solution, the system engineer can deploy the SBS on a
BPEL execution engine. KS3 can find an SBS solution even
when the system engineer is not able to provide all the
keywords for describing the SBS. For example, a system
engineer enters two keywords loan application and loan
approval, hoping to build a loan preapproval SBS. Howev-
er, a loan preapproval process also requires a credit check
service that succeeds the loan application service and pre-
cedes the loan approval service. The search engine can au-
tomatically identify the missing credit check service and
provide the system engineer with a complete SBS solution.
Therefore, KS3 can save system engineers a lot of time
and efforts for finding the component services to build
their SBSs.

The major contributions of this research are as follows:
• KS3 offers a novel paradigm for efficiently engineer-

ing SBSs by integrating and automating the system
planning, service discovery and service selection op-
erations and relieving system engineers of the de-
tailed knowledge of corresponding SOA techniques.

• The existing network model for organising a Web
service library is adapted into a data graph model, in
which nodes represent Web services with keywords
and quality values and directed edges represent ser-
vice composability.

• Based on the data graph, constraint optimisation
problem (COP) models are proposed to model and
answer system engineers’ queries for services for
building SBSs. Three types of queries are currently
supported: normal queries, constraint queries, i.e.,
queries with quality constraints, and optimal queries,
i.e., queries with quality constraints and optimisation
goals.

• Extensive experiments were conducted to evaluate
the practicality, effectiveness and efficiency of KS3 us-
ing two datasets. The first dataset contains the func-
tional information about 1496 real-world Web ser-

Fig.1. An example travel booking service-based system.

Business Process

v3,1

v4,1

Task 1:
flight ticket

booking

Task 2:
car hire

Task 3:
hotel booking

Task 4:
insurance

quote

v1,1

Candidate
Services

{v1,1, v1,2, ...}
Candidate

Services
{v4,1, v4,2, ...}

v2,1

1.
 S

ys
te

m

Pl
an

ni
ng

Functional
Requirements

for SBS

2. Service Discovery

3. Service Selection

SBS

Quality
Constraints

and
Optimisation

Goal
for SBS

KS3

HE ET AL.: KEYWORD SEARCH FOR BUILDING SERVICE-BASED SYSTEMS

vices and 2926 SBSs crawled from programmable-
web.com. The second dataset is a published one
which contains the functional and quality infor-
mation about over 2500 real-world Web services.

The rest of this paper is organised as follows: Section 2
describes our graph model for constructing the Web ser-
vice library. Section 3 formally states the research problem.
Section 4 presents how KS3 models and answers keyword
queries for SBS solutions based on the graph model. Sec-
tion 5 evaluates the practicality, effectiveness and efficien-
cy of KS3 with experimental results. Section 6 reviews the
related work. Section 7 concludes the paper.

2 GRAPH MODEL FOR WEB SERVICE LIBRARY
Many approaches have been proposed in recent years for
organising a Web service library using a network model.
In this network model, a node represents a Web service
and a directed edge between two nodes represents the
service composability, i.e., whether the two corresponding
Web services can be composed in the order specified by
the direction of the edge. Those approaches can be
grouped into two major categories: data mining based [27,
31, 38, 40] and semantics based [17, 19]. The data mining
based approaches mine the service composability infor-
mation, which is needed for constructing a Web services
data graph, from their collaboration history. The seman-
tics based approaches discover the service composability
information by mining semantic associations and interac-
tions between services according to well-defined ontolo-
gies. Both categories of approaches construct the Web
services network offline. Once completed, the service
network remains relatively stable and can be updated
with minimum overheads upon certain events, e.g., new
services joining or old ones leaving.

We adapt the above service network model into a data
graph. KS3 is independent of the specific approach
adopted for the generation of a data graph. It runs on any
data graph that fulfils the simple and straightforward
requirements specified by Definitions 1 and 2 below:
DEFINITION 1. Nodes: For each Web service in the li-
brary, the data graph G has a corresponding node v. Each
node in G contains one keyword k1 that represents the
function offered by the corresponding Web service. A Web
service that offers multiple functions is represented by
multiple nodes with the same keyword in G.

In the remainder of this paper, we will speak inter-
changeably of a Web service and its corresponding node
in the graph, both denoted as v. Please also note that flight
ticket booking has three terms, however is considered as
one keyword, not three.
DEFINITION 2. Edges: For each pair of composable Web
services v1 and v2, the data graph contains an edge e(v1, v2)
between v1 and v2. e(v1, v2) is directed, pointing from v1 to v2
if v2 can be the succeeding node of v1 in the composition of
v1, v2. An edge e can be bidirectional if v1 can also be the
succeeding node of v2 in the composition.

We use G(V, E) to denote the data graph where V is the
set of nodes and E is the set of edges in G. The nodes in G
are annotated with the quality values of the Web services

obtained from their Service Level Agreements (SLAs),
e.g., reliability and throughput, to enable quality-aware
selection for service compositions - a critical and challeng-
ing problem in SBS engineering [5, 13, 23, 47, 49]. The an-
swer to such a query is a set of Web services that collec-
tively fulfil the functional and quality requirements for
the SBS.

According to Definition 2, relevant services in the same
domain are connected, either directly or indirectly, form-
ing a connected data graph. However, a Web service li-
brary might contain Web services in different domains,
e.g., car hire and image processing services, which belong to
different data graphs. Thus, it is possible that a Web ser-
vice library has multiple data graphs that are not connect-
ed to each other.

To answer different types of keyword queries (as will
be detailed in Section 4), KS3 prebuilds and maintains an
inverted index for a data graph G. For each keyword in G,
the nodes covering the keyword are stored in this index.
For example, if nodes v1, v8 and v35 cover keyword k6, there
is V(k6)={v1, v8, v35} representing the set of nodes in G that
cover keyword k6.

3 PROBLEM STATEMENT
Given a data graph G and a keyword query Q containing
l (l ³ 2) keywords (Q={k1, …, kl}), the problem of answering
the query over G consists of two steps: 1) to find an an-
swer tree, denoted as T(Q) in G, containing connected
nodes that cover all the keywords in Q; 2) to induce the
final answer based on the answer tree. Fig. 2 presents part
of an example data graph G and Fig. 3 shows three an-
swer trees, i.e., T1(Q), T2(Q) and T3(Q), from G for query
Q={flight ticket booking, insurance quote}. In T1(Q)={v3, v1, v5},
node v3 contains flight ticket booking and node v5 contains
insurance quote. From Fig. 2, we can see that v3 and v5 are
not directly connected. However, they can be connected
via v1. Thus, v1 is included in T1(Q) as a bridging node
(bridging service), indicating that v1, v3 and v5 can be com-
posed together to perform flight ticket booking and insur-
ance quote. Besides T1(Q), T2(Q)={v3, v8, v7, v5} and T3(Q)={v3, v2,
v4, v6, v5} also cover flight ticket booking and insurance quote.

Fig. 2. Part of an example data graph

v1:	car	hire
qrb	=	0.88;
qtp	=	50rps;		

v5:	insurance	
quote

qrb	=	0.92;
qtp	=	200rps;		

v4:	restaurant	
booking

qrb	=	0.83;
qtp	=	150rps;		

v2:	cruise	
ticket	booking
qrb	=	0.98;
qtp	=	100rps;		

v8:	railway	
ticket	booking
qrb	=	0.95;
qtp	=	500rps;		

v7:	hotel	
booking	

qrb	=	0.99;
qtp	=	80rps;		

v3:	flight	ticket	
booking

qrb	=	0.90;
qtp	=	100rps;		

qrb:	reliability
qtp:	throughput

v6:	concert	
ticket	booking
qrb	=	0.85;
qtp	=	100rps;		

 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Please note that there are other trees that cover flight ticket
booking and insurance quote. However, we omit them and
use only T1(Q), T2(Q) and T3(Q) as examples in the re-
mainder of the paper. We denote q(T(Q)) as the quality of
the SBS built based on T(Q). Using the quality aggrega-
tion functions introduced in [5, 49], Table 1 presents the
reliability and throughput offered by T1(Q), T2(Q) and
T3(Q). Assume that the system engineer has a quality con-
straint for the SBS qrb(T(Q)) ≥ 0.7, i.e., at least 70% of the
requests must be processed within a specified time period,
T3(Q) is not a suitable solution because it does not fulfil
the quality constraint. Both T1(Q) and T2(Q) fulfil this
quality constraint, but T1(Q) will be selected as the answer
tree because it contains the minimum number of nodes
and can provide the best simplicity in the solution.
Among the three answer trees, T(Q2) has the highest relia-
bility whilst T(Q3) has the largest system throughput.
Thus, T(Q2) would be the optimal solution if the system
engineer’s optimisation goal is maximised reliability, or
T(Q3) if the system throughput needs to be maximised.

Fig. 3 demonstrates that an answer tree T(Q) may con-
tain nodes that do not cover any of the keywords in Q,
and is therefore a Steiner tree [28], defined as follows:
DEFINITION 3. Steiner Tree. Given a graph G=(V, N)
and V' VÍ , T is a Steiner tree of V’ in G if T is a connect-
ed subtree in G that covers all nodes in V’.

Using the inverted index introduced in Section 2, we
can identify the groups of nodes in G corresponding to
individual keywords in Q={k1, …, kl}, denoted as V1, …, Vl
where Vr (1≤r≤l) is the set of nodes in G that cover kr

(1≤r≤l). The problem is now to find an exact group Steiner
tree, formally defined as follows:
DEFINITION 4. Exact Group Steiner Tree: Given a
graph G=(V, N) and groups V1, …, Vl ÍV, where Vi∩Vj=Ø,
" Vi, Vj (0≤i, j≤l and i≠j), T is an exact group Steiner tree of
V1, …, Vl in G if T is a Steiner tree that contains exactly one
node from each group Vr (1≤r≤l).

KS3 answers three types of queries: 1) normal query; 2)
constraint query; and 3) optimal query. A normal query
aims to find an SBS solution without quality constraints.
The answer tree for a normal query is an exact group
Steiner tree. There are usually multiple exact group Stei-
ner trees. KS3 aims to find the minimum exact group Steiner
tree that answers the query with the minimum number of
nodes, including keyword nodes, i.e., nodes that contain the
keywords in the query, and bridging nodes, i.e., nodes that
do not contain the keywords but are necessary to connect
the keyword nodes. A minimum exact group Steiner tree
is defined as follows:
DEFINITION 5. Minimum Exact Group Steiner Tree.
Given a set of exact group Steiner trees in G, T1, …, Tn, Ti
(0≤i≤n) is the minimum exact group Steiner tree if
|Ti|=min(|T1|, …, |Tn|) where |Ti| (1≤i≤n) represents
the cardinality of Ti, i.e., the number of nodes in Ti.

Take Fig. 3 for example, for query Q={flight ticket book-
ing, insurance quote}, there are three exact group Steiner
trees. T1(Q), the one with the minimum number of nodes,
including two keyword nodes (v3 and v5) and one bridging
node (v1), is the minimum exact group Steiner tree and the
answer to the query.

A constraint query is similar to a normal query, but
with constraints for system quality, e.g., qrb(T(Q))>0.70 and
qtp(T(Q))>70rps, i.e. the system must be able to process at
least 70 requests per second. In KS3, each node v in G is
annotated with the quality values of the corresponding
Web service. The quality of an SBS based on an answer
tree T(Q) can be calculated by aggregating the quality of
its component services [5, 49]. Take T1(Q) in Fig. 3 for ex-
ample, its reliability can be calculated: qrb(T1(Q))=
qrb(v3)×qrb(v1)×qrb(v5)=0.90×0.88×0.92=0.73 and its throughput:
qtp(T1(Q))=min(qtp(v3), qtp(v1), qtp(v5))= min(100, 50,
200)=50rps. The answer tree for a constraint query is the
exact group Steiner tree that fulfils all quality constraints
with minimum cardinality. Assume the query Q={flight
ticket booking, insurance quote} with two quality con-
straints: crb: qrb(T(Q))>0.70 and ctp: qtp(T(Q))>70rps,. The only
satisfactory answer trees among the three shown in Fig. 3
is T2(Q) because T1(Q) does not fulfil the constraint for
system throughput, i.e., ctp and T3(Q) does not fulfil the
constraint for system reliability, i.e., crb.

An optimal query is also a constraint query, but with
the objective to optimise a system quality, e.g., to maxim-
ised system reliability or throughput, instead of minimum
cardinality. With each group Steiner tree representing a
potential answer tree that fulfils all quality constraints,
the answer to an optimal query is the optimal exact group

TABLE 1
QUALITY VALUES OF ANSWERS TO QUERY Q={FLIGHT TICK-

ET BOOKING, INSURANCE QUOTE}

Answer Tree T(Q)
Reliability

(qrb)
Throughput

(qtp)
T1(Q)={v3, v1, v5} 0.73 50rps

T2(Q)={v3, v8, v7, v5} 0.78 80rps
T3(Q)={v3, v2, v4, v6, v5} 0.57 100rps

Fig. 3. Answer trees to query Q={flight ticket booking, insurance
quote}

v3:	flight	ticket	
booking

qrb	=	0.90;
qtp	=	100rps;		

T1(Q)={v3,	v1,	v5} T2(Q)={v3,	v8,	v7,	v5} T3(Q)={v3,	v2,	v4,	v6,	v5}

v1:	car	hire

qrb	=	0.88;
qtp	=	50rps;		

v5:	insurance	
quote

qrb	=	0.92;
qtp	=	200rps;		

v3:	flight	ticket	
booking

qrb	=	0.90;
qtp	=	100rps;		

v8:	railway	
ticket	booking

qrb	=	0.95;
qtp	=	500rps;		

v7:	hotel	booking

qrb	=	0.99;
qtp	=	80rps;		

v5:	insurance	
quote

qrb	=	0.92;
qtp	=	200rps;		

v3:		flight	ticket	
booking

qrb	=	0.90;
qtp	=	100rps;		

qrb	=	0.98;
qtp	=	100rps;		

v2:	cruise	ticket	
booking

v4:	restaurant	
booking

qrb	=	0.83;
qtp	=	150rps;		

v6:	concert	
ticket	booking

qrb	=	0.85;
qtp	=	100rps;		

v5:	insurance	
quote

qrb	=	0.92;
qtp	=	200rps;		

HE ET AL.: KEYWORD SEARCH FOR BUILDING SERVICE-BASED SYSTEMS

Steiner tree, formally defined as follows:
DEFINITION 6. Optimal Exact Group Steiner Tree.
Given a set of exact group Steiner trees in G, T1, …, Tn, Ti
(1≤j≤n) is the optimal exact group Steiner tree if
q(Ti)=max(q(T1), …, q(Tn)) (or q(Ti)=min(q(T1), …, q(Tn)) for
negative quality properties like cost) where q(Ti) repre-
sents the quality offered by Ti(Q).

Take Fig. 3 for example, for query Q={flight ticket book-
ing, insurance quote} with quality constraints: qrb(T(Q))>0.70
and qtp(T(Q))>50rps, and an optimisation goal on system
throughput, T2(Q) is the answer tree as it fulfils both qual-
ity constraints and offers the maximum system through-
put.

The computation of a minimum group Steiner tree is
already NP-complete [11], and is made even more com-
plicated by the multi-dimensional constraints and the
optimisation goal for system quality. KS3 models key-
word queries as COPs that can be solved by applying
Integer Programming (IP) techniques. Next, we discuss
how different queries are modeled and answered, fol-
lowed by a discussion of the answer induction.

4 ANSWERING KEYWORD QUERIES
In this section, we first discuss how different keyword
queries for SBSs are modelled and answered based on the
graph model presented in Section 2. Then we describe
how the final answers to keyword queries are induced. As
discussed in Section 2, a Web service library may have
multiple data graphs for different domains. In this re-
search, we assume that system engineers would not
search for services across different data graphs because
the tasks of an SBS are usually in the same domain.

4.1 Answering Normal Queries
A normal keyword query contains a set of keywords,
Q={k1, …, kl}. To answer a normal query Q over a data
graph G, KS3 finds a minimum exact group Steiner tree
T(Q) that contains all the keywords in Q.

The first step of the answering process is to locate
nodes that contain individual keywords in Q. For each
keyword kr in Q (1≤k≤l), KS3 finds the set of nodes V(kr)
that contain kr using the inverted index discussed in Sec-
tion 2. Next, KS3 models the problem of answering a
normal query as a constraint satisfaction problem (CSP),
which consists of a finite set of variables X={x1, …, xn},
with domain D={0, 1} listing the possible values for each
variable in X, and a set of constraints C={c1, c2, …, ct} over
X. A solution to a CSP is an assignment of a value to each
variable in X from its domain such that all constraints in
C are satisfied. The CSP model of answering a normal
query is formally expressed as follows.

For a G=(V, E), where V={v1, …, vm} and E={e1, …, en},
there are two sets of 0-1 variables X={x1, …, xm} and Y={y1,
…, yn}, where D(xi)={0, 1} (i=1, …, m) and D(yj)={0, 1} (j=1,
…, n), xi and yi being 1 if the ith node and the jth edge in G
are selected as part of the answer tree for the query, 0 oth-
erwise. The constraints for the CSP model are:

Keyword Constraints:
 =1 [1, ...,]i

v Vri
x r l

Î
" Îå (1)

where Vr is the set of nodes in G that contain keyword
kr∈Q (1≤r≤l). The keyword constraints ensure that exactly
one node is selected from each Vr (1≤r≤l) to cover each
keyword in Q.
Node Constraints:

Î
" Îå

j i
j i

e E v
y x i m

()
= 0 IF = 0 [1, ...,] (2)

je Î

³ " Îå
i
j i

E v
y x i m

()
1 IF = 1 [1, ...,] (3)

where E(vi) is the set of edges connected to vi (1≤i≤m).
Constraint family (2) ensures that if a node is not selected,
none of the edge(s) connected to it are selected. Con-
straint family (3) ensures that, if a node is selected, at least
one edge connected to it is selected.
Edge Constraints:
 [1, ...,]j n" Î and viÎV(ej) IF yj==1 THEN xi=1 (4)
where V(ej) is the set of nodes connected to ej. The edge
constraints ensure that if an edge is selected, both nodes
connected to it must be selected. When integrated into the
CSP model, constraints family (4) can be transformed into:
 xi≥yj " Î £ £je E j n(1) and viÎV(ej) (5)

Connectedness Constraint:

= =

³å å
n m

j i
i iy x

1 1
- 1 (6)

 1 (1) [1, ...,] and , ()d ds sj jx x m y j n x x V e- + £ - " Î Î (7)

The connectedness constraint guarantees that all the
selected nodes and edges constitute a connected tree
based on the well-known Miller–Tucker–Zemlin con-
straint [39].

Solving the above CSP can find the exact group Steiner
tree(s) in G, each covering all the keywords in the query
Q. Very often, there are many such exact group Steiner
trees. Take Fig. 3 for example, there are three exact group
Steiner trees for query Q={flight ticket booking, insurance
quote} from G shown in Fig. 2. They all cover keywords
flight ticket booking and insurance quote in the query. In fact,
any spanning tree of G that contains one node from each
V(kr) (1≤r≤l) is an exact group Steiner tree, e.g., {v1, v2, v3, v5},
{v1, v3, v5, v7}, etc. As discussed in Section 3, KS3 identifies
the minimum exact group Steiner tree, i.e., the one with
the minimum number of nodes, as the answer tree for the
normal query. The objective function that captures this
optimisation goal is as follows:
Objective Function:

 minimise(
m

i
ix

=
å
1

) (8)

Given this objective function, the CSP turns into a COP.
In a COP, each solution generated by solving the CSP is
associated with a ranking value for the objective function.
The solution with the optimal ranking value is the solu-
tion to the COP.

4.2 Answering Constraint Queries
A constraint query is a normal query with constraints for

 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

system quality, e.g., qrb(T(Q))<0.7, qtp(T(Q))>70rps. The an-
swer tree for a constraint query is an exact group Steiner
tree that: 1) covers all keywords in Q; and 2) fulfils all
quality constraints.

The quality offered by an answer tree T(Q) can be cal-
culated by using corresponding aggregation functions [5,
49]. Some quality properties of an SBS are calculated in-
dependently of its structure and dynamics, based only on
the quality of its component services, e.g., reliability,
throughput, cost, etc. Those quality properties are named
structure-independent system quality. Let T(Q)={v1, …, vm},
formulas (9)-(11) present the functions for the calculation
of system reliability, throughput and cost as examples:

 qrb(T(Q))=
1

()
m

i
rbq

=
Õ iv (9)

 qtp(T(Q))=min(qtp(v1), …, qtp(vm)) (10)

 qcost(T(Q))=
1

()
m

i
rbq

=
å iv (11)

The calculation of some quality properties must take
into account the system structure, e.g., response time. If
there are multiple execution paths from the entry service
to the exit service of the system, the one with maximum
execution time determines the response time of the sys-
tem. All existing approaches for quality-aware service
composition require and presume a pre-specified and
fixed structure for the target SBS [5, 13, 23, 47, 49]. The
system engineers using such approaches are required to
have the knowledge about system structure and business
process specification. Aiming at relieving system engi-
neers of such expert knowledge, KS3 does not require a
system structure as input. Instead, KS3 helps system en-
gineers identify a proper system structure. The system
structure remains unknown to them until the solution is
found. As a result, such quality properties, named struc-
ture-dependent system quality, cannot be integrated into the
CSP model for answering a constraint query.

Besides constraints families (1), (2), (3), (5) and (6), the
following constraints can be included in the CSP model
for answering a constraint query to take the quality con-
straints into consideration:
Quality Constraints:
 qp(T(Q))<cp

[1,]p t" Î (12)
where cp is the constraint for the pth quality property of the
SBS.

Similar to the COP model for answering normal que-
ries, objective function (8) is included in the COP model
for answering a constraint query to minimise the number
of nodes in the answer tree. If there are multiple exact
group Steiner trees with the same minimum cardinality,
one of them is randomly selected as the answer tree. Here
the answer tree is not necessarily a minimum exact group
Steiner tree, because it does not always have the mini-
mum cardinality among all. For example, assume a query
Q={flight ticket booking, insurance quotee} with two quality
constraints: qrb(T(Q))>0.50 and qtp(T(Q))>70rps,. Among the
three exact group Steiner trees shown in Fig. 3, T1(Q) is the
minimum exact group Steiner tree because it has the min-
imum cardinality. However, T1(Q) does not fulfil the

throughput constraint. Both T2(Q) and T3(Q) fulfil all the
quality constraints, but T2(Q) is the answer tree for Q be-
cause it has a lower cardinality than T3(Q).

4.3 Answering Optimal Queries
An optimal query is a constraint query with an optimisa-
tion goal for a system quality, e.g., reliability, throughput
or cost. The answer tree for an optimal query Q is an op-
timal exact group Steiner tree that: 1) covers all the key-
words in Q; 2) fulfils all quality constraints; and 3)
achieves the quality optimisation goal. Similar to quality
constraints, the optimisation goal can only be specified
for a structure-independent system quality.

The COP model for answering an optimal query has
constraint families (1), (2), (3), (5), (6), (11) and replaces
objective function (8) with an objective function to opti-
mise a system quality. Reliability, throughput, cost and
system optimality are used below as examples:
Optimal System Reliability:

 maximise(
n

i
i ix v

=
´Õ rbq

1
()) (13)

Optimal System Throughput:
 maximise(min(x1×qtp(v1), …, xm×qtp(vm))) (14)
Optimal System Cost:

 minimise(
n

i
costi ix v

=
´å q

1
()) (15)

Optimal System Utility:

 maximise(å
n

i
i ix u v

=1
× ()) (16)

where u(vi) is the multi-objective utility of vi calculated
based on multiple dimensions of vi’s quality [13, 14].

4.4 Inducing Answers
Due to the possible parallel, selective and loop structures
[22], the service composition for an SBS can be cyclic. The
answer tree obtained by solving one of the COP models
discussed before is acyclic and thus may miss some edges
that represent the composability of the services in the tree.
Such edges must be identified and included into the an-
swer tree to induce an answer graph for the keyword query.
Assume a normal query Q={flight ticket booking, restaurant
booking, cruise ticket booking} over the data graph shown in
Fig. 2. Fig. 4 presents the three minimum exact group
Steiner trees for Q: T1(Q), T2(Q) and T3(Q). According to
Fig. 2, in terms of missing edges, we can identify e(v4, v2)
from T1(Q), e(v2, v3) from T2(Q), and e(v3, v4) and e(v4, v3)
from T3(Q). Those missing edges must be included in the
answer trees to induce the answer graph for Q. In fact, it
can be observed in Fig. 4 that the answer graphs induced
from T1(Q), T2(Q) and T3(Q) are the same one. Given an
answer tree T(Q), a naïve method for inducing the answer
graph is to inspect each pair of nodes in T(Q) for missing
edges. The time complexity of the method is O(n2) where
n is the number of nodes in T(Q). To induce the answer
graph more efficiently, KS3 maintains an adjacent index
that records the adjacent nodes of each node in data

HE ET AL.: KEYWORD SEARCH FOR BUILDING SERVICE-BASED SYSTEMS

graph G. Using the adjacent index, KS3 inspects only the
nodes adjacent to each node in T(Q) for missing edges.
The time complexity of this method is O(kn) where k is
the maximum number of adjacent nodes of any nodes in
T(Q).

KS3 relieves system engineers of having to use pre-
specified system structures. The answer graph for a query
indicates the services needed to perform all the tasks rep-
resented by the keywords in the query, as well as the
composability of the services. However, an SBS always
needs an entry service (e.g., v1,1 in Fig. 1) and an exit ser-
vice (e.g., v4,1 in Fig. 1) [5, 13, 49, 50]. Thus, KS3 will identi-
fy an entry node and an exit node in an answer graph
G(Q) based on graph theory. KS3 first calculates: 1) the
number of nodes in G(Q) without incoming edges; and 2)
the number of nodes in G(Q) without outgoing edges.
Next, we discuss how KS3 specifies the entry node and
exit node using Fig. 5 as examples:
1. If there is one node without incoming edges, it is

identified as the entry node, e.g., v1 in G1(Q). If there
are multiple such nodes, a dummy node is added to
G(Q) as the entry node that precedes all the nodes
without incoming edges, e.g., vet in G2(Q).

2. If there is only one node without outgoing edges, it is
specified as the exit node, e.g., v3 in G1(Q). If there are
multiple such nodes, KS3 will converge them into an
added dummy exit node, e.g., vex in G3(Q).

3. If there is an exit node but no entry node, KS3 em-
ploys a unidirectional backward breadth-first algo-
rithm to traverse G(Q), starting from the exit node. It
traverses G(Q) backwards through only incoming
edges without reversing. This algorithm still marks
an edge if the target node of an edge has already
been visited in order to preserve that edge which
represents the composability between its source node
and target node. At the end, if there is only one node
whose incoming nodes are never visited, it will be
specified as the entry node, e.g., v1 in G4(Q). Other-

wise, the algorithm adds a dummy node as the entry
node that precedes all the nodes whose incoming
nodes are never visited, e.g., vet in G5(Q).

4. If there is an entry node but no exit node, KS3 em-
ploys a unidirectional forward breadth-first algo-
rithm to traverse G(Q) through outgoing edges, start-
ing from the entry node. At the end, if there is only
one node whose outgoing edges are never visited, it
is specified as the exit node, e.g., v2 in G6(Q). Other-
wise, the algorithm adds a dummy exit node that
succeeds all the nodes whose outgoing edges are
never visited, e.g., vex in G7(Q).

5. If there is no entry or exit node, the node with the
minimum number of outgoing edges is selected as
the entry node, e.g., v1 in G8(Q), and employs the uni-
directional forward breadth-first algorithm to trav-
erse G(Q), starting from the entry node, to specify the
exit node, e.g., v5.

The answer to a query indicates a potential system
structure, which is not necessarily final. The system engi-
neer can further adjust the system structure to fulfil their
needs. For example, they can run some of the services in
parallel, create selective branches, iterate certain services
and even specify a different entry service or exit service.
The answer graph obtained from inducing the answer
tree is also returned as part of the answer for the system
engineer’s reference because it contains all the selectable
edges that represent service composability.

5 EXPERIMENTAL EVALUATION
This section evaluates the practicality (measured by suc-
cess rate), effectiveness (measured also by success rate)

 Fig. 5. Inducing answers from answer trees

Fig. 4. Answer trees for search Q={flight ticket booking, restaurant
booking, cruise ticket booking}

v1 v2

v3

v1 v2

v3

vet v1

v2 v3

vexG1(Q)
G2(Q) G3(Q)

v1 v2

v3

v1 v2

v3

G4(Q)v1 v2

v4

v1 v2

v4

G5(Q)

vet

v1

v2

v1

v2 v3

v1

v2 v3

G6(Q)

v1

v2

v3

v3

v3

v4

v1

v2 v3 v4

G7(Q)

vex

v1

v2

v3

v4

v1

v2 v3 v4

v5

v5

G8(Q)

added edge
travesal path

entry node
exit node

v3: flight
ticket booking

v4: restaurant
booking

v2: cruise
ticket booking

T2(Q)

v3: flight
ticket booking

v4: restaurant
booking

v2: cruise
ticket booking

T3(Q)

v3: flight
ticket booking

v4: restaurant
booking

v2: cruise
ticket booking

T1(Q)

 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

and efficiency (measured by computational overhead) of
KS3 in answering keyword queries for building SBSs.

5.1 Prototype Implementation
We have implemented a prototype of KS3 in Java using
JDK 1.6.0 and Eclipse Java IDE. It implements the mecha-
nisms introduced in Section 4. In response to a query, it
searches a given data graph and returns an answer graph
that fulfills all the constraints specified in the query.
Based on the answer graph, an SBS solution can be built.
For solving the COPs introduced in Section 4, the proto-
type uses IBM CPLEX v12.2, a linear programming solver.

5.2 Experiment Setup
We have conducted three series of experiments, namely
series A, B and C. Series A was conducted on the PW da-
taset, which contains the functional information about
real-world Web services and SBSs crawled from pro-
grammableweb.com, a service portal that has been accu-
mulating a variety of Web services and SBSs since 2005 [2,
8]. Series A demonstrates the practicality and efficiency of
KS3 on a real-world Web service library and real system
engineers’ potential queries.
To evaluate KS3 more comprehensively, we have also
conducted experiment series B and C on a publicly avail-
able and widely used dataset named QWS, which con-
tains not only the functional but also the quality infor-
mation about over 2500 real-world Web services [2]. Se-
ries B and C evaluate the effectiveness and efficiency of
KS3 in comprehensive scenarios in addition to Series A.
The service quality information in QWS used in series B
and C enabled us to evaluate the ability of KS3 to handle
constraint and optimal queries.

All experiments are conducted on a machine with Intel
i5-4570 CPU 3.20GHz and 8 GB RAM, running Windows
7 x64 Enterprise.

5.2.1 Experiment Series A
The PW dataset contains the information about which of
the 1496 Web services are used by each of the 2926 SBSs.
Table 2 presents the relevant statistics of the PW dataset.

In this experiment series, the data graph is generated
based on the information retrieved from the PW dataset.
There are a total number of 1496 nodes in the data graph,
each corresponding to one of the 1496 Web services in the
PW dataset. Two nodes are linked in the data graph if
they are both used by the same SBS with one of them suc-
ceeding or preceding the other directly. For example,
suppose an SBS in the PW dataset uses three consecutive
services v1, v2 and v3. Two directional edges will be includ-
ed in the data graph, one pointing from v1 to v2 and the
other from v2 to v3, but none from v1 to v3. In total, there are
6899 edges in the data graph. This data graph accurately
describes the composability of the 1496 real-world Web
services used by the 2926 real-world SBSs that were built

using those Web services.
A total of 2926 normal queries are generated, each cor-

responding to one of the 2926 SBSs in the PW dataset. The
keywords contained in each query are obtained from the
first and the last services used by the corresponding SBS.
Take an SBS in the PW dataset that uses four consecutive
services, BitStamp HTTP, BTC-e, CoinDesk and Mt Gox as
an example, the query generated based on this SBS will
contain two keywords: BitStamp HTTP and Mt Gox. In
this ways, we can evaluate the ability of KS3 to identify
all necessary services needed for building an SBS, given
only two keywords that represent the first and last tasks
of that SBS. In this experiment series, the queries do not
have quality constraints or optimisation objectives, and
thus are all normal queries. The ability of KS3 to handle
constraint and optimal queries is evaluated in experiment
series B and C. As discussed in Section 3, KS3 finds the
minimum exact group Steiner tree to answer a normal
query. Thus, it is possible that KS3 finds new solutions
with less services than the corresponding SBSs specified
in the PW dataset. Given a query that contains two key-
words, a set of services identified by KS3 that is different
from the ones used by the corresponding SBS as specified
in the PW dataset is considered a new solution. Again,
take the SBS that uses four services, BitStamp HTTP, BTC-
e, CoinDesk and Mt Gox as an example, a new solution
must have BitStamp HTTP and Mt Gox as the starting
and ending services, with only one service in between
other than BTC-e and CoinDesk. In order to find out
whether KS3 can identify the solutions as specified in the
PW dataset, we have changed the way KS3 answers nor-
mal queries in this experiment series. It does not stop
when a new solution is found. Instead, it will continue to
search for an exact Steiner tree that matches the corre-
sponding SBS specified in the PW dataset. The success
rate of answering all 2926 queries will demonstrate the
practicality of KS3 as shown in Section 5.3.

In this series of experiments, we also evaluate the abil-
ity of KS3 to identify new solutions. It has a capability of
offering alternative solutions to users and the success rate
of finding a new solution across 2926 queries will demon-
strate the practicality of KS3 from this perspective.

In addition to success rate, we measure the computa-
tional overhead, i.e., the computation time taken by KS3
to answer those queries, to evaluate the efficiency of KS3
as shown in Section 5.5. KS3 integrates and automates the
system planning, service discovery and service selection
operations regardless of system engineers’ knowledge
and experiences, achieving a similar goal as the keyword
search techniques in the database community [11, 20, 29].
Inspired by [20, 29], we measure the computational over-
head of KS3 needed to identify an SBS solution to evalu-
ate the efficiency of KS3 from the software engineering
perspective.

TABLE 2
THE PW DATASET

Number of Services Used by SBS 2 3 4 5 6 7 8 9 10 11-15 16-20 20+
Number of SBSs 1490 623 313 195 85 57 34 40 21 49 12 7

HE ET AL.: KEYWORD SEARCH FOR BUILDING SERVICE-BASED SYSTEMS

5.2.2 Experiment Series B and C
As discussed in Section 2, there are many approaches for
the generation of data graphs for a Web service library.
Given a set of Web services, the adoption of different ap-
proaches might result in different data graphs. In addi-
tion, different data graphs in different domains can be
significantly different from many perspectives, e.g., the
number of nodes and the number of edges. Thus, the ob-
servation and conclusion from experiment series A on one
particular data graph (i.e., the one generated based on the
PW dataset) might not be generally representative. To
ensure the generality of the evaluation, in experiment set
of series B and C, a random data graph is generated based
on the well-known Erdős–Rényi model [18], which en-
sures that the nodes are randomly connected to each oth-
er in the data graph.

The relevance between the keywords in a query de-
termines whether bridging nodes are needed to identify
an SBS solution. In the data graph, directly relevant key-
words are composable and hence belong to adjacent
nodes. Take Fig. 1 for example, the node containing key-
word flight ticket booking is adjacent to the one containing
car hire and the one containing hotel booking in the data
graph. Bridging services are needed when two keywords
are not directly relevant. As discussed in Section 1, key-
words loan application and loan approval are not directly
relevant because they can only be connected through
nodes containing keyword credit check in the data graph.
In the experiments, we use a measurement named key-
word distance to represent the relevance between two
keywords, reflected by the number of hops they are away
from each other in the data graph. Take Fig. 1 for example,
the keyword distance between flight ticket booking and
hotel booking is 1 and the keyword distance between flight
ticket booking and insurance quote is 2. To evaluate the effec-
tiveness and efficiency of KS3 in response to queries with
both irrelevant and relevant keywords, we have conduct-
ed two series of experiments, i.e., series B (except B#2, i.e.,
set #2 of series B) and C, where the keyword distances are
fixed at 2 and 1 respectively, In simple words, in experiment
series B, the keywords in a query never belong to adjacent nodes
in the data graph; bridging nodes are always needed for an SBS
solution, which however is not necessarily true in experiment
series C.

In experiment series B and C, queries are randomly
generated by selecting keywords according to the pre-
specified keyword distance. A number of quality con-

straints are randomly generated for constraint and opti-
mal queries based on the pre-specified constraint strin-
gency. Different quality properties can be used with the
corresponding quality aggregation functions to specify
quality optimisation goals as discussed in Section 4.3. For
the purpose of simplicity and consistency in the evalua-
tion, we use cost (see formula (11) for its aggregation func-
tion). According to the quality aggregation functions, an
SBS solution that contains a large number of services usu-
ally has low reliability, high cost and low system
throughput. Thus, to avoid excessively large SBS solu-
tions, we limit the maximum number of nodes to be in-
cluded in an SBS solution to twice the number of key-
words in the query.

To comprehensively study the impact of different fac-
tors on the effectiveness and efficiency of KS3, we vary six
factors in experiment series B, as presented in Table 3, and
five in series C (same as series B except with keyword
distance fixed at 1). For each set of experiments, we aver-
age the results obtained from 100 runs.

For effectiveness evaluation as detailed in Section 5.4,
we compare three KS3 methods, namely KS3 normal, KS3
constraint, and KS3 optimal, that answer normal queries,
constraint queries and optimal queries respectively, with
their counterpart IP-based individual search methods that
are assumed or adopted in most existing research on ser-
vice selection for engineering SBSs [3-5, 23, 32, 47-49]. The
individual search methods look up multiple Web services
individually to cover the keywords in a query. When
bridging services are needed, the individual search meth-
ods cannot find any SBS solutions because they are not
capable of identifying bridging services. As a result, the
individual search methods can find an SBS solution only
in experiment set B#1 when the keyword distance is 1.
Thus, in Fig. 8 and Fig. 11, we omit the results of the individu-
al search methods in experiment series B. The success rate,
i.e., the percentage of cases where an answer to the key-
word query for an SBS solution can be found, will
demonstrate the effectiveness of KS3.

For efficiency evaluation as detailed in Section 5.5, we
also measure the computational overhead of KS3 in ex-
periment series B and C, in addition to experiment series
A. The computational overheads of the individual search
methods are omitted in both experiment series B and C
for the following reasons. The individual search methods
are used only in the service selection phase. A full com-
parison in efficiency between the KS3 methods and the
individual search methods requires the measurement of

TABLE 3
EXPERIMENT CONFIGURATION (SERIES B)

Factor
Experiment Set

B#1 B#2 B#3 B#4 B#5 B#6
Keyword Distance 1 to 10 2 2 2 2 2

Number of Keywords in Query 2 2 to 10 2 2 2 2
Number of Quality Constraints 2 2 1 to 10 2 2 2
Graph Size (Number of Nodes) 2000 2000 2000 2000 to 20000 2000 2000

Graph Density (Number of Edges) 2000 2000 2000 4000 to 8000 4000 to 8000 2000
Stringency of Quality Constraints

(Higher means Harder) 20 20 20 20 20 10 - 100

 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

the time and efforts saved by KS3 during all three phases
during the SBS engineering process, i.e., system planning,
service discovery and service selection. However, that is
impossible because it is largely dependent on the system
engineer’s knowledge and experience.

5.3 Practicality Evaluation
Fig. 6 demonstrates KS3’s success rate of answering 2926
queries corresponding to the 2926 SBSs in the PW dataset
in experiment series A. It shows that KS3 can answer all
the queries regardless of the number of keywords in the
queries. This demonstrates that a system engineer can
indeed use KS3 to identify the services needed for build-
ing any of the SBSs in the PW dataset by entering the
keywords that represent the tasks of the SBS – in the ex-
perimental cases: the first and the last tasks.

Fig. 7 presents KS3’s success rate of finding new solu-
tions when answering the 2926 queries in experiment se-
ries A. In the cases of two tasks in the target SBS, KS3
cannot find any new solutions. In those cases, only two
services need to be identified to answer each query. The
nodes corresponding to the two services are directly
linked in the data graph. No bridging nodes are needed to
identify an exact group Steiner tree that covers all the
keywords in the query. Thus, there is no way a new solu-
tion with less than two services can be found to answer a
query in those cases. As the number of tasks in the target
SBS increases from 3 to 20+, KS3’s success rate increases
from 0.50 to 1.0. As the number of tasks in the target SBS
increases, the distance between the node containing the
first keyword and the one containing the second keyword
in the data graph increases as well. This increases the pos-
sibility of finding an exact group Steiner tree that has less
nodes than the number of tasks in the target SBS as speci-

fied in the PW dataset.
The results obtained from this series of experiments

demonstrate that, given only a few keywords (2 in the
experimental cases), KS3 can find SBS solutions as speci-
fied in the PW dataset, as well as new SBS solutions.

5.4 Effectiveness Evaluation
Fig. 8 shows the impact of different factors on the success
rate of the KS3 methods in experiment series B. The KS3
normal method obtains a consistent success rate of 1.0 in
all experiments because it does not consider quality con-
straints and quality optimisation goals. This indicates that
the KS3 normal method can always find an SBS solution.
Thus, the following discussion mainly focuses on the KS3 con-
straint and optimal methods. Unlike the KS3 normal meth-
od, the KS3 constraint method and optimal method are
not always able to find a solution due to the quality con-
straints. The two methods always have the same success
rate in the same set of experiments. The reason is that
their success rates are determined by whether or not they
can find an SBS solution that fulfils all quality constraints
despite of their different optimisation goals.

Fig. 8(a) presents the results of experiment set B#1. It
shows that the increase in keyword distance leads to a
decrease in the success rates of the KS3 constraint and
optimal methods. Even when the keywords in a query are
only remotely relevant (reflected by a large keyword dis-
tance), the KS3 normal method can still identify all the
bridging nodes needed for an exact group Steiner tree
that covers all the keywords in the query. This observa-
tion indicates that even a system engineer only knows a
few of the tasks required for the target SBS, e.g., the entry
task and the exit task, KS3 can still find an SBS solution.
Fig. 8(b) shows the results of experiment set B#2. A query
with many keywords indicates that a potentially compli-
cated SBS is in need. To build such an SBS, the probability
that bridging services are needed is high. KS3 can handle
such queries. However, it takes time, as shown and dis-
cussed later in Section 5.5 based on Fig. 11(b). Fig. 8(c)
shows the success rates obtained in experiment set B#3.
As the number of quality constraints increases, it becomes
harder for KS3 to find an SBS solution, as indicated by the
decrease in the success rates of all methods except the KS3
normal method. Fig. 8(d) shows the results of experiment
set B#4, where the success rates decrease as the graph size
increases. A bigger data graph with more nodes further
distributes the keyword nodes in the data graph, directly
making it harder to generate exact group Steiner trees
using those keyword nodes. Fig. 8(e) presents the results
of experiment set B#5, where the success rates increase
slightly with the increase in graph density. A higher graph
density means more neighbours for each node. As a re-
sult, for keyword nodes that are not directly connected,
more exact group Steiner trees can be found, which in-
creases the probability of finding one that fulfils all the
quality constraints. Fig. 8(f) shows that in experiment set
B#6, the increase in the stringency of the quality con-
straints largely decreases the success rates. When the
stringency reaches 90 and 100, no solution can be found.
This indicates that it is hard to guarantee a satisfactory

Fig. 6. Success rate of answering queries (experiment series A)

Fig. 7. Success rate of finding new solutions (experiment series A)

0
10
20
30
40
50
60
70
80
90

100

2 3 4 5 6 7 8 9 10 11-1516-20 20+

Su
cc
es
s	
Ra
te
	(%

)

Number	of	Tasks	 in	Target	SBS	in	PW	Dataset	

0
10
20
30
40
50
60
70
80
90

100

2 3 4 5 6 7 8 9 10 11-1516-20 20+

Su
cc
es
s	
Ra
te
	(%

)

Number	of	Tasks	 in	Target	SBS	in	PW	Dataset

HE ET AL.: KEYWORD SEARCH FOR BUILDING SERVICE-BASED SYSTEMS

solution when the quality constraints are stringent and
bridging services are needed.

Fig. 9 compares the success rates obtained by KS3 and
the individual search methods from experiment series C
where the keyword distance is fixed at 1. According to
Fig. 8, the three major factors that impact the success rate
are the graph size, the number and stringency of the qual-
ity constraints. Thus, we only present and discuss the
results of experiment sets C#3, C#4 and C#6 where the
above three factors vary. In this series of experiments, the
keywords in a query are directly relevant. Thus, both the
KS3 normal method and the individual normal method
obtain a consistent success rate of 1.0 because they do not
consider quality constraints. Hence, we only present and
discuss the constraint and optimal methods. According to
Fig. 9(a), the graph size does not impact the success rate
significantly. It is because when the keyword nodes are
directly connected, the success rate depends on only the
exact group Steiner trees formed by those connected

keyword nodes (and possibly some of their neighbours as
bridging nodes) regardless of the graph size. Fig. 9(b) and
Fig. 9(c) show that the quality constraints impact the suc-
cess rate in similar ways as in experiment series B. In ad-
dition, the KS3 methods always obtain higher success
rates than the individual search methods because of the
ability of KS3 to identify bridging nodes which allows the
KS3 methods to explore more exact group Steiner trees for
a satisfactory SBS solution.

5.5 Efficiency Evaluation
Fig. 10 shows the average computation time taken by KS3
to answer different queries in experiment series A. The
computation time increases from 64 milliseconds to 569
milliseconds as the number of keywords in query increas-
es from 2 to 20+. Generally, the increase in computation
time is stable. Please note that the rapid increase when the
number of tasks reaches and exceeds 15 is because the
results are the averages of all the cases of 16-20 tasks and

 (a) Number of Nodes in Graph (b) Number of Quality Constraints (c) Stringency of Quality Constraints

Fig. 9. Impact of factors on success rate (experiment series C, keyword distance =1)

 (a) Keyword Distance (b) Number of Keywords in Query (c) Number of Quality Constraints

 (d) Number of Nodes in Graph (e) Number of Edges in Graph (f) Stringency of Quality Constraints
Fig. 8. Impact of Factors on success rate (experiment series B, keyword distance =2)

0

20

40

60

80

100

2K 4K 6K 8K 10K12K14K16K18K20K

Su
cc
es
s	
Ra
te
	(%

)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Su
cc
es
s	
Ra
te
	(%

)

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

Su
cc
es
s	
Ra
te
	(%

)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Su
cc
es
s	
Ra
te
	(%

)

0

20

40

60

80

100

2 3 4 5

Su
cc
es
s	
Ra
te
	(%

)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Su
cc
es
s	
Ra
te
	(%

)

0

20

40

60

80

100

2K 4K 6K 8K 10K12K14K16K18K20K

Su
cc
es
s	
Ra
te
	(%

)

0

20

40

60

80

100

2K 3K 4K 5K 6K 7K 8K

Su
cc
es
s	
Ra
te
	(%

)

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

Su
cc
es
s	
Ra
te
	(%

)

 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

20+ tasks respectively. In this experiment series, there are
only two keywords in a query corresponding to an SBS
with a large number of tasks, which describe the first and
the last tasks of the SBS. Thus, the distance between the
nodes that contain the two keywords is large and KS3
needs to identify a lot of bridging nodes in the data graph.
This requires KS3 to find and inspect a potentially large
number of exact group Steiner trees, and thus takes KS3
more time to answer the query. However, our experi-
mental results show that, even in the largest scenario with
29 tasks, KS3 takes only 2260 milliseconds to answer the
query. This demonstrates that KS3 is fast enough in real-

world applications.
Fig. 11 presents the results of experiment series B. Fig.

11(a) shows the impact of keyword distance on the com-
putation time of KS3. The results demonstrate the ability
of KS3 to identify the bridging nodes when the keywords
in a query are not directly relevant. The KS3 normal and
constraint methods can both quickly find an SBS solution
with only slight increases in the computation time when
the keyword distance increases. The performance of the
KS3 optimal method is impacted more significantly by a
large keyword distance. However, it is still capable of
finding an SBS solution within a few seconds when the
keyword distance is not very large. This is acceptable in
most, if not all, cases. After all, not many system engi-
neers would enter irrelevant keywords (as reflected by a
large keyword distance), e.g., car hire and image compres-
sion. In fact, such keywords might not even exist in the
same data graph as discussed in Section 2. An important
implication learned from this set of experiments is that
the quality optimisation goal is conflicting with the irrele-
vance between the keywords for an SBS. System engi-
neers should not expect optimised system quality when
they are not even able to identify all the tasks of the SBS.
Instead, they can first enter the keywords without a quali-
ty optimisation goal. In response, the KS3 constraint
method will quickly find an SBS solution that includes the
keyword nodes and the bridging nodes. The engineer can
then lodge an optimal query with all original keywords

 (a) Keyword Distance (b) Number of Keywords in Query (c) Number of Quality Constraints

 (d) Number of Nodes in Graph (e) Number of Edges in Graph (f) Stringency of Quality Constraints

Fig. 11. Impact of factors on computation time in milliseconds (experiment series B, keyword distance = 2)

Fig. 10. Computation time in milliseconds for answering queries (ex-
periment series A)

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10

Co
m
pu

ta
tio

n	
Ti
m
e	
(M

ill
ise

co
nd
s)

0

10000

20000

30000

40000

50000

2 3 4 5

Co
m
pu

ta
tio

n	
Ti
m
e	
(M

ill
ise

co
nd
s)

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50 60 70 80 90 100

Co
m
pu

ta
tio

n	
Ti
m
e	
(M

ill
ise

co
nd
s)

0

20000

40000

60000

80000

100000

120000

140000

2K 6K 10K 14K 18K

Co
m
pu

ta
tio

n	
Ti
m
e	
(M

ill
ise

co
nd
s)

0

5000

10000

15000

20000

25000

30000

2K 3K 4K 5K 6K 7K 8K

Co
m
pu

ta
tio

n	
Ti
m
e	
(M

ill
ise

co
nd
s)

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

Co
m
pu

ta
tio

n	
Ti
m
e	
(M

ill
ise

co
nd
s)

0

100

200

300

400

500

600

2 3 4 5 6 7 8 9 10 11-15 16-20 20+

Co
m
pu

ta
tio

n	
Ti
m
e	
(M

ill
ise

co
nd

s)

Number	of	Tasks	in	Target	SBS	in	PW	Dataset

KS3	Normal

HE ET AL.: KEYWORD SEARCH FOR BUILDING SERVICE-BASED SYSTEMS

and the bridging keywords (the keywords in the bridging
nodes). The optimal solution can be found quickly be-
cause when the keyword distance is small, the KS3 opti-
mal method can find the optimal solution very fast, as
demonstrated later in Fig. 12(b).

Fig. 11(b) shows the efficiency of the KS3 methods
where different numbers of relatively irrelevant keywords
are entered. It demonstrates the ability of KS3 to find an
SBS solution when multiple bridging nodes are needed to
connect many keyword nodes. The KS3 normal method
demonstrates great performance with only a slight in-
crease in computation time in response to the increase in
the number of keywords in the query. On the other hand,
the KS3 constraint and optimal methods have to explore a
much larger search space. For example, to answer a query
with 5 keywords, a keyword distance of 2 means that at
least 9 services are needed to compose the target SBS, in-
cluding 5 keyword nodes and at least 4 bridging nodes.
The KS3 constraint and optimal methods need to identify
and inspect the exact group Steiner trees that contain 9
nodes, as well as those that contain more than 9 nodes.
The number of exact group Steiner trees to be identified
and inspected is extremely large in such cases. As a result,
the KS3 constraint and optimal methods need a much
longer time to find the solution. This observation indi-
cates that the system engineer may need to be notified of
the potentially long waiting time when searching for an
SBS solution that requires many component services.

Fig. 11(c) demonstrates that the increase in the number
of quality constraints only slightly increases the computa-
tion time of the KS3 constraint and optimal methods. This
indicates that KS3 can handle multiple quality constraint
efficiently.

Fig. 11(d) shows how the graph size impacts the effi-
ciency of KS3. As demonstrated, the KS3 methods take
significant amounts of time (up to 129 seconds) to answer
the queries on very large data graphs in extreme cases
where none of the keywords are directly relevant. In a
large data graph, the number of exact group Steiner trees
that cover all the keyword nodes is extremely large even
when the number of keywords to cover is small. The KS3
methods need to identify and inspect all those trees. As
discussed in Section 3, finding minimum Steiner tree is
NP-complete, and is further complicated by the quality
constraints and the quality optimisation goals in the con-
straint and optimal queries. The extremely large search
space inevitably leads to long computation time of the
KS3 methods.

Fig. 11(e) shows that in a dense data graph, where each
service has many neighbours, it takes a reasonable time
for KS3 to find an SBS solution, within seconds in most
cases. An interesting observation from comparing Fig.
11(d) with Fig. 11(e) is that the graph density does not
impact the computation time of KS3 as significantly as the
graph size. A higher graph density means more neigh-
bours for each node, leading to more exact group Steiner
trees to identify and inspect in response to a query. It is
reflected by the increase in the computation time demon-
strated in Fig. 11(e). However, the many edges connecting
each node and their neighbours make it easier to identify

bridging nodes for keyword nodes that are not directly
relevant. It results in potentially small exact group Steiner
trees, which are preferable to all KS3 methods.

Fig. 11(f) shows some interesting results. The computa-
tion times of the KS3 constraint and optimal methods de-
crease as the quality constraints become more stringent.
After a further investigation on the results, we found out
that it was because of the adoption of cost for specifying
the quality constraints. Cost is a negative (lower means
better) and additive quality property as presented by
formula (11) in Section 4.2. An exact group Steiner tree
with more nodes usually leads to a higher total cost. As a
result, large Steiner trees are pruned quickly when the
quality constraints are stringent. In those cases, the KS3
constraint method and optimal method either find an SBS
solution quickly or fail to find one.

The results of experiment series C are shown in Fig. 12,
where Fig. 12(a) is skipped on purpose for ease of com-
parison between Fig. 11 and Fig. 12. As demonstrated,
KS3 can find an SBS solution very quickly upon queries
with directly relevant keywords. It takes no more than 0.5
second in all cases. An interesting and important observa-
tion is that the impact of the number of keywords, the
graph size and the graph density on the computation time
of KS3 becomes negligible or rather linear, as demonstrat-
ed in Fig. 12(b), Fig. 12(d) and Fig. 12(e).

Overall, Fig. 11 and Fig. 12 demonstrate that KS3 can
scale to the number of keywords in a query, the number
of quality constraints, the graph size, the graph density
and the stringency of the quality constraints. However,
the ability of KS3 to identify bridging services comes at
the price of extra computational overhead. This indicates
that the system engineer should enter relevant keywords
for KS3 to find an SBS solution fast. This is reasonable
because in the real-world, they would not try to build SBS
that performs irrelevant tasks.

5.6 Threats to Validity
Here we discuss the key threats to the validity of our
evaluation of KS3.

Threats to construct validity. The main threat to the con-
struct validity of our evaluation is comparison of success
rate with the individual search methods. The individual
search methods, based on Integer Programming (IP), is
one of the most popular approaches to quality-aware ser-
vice selection for engineering SBSs [3-5, 23, 32, 47-49], and
thus is used as baseline for comparison in our evaluation.
KS3 can identify the needed bridging nodes to find an
exact group Steiner tree for a satisfactory SBS solution. On
the other hand, the individual search methods do not
identify bridging nodes, and thus cannot find a solution
when bridging nodes are needed. As a result, KS3 tends
to obtain better experimental results, i.e., higher success
rates, than the individual search methods. Thus, the main
threat to construct validity is whether the comparison
with the individual search methods can properly demon-
strate the effectiveness of KS3 in finding an SBS solution,
especially in scenarios where bridging nodes are neces-
sary. To minimise this threat, we fixed the keyword dis-
tance at 1 to create scenarios where bridging nodes are

 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

not necessary in finding an SBS solution. In such scenari-
os, KS3 and the individual search methods can be com-
pared objectively. In the meantime, we changed other
configuration factors, as shown in Fig. 9, to simulate dif-
ferent scenarios. By doing so, we could evaluate KS3 by
not only the comparison with the individual search meth-
ods, but also the demonstration of how the changes in
different configuration factors impact the success rate
obtained by KS3.

Threats to external validity. The main threat to the exter-
nal validity of our evaluation is the representativeness of
the data graphs and queries created in the experiment
series B and C. In experiment series B and C, we generat-
ed data graphs based on the well-known Erdős–Rényi
model, using Web services in QWS [2] - a dataset widely
used in research on quality-aware service selection for
engineering SBSs. As discussed in Section 2, different
techniques can be adopted to analyse the composability
of Web services, which will lead to potentially different
data graphs. Thus, the data graphs randomly generated
in the experiment series B and C might not be the exact
representative of the real-world Web service data graphs.
This threatens the external validity of our evaluation be-
cause two keywords relevant in one data graph might not
be relevant in another data graph. To minimise this threat,
we used the keyword distance to control the relevance
between the keywords in the generated queries. By doing
so, the relevance between the query keywords is inde-
pendent of the generation of the data graph. The repre-

sentativeness of the randomly generated queries also
threatens the external validity of our evaluation. The rele-
vance between the query keywords in the real world is
dependent on the system engineers’ understanding of the
functional requirements for the target SBSs. A full user
study has not been performed and the presented results
are specific to the data graphs and queries used in the
experiments. Thus, the queries generated in experiment
series B and C might not be generally or fully representa-
tive. For example, a real-world case rare but not impossi-
ble is that a system engineer is able to provide only one or
two keywords for the many actually needed tasks of an
SBS. To minimise this threat, we made an assumption that
a system engineer can provide at least half of the needed
keywords. We believe that this assumption is reasonable
in most, if not all, real-world cases. In the meantime, we
changed various factors related to the query keywords.
Using this approach, we comprehensively evaluated KS3
by simulating query keywords provided by real-world
system engineers with different levels of understanding
of their target SBSs. Furthermore, the results of experi-
ment series A can also help minimise the above threats to
the external validity of our evaluation. Experiment series
A was conducted based on data (crawled from program-
mableweb.com) about 1496 real-world Web services and
2926 real SBSs using those Web services. The data graph
and queries generated in experiment series A are true rep-
resentation of a real-world Web service library and sys-
tem engineers’ potential queries for building SBSs.

 (b) Number of Keywords in Query (c) Number of Quality Constraints (d) Number of Nodes in Graph

 (e) Number of Edges in Graph (f) Stringency of Quality Constraints
Fig. 12. Impact of factors on computation time in milliseconds (experiment series C, keyword distance = 1)

0

20

40

60

80

100

120

2 3 4 5 6 7 8 9 10

Co
m
pu

ta
tio

n	
Ti
m
e	
(M

ill
ise

co
nd
s)

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10
Co

m
pu

ta
tio

n	
Ti
m
e	
(M

ill
ise

co
nd

s)

0

100

200

300

400

500

2K 6K 10K 14K 18K

Co
m
pu

ta
tio

n	
Ti
m
e	
(M

ill
ise

co
nd
s)

0

50

100

150

200

250

300

2K 3K 4K 5K 6K 7K 8K

Co
m
pu

ta
tio

n	
Ti
m
e	
(M

ill
ise

co
nd

s)

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

Co
m
pu

ta
tio

n	
Ti
m
e	
(M

ill
ise

co
nd
s)

HE ET AL.: KEYWORD SEARCH FOR BUILDING SERVICE-BASED SYSTEMS

Threats to internal validity. The main threat to the inter-
nal validity of our evaluation is the comprehensiveness of
our experiments. In the experiment series B and C, we
simulated scenarios where six factors changed individual-
ly, as shown in Table 3. More sophisticated scenarios
could have been simulated, e.g., those where two or more
of those factors change at the same time. In those scenari-
os, the results can be predicted in general based on the
results that we have obtained. For example, if the number
of quality constraints and the number of nodes increase at
the same time, the declining trend of the success rate of
KS3 would be similar to Fig. 8(c) and Fig. 8(d). It can also
be predicted that the decline would be faster because of
the cumulative effect caused by the simultaneous increas-
es in the number of quality constraints and the number of
nodes. In the meantime, it can be predicted that the in-
crease in computation time would be similar to Fig. 11(d)
and Fig. 12(d), because Fig. 11(c), Fig. 11(d), Fig. 12(c) and
Fig. 12(d) indicate that the impact of the increase in the
number of nodes on the computation time is much more
significant than the number of quality constraints.

Threats to conclusion validity. The main threat to the
conclusion validity of our evaluation is the lack of statisti-
cal tests, e.g., chi-square tests. We could have conducted
chi-square tests to draw conclusions when evaluating KS3.
However, we ran the experiment for 100 times in each set
and averaged the results each time we changed a configu-
ration factor. This led to a large number of test cases,
which tend to result in a small p-value in the chi-square
tests and lower the practical significance of the test results
[36]. In the largest experiment set, there were 1,000 runs.
This number is not even close to the number of observa-
tion samples that concern Lin et al. in [36]. Thus, the
threat to the conclusion validity due to the lack of statisti-
cal tests might be high but not significant.

6 RELATED WORK
The service composition process for engineering an SBS
consists of three phases: system planning, service discov-
ery and service selection. There has been a large body of
work on solving the problems in each of the phases indi-
vidually.

In the phase of system planning, the system engineer
determines the tasks to be performed to implement the
functionality of the SBS, as well as the execution order of
the tasks. Most techniques adopted in this phase to identi-
fy the tasks needed to implement an SBS are based on
artificial intelligence (AI) techniques [24, 41, 43, 51]. The
general idea is to model the service composition as a
planning problem which can be solved using the corre-
sponding planning problem solver. For example, in [51],
the authors model the service composition problem as a
cost sensitive temporally expressive (CSTE) planning
problem, which is solved using a Supply Chain Planning
(SCP) solver. At the end of the system planning phase, the
tasks of an SBS are determined.

In the phase of service discovery, through service regis-
tries or service portals, the system engineer identifies a set
of candidate services for each of the tasks based on the

functional and semantic information of candidate services.
To improve the accuracy of service matching, several se-
mantic Web service languages have been proposed based
on ontology techniques, e.g., DSD [35] and OWLS-MX
[34]. These languages can semantically enrich the service
description and SBS specification. The adoption of ontol-
ogy automates the service matching operation that identi-
fies the services that can perform the tasks of the SBS de-
termined in the system planning phase. For a task, there
are usually many functionally-equivalent services that
can perform the task [5, 49]. Those services differ in multi-
dimensional quality properties. To identify a huge num-
ber of such services, the service discovery operation must
be automated. Many approaches have been proposed to
address this issue [12, 16, 33]. Based on automatic service
matching, these approaches adopt ontology techniques
such as logical reasoning and temporal planning to auto-
mate the service discovery operation. At the end of this
phase, a group of functionally-equivalent candidate ser-
vices are selected for each of the tasks required for the
SBS.

In the service selection phase, the system engineer se-
lects one service from each set of functionally-equivalent
candidate services to compose the target SBS. In this
phase, the selected services must collectively fulfil the
multi-dimensional quality constraints for the SBS [5, 13,
23, 47, 49], e.g., reliability, throughput, cost, etc., which is
a NP-complete problem. Integer Programming (IP) is the
main technique adopted in this phase. AgFlow [49] is one
of the most representative approaches. Following the idea
of AgFlow, many researchers have been trying to reduce
the computation time for quality-aware service selection
[4, 47] or to propose enhanced approaches for solving the
problem in more complex environments [5, 23, 32].

There are a lot of complex techniques and approaches
available for solving different problems in the above
phases. A lot of time and effort are required for a system
engineer to choose, learn and apply these techniques and
approaches to eventually obtain an SBS solution. This has
been a major obstacle to further and broader applications
of SOA. An innovative approach is needed that can help
system engineers find services to build SBSs fast without
having to go through all the complicated phases. Some
approaches have been proposed. Based on the idea of tag-
based search introduced in [45], the authors of [37] pro-
pose a planning technique that explore SBS solutions by
looking up services whose tags match the tags describing
the SBS. For each query, the engineer needs to enter a
source tag and a destination tag. The proposed planning
technique will heuristically identify the possible service
compositions with an entry service according to the
source tag and an exit service according to the destination
tag. An approach is proposed in [26] for helping system
engineers navigate from the entry service to the exit ser-
vice through multiple queries. There are two major limita-
tions to this planning technique. First, each query allows
only two tags, i.e., one source tag and one destination tag.
Multiple tags can only be entered one by one in different
queries that are processed individually until a final solu-
tion is found. Second, quality constraints cannot be speci-

 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

fied. Thus, the planning technique is not suitable for
building software systems with quality constraints.

KS3 assists a system engineer without detailed
knowledge of SOA techniques in identifying the services
needed for building an SBS by entering only a few key-
words that represent the tasks of the SBS. By integrating
and automating the system planning, service discovery
and service selection operations, KS3 can significantly
save the time and efforts during the SBS engineering pro-
cess. Furthermore, KS3 overcomes the limitations of the
approaches proposed in [26, 37]. Firstly, KS3 can handle
multiple keywords (i.e., multiple system tasks) in one
query. Secondly, system engineers do not have to enter
the keywords in a specific order. Thirdly, KS3 allows mul-
ti-dimensional quality constraints and a quality optimisa-
tion goal to be specified for the target SBS.

7 CONCLUSIONS AND FUTURE WORK
In this paper, we propose KS3, a novel approach that in-
tegrates and automates the system planning, service dis-
covery and service selection operations for building ser-
vice-based systems (SBSs). It assists system engineers
without detailed knowledge of SOA techniques in identi-
fying SBS solutions with only a few keywords that de-
scribe the tasks of the SBSs. KS3 offers a new paradigm
for efficient SBSs engineering that can significantly save
the time and effort during the SBS engineering process.
The comprehensive experimental analysis shows the
practicality, effectiveness and efficiency of KS3.

According to the experimental results, KS3 takes a sig-
nificant amount of time to find an SBS solution in re-
sponse to a query with irrelevant keywords when the
number of keywords in the query or the graph size is
large. Thus, it requires that system engineers have a prop-
er understanding of the functional requirements for their
SBSs. In our future work, we will address this issue by
recommending relevant keywords (i.e., relevant Web ser-
vices) to system engineers based on collaborative filtering
techniques [50]. We will also enhance KS3 with automatic
query expansion techniques [15] to handle synonymy,
word inflections and polysemy.

ACKNOWLEDGMENT
This work is partly supported by Australian Research
Council Discovery Project DP150101775. We are grateful
for Jian Wang’s help with crawling the information from
programmableweb.com. Qiang He is the corresponding
author of this paper.

REFERENCES
[1] "BPM Product Analysis - A Comparison of IBM Business

Process Manager and Oracle BPM," AVIO Consulting,
2013.

[2] E. Al-Masri and Q. H. Mahmoud, "Investigating Web
Services on the World Wide Web," Proc of 17th
International Conference on World Wide Web (WWW 2008),
Beijing, China, pp. 795-804, 2008.

[3] M. Alrifai and T. Risse, "Combining Global Optimization
with Local Selection for Efficient QoS-Aware Service
Composition," Proc of 18th International Conference on
World Wide Web (WWW 2009), Madrid, Spain, pp. 881-
890, 2009.

[4] M. Alrifai, D. Skoutas, and T. Risse, "Selecting Skyline
Services for QoS-based Web Service Composition," Proc
of 19th International Conference on World Wide Web (WWW
2010), Raleigh, North Carolina, USA, pp. 11-20, 2010.

[5] D. Ardagna and B. Pernici, "Adaptive Service
Composition in Flexible Processes," IEEE Transactions on
Software Engineering (TSE), vol. 33, no. 6, pp. 369-384,
2007.

[6] S. Balasubramaniam, G. Lewis, S. Simanta, and D. B.
Smith, "Situated Software: Concepts, Motivation,
Technology, and the Future," IEEE Software, vol. 25, no.
6, pp. 50-55, 2008.

[7] L. Baresi and S. Guinea, "Self-Supervising BPEL
Processes," IEEE Transactions on Software Engineering, vol.
37, no. 2, pp. 247-263, 2011.

[8] A. P. Barros and M. Dumas, "The Rise of Web Service
Ecosystems," IT Professional Magazine, vol. 8, no. 5, p. 31,
2006.

[9] D. Benslimane, S. Dustdar, and A. Sheth, "Services
Mashups: The New Generation of Web Applications,"
IEEE Internet Computing, vol. 12, no. 5, pp. 13-15, 2008.

[10] S. Bergamaschi, E. Domnori, F. Guerra, R. T. Lado, and
Y. Velegrakis, "Keyword Search over Relational
Databases: A Metadata Approach," Proc of 2011 ACM
SIGMOD International Conference on Management of Data
(SIGMOD 2011), Athens, Greece, pp. 565-576, 2011.

[11] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S.
Sudarshan, "Keyword Searching and Browsing in
Databases using BANKS," Proc of 18th International
Conference on Data Engineering (ICDE 2002), San Jose, CA,
USA, pp. 431-440, 2002.

[12] A. Brogi, S. Corfini, and R. Popescu, "Semantics-Based
Composition-Oriented Discovery of Web Services," ACM
Transactions on Internet Technology, vol. 8, no. 4, pp. 19:1-
19:39, 2008.

[13] R. Calinescu, L. Grunske, M. Kwiatkowska, R.
Mirandola, and G. Tamburrelli, "Dynamic QoS
Management and Optimisation in Service-Based
Systems," IEEE Transactions on Software Engineering
(TSE), vol. 37, no. 3, pp. 387-409, 2010.

[14] V. Cardellini, E. Casalicchio, V. Grassi, S. Lannucci, F. Lo
Presti, and R. Mirandola, "MOSES: A Framework for
QoS Driven Runtime Adaptation of Service-Oriented
Systems," IEEE Transactions on Software Engineering, vol.
38, no. 5, pp. 1138-1159, 2012.

[15] C. Carpineto and G. Romano, "A Survey of Automatic
Query Expansion in Information Retrieval," ACM
Computing Surveys, vol. 44, no. 1, pp. 1-50, 2012.

[16] G. Cassar, P. Barnaghi, and K. Moessner, "Probabilistic
Matchmaking Methods for Automated Service
Discovery," IEEE Transactions on Services Computing
(TSC), vol. 7, no. 4, pp. 654-666, 2014.

[17] M. Dojchinovski, J. Kuchar, T. Vitvar, and M. Zaremba,

HE ET AL.: KEYWORD SEARCH FOR BUILDING SERVICE-BASED SYSTEMS

"Personalised Graph-Based Selection of Web APIs," Proc
of International Semantic Web Conference (ISWC2012), pp.
34-48, 2012.

[18] R. Durrett, Random Rraph Dynamics: Cambridge
University Press, 2007.

[19] Z. Feng, B. Lan, Z. Zhang, and S. Chen, "A Study of
Semantic Web Services Network," The Computer Journal,
vol. 58, no. 6, pp. 1293-1305, 2015.

[20] K. Golenberg, B. Kimelfeld, and Y. Sagiv, "Keyword
Proximity Search in Complex Data Graphs," Proc of 28th
ACM SIGMOD International Conference on Management of
Data (SIGMOD 2008), pp. 927-940, 2008.

[21] L. M. V. Gonzalez, L. Rodero-Merino, C. Juan, and M. A.
Lindner, "A Break in the Clouds: Towards A Cloud
Definition," Computer Communication Review, vol. 39, no.
1, pp. 50-55, 2009.

[22] Q. He, J. Han, Y. Yang, H. Jin, J.-G. Schneider, and S.
Versteeg, "Formulating Cost-Effective Monitoring
Strategies for Services-based Systems," IEEE Transactions
on Software Engineering, vol. 40, no. 5, pp. 461-482, 2014.

[23] Q. He, J. Yan, H. Jin, and Y. Yang, "Quality-Aware
Service Selection for Service-based Systems Based on
Iterative Multi-Attribute Combinatorial Auction," IEEE
Transactions on Software Engineering (TSE), vol. 40, no. 2,
pp. 192-215, 2014.

[24] J. Hoffmann, P. Bertoli, and M. Pistore, "Web Service
Composition as Planning, Revisited: In Between
Background Theories and Initial State Uncertainty," Proc
of 22nd AAAI Conference on Artificial Intelligence (AAAI
2007), Vancouver, British Columbia, Canada, pp. 1013-
1018, 2007.

[25] V. Hristidis and Y. Papakonstantinou, "DISCOVERY:
Keyword Search in Relational Databases," Proc of 28th
International Conference on Very Large Data Bases (VLDB
2002), Hong Kong, China, pp. 670-681, 2002.

[26] G. Huang, Y. Ma, X. Liu, Y. Luo, X. Lu, and M. B. Blake,
"Model-Based Automated Navigation and Composition
of Complex Service Mashups," IEEE Transactions on
Services Computing (TSC), vol. 8, no. 3, pp. 494-506, 2015.

[27] K. Huang, Y. Fan, and W. Tan, "An Empirical Study of
Programmable Web: A Network Analysis on a Service-
Mashup System," Proc of 19th International Conference on
Web Services (ICWS2019), pp. 552-559, 2012.

[28] F. K. Hwang, D. S. Richards, and P. Winter, The Steiner
Tree Problem vol. 53: Elsevier, 1992.

[29] M. Jiang, A. W.-C. Fu, and R. C.-W. Wong, "Exact Top-k
Nearest Keyword Search in Large Networks," Proc of
36th ACM SIGMOD International Conference on
Management of Data (SIGMOD 2015), pp. 393-404, 2015.

[30] M. Jiang, A. W.-C. Fu, and R. C.-W. Wong, "Exact Top-k
Nearest Keyword Search in Large Networks," Proc of
2015 ACM SIGMOD International Conference on
Management of Data (SIGMOD 2015), Melbourne,
Australia, pp. 393-404, 2015.

[31] H. Kil, S.-C. Oh, E. Elmacioglu, W. Nam, and D. Lee,
"Graph Theoretic Topological Analysis of Web Service
Networks," World Wide Web (WWW), vol. 12, no. 3, pp.
321-343, 2009.

[32] A. Klein, F. Ishikawa, and S. Honiden, "Towards
Network-Aware Service Composition in the Cloud," Proc
of 21st World Wide Web Conference (WWW 2012), Lyon,
France, pp. 959-968, 2012.

[33] M. Klusch, B. Fries, and K. Sycara, "Automated Semantic
Web Service Discovery with OWLS-MX," Proc of 5th
International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2006), Hakodate, Japan, pp.
915-922, 2006.

[34] M. Klusch, B. Fries, and K. P. Sycara, "OWLS-MX: A
Hybrid Semantic Web Service Matchmaker for OWL-S
Services," Journal of Web Semantics, vol. 7, no. 2, pp. 915-
922, 2009.

[35] U. Küster, B. König-Ries, M. Stern, and M. Klein,
"DIANE: An Integrated Approach to Automated Service
Discovery, Matchmaking and Composition," Proc of 16th
International Conference on World Wide Web (WWW 2007),
Banff, Alberta, Canada, pp. 1033-1042, 2007.

[36] M. Lin, H. C. Lucas Jr., and G. Shmueli, "Too Big to Fail:
Large Samples and the p-Value Problem," Information
Systems Research, vol. 24, no. 4, pp. 906-917, 2013.

[37] X. Liu, Y. Ma, G. Huang, J. Zhao, H. Mei, and Y. Liu,
"Data-Driven Composition for Service-Oriented
Situational Web Applications," IEEE Transactions on
Services Computing (TSC), vol. 8, no. 1, pp. 2-16, 2015.

[38] S. Lyu, J. Liu, M. Tang, G. Kang, B. Cao, and Y. Duan,
"Three-Level Views of the Web Service Network: An
Empirical Study Based on ProgrammableWeb," Proc of
2014 IEEE International Congress on Big Data, pp. 374-381,
2014.

[39] C. E. Miller, A. W. Tucker, and R. A. Zemlin, "Integer
Programming Formulation of Traveling Salesman
Problems," Journal of the ACM (JACM), vol. 7, no. 4, pp.
326-329, 1960.

[40] Y. Ni, Y. Fan, W. Tan, K. Huang, and J. Bi, "NCSR:
Negative-Connection-Aware Service Recommendation
for Large Sparse Service Network," IEEE Transactions on
Automation Science and Engineering, vol. 13, no. 2, pp. 579-
590, 2016.

[41] S.-C. Oh, D. Lee, and S. R. Kumara, "Effective Web
Service Composition in Diverse and Large-Scale Service
Networks," IEEE Transactions on Services Computing
(TSC), vol. 1, no. 1, pp. 15-32, 2008.

[42] A. A. Patil, S. A. Oundhakar, A. P. Sheth, and K. Verma,
"Meteor-S Web Service Annotation Framework," Proc of
13th International Conference on World Wide Web (WWW
2004), New York, NY, USA, pp. 553-562, 2004.

[43] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso,
"Automated Composition of Web Services by Planning at
the Knowledge Level," Proc of 19th International Joint
Conference on Artificial Intelligence (IJCAI 2005),
Edinburgh, Scotland, UK, pp. 1252-1259, 2005.

[44] S. Ran, "A Model for Web Services Discovery with QoS,"
SIGecom Exchanges, vol. 4, no. 1, pp. 1-10, 2003.

[45] A. V. Riabov, E. Boillet, M. D. Feblowitz, Z. Liu, and A.
Ranganathan, "Wishful Search: Interactive Composition
of Data Mashups," Proc of 17th International Conference on
World Wide Web (WWW 2008), Beijing, China, pp. 775-

 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

784, 2008.
[46] J. Shang, L. Liu, and C. Wu, "WSCN: Web Service

Composition Based on Complex Networks," Proc of 2013
International Conference on Service Sciences (ICSS 2013),
pp. 208-213, 2013.

[47] I. Trummer, B. Faltings, and W. Binder, "Multi-Objective
Quality-Driven Service Selection - A Fully Polynomial
Time Approximation Scheme," IEEE Transactions on
Software Engineering (TSE), vol. 40, no. 2, pp. 167-191,
2014.

[48] F. Wagner, B. Klöpper, F. Ishikawa, and S. Honiden,
"Towards Robust Service Compositions in the Context of
Functionally Diverse Services," Proc of 21st International
World Wide Web Conference (WWW 2012), Lyon, France,
pp. 969-978, 2012.

[49] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J.
Kalagnanam, and H. Chang, "QoS-Aware Middleware
for Web Services Composition," IEEE Transactions on
Software Engineering (TSE), vol. 30, no. 5, pp. 311-327,
2004.

[50] Z. Zheng and M. R. Lyu, "Collaborative Reliability
Prediction of Service-Oriented Systems," Proc of 32nd
ACM/IEEE International Conference on Software
Engineering (ICSE 2010), Cape Town, South Africa, pp.
35-44, 2010.

[51] G. Zou, Q. Lu, Y. Chen, R. Huang, Y. Xu, and Y. Xiang,
"QoS-Aware Dynamic Composition of Web Services
Using Numerical Temporal Planning," IEEE Transactions
on Services Computing (TSC), vol. 7, no. 1, pp. 18-31, 2014.

