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Generating Domain-Specific Visual Language
Tools from Abstract Visual Specifications

John C. Grundy, Member, IEEE, John Hosking, Member, IEEE, Karen Na Li,
Norhayati Mohd Ali, Jun Huh, and Richard Lei Li

Abstract—Domain-specific visual languages support high-level modeling for a wide range of application domains. However, building
tools to support such languages is very challenging. We describe a set of key conceptual requirements for such tools and our approach
to addressing these requirements, a set of visual language-based metatools. These support definition of metamodels, visual notations,
views, modeling behaviors, design critics, and model transformations and provide a platform to realize target visual modeling tools.
Extensions support collaborative work, human-centric tool interaction, and multiplatform deployment. We illustrate application of the
metatoolset on tools developed with our approach. We describe Tool Developer and cognitive evaluations of our platform and our

exemplar tools, and summarize key future research directions.
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1 INTRODUCTION

SOFTWARE engineers use models to describe software
requirements, design, processes, networks, tests, config-
urations, and code. Construction, engineering and computer
systems professionals use models representing structures,
plant, plumbing/electrics, materials, VHDL, electromag-
netics, and processes/tasks. Health professionals have
models for patient diagnoses, treatments, and imaging.
Business, finance, and economics professionals use models
to design and monitor processes/workflow. Families and
friends may use models for family trees or to establish social
networks. Our interest has been in the use of Domain-Specific
Visual Languages (DSVLs) in these widely varied domains to
assist domain users to better work with their complex domain
models. A DSVL has a metamodel and visual notation
allowing domain users to express complex models in one or
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more visual forms. Often, multiple visual forms are used to
represent overlapping parts of the metamodel. Ideally,
DSVLs afford a “closeness of fit” to the tool developer’s
problem domain [23], [65].

Working with models involves authoring, visualizing,
navigating, transforming, understanding, managing, and
evolving models. There is a demand for appropriate, usable,
scalable, sharable, robust, and extensible tools to support
these processes. Often multiple domain users must work
together to author and review visual models. They some-
times want to model or access models in varying notations
or interfaces, e.g., web or mobile device. They want effective
tools to support the use of these DSVLs. However, building
such tools is very challenging with the need for multiview,
multinotational, and multi-user support, the ability for
nonprogrammer tool developers to (re)configure specifica-
tions while in use, and an open architecture for tool
extension and integration.

Current approaches to constructing DSVL tools suffer
from a range of deficiencies. These include limited domain
targets, the need to use complex APIs and code for
developing even simple environments, and a complex
edit-compile-run cycle for reflecting even minor changes.
These deficiencies provide barriers to use and typically
prevent domain users and even developers from producing
suitable DSVL tools. Visual specification approaches,
compared to writing custom code, have shown their
advantages in minimizing design and implementation
effort and improving understandability of programs [14],
[17], [23], [27], [29]. This suggested to us that a visual
language approach to support DSVL definition is likely to
be a positive approach for the design and construction of
domain-specific modeling environments, both for domain
modeling tool users but also potentially for tool developers.

We focus on our conceptual/theoretic contributions to
DSVL tool development and their realization in this paper.
We describe the key motivation for this research (Section 2)
and survey related work (Section 3). We then provide an
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Fig. 1. MaramaEML diagrams: (a) tree-based services specification with process overlay, and (b) BPMN process flow.

overview of our metatool approach (Section 4) by describing
its key features and conceptual foundation. We then describe
our integrated set of meta-DSVLs with a focus on novel
behavior specifications (Section 5), critic authoring, and
model transformation (Section 6). These are followed by a set
of human-centric elements supporting accessibility and
collaboration (Section 7) and then platform realization
(Section 8). We describe evaluation of our approach via
exemplar DSVL tool development and a variety of more
formal evaluations (Section 9), then provide discussion
(Section 10) and conclude with a summary of key contribu-
tions from this research (Section 11).

2 MOTIVATION

Software engineers use a range of models to describe
software systems at various levels of abstraction. Some are
very general and can be used to describe a wide range of
software system characteristics. Some examples of such
general-purpose visual modeling languages include the
Unified Modeling Language (UML), Architectural Descrip-
tion Languages (ADLs), Entity-Relationship (ER) and Data-
flow Diagrams (DFDs), and State Charts (SDs). This is akin
to general purpose programming languages like C, C++,
Java, etc., compared to domain-specific languages (DSLs) for
special purpose domains, e.g., ATL for data transformation,
BPEL for process orchestration, and the Ant build scripting
language. Many tools have been developed to support these
general-purpose modeling languages. As they are general-
purpose, investment in bespoke visual modeling tools for
these modeling languages has generally been worthwhile.
Domain-specific visual languages are more limited-
domain modeling languages intended for modeling of

limited classes of software systems or for modeling narrow
aspects of systems, as DSLs are more limited, special-
purpose forms of textual languages. One of the more
successful DSVLs is the LabView visual language and
environment [38], designed for instrumentation engineers
configuring software and hardware interfaces in their
domain. Other examples include various process modeling
languages, e.g., Business Process Modeling Notation
(BPMN) [75], load modeling languages, e.g., Form Charts
[19], component and service composition [25], and visual
modeling languages for specific software application
domains, such as health care plans [43], business workflow
[61], and statistical surveying [44]. As these have much
more limited purpose and scope, large investment in
developing sophisticated tools for such domains is some-
times hard to justify or afford.

Consider an environment to support business service
and process modeling, such as our MaramaEML domain-
specific visual language tool [51]. Two DSVL examples from
this tool are shown in Fig. 1. MaramaEML needs to provide
users with various visual notations for representing and
understanding organizational services and process flows
(Fig. 1(1)). In this example, the Enterprise Modeling
Language (EML) DSVL is used in Fig. 1(1) to model a
university student management application business pro-
cesses. Other DSVLs may also be used, such as the Business
Process Modeling Notation, an emerging standard for
process modeling for both engineers and business analysis.
Fig. 1(2) shows a BPMN process model for the “enroll
student” business process. Such DSVL tools require
sophisticated diagram editing tool features (Fig. 1(3)-(5)),
detailed property editing (Fig. 1(6)), script and code
generators, such as a BPMN to BPEL generator (Fig. 1(7)),
and various analysis tools, such as consistency checking of
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Fig. 2. Sutcliffe’s design metadomain model, from [73].

process models (Fig. 1(8)). Developing such DSVL tool
features in, e.g., Eclipse or Visual Studio is very time
consuming, requires detailed knowledge of many platform
APIs, requires significant coding and debugging, and they
are difficult to maintain. As an example, to develop the
EML tool in Eclipse using Eclipse Modeling Framework
(EMF), OCL, and Graphical Editing Framework (GEF)
projects to produce only a basic visual editor, approxi-
mately 2,500 lines of code need to be produced (ignoring the
autogenerated EMF data structure code), roughly 2,100
implementing the GEF graphical editor and 400 implement-
ing various metamodel constraints and behavior. Use of
Graphical Modeling Framework (GMF) supports genera-
tion of around 1,800 lines of the graphical editor and
additional controller code. The tool developer still needs to
intimately understand and use Eclipse GEF, GMF, EMF,
and OCL APIs, along with the different Event notification
and Command frameworks, the XMI serializer, the Eclipse
plug-in and parts models, the OSGi-based plug-in config-
uration and deployment tool, and complex interdependen-
cies between all of these.

As developing such DSVL environments is such a
complex task, it is generally exclusive to experienced
software developers. Ideally, we want this process to be
simplified by leveraging metatool capabilities. Given many
DSVLs may be useful and used by nontechnical Tool
Developers, ideally we want nonprogrammer tool devel-
opers to be able to develop visual notations and tools of
relevance to their domain using their own domain knowl-
edge. Thus, our key goals include: 1) making DSVL tool
implementation easier for experienced domain modelers
(who may not always be experienced software developers),
and users familiar with basic modeling concepts, e.g.,
Extended Entity Relationship (EER), OCL, and metamodels;
2) allowing users to construct basic DSVL tools within one
day, plus time for additional complexity such as back-end
code generators; and 3) leveraging the strength of the Eclipse
platform, as our previous efforts with our standalone
Pounamu [79] left us with infrastructure support needs that
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were too large and an inability to integrate seamlessly with
other work.

Sutcliffe provides a useful conceptual framework for
design modeling tools [73], shown in Fig. 2. He argues that
tools for model management should provide suitable model
authoring (drawing) tools (1); simulation and prototyping
support (2); design critics (3), knowledge reuse (4), and
visualization (5) support; and annotation (6) and collabora-
tion support (7).

Using Sutcliffe’s conceptual model and our own experi-
ences developing previous metatools, we have identified
some key requirements for a metatool to construct DSVL
tools as per our goals established above:

e Specifying modeling elements (Requirement 1)—
These comprise

- metamodel(s) representing canonical model(s)
of domain-specific information, including enti-
ties and relationships, in the target DSVL;

- visual elements, made up of various icons and
connectors, which form the visual representa-
tion(s) of domain models and elements; and

- diagrammatic views, which comprise notational
elements for each DSVL diagram type and view-
to-model mappings for the management of
view-model consistency.

e Specifying modeling behaviors (Requirement 2)—
These include dynamic and interactive tool effects
such as event and constraint handling for both
model and view manipulations and automated
operations or processes.

e  Model critiquing and transformation (Requirement 3)
—To support proactive feedback on model quality
and the exchange of view and model information
with other tools, and back-end code generation.

e Human-centric modeling (Requirement 4)—Includ-
ing scalable, sharable, usable, and intelligent support
for collaborative and sketch-based editing and review.



e Modeling platforms (Requirement 5)—leveraging
existing IDE facilities and related tools and making
models available to domain users in appropriate
ways.

3 RELATED WORK

Three main approaches exist for the development of visual,
multiple view DSVL environments: reusable class frame-
works, diagram generation toolkits, and metatools.

General-purpose graphical frameworks provide low-
level yet powerful sets of reusable facilities for building
diagramming tools or applications. These include MVC
[45], Unidraw [74], COAST [72], HotDoc [13], and Eclipse’s
GEF [1]. While flexible and powerful, these frameworks
typically lack abstractions specific to multinotation and
multiview visual language environments. Thus, construc-
tion of DSVL tools is very time consuming. For example,
supporting multiple views of a shared model in GEF
requires a significant programming effort. Given the
challenge, a variety of special purpose frameworks for
building multiview diagramming tools have been devel-
oped. These include JViews [30], IBM ILOG JViewsDia-
grammer [3], and NetBeans Visual Library [6]. These offer
reusable facilities for visual language-based environments,
but still require detailed programming and an edit-compile-
run cycle, limiting their ease of use for exploratory
development and for tool developers without detailed
technical knowledge.

A number of more targeted diagram generation toolkits
have been produced to make DSVL tool development easier.
These include Vampire [60], VisPro [77], JComposer [30],
PROGRES [70], DiaGen [62], VisualDiaGen [63], Merlin [4],
and VEGGIE [78]. All of these diagram generation toolkits
use code generation from high-level specifications. Some
use metamodels and associated editor characterization as
their source specifications, e.g., JComposer and Merlin
(using EMF model). Others, e.g., DiaGen, VisualDiaGen,
PROGRES, VEGGIE, and VisPro, use formalisms such as
graph grammars and graph rewriting for high-level
syntactic and semantic specification of visual tools. Code
generation approaches suffer from similar problems to
many toolkits: often requiring an edit-compile-run cycle and
difficulty in integrating third-party solutions. Tool devel-
opers sometimes have to resort to code for some editor
capabilities (e.g., customization of shapes in Merlin), or
cannot add some desired support features to their target
tools. Formalism-based visual language toolkits typically
limit the range of visual languages supported and are often
difficult to extend in unplanned ways. They also require
understanding of the formalism, most commonly graph
grammars that specify a set of valid transformations from
one graph state to another. Historically, graph-grammar-
based visual editors had more limited editing capabilities
than toolkit or framework-coded tools, requiring valid
graph transforms only and menu-driven editing ap-
proaches. More recent toolkits such as DiaGen provide
graphical editors with growing flexibility.

A third approach to realizing DSVL tools is using
metatools. Metatools provide a purpose-designed IDE for
generation, configuration, and exploratory development of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. X, XXXXXXX 2013

other tools. These include KOGGE [20], MetaEdit+ [41],
MOOT [67], GME [47], Pounamu [79], TIGER [21], DiaMeta
[64], Eclipse Graphical Modeling Framework [2], AToM?
[46], and Microsoft DSL Tools [5]. Metatools for DSVL
environments typically provide separate specifications of
different tool aspects. High-level definitions of tool meta-
models, shapes, connectors, and mappings from metamodel
elements to shapes and connectors are used to effectively
generate a tool structure implementation. While a popular
mechanism has been provided to allow DSVL tools to be
quickly generated and configured with minimal user
specification effort, features such as complex editing
behavior, tool integration, code generation, design critics,
human-centric editing, and accessibility are generally not
directly supported and must be hand coded if required.
Typical distinctions of the existing metatools include the
paradigms used for metamodeling (e.g., UML used by DSL
Tools, EMF used by GMF, ER used by Pounamu, and graph
grammars used by TIGER), the variety of facilities offered
for visual notation design (e.g., drawings, forms, templates,
and abstract specifications), the directness of multiple view
specification support (e.g., automated, via visual mapping,
or with the need for substantial coding), and, of particular
concern to us, the abstraction level of DSVL tool behavioral
specification support (e.g., using scripting languages,
building blocks provided in the metatool frameworks or
visual notations). Microsoft DSL Tools provides an inte-
grated visual specification editor with designated parts for
metamodel, visual notations, and their representational
mappings. Multiple, linked views are, however, not directly
supported and realizing them in generated tools requires
much coding and configuration. Model validation, dia-
gramming rule definition, and artifact generation are well
supported in the SDK through the use of framework APlIs,
metadata attributes (annotations), object-oriented inheri-
tance, and template-based generators. Reuse and integra-
tion are also well-supported, leveraging Visual Studio’s
extensibility. However, these are not raised to a visual
abstraction level. Pounamu provides built-in support and a
form-based mapper for multiple, linked views. It also
allows some limited form of visual event handling behavior
specification. DiaMeta allows rule-based diagram layout
control behavior to be specified using metamodels in EMF.
AToM? provides a DSVL (called SLAMMER [31]) for the
use of generalized visual patterns for DSVL model
measurement and redesign. MetaEdit+ provides common
rules for Tool Developers to choose/adapt, and automati-
cally delivers them in model instances. For code generation
and integration, advanced built-in scripting commands are
used. GMF supports live validation of diagrams. It also
allows models to be specified in OCL, leveraging the EMF
validation framework. C-SAW [76] in GME supports model
constraint specification in OCL using a separate form-based
editor view. Most metatools aim for a degree of round-trip
engineering of the target tools. Typically, they provide
support for their target domain environments and tool
developers may need little technical programming ability to
use the metatools. However, many are limited in their
flexibility in terms of target tool capabilities able to be
specified and their integration with other tools. Pounamu
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Fig. 3. Relating Sutcliffe’s model to Marama capabilities.

and IPSEN are good examples of these limitations, and
additionally incur large effort to build features provided by
general-purpose IDEs. Thus, a recent trend has been to
build both diagram editor toolkits and metatools on top of
existing IDES such as Eclipse and Visual Studio. These can
then leverage save/load resource management features,
modeling frameworks, graphical and text editor frame-
works, a common user interface look and feel, and many
third-party extensions.

Considerable research has gone into providing proac-
tive critiquing support in software IDEs, DSVL tools, and
other design-oriented domains. These give proactive
support to users as they model. Good examples include
design advice in ArgoUML and advice on Java program-
ming constructs in Java Critiquer [69], [71]. However, no
high-level critic definition approaches have been incorpo-
rated into DSVL metatools. Model transformation and code
generation support has been recognized as a critical
feature for many DSVL tools employed for model-driven
engineering problems. This has included approaches such
as enterprise data mapping, GXL, and VMTS [11], [34],
[48]. Typically, these approaches have been standalone
model transformation or exchange tools rather than
integrated DSVL metatool support features. Providing
more human-centric editing capabilities for DSVL tools
has also been recognized in much recent research. A
number of approaches to providing sketching-based
support have been developed, such as extensions to
DiaGen for sketch-based recognition [12]. Diagram differ-
encing, merging, and collaborative editing support have
been explored by Mehra et al. [61] and Lin et al. [52]. Most
of these approaches provide fixed, closed groupware
functionality, however, and we desired more flexibility
over target visual design tool collaborative work facilities.
In addition, we wanted these capabilities to support
integration with existing tools. Thin-client, or rich Internet
application (RIAs) interfaces, have been explored; exam-
ples include MILOS [59], a web-based process manage-
ment tool, BSCW [9], a shared workspace system, Web-
CASRE [56], which provides software reliability manage-
ment support, web-based tool integration, and CHIME
[39], which provides a hypermedia environment for
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software engineering. Most of these provide conventional,
form-based web interfaces and lack web-based diagram-
ming tools. Recent efforts at building web-based diagram-
ming tools include Seek [42], a UML sequence
diagramming tool, NutCASE [22], a UML class-diagram-
ming tool, and Cliki [57], a thin-client metadiagramming
tool. All have used custom approaches to realize thin-client
diagramming. They also provide limited tool tailorability
by tool developers and limited integration support with
other software tools. Many are standalone efforts, whereas
ideally metatools should be able to support these capabil-
ities for all target DSVL tools.

In summary, a number of approaches have demon-
strated the capability to capture domain model elements
using high-level specifications (our Requirement 1). How-
ever, the majority require detailed programming and
framework knowledge or understanding of complex formal
information representation models (e.g., graph grammars)
for DSVL tool development. Few have managed to support
behavior specifications accessible to nonprogrammer tool
developers (Requirement 2). There is to date limited
support for DSVL tool critic editing based on knowledge
(best practices) reuse and for model transformations
(Requirement 3). Few approaches support simple, live,
evolutionary, and collaborative development of DSVL tools
with good accessibility and the use of Tool Developers” own
domain knowledge (Requirement 4). More approaches are
leveraging IDEs to realize target DSVL tools, but these still
lack high-level support for tool integration (Requirement 5).

4 OVERVIEW OF OUR APPROACH

We wanted to simplify the DSVL tool development process
by extending metatool capabilities. Our approach is to
generate DSVL tools from a variety of high-level, visual
specifications in a metatool, called Marama. Fig. 3 relates
our key requirements for DSVL metatools from Section 2
above to Sutcliffe’s Design metadomain model [73].

Our Marama approach addresses most of the compo-
nents in the Design metadomain, providing strong support
in some areas and partial in others. Our core approach is a



set of visual, declarative specifications of domain meta-
models, their visual representations, and their views.
These include an extended entity-relationship modeler
for the specification of domain specific metamodels
(defined using a “Metamodel Designer”), a WYSIWYG
“compose-and-edit” approach to visual notational element
specification (the “Shape Designer”), and a mapping tool
for the filtering of model elements into (possibly multiple)
views (diagrams) and the facilitation of consistent view
and model editing (the “View Type Designer”). These
collectively address our key Requirement 1.

Several approaches are used to specify advanced DSVL
tool behaviors, our key Requirement 2. One is a visual,
declarative specification of constraints on models that
augments the Metamodel Designer. A form of OCL
constraints is supported by visual representations of model
element dependency and a spreadsheet-like model/formu-
lae metaphor. A visual, imperative specification of event-
based behavior provides a set of “Event Handler De-
signers.” A declarative augmentation of shape designs and
view type designs is used to specify (limited) automatic
layout functionality. A high-level architectural component
model allows tool developers to specify intra and intertool
communication and coordination. These all make use of an
integrated event handling behavioral model based on
event-condition-action rules. Together, these metatools
provide strong support for defining models, visual nota-
tions for models, and drawing tools for authoring visual
notations of models. They provide basic support for
information visualization, visual debugging, and simula-
tions in target DSVL tools.

A visual, template-based critique and feedback author-
ing system is used to specify a set of “design critics” for
proactive advice to DSVL tool users (the “Critic Designer”).
A visual, tree-based schema mapping approach facilitates
model transformation, model import, and code generation
(the “Transform Designer”). Together these support a range
of proactive design critics for a target DSVL tool and a range
of information exchange, reuse, and code generation
facilities, addressing our key Requirement 3.

We have experimented with a range of ways of supporting
human-centric modeling in Marama DSVL tools. These
include a sketched-based overlay for diagram editing via
intelligent ink annotations, support for multi-user collabora-
tive editing, and thin-client, web-based interfaces for more
accessible information presentation and authoring. Together
these allow generated DSVL tools to support flexible
annotation, collaboration, and brainstorming. They provide
some limited support for creative design and information
visualization and thus partially address our Requirement 4.
We have realized Marama as a set of plug-ins using the
Eclipse IDE, addressing our Requirement 5.

5 METAMODEL AND BEHAVIORAL SPECIFICATIONS

We use our MaramaEML business process modeling tool
introduced in Section 2 as a running example of a complex
DSVL tool to be specified and generated with Marama.
Consider a tool developer wanting to develop such a tool to
enable high-level business process modeling, BPEL script
generation, integration of a third-party LTSA model checker

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. X, XXXXXXX 2013

for BPEL, and information visualization support. We first
show how the basics of such a DSVL tool can be specified in
Marama. Later, we illustrate how we can augment the basic
tool specification with design critics, model transformation,
and human-centric modeling support. We then describe our
realization of the Marama DVSL metatool using Eclipse and
Microsoft DSL Tools IDEs.

5.1 Specifying DSVL Structural Aspects

(Requirement 1)

Structural elements, including entities, relationships, shapes,
connectors, and view types, form the backbone of a DSVL
tool specification. Defining domain specific concepts is a
mind-mapping process of abstracting out entities, relation-
ships, subtyping, roles, attributes, and keys as encountered
in the tool developer domain. In Marama, this process is
metamodeling. The Marama Metamodel Designer tool,
illustrated in Fig. 4, uses an EER representation. We chose
an EER approach, rather than MOF or UML, for simplicity
for our target tool developer community, which includes
nontechnical DSVL tool developers. The Marama EER
metamodel can, however, be transformed to and from other
metamodeling representations. Fig. 4 shows a basic meta-
model for representing MaramaEML BPMN constructs.

In this example, the MaramaEML tool designer has
specified a range of entities (green square icons) to
represent fundamental domain concepts, e.g., Activity,
StartEvent, StopEvent, Gateway, Comment, Swimlane, etc.
Some of these have been generalized to supertypes, e.g.,
Element, Event, and ProcessElement, via generalization
relationships (unfilled arrow pointing to general type). This
allows types to share common information, including
attributes and associations. Several associations have been
specified, shown as pink oval rectangles, e.g., Comment-to-
Element, Activity-to-Activity, etc. These connect elements
via named association links. Multiple metamodel diagrams
are possible to manage complexity.

The tool developer can also specify “event handlers”
which detect editing events or provide tool users with pop-
up menus to invoke additional functionality. In this example,
a GenerateUniquelD event handler creates a unique ID upon
the creation of new elements. Event handlers are tool
developer written Java-coded scripts, reused, and parame-
terized scripts, or are generated by various other Marama
visual specification metatools (see later). Marama provides a
comprehensive set of APIs, allowing tool developers to
query and manipulate any aspect of the Marama metamodel
or diagram data structures. Event handler code can also
access any Eclipse APIs used by Marama.

A WYSIWYG Shape Designer tool, illustrated in Fig. 5,
allows rapid composition of icons and connectors for
representing the domain-specific concepts defined in the
metamodel. Icons and connectors are specified in a generic,
abstract form via drag-and-drop. This uses a semiconcrete
representation of the specified shape and connector notation
for immediate design feedback. In this example, Start and
Stop eventshapes (ovals), an Activity shape, a Group shape, a
Comment shape, and a Gateway shape have been designed.
Some of the editable attribute values for the Activity shape
specification are shown. Some associations are shown,
including event flow, comment anchor, and grouping.
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The View Type Designer tool, illustrated in Fig. 6,
specifies which visual elements are included in a diagram
(which we call a “view type”) and their relationships to the
underlying model elements (including attribute mappings).
In this example, the main BPMN view type is specified. This
includes Activity, Group, Comment, Event, and gateway
shape mappings to appropriate metamodel entities, and
mappings of various connectors such as Flow and Comment
anchored to metamodel associations. Various attributes of
shapes and connectors can be mapped to metamodel entity
and association attributes. This implies automatic mainte-
nance of a bidirectional consistency between realized view
and model element attributes in models developed using the
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generated DSVL tool. A view type wizard is provided to
select defined entity, association, shape, and connectors and
generate an initial view type. View types may also have event
handlers defined. For example, in this example, Group-
ContainsProcess and AlignContainedShapes are “event
triggered” handlers for managing grouped BPMN process
elements inside a Group shape. A generateBPEL event
handler is a user-selected pop-up menu item that generates
BPEL script from the BPMN metamodel elements.

Having specified a DSVL or set of DSVLs using these
basic structural specifications (metamodel representations of
domain concepts, their visual representations, and view
mappings), users can, with no further work, realize the
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Fig. 5. An example of some MaramaEML BPMN concrete notation shape and connector designs in the Marama shape designer.
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Fig. 6. Example of Marama view type designer (left) and view type creation wizard (right).

specified tool and use it to create domain specific models and
diagrams using the DSVL(s). A model project contains one
model instance with multiple view (diagram) instances, all
kept consistent with one another. Both the model and view
instances can be manipulated via user interactions. A view
instance realizes all the icon and connector types defined in
the View Designer as Palette tools. As per the mappings of
visual elements (icons and connectors) and model elements
(entities and relationships) specified in the View Designer,
an icon/connector instance in the view instance automati-
cally generates a model entity/relationship, with appro-
priately mapped property values. Unmapped visual/model
properties of a visual/model element are persisted inde-
pendently. The model project contains a model file (file
extension “.model”), which stores the runtime model state.

5.2 Specifying DSVL Tool Behavioral Aspects
(Requirement 2)

Developing modeling behaviors is a key challenge in DSVL
tools. Many approaches require programming knowledge
and access to complex APIs. Our Marama event handlers
written in Java code are very powerful but suffer from these
same problems. However, behavioral specification from a
high-level abstraction is generally difficult to achieve.
Appropriately chosen metaphors are important for map-
ping a specification onto a user’s domain knowledge, not
only for structure but also for behavior specifications.

In Marama, we chose a declarative spreadsheet-like
metaphor to specify model-level dependencies and con-
straints and an imperative dataflow-like Event-Condition-
Action-based metaphor for view-level event handlers. We
use a subscribe-notify Tool Abstraction (TA) metaphor to
describe event-based tool architecture and multiview
dependency and consistency. These three different meta-
phors were generalized from our earlier work on domain-
specific event handling specification [53], [54], [55],
integrated via a common model and unified user interface
representation [50].

5.2.1 Declarative Model Constraint Specification

A number of approaches separate model constraint speci-
fications from their metamodel specifications [5], [41]. This

causes potentially serious hidden dependency issues (one of
the Cognitive Dimensions (CD) framework dimensions
[23]). We believe constraints such as attribute value
boundaries and dependencies, relationship multiplicities,
and cyclic reference checking can be presented more simply
and clearly within the same metamodel specification by
annotating existing contextual elements. MaramaTatau is an
extension of Marama’s EER metamodel designer specifica-
tions adding declarative dependency/constraint specifica-
tions and high-level visual annotations. Value dependencies
and modeling constraints are state-change events handled
in Marama via a unidirectional change-propagation me-
chanism with side-effects to dependent components, the
same approach used by formula evaluation in spreadsheets.
However, we wished to minimize Cognitive Dimensions
[23] tradeoffs such as hidden dependency and visibility
issues between constraint and metamodel specifications that
are common in spreadsheet-like approaches. MaramaTatau
supports visual construction of formulas to specify model
structural dependencies and constraints at a type rather
than the usual spreadsheet instance level. We chose OCL as
the primary textual formula notation as OCL expressions
are relatively compact, OCL has primitives for common
constraint expression needs, OCL is a standardized lan-
guage, and the quality of OCL implementation is increasing.

In Fig. 7, we have used MaramaTatau to extend the
MaramaEML metamodel with a constraint specifying that a
StartEvent must have at least one Activity connected to it.
Small green circular annotations on an attribute or entity
indicate that an OCL formula has been defined to calculate a
value (e.g., the id of an Element) or provide an invariant
(e.g., the cardinality constraint on a StartState). We use green
arrowed lines to show formula dependency annotations and
gray borders to annotate sensible elements to be involved in
a formula construction at a certain stage. Formula construc-
tion can be done textually, via a Formula Construction
(OCL) view, or “visually” by direct manipulation of the
metamodel and OCL views to automatically construct
entity, path, and attribute references and function calls.
Clicking on an attribute places an appropriate reference to it
into the formula.
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Fig. 7. Examples of visual constraint specification using the MaramaTatau extensions to the Marama metamodel designer.

In this example, the tool developers create a formula for
the StartEvent entity (1). They then begin specifying the
constraint using a combination of the visual elements in the
metamodel and the formula editor view (2). They specify
the StartEvent entity (self) by clicking on it (3), which
highlights in the visual metamodel elements, associations,
and/or attributes that can next be validly added to the
formula (4). In this example, the developers choose its
named association “start,” linking StartEntity to the first
Activity entity for the BPMN specification (5). Clicking on a
relationship and then an attribute generates a path reference
in the formula (self.start in this example). A difference from
the spreadsheet approach is that only certain elements are
semantically sensible at each stage of editing, whereas in
spreadsheets, almost any cell may be referenced. The tool
developers then specify the size() function, from the
available functions list on the right (6), and add a constraint
of <>0 (i.e., a StartEntity must have one or more connected
Activity entities to be valid).

The cardinality constraint on the Service entity is thus
specified by the OCL expression”self.start->size()<>0."
When this formula evaluates false for a StartState in a model
instance, a constraint violation error is generated, with a
problem marker representation appearing in the Eclipse
Problems view to provide the user with details of
the violated constraint. In this example, to solve the error
the user needs to connect the StartState entity to an Activity
entity in the BPMN diagram. When this is done, the
constraint evaluates to true and the constraint error is
removed from the Problems view.

We have carefully defined interaction between the OCL
and metamodel views to enhance visibility and mitigate

hidden dependency issues. OCL and EER editors are
juxtaposed, improving visibility, and simple annotation of
the model elements indicates formulas related to them are
present and semantically correct/incorrect. Formulas can be
selected from either view so constraints can be readily
navigated to/accessed. The dependency links permit more
detailed understanding of a formula. The annotations are
modified dynamically during editing for consistency. De-
pendencies are only made visible if a constraint is selected to
minimize scalability issues and support task focus. The
approach is similar to conventional spreadsheet dependency
links, but applied to graphical modeling. Constraints with
formula errors are highlighted in red (7). A set of example
constraint indicators and formulas are shown in the final
example screen dump (8).

5.2.2 Declarative Diagram Constraint Specification

Some specialized visual relationships in views, such as
various composite icon layout mechanisms, can also be
expressed declaratively using the same formulaic approach.
Instead of using Java event handler specifications, the tool
developer can reuse some limited visual specifications. We
have extended our OCL-based metamodel dependency/
constraint specification technique by adding some reusable
functions and applying them to iconic notations at the view
level. Fig. 8a shows a visual constraint specified in the
BPMN view type design of MaramaEML. The enclosure
relationship (icon is contained in but can be moved within
the enclosing icon) is specified between a GroupShape and
ActivityShape, using the FlowConnector connector to
manage this relationship, i.e., all AcitvityShapes related to
a GroupShape by a FlowConnector are “grouped” with that
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Fig. 8. (a) Example of an encloses() shape layout constraint being specified in the Marama view type designer and (b) its effect in the Marama

generated BPMN editor.

GroupShape. When the GroupShape is moved or resized,
Marama automatically moves and resizes the grouped
ActivityShapes, Fig. 8b. Adding, moving, resizing, or
deleting ActivityShapes in the group may cause the
GroupShape to be automatically resized /moved to continue
to contain them. Other constraints that can be specified in
this way include full containment with vertical or horizon-
tal layout of contained shapes, shapes autoaligned
(“pinned”) to the edge of another shape, and shapes
autolocated within another shape.

5.2.3 Declarative Diagram Layout Specification

More complicated autolayout using trees and force-directed
layout is supported by further visual augmentation of
Shape and view type specifications. MaramaALM (Auto-
matic Layout Mechanism) is an extension to the shape and
view type designers that allows shapes to be specified as
participating in complex tree (vertical or horizontal) and /or
automatic force-directed layouts [66]. Fig. 9 left shows the
tool designer augmenting shape designs in the Marama
shape designer with visual annotations (small dark green
octagon shapes). These indicate participation of the shape in
automatic layouts in target diagrams. The augmented view
type designer in Fig. 9 right shows layout event handlers
added to a view type that will use these augmented shape

(b) =
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(> Shapes - l &

e LabelShape
IT TextFieldShape
TextAr
[+ ShapeViewer
(8 LayoutManager (a)
& ShapeShape

Hil1

type specifications to apply tree and/or force-directed
layouts in the target Marama design tool. The tool designer
specifies the shapes that participate in the tree or force-
directed layout, connectors used to link these related shapes
and configurations, e.g., horizontal or vertical tree, auto-
resize or not, and amounts to space and autorelocate.

Fig. 10 shows the specified autolayouts in use. In the top
figure, a diagram has hierarchical tree layout. The user can
change this to a horizontal layout as shown on the right.
Marama automatically relays out the diagram components
for shapes participating in the tree. Fig. 10 (bottom) shows a
force-directed layout in use. The right-hand side shows the
resizing and repositioning of shapes in the view that
participate in the force-directed automatic layout specified
above. Note MaramaALM supports a combination of tree
and force-direct layouts for the same diagram, e.g., a
horizontal tree lays out the oval shapes and a force-directed
layout lays out the rounded rectangle shapes.

5.2.4 Visual Event Handler Specification

Our declarative spreadsheet-like approach allows tool
designers to specify constraints in a simple visual and
declarative way. However, there are limitations with this
approach. It is awkward to express more operational

Fig. 9. Specifying participation in autolayouts (left) and type of autolayout(s) to add to a view type definition (right).
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Fig. 10. Tree layout (top) and force-directed layout and optimization (bottom).

behaviors such as composite queries, filters, and actions in
event handling, and the flow of data between them. To
address this, we developed a visual event flow language
(Kaitiaki): an “Event-Query-Filter-Action (EQFA)” notation
for expressing view-level constraints/operations. The ap-
proach is based on our earlier Serendipity [27] visual event
processing language. When constructing event handlers,
tool developers select an event type of interest, add queries
on the event and Marama tool state (usually diagram content
or model objects that triggered the event), specify condi-
tional or iterative filtering of the event/tool state data, and
then state-changing actions to perform on target tool state
objects. Complex event handlers can be built up in parts, via
subviews, and queries, filters, and actions can be para-
meterized and reused.

The visual language design focuses on modularity and
explicit representation of data propagation. We have
avoided abstract control structures and used a dataflow
paradigm to reduce cognitive load. Key visual constructs
are events, filters, tool objects, queries on a tool’s state, state
changing actions plus iteration over collections of objects,
and dataflow input and output ports and connectors. A
single event or a set of events is the starting point. From this
data flows out: event type, affected object(s), property
values changed, etc. Queries, filters, and actions have
parameter bindings via data propagated through inputs.
Queries retrieve elements from a model repository and
output data elements; filters apply pattern matching to
input data, passing matching data on as outputs; actions
execute operations which may modify incoming data,
display information, or generate new events.

Queries and actions execute when input data are
available (data push). If there are no input parameters,
queries and actions trigger whenever parameters to a
subsequent flow element have values (pull). We predefined

a set of primitives for these constructs, providing operations
useful for diagram manipulation by abstracting from a large
set of diagram manipulation examples. These involve
collecting, filtering, locating, or creating elements, property
setting, relocating/alignment, and connection. Multiple
flows are supported. Concrete DSVL icons, specified in the
shape designer, are also incorporated into the visual
specification of event handling as placeholders for Marama
tool state to annotate and mitigate the abstraction, making
the language more readable.

Fig. 11 shows an event handler specified for aligning
ActivityShape shapes. The handler responds to a Marama
“shapeAdded” or “ShapeMoved” event (1). The concrete
representations of Activity and Gateway shapes (2) filter the
added and moved events to only these types of shapes. A
further filter checks that the Activity and Gateway shapes
are contained within a Group shape (3). All of the shapes
within the GroupShape are then retrieved by a Query (4)
and an Action aligns all of the grouped shapes (5).

5.2.5 Visual Event-Based Architecture Specification

The declarative and imperative constraint/event handling
approaches described above are of low-to-medium abstrac-
tion and lack the ability to describe and affect the overall
high-level architecture of a DSVL tool. We chose to use the
Tool Abstraction [26] metaphor, with a notation designed
for our ViTABaL-WS web service composition [53] work, to
provide a view to describe event-based tool architecture.
This mitigates multiview dependency and consistency
issues. TA is a message propagation-centric metaphor
describing connections between “toolies” (behavior encap-
sulations which respond to events to carry out system
functions) and “abstract data structures” (ADSs: data
encapsulations which respond to events to store/retrieve/
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Fig. 11. Specifying an event-driven shape alignment algorithm with the

modify data) that are instances of “abstract data types”
(ADTs: typed operations/messages/events). Connection of
toolies to other toolies and ADSs is via typed ports. TA
supports data, control, and event flow relationships in a
homogeneous way, allowing a focus on architecture-level
abstractions and describing separated concerns including
tool specific events, event generators, and receivers, and
responding behaviors such as event handlers. Key model-
ing constructs include event sources/sinks, Marama com-
ponents, event handlers, toolies (data processing), ADSs
(data management), data storage, and error handlers.

Fig. 12 shows specification of user-defined events and
propagation of their notifications between various Mara-
maEML event handling toolies and structural components.
This example specifies that when a BPMN diagram is
modified and has no constraint violations (1), a BPEL script
is generated from the underlying BPMN metamodel entities
and associations (2). This BPEL script is then submitted to an
LTSA-based model checker (3). This performs a number of
consistency checks on the model. Errors detected by the
model checking are used to open, annotate, and highlight in
the BPMN view (4).
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5.2.6 Integrated Runtime Visualization Support

Visualization support for a running DSVL tool is also
necessary to allow users to track and control system behavior
using the same level of abstraction as they are defined in [26],
[28]. Synthesized runtime visualization is achieved in
Marama via a specialized debugging and inspection tool (a
“Visual Debugger”). Our Marama Visual Debugger provides
a common user interface that connects the three metaphoric
event specification views with an underlying debug model
based on the model-view-controller pattern. We use the
debugging service instrumentation mechanism [53] to
generate low-level tracing events on modeling elements.
Marama handles those events by sending the event data to
appropriate modeling elements and annotates them with
colors and state information. Marama EMF is the common
high-level representation that glues different behavioral
views together, and supplies dynamic state information to
the Visual Debugger. The user has full control of execution,
with step-by-step visualization of results (e.g., query results
or state changes) at the point of execution of each building
block in a particular view. Fig. 13 illustrates the visualization
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Fig. 13. Visual debugging of a Kaitiaki event handler (left) followed by a MaramaTatau formula (right).

of an event handler (a) followed by a runtime-interpreted
formula (b). The Metamodel Designer view and the Event
Handler Definer view with the respective formula and event
handler specifications are juxtaposed with the runtime
diagram modeling view. From the Visual Debugger, the
user has control over the execution/interpretation of a
behavioral building block. Once the behavior is interpreted,
the affected runtime model element is annotated (with a
yellow background) to indicate the application of the
formula/handler, and meanwhile, the corresponding for-
mula/handler node and their dependency links defined in
the corresponding metamodel view are annotated in the
same manner to show the behavior specification and its
execution status.

6 CRITICS AND TRANSFORMATIONS
(REQUIREMENT 3)

Using the Marama capabilities described in the previous
section, a tool developer can specify and realize a wide range
of DSVL tools. However, our initial Tool Developer evalua-
tions of Marama found two aspects that were problematic:
specifying constraints and proactive design advice, and
specifying model transformations and code generation. To
address these, we developed two further visual specification
metatools for Marama: a Design Critic specification tool and
a Model Transformation specification tool.

6.1 Specifying Design Critics

Research has shown that DVSL tools can greatly benefit from
the addition of proactive “design critics” [8]. These critics
monitor the state of DSVL tool models and provide proactive
feedback to the tool user around model quality. Some critics
support “fix up” actions to modify an incorrect or inefficient
design structure under user direction. While these can be
specified with our declarative and imperative visual event
handler specification tools described in Section 5, evalua-
tions of Marama found these to be suboptimal approaches
for most tool developers.

To this end, we have developed a visual and form-based
critic specification metatool for Marama, MaramaCritic
Designer. MaramaCritic provides a high-level, declarative
specification approach to add design critics to DSVL tools. It
uses a combination of a high-level visual critic model and a

more detailed form-based critic specification. Together
these provide a critic definition approach that is more
accessible, though more restricted in its expressibility, than
the other behavioral definition approaches.

The main underlying idea in MaramaCritic is to use
information expressed in a metadiagram (i.e., the Marama
metamodel diagram) as input for critics to be realized in a
diagram (i.e., a Marama diagram in the realized modeling
tool specified by the metamodel). It is important to mention
that MaramaCritic is only minimally dependent on the
notation used in the metadiagram. As we discussed earlier,
the Marama metamodel diagram is expressed using an
Extended Entity Relationship notation. If a richer notation is
used in the future, more information can be extracted from
the metamodel diagram and thus can be used for specifying
critics and checking user diagrams. Fig. 14(1) shows a
simplified metamodel for MaramaEML comprising some of
the relevant entities, attributes, and associations. As shown
in Fig. 14(1), MaramaEML’s main features include service,
operation, and process entities. A service entity implies a
task within a business process of an organization. An
operation entity represents an atomic activity that is
included in a service. A process entity has two specializa-
tions, process start and process end entities, representing,
respectively, the start and end of a process. Associations
between the required entities support the modeling of the
business process structure. All services, operations, and
processes are organized in a tree structure to model a
business process system. Fig. 14(2) shows several possible
critics for the MaramaEML tool. These specify named design
critics to be invoked when various events are generated by
Marama model editing operations. Some critics simply
provide a “critique” to the user, suggesting problems or
issues with the DSVL model state. Others provide “fix up”
actions to proactively correct the DSVL model or to enforce
constraints on the model expressed in the DSVL. Fig. 14(3)
shows a simple example of a MaramaEML structure model
for a basic university enrollment service (modified from
[51]). Here, the student, university, and StudyLink services
are subservices of the university enrollment service. These
are represented as oval shapes. Each service may (or may
not) include a subservice. The university service includes
four embedded services (i.e., enrollment office, finance
office, credit check, and department). Each service must
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Fig. 14. Metamodel for a simplified MaramaEML (1), followed by a visual and form-based critic specifications (2), an example of MaramaEML

structure (3), an action assertion template (4), and critic execution (5).

include at least one operation. The operation entity is
represented using a rectangle shape. For instance, the
Student Service manages four operations: search courses,
apply enrollment, apply loan, and make payment.

The bottommost critic in Fig. 14(2) is an example of an
action assertion critic. Suppose the tool developer wants to
specify a critic that constrains the service entity (i.e.,
EMLService) to have no more than four operations (i.e.,
EMLOperation). This might be sensible in order to encourage
designers to split large hierarchies of services into smaller,
more manageable and understandable groups, as our
evaluation of MaramaEML found that service entities with
large numbers of operations look cumbersome to the tool
developers. A critic can be specified for this by defining the
relevant properties for event, condition, and action via an
action assertion template, as shown in Fig. 14(4)—the form-
based interface. Here, the event triggering the critic is the
creation of an association link, the condition is that the
cardinality is greater than 4, and the action is to delete the
new association. MaramaCritic generates, from its visual and
form-based specifications, a set of OCL constraints and Java

event handlers that augment the generated Marama DSVL
tool. When the user runs the tool, these event handlers and
constraints are triggered at appropriate times by editing
events. A critique (message to the DSVL tool user) is
displayed if an event occurs and the model state matches
that specified in a critic.

In the arity constraint example, a critique is displayed to
warn the user, followed by execution of the action, as shown
in Fig. 14(5). Three other critics are specified in Fig. 14(2).
The first and second critics at the top specify name
uniqueness constraints. A logical operator, OR, is used to
link the two critics so that both critics share a common
feedback mechanism. The second-to-bottom critic shows a
situation where one critic is dependent on another. The
dependency of critics can be represented visually by using
the CriticDependencyLink connector, which implies a
sequence of critic execution between two critics. A critic
that depends on another critic will only run when the critic it
depends on is not violated. For instance, in Fig. 14(2) it
shows the critic: “EMLService name must have a unique name”
is dependent on a critic: “EMLService name must not equal
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null.” This means the unique name critic is executed only if
the service name is not null.

These critics could all have been implemented using Java
event handlers to implement similar constraint testing and
feedback to the user. However, specifying constraints and
feedback using event handlers is time consuming and
difficult to maintain as the metamodel evolves over time.
Also, as MaramaEML has several integrated modeling
notations and a canonical metamodel, it was a complex task
to implement internotation constraints. Applying our critic
designer to the canonical metamodel is straightforward;
implementations of critics that took several hours to specify,
test, and evolve using event handlers can be done in a
matter of minutes. Understanding the critics is far easier
than browsing and understanding the previous individual
Java event handlers, which were comprised of hundreds of
lines of Java code with Marama API calls. In contrast, the
form-based critic specifications are very clear, concise,
understandable, reusable, and maintainable. The tradeoff,
of course, is that the more accessible notation provides more
restricted expressibility.

6.2 Model Transformation

DSVL models often need to be transformed. Sometimes
transformation is from one model to another, e.g., in
MaramaMTE+ we need to transform a Business Process
Modeling Notation process flow specification into parts of
an architecture specification [25]. We also often need to
import information from another format into a tool, such as
importing a BPEL specification and transforming it into a
BPMN model. To support model-driven development, we
often need to generate code, such as Java and C# in MTE+,
or scripts, such as JMeter or BPEL. Implementing such
transformations using conventional programming lan-
guages, or even with higher level transformation DSLs like
XSLT, QVT, or ATL, means that users need considerable
programming expertise. Originally, Marama tool devel-
opers had to write Java code in event handlers to implement
code generation and model transforms. We then used a
combination of XSLT transforms or ATL transform scripting
languages to implement complex code generation and
model transformation. Marama tool developer evaluations
showed these approaches were very time consuming, error-
prone, complex, and difficult to maintain.

To facilitate much more accessible ways to specify
model transformation, model import, and code and script
generation, we have developed a visual model transforma-
tion approach called MaramaTorua [37], now incorporated
into Marama as the Transformation Designer. Fig. 15(1)
shows an example of MaramaTorua being used to trans-
form a BPMN notation model (left-hand side) into a
BPEL4WS executable representation (right-hand side). In
the middle is a set of transforms that map source BPMN
model elements and relationships into target BPEL4WS
elements and relationships. Transforms can be packaged
and reused (Fig. 15(2)). Detailed formulas, including
element selection, data reformatting, and iteration con-
structs, are specified using forms (Fig. 15(3)). The visual
transform is specified at the type level and is used to
generate a transformer implementation. In this example, we
generate an XSLT script to implement the specified model

transform (Fig. 15(4)). Integrating the generated model
transformation into a Marama DSVL tool is achieved by
adding a view event handler to a view specification in the
relevant View Designer diagram (Fig. 15(5)). The user of the
target DSVL tool then selects the transform in a diagram of
this view type (Fig. 15(6)) to execute it. MaramaTorua also
provides a visual debugger, allowing specified transforms
to be stepped through as they are run.

MaramaTorua supports XSLT and Java code generation
from its visual model transformation specification models.
The visual language and formulas allow quite complex
multi-element and attribute model transformations to be
generated. It does, however, have limitations when complex
transforms need complex algorithmic computation, low-
level data parsing, or complex iterative transformations. In
this case, MaramaTorua allows Java code to be specified for
the transform using an APIL Such code is woven into the
generated XSLT (as Java function call) or Java code, in much
the same way Marama model and view event handler code
is generated and added to Marama-specified tools.

7 HuMAN-CENTRIC TOOL INTERACTION
(REQUIREMENT 4)

So far, we have described a set of abstract, visual specifica-
tion approaches we have developed for Marama metatools to
enable high-level specification of DSVL tools. These specifi-
cations are used to generate an Eclipse-based implementa-
tion of the target tool. However, as identified by Sutcliffe’s
design metadomain approach, the generated DSVL tools
ideally require a range of facilities to support what we term
“human-centric” modeling capabilities. These include sup-
port for collaborative modeling, sketch-based modeling, and
web-based modeling. We have developed a set of plug-in
extensions to Marama to support each of these human-
centric approaches in Marama-generated DSVL tools. We
outline these capabilities in this section to demonstrate the
range of human-centric modeling that can be provided for
generated DSVL tools. However, while we address some of
Suttclife’s design metadomain support characteristics, most
of these should be viewed as preliminary prototypes
requiring further research and experimentation.

To support collaborative use of a Marama DSVL tool, we
have developed a distributed support mechanism. This
provides asynchronous editing support via visual differen-
cing (MaramaDiffer) and synchronous editing support via
event propagation between Marama instances [29], [61].
Fig. 16(1) shows an example of the asynchronous editing
support in use. A MaramaMTE+ form chart diagram has
been edited by user “john,” and user “akhil” is comparing
his version of the diagram to john’s. Visual annotations are
added to the Marama form chart diagram on the right-hand
side, showing differences. A change log is shown in the view
at the bottom of the screen. Akhil can select to accept all,
some, or no changes of john’s, and have these applied to his
version of the diagram. As some edits are interdependent
and some are mutually exclusive, MaramaDiffer provides
the user support to merge changes that are consistent.
Semantic errors are highlighted in the Eclipse Problems view
by appropriate design critics specified for the DSVL tool.
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Fig. 15. Model transformation specification.

Sketch-based interaction with design tools is an inter-
esting alternative approach to conventional drag-and-drop
diagramming tool interfaces [16], [68]. We wanted to
support this approach for Marama design tools as early-
phase design has been shown to benefit from this less rigid
interaction approach. We developed a new plug-in,
MaramaSketch [24], that provides an overlay for Marama
diagrams, allowing sketching-based input and manipula-
tion of diagram content along with associated shape and
text recognition support. Fig. 16(2) shows an example of a
user drawing content (in this example with a Tablet PC
stylus) onto a MaramaMTE ArchitectureView diagram.
The user simply selects the sketching tool (highlighted in
the left-hand side editing palette) and draws with the
mouse/stylus on the diagram canvas. In this example, the
user has drawn a ClientShape (rectangle, “Web Ul”), an
ApplicationServerShape (oval, “Server”), a DatabaseShape
(cylinder, “DB”), and two connections between shapes.
As each set of strokes is completed, MaramaSketch
recognizes the shape type and remembers this.

The Marama DSVL tool diagrams shown so far require
use of a desktop Eclipse IDE. Rich internet applications do

not require desktop application installation but instead
provide web browser-based access to information. To make
Marama DSVL tools more widely accessible, we have
developed a RIA diagramming component, MaramaThin.
This is implemented by provision of a set of services within
Marama that allow a remote client to query diagram
specifications (diagram metadescriptions) and state (dia-
gram model data) via XML messages. The remote clients can
also update the state of these diagram models, i.e., modify
the diagrams. Fig. 16(3) shows an example of our browser-
based diagramming tool MaramaThin in use. User “john”
wants to do some ER diagramming for a MaramaMTE+
database. John opens an existing MaramaMTE+ database
model diagram. John then begins to edit the diagram. The
MaramaThin user interface provides a tool palette, basic
editing command toolbar, an ER diagram made up of shapes
and connectors that can be manipulated via drag and drop in
browser, and pop-up property windows. In this example,
John is editing the properties of an Entity “UniName.”
MaramaThin also provides web-based access to most
Marama metatools, including the metamodel editor, shape
designer, view type designer, and constraint and event
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Fig. 16. (1) Collaborative editing, (2) sketch-based input, (3), (4) web-based editing and tool specification.

handler designers. This allows Marama/Thin users to
modify their diagram specifications, or even create whole
new diagramming tools, using their web browser instead of
the Marama Eclipse desktop client. In Fig. 16(4), John is
viewing the metamodel for the MaramaMTE+ ER diagrams.
He may add new constraints to the tool using the Formula
metamodel shape, modify existing constraints, or add a new
property, element, or association.

8 ARCHITECTURE AND IMPLEMENTATION
(REQUIREMENT 5)

We have realized Marama as a set of Eclipse IDE-based plug-
ins using a range of third-party Eclipse projects and plug-ins.
This was a major departure from our earlier Pounamu
metatool [79], where we built the whole tool infrastructure.
Leveraging the range of Eclipse tool-building projects makes
it easier to integrate Marama-generated DSVL tools with
other tools, and allows other Eclipse community members to
use Marama in their own Eclipse-based tool research.

Fig. 17 shows the architecture of the Marama metatools
and Marama-generated DSVL tools. Marama provides a
range of visual specification metatools. Each Marama
metatool itself provides an editable domain-specific visual
language used to specify aspects of a target DSVL tool.
Tool developers initially specify a description, comprising
evolvable instances of the meta-DSVL models, of their
desired DSVL tool using the various visual specification
tools in Marama. This DSVL tool specification is opened
by a tool user and used to construct an instance of the

specified tool. The tool user can then create multiple DSVL
models based on this metadescription. Tool developers,
and even tool users, can use the Marama metatools to
modify a tool specification, often when the tool is “live”
(i.e., in use). There are limits to this, e.g., if metamodel
descriptions are significantly modified, then an old tool
model instance may need to be transformed to the new
format before being edited.

Tool specifications are stored as XML documents in a tool
specification repository as shown in Fig. 17(1). DSVL tool
users locate a desired existing DSVL tool specification to
open or request one to be created via the standard Eclipse
resource browser (2). When a tool is opened or created in
Marama, the corresponding XML tool specifications are read
and loaded into XML DOM objects (3). These are parsed and
provide an in-memory representation of the Marama tool
configuration, which is used to configure an Eclipse
Modeling Framework-based in-memory model of both the
DSVL tool model and view data, i.e., the properties of all
entities, associations, shapes, and connectors. It is also used
to produce the editing controls of Eclipse Graphical Editing
Framework-based diagram editors, i.e., the allowable shapes
and connectors, their rendering, and properties editing (4).
When a diagram is opened, Marama configures a GEF editor
and renders the diagram (5).

An OCL interpreter is used to implement the MaramaTa-
tau modeled constraints on tool model and view elements (6).
The MaramaTatau metatool designer compiles the user-
specified constraint formulas into OCL definitions that are
stored with the tool specification XML. When a toolis opened,
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Fig. 17. The basic architecture of Marama.

these OCL definitions are loaded, compiled into the Eclipse
OCL APIrepresentation used by the Eclipse OCL plug-in and
a set of event handlers used to detect changes to model data
structures (add/update/delete element or association).
These changes are used to trigger recomputation of OCL
expressions in much the same way that spreadsheet
recomputation occurs. Constraints and user feedback are
implemented by Marama API calls triggered by MaramaTa-
tu-inserted OCL expression function calls.

Marama provides a comprehensive API that allows access
to all of the Marama data structures and modification of
these data structures via Java “event handler” code calls.
This Marama API also allows controlled access to the Eclipse
GEF drawing APIs and Eclipse plug-in extension mechan-
ism. This allows expert tool developers to extend and
augment Marama’s core capabilities and support very
complex tool integration. Generated event handler and other
behavioral and transformational objects are loaded by
Marama adapter and Eclipse plug-in APIs when a tool is
opened or when the event hander definitions and code are
updated in one of the Marama metatools (7). These Java
coded event handlers are triggered when Marama model or
view data structures are modified or when certain events
occur, e.g., button or menu selections or extension point-
trigger tool events. Marama uses EMF’s XMI save and load
support to store and load modeling project data (8), all
managed within the Eclipse resource workspace. We have
developed a set of extension points for Marama, allowing
new metatools to be created and integrated into the Marama
metatools suite. We have also created a set of extension
points allowing multiple Marama and third-party tools to be
integrated within a target Marama DSVL tool framework.
Our event-based architectural modeling and integration
visual language uses the event handler API and Marama
extension points to achieve this tool integration.

Generated models (XML),

code (java, C#, ..), scripts
(BPEL, Ant, Jmeter, ...)

Expert tool users can code complex Java event handlers
to achieve sophisticated tool behaviors. We also use Java
code to implement event handlers that are generated from
the imperative event handler specifications from Kaitiaki
and MaramaCritic specifications and the declarative
MaramaALM specifications. Kaitiaki and our architectur-
al-level event handler specifications generate event hand-
lers to encode their event-condition-query-action models.
Typically, tool developers use them to achieve imperative
event-based behaviors difficult or OCL-based constraints
impossible to code using MaramaTatau. MaramaALM
augments the shape and view type definitions and also
adds generated event handlers to achieve tree and force-
directed layouts for specified view types.

MaramaCritic generates a combination of OCL and Java
event handler implementations, augmenting the tool speci-
fications generated by the metamodel and view designer
metatools. It also has a set of event handlers (9) used to
coordinate processing of events, provide various critiques to
tool users (via dialogue boxes and Eclipse problem markers),
and carry out semi-automated “fix ups” of problematic
model constructs.

The MaramaTorua model transformation metatool gen-
erates XSLT transformation scripts, saved with Marama tool
specifications, along with Java code event handlers used to
invoke these transformations in target DSVL tools (10).
These event handlers convert a Marama DSVL tool model
to an XML representation via EMF, then use an XSLT
engine to transform the EMF structure to the target model
(into XML), code (e.g., Java or C#), or script (e.g., Ant,
JMeter, BPEL, etc.). An extension mechanism similar to
Marama event handlers allows model transformation
specifications to include Java code, called from the XSLT
scripts, to implement, e.g., low-level data format parsing
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and very complex transformations difficult or impossible to
specify in MaramaTorua’s visual language.

MaramaSketch is a plug-in providing a “sketching
overlay” which can be used with any Marama-generated
DSVL tool (11). Sketching operations on the overlay are
recognized using the HHReco sketch recognition engine
[33], which in turn uses a training set of example sketch
elements. Sketched items or groups of sketched items are
turned into Marama diagram shapes, lines, or text, or
groups of these. MaramaDiffer is a plug-in that allows
comparing and visual differencing of any Marama DSVL
tool diagrams (12). MaramaThin extracts a Marama dia-
gram data structure into XML format using EMF object
serialization. It then transforms this into an OpenLazslo-
based [7] web-diagramming component, realized using
Flash in a web browser to provide a rich Internet client
interface (13). MaramaThin uses a set of Java-implemented
web services hosted in a webserver (Tomcat) to commu-
nicate between the OpenLazslo-implemented diagramming
client and the Eclipse-hosted Marama tool instance. Mar-
amaThin uses MaramaDiffer to update the Marama tool
diagrams, allowing multiple users to collaborate on dia-
gram editing via a web infrastructure.

MaramaDiffer takes two diagram versions and applies a
differencing algorithm to their EMF-based data structures.
It determines a set of changes that would transform one
diagram into the other and visually presents these as
diagram annotations and a list of differences [61]. It
provides support for multiple diagram version manage-
ment, including branching and merging. While this sup-
ports diagram merging, it does not fully support model
version management, which has limited current support in
Marama tools. As tools evolve, their models need to be
updated, along with their event handlers. Currently, our
Marama prototype provides limited, though not complete,
support for this. Basic model version updates can be
incorporated, including new entities, relationships, and
limited change (renaming) of existing entities and attri-
butes. However, transformation scripts need to be written
to transform an old model to a new one for more complex
changes, e.g., split/merge entity, move attributes between
entities, etc. The MaramaTorua metatool can be used to aid
this. Marama event handlers are saved as Java classes and
can be versioned using conventional repository check-in/
check-out/revision processes. Marama supports simple
management of metamodel version and event handler code
version. Each Marama metatool model can also be ver-
sioned, though limited support for configuration manage-
ment is currently provided.

9 EVALUATION

It is not a straightforward task to evaluate a substantial
environment/toolset such as Marama as it involves multi-
ple points of views, including those of metatool developer,
tool developers of developed tools, usability, and utility,
and an enormous number of variables [79]. Most formal
usability evaluation approaches are limited to understand-
ing the effect of one or two variables [18], [32]. Controlling
for variability is thus an impossible undertaking when
assessing the usability of a large environment. We have

therefore adopted a variety of less formal, but overlapping
approaches to obtain a range of evidence for usability and
efficacy. First, we, and our industrial collaborators, have
used Marama to construct a range of different modeling
tools, some very sophisticated. These provide a proof of
concept demonstration that Marama is fit for purpose: It can
be used to specify and realize a wide variety of DSVL
environments. Second, we have undertaken a variety of
formal and informal tool developer evaluations of both the
core aspects of the Marama environment and individual
component extensions to it. Combined, these evaluations
demonstrate both efficacy and tool developer acceptability
of our Marama approach.

9.1 Experience

We have used Marama to construct a variety of modeling
tools in addition to MaramaMTE+, the exemplar used
throughout this paper. The Marama metatools themselves
(Metamodel Designer, Shape Designer, View Designer,
Event Handler Designer, Critic Designer, and Transforma-
tion Designer) are all implemented using Marama in a
bootstrapped manner and were the first substantial ex-
emplars developed. Four other major model-driven DSVL-
based development tools are illustrated in Fig. 18.

MaramaMTE+ [15] is a performance-engineering tool
providing two key domain-specific visual languages and a
code and deployment script generator. An architectural
DSVL is used to model multitier architectures for systems,
as illustrated on a simple example in Fig. 18(1). A stochastic
form chart DSVL is used to model probabilistic loadings on
the defined application. From these models, MaramaMTE+
generates Java or C# code, JMeter or Microsoft ATC load
testing scripts, Ant compilation and deployment scripts,
database schema and definitions, and various other deploy-
ment descriptors for J2EE and .NET applications. It then
uses remote agents to run the generated load tests on this
model-generated software system, captures the perfor-
mance results, and visualizes the results in the architecture
DSVL diagrams. MaramaMTE+ was part of a PhD project
and took two-three weeks to specify and generate the core
modeling capabilities using an early version of Marama.
The code generators and visualization support took the
bulk of the remaining several months work, including
experimentation on numerous architectures, target plat-
forms, and load models.

MaramaSUDDEN, Fig. 18(2), provides an environment
for integrated supply chain modeling [35]. This allows tool
developers, supply chain managers, and SME owners to
model and configure supply chains. It includes support for
reuse of supply chain models, complex diagram layout
control, and integration with external tools to store,
validate, and enact supply chain models. MaramaSUDDEN
was developed iteratively over a few weeks elapsed as part
of a collaborative project. Much of this elapsed time was
spent waiting on globally distributed partners to provide
feedback on each iteration.

MaramaDPML (Design Pattern Modeling Language)
provides a tool to model and instantiate Design Patterns
in a UML-based design tool [58]. An example design
pattern instantiation diagram is shown in Fig. 18(3),
showing the Abstract Factory pattern being instantiated in
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Fig. 18. Examples of Marama generated tools: (1) MaramaMTE+, (2) MaramaSUDDEN, (3) MaramaDPML, and (4) MaramaVCPML.

a UML design for a GUI library project. MaramaDPML
provides code generation from the UML models to Java
code, multiple, integrated design diagrams with interdia-
gram consistency management, and validation of design
pattern usage in UML designs. Tool developers are soft-
ware designers. MaramaDPML was developed over a four-
five week period based on an earlier prototype using the
JViews DSVL tool framework. The main modeling frame-
work took only a few days to specify; the bulk of the
implementation time was for back-end code generation, etc.
The final example, Fig. 18(4), is MaramaVCPML (Visual
Care Plan Modeling Language) [43]. MaramaVCPML is
used to model generic care plans for chronic disease
management, which are then instantiated for individual
patients. Care plans include modeling of treatments,
physical exercise programs, food, and review of key health
indicators. Template generic care plan models are reused
for multiple patients. MaramaVCPML generates a full
mobile device application implementation, allowing pa-
tients and their physician to monitor patient progress
against their individual care plan. MaramaVCPML sup-
ports multiple model integration, code generation, and
model template reuse. MaramaVCPML was developed as
part of a master’s project over a three-four month period.

9.2 Formal Evaluations

We have undertaken a significant number of qualitative and
quantitative evaluations of DSVL tools developed using
Marama [35], [51], [58]. These have been uniformly positive
in their overall appraisals of the developed tools. Feedback
from tool developers using Marama to produce these tools
has also been very positive. We have used Marama over
several years in advanced visual language courses, includ-
ing setting tool development tasks using Marama and
surveying the postgraduate students for feedback on core
Marama functionality. We have carried out focused

qualitative and quantitative studies of individual Marama
components to test their usability and effectiveness for
specifying DSVL tools and to identify potential problems.
We, and a small number of others, have used Marama on
several industrial DSVL tool development problems. These
evaluation results have been sufficiently positive for us to
release Marama as a publicly accessible toolset. We
summarize this range of evaluations in the sections below.

9.2.1 Cognitive Dimensions Evaluations of Individual
Marama Components

We have conducted several Cognitive Dimensions [23]
evaluations as we developed Marama capabilities to inform
the design of the visual meta-DSVL specifications. A CD
evaluation provides an understanding of usability tradeoffs
and hence where mitigations need to be placed without a
need for heavyweight conventional usability evaluations.
Typically, as we have developed modeling extensions such
as Kaitiaki and MaramaCritic, we have undertaken an
individual CD assessment of that extension. These have
taken two forms: 1) applying CDs ourselves directly in a
similar manner to that proposed by Green and Petre [23] to
explore design tradeoffs and 2) using Tool Developer
evaluations coupled with a CD-based survey instrument
adapted from [10], which reframes CDs into questions
understandable by tool developers but which allow a CD
analysis of their perceptions to be undertaken.

Direct CD evaluations. To illustrate the former ap-
proach, consider the Kaitiaki visual handler specification
component. In CD terms, we can describe the tradeoffs
made as follows (where CD dimension names are in italics):
As our target users are inexperienced programmers, we
have chosen a low-to-medium abstraction gradient based on
iconic constructs and data flow between them. The
abstractions support query/action composition allowing
users to specify Marama data and state changing actions as
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discrete, linked building blocks. The abstractions require
hard mental operations but are mitigated by concrete Tool
Developer domain objects. We have experimented with
elision techniques to allow concrete icons and abstract event
handler elements to be collapsed into a single meaningful
icon. The dataflow metaphor used to compose event
specification building blocks seems to map well onto users’
cognitive perception of the metaphor, providing good
closeness of mapping. The current approach has reasonable
visibility and juxtaposability. Information for each element of
an event handler is readily accessible. The event handler
specification can be juxtaposed with the modeling view that
triggers its execution. However, it still has the usual “box
and connector” diagram wviscosity problems; the user
typically has to rearrange the diagram to insert elements.

As another example of this approach, we undertook a
similar evaluation for MaramaTatau, the OCL constraint
specification designer. In developing MaramaTatau, our
focus was on providing a compact and accessible constraint
representation for Marama while minimizing hidden depen-
dency, juxtaposability, and wvisibility issues. The visual
abstractions introduced are visual iconic constructs and
data dependency links between them. This is quite a terse
(low diffuseness) extension to the existing metamodel
notation and the abstractions are quite low level, providing
a simple overview of constraints and dependencies, and
hence have a low abstraction gradient. Error proneness has
been reduced significantly. The preexisting Marama Java-
based Marama event handler designer is very error-prone
for both novice and experienced users due to its reliance on
API knowledge and Java coding, together with the
numerous hidden dependencies with the visual metamodel.
MaramaTatau reduces error proneness by avoiding API
details and directly using concepts visible in the metamo-
del. The verbosity (high diffuseness) of the textual OCL, due
to its many built-in functions, does, however, present
similar opportunities for error as does API mastery. The
verbosity also introduces some degree of hard mental
operations as users must remember what function is
appropriate for a given purpose. However, the relative
familiarity of OCL with the target tool developer group
mitigates this and also means good closeness of mapping for
them. The compact nature of the representation, point and
click construction, and automatic construction of the visual
model annotations means viscosity is low. MaramaTatau
allows progressive evaluation of a constraint specification via
Marama’s live update mechanism. Modifications to for-
mulas take effect immediately after reregistration in a tool
seveloper tool. A visual debugger allows users to step
through a formula’s interpretation using the same abstrac-
tion level as they were developed in. By contrast, java event
handlers require conventional java debuggers and a good
knowledge of Marama’s internal structure.

Similar evaluations were undertaken for MaramaSketch
and MaramaALM [27], [66], where the emphasis is more on
environmental factors than just on the notation. For
MaramaSketch, much emphasis was placed on minimizing
premature commitment, through deferment of recognition of
sketch elements, and support of progressive evaluation via the
ability to recognize on demand. Viscosity is much lower

than pen and paper sketching equivalents and closeness of
mapping was central to our motivation, i.e., that sketching is
a more natural mechanism for expressing initial designs
than standard computer diagramming approaches.

MaramaALM offers a terse notation with simple abstrac-
tions (low abstraction gradient) and low viscosity by encapsu-
lating the low-level implementations into a generalized
component that can be easily applied to any Marama-
generated tools. It also assists in reducing viscosity problems
in the generated modeling tools by providing automatic
layout in those tools. The tool designers can change the
involved shapes and connector in one place and this
modification will be reflected throughout the whole me-
chanism (relatively low hidden dependencies). However, the
approach comes with the cognitive dimensions tradeoffs of
some hidden dependency issues and premature commitment
problems. During the specification process, the use of Shape
Designer and View Designer is inseparable due to the
structural dependency between both of them. Each depends
on the other to generate necessary properties and manage
shape-entity mappings in order for MaramaALM to func-
tion properly; hence, from one view there is a hidden
dependency to the other. Premature commitment is required
as metamodelers need to decide which shapes and con-
nectors are to be included in the layout support during the
specification process.

Cognitive dimensions-based survey-based evaluations.
As an illustration of the second CD evaluation approach, we
conducted a user evaluation for our MaramaCritic tool with
12 volunteer researchers and students who had basic
background knowledge of the Marama metatools and
who were interested in modeling and the development of
modeling tools to support their work. The CD-based survey
tool provided questions targeted at each of the cognitive
dimensions as we were interested in the tradeoffs among
those dimensions that respondents observed.

MaramaCritic offers good wvisibility and viscosity for the
target tool developers. Eleven out of the 12 respondents
answered that it is easy to see various parts of the tool and
make changes. The only respondent who reported other-
wise commented that, due to a lack understanding of
metatool concept and as a novice user, it was hard to
understand the functionality of various parts of the tool.
Diffuseness refers to the verbosity of language, ie., the
number of symbols required to express the meaning. Ten
respondents reported the notation to be succinct and not
long winded. Participants noted that the notation is a
straightforward representation of a critic and its feedback,
as well as the connectors that link them. MaramaCritic
suffers from some hard mental operations (degree of demand
on cognitive resources): Four respondents claimed that they
needed to think carefully about the use of critic templates
for specifying a critic. Four respondents disagreed and four
were undecided. MaramaCritic is not regarded as being
error prone, as five respondents claimed that the notation is
very straightforward and supported by form-based inter-
faces that are familiar to most users. The respondents that
answered otherwise raised the issue that unfamiliarity with
the templates can cause users to make mistakes in
specifying critics. MaramaCritic provides good closeness of
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mapping. All respondents noted that the MaramaCritic
editor provides a notation closely related to the domain.
Role Expressiveness for MaramaCritic is obvious as nine
respondents answered it is easy to tell what each part is for
when reading the notation. Ten respondents said that the
dependencies are visible and two respondents are unde-
cided. Hidden dependencies are primarily between the visual
critic definer view and the form-based template views.
Moody argues that this type of hierarchical dependency is
of positive benefit in his Principal of Complexity Manage-
ment [65]. MaramaCritic supports progressive evaluation
well. Eleven respondents stated it is easy to stop and check
work progress. Critics and feedbacks properties can easily
be edited and any new changes will take effect during the
model execution of the tool. All respondents agreed that
there are no premature commitments in the Marama Critic
Definer view. The user can freely specify a critic using any
critic template. However, the user needs to define a critic
first before a critic feedback can be specified and linked
with the defined critic. The user can add a critic as well as
the critic feedback for the Marama tool incrementally as he/
she encounters new critics.

The survey results show our respondents have a good
degree of satisfaction with our critic design tool integrated
with the Marama metatools. The survey results demon-
strated that for most respondents our approach appears to
be useful in assisting these respondents in the critic
specification task. Our approach also appears to nicely
complement the other components of the Marama meta-
tools and is integrated with these. However, limitations of
the tool are also revealed through the survey results. Thus,
some minor improvements are needed to improve the
usability of the critic specification editor integrated with
Marama metatools. The feedback and limitations that were
identified from the survey have led us to refine the current
critic specification editor and develop an improved critic
specification editor.

9.2.2 Large-Scale Tool Developer Usage of Core
Marama Functionality

We used Marama over four years in two final year
undergraduate and postgraduate courses. Student tool
developers were set a project to build a DSVL tool of their
choice and use a range of “core” Marama functionality. We
define the “core” Marama functionality as the metamodel
designer (excluding constraints), shape designer, view
designer, visual OCL editor, and basic event handler
specification (nonvisual). These student tool developers
documented their work in a short report which included
tool description, tool usage example, and reflection on using
Marama to develop their DSVL tool. We collated these
reports to analyze the range of DSVL tool domains and
complexity, usage of Marama features, and feedback on the
Marama prototype used. These experiences help us to
understand whether student tool developers found the
Marama approach and these key Marama metatool features
easy and effective for realizing their chosen DSVL tools. We
used the tool developers’ feedback to improve Marama, and
Marama metatool enhancement was undertaken after every
iteration.

Participants were 277 graduate-level student tool devel-
opers. These were fourth year computer science or software
engineering students, i.e., novice short-term research task-
oriented users: in 2007—121, 2008—59, 2009—77, and
2010—20. They had used many software tools, though few
had used tools for metamodeling similar to Marama.
Nothing should be read into the variation in numbers of
participants between years: This just reflects cohort avail-
ability and time available by the researchers to undertake
the DSVL tool development tasks.

These student tool developers were asked to construct a
DSVL tool of their choice, but with at least a minimal set of
required components so that tools with a realistic level of
complexity were developed and participants were required
to exploit a core set of the Marama functionality. The
required component set included: appropriate numbers of
metamodel entity types and associations; appropriate
shapes, possibly of differing complexity (of the icon) and
connectors; at least two different view types, i.e., showing
different types of information within each view type; a few
simple event handlers managing things such as diagram
layout, editing constraints, model (entity) constraints, mock
code generation, data import, etc. Preparatory training
sessions were provided on: 1) general DSVL design
concepts and principles, 2) a general introduction to
metatools and metamodeling concepts, and 3) a specific
introduction to Marama architecture and implementation.
Student tool developers were also provided with exemplar
tools, demonstrations, and tutorials. The tool developers
worked individually, in pairs, or in teams of three. The
larger the team, the more complex the tool required.

Tool developers were then given three weeks elapsed
time (working alongside other commitments) to complete
the prototype development, together with an individual
survey report answering a set of open-ended questions to
qualitatively express both strengths and weaknesses of
Marama in constructing their desired DSVL tool. We
analyzed the open-ended surveys and categorized the
responses into nominal qualitative attributes representing
the strengths and weaknesses of Marama from the tool
developer’s point of view.

A total of 184 DSVL tool instances were developed using
Marama in the projects (in 2007—93, 2008—43, 2009—43,
and 2010—5). These included, in order of popularity, data
modeling (69), component and architecture design (58),
process modeling or planning (23), management (22),
interface design (7), and requirements modeling (5) tools,
summarized in Fig. 19. This indicates that Marama can be
effective in application across a large breadth of DSVL
application domains. Our set of basic requirements,
described above, was met in 69 percent (127 out of 184) of
the tools developed. Among those 57 tools that failed to
meet all basic requirements, one failed the shape definitions
(due to an invalid shape design not reflected in the shape
viewers), 33 failed the view type specifications (either
omitting a view type or containing unloadable information
in the views), and 36 failed the event handler implementa-
tion requirements (either not functioning with runtime
errors or not implemented at all, with reported reasons
including the steep learning curve, difficulty of debugging,
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Fig. 19. Broad domains of DSVL tools developed with Marama (left) and tools developed per year (right).

and time constraints). Many struggled with the Marama-
Tatau visual OCL constraints in earlier years due to
problems with its implementation.

Most tool developers responded in the surveys that
Marama was suited to develop their tools effectively (i.e.,
they were able to achieve the requirements of the assign-
ment) and efficiently (i.e., they were able to achieve their
desired DSVL tool results in a “reasonable” time frame) in
general. However, there was still room for improvement.
We specifically asked students for lists of both strengths
and weaknesses, so a comparison of the absolute numbers
of strength and weakness responses is not appropriate;
however, a categorization of each is instructive.

Fig. 20a shows a broad categorization of strengths
identified by tool developers in their reports. Strengths
highlighted include: the rapidity of constructing DSVL
tools; the simple approach for defining tool data structures
with separation of concerns and a seamless integration
process; and the consistent, easy to understand metamodel,
visual notation and multiple view type abstractions. These
reflect the core aims of Marama: the ability to efficiently
construct new DSVL-based modeling environments. Lesser
numbers of comments related to extensibility and custo-
mizability. Comments in reports from tool developers here
include ones relating to the powerful event handling
mechanism for extending tool behaviors, and the low effort
needed and minimum hidden dependency issues arising
when customizing and constraining tool developer models
and views effectively in the generated tools. The lower
numbers here probably reflect that these features are

secondary in novice tool developers’ minds to those of core
metamodel and view definition.

Fig. 20b categorizes the weakness responses. The largest
categories concerned the general Marama development
environment, and its stability and performance. Participants
compared Marama to typical robust open source software
and thus expected it to have sound API documentation
(access to API documentation is needed for complex event
processing) and comprehensive user manuals to help
smooth the initial steep learning curve. Neither of these is
available to the level of quality desired due to the research
prototype nature of the system. Similarly, various modern
IDE capabilities were noted to be lacking by different
participants. These included automated searching and
registration, automatic layout, model validation and refac-
toring, progress tracking, dynamic debugging, copy/paste,
undo/redo, automatic backup and version control, multiple
platform portability, and collaboration support. Many of
these had been addressed in the research branches of the
toolset, but had not found their way into the core branch
released to the tool developer participants. Stability and
performance issues also irritated tool developers, including
the need to: fix a variety of annoying bugs, provide more
user-friendly error messages and handle errors more grace-
fully, rollback unsuccessful operations, reduce memory and
resource consumption, and optimize the edit-compile-run
and dynamic loading processes. These weaknesses are all
typical of the leading edge development of complex software
environments and, hence, while irritating, did not give us
cause for concern over the viability of our approaches.
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Fig. 20. Strengths of Marama reported from student tool developer reports (left) and weaknesses reported (right).
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The most significant “nontrivial” shortcoming of Mar-
ama was its limitation for visual notation design. Tool
developers found the range of shape/connector types, the
flexibility of drawing mechanisms, and the configuration
of visual variables (e.g., layout, texture) to be lacking. This
category accounted for over half of the remaining
identified weaknesses. Respondents also, but to a lesser
extent, noted a variety of limitations of Marama-generated
tools and suggested including better modeling element
identification management; allowing a “smart” connection
type that dynamically infers actual types; allowing
customizable toolbox items, icons, and tooltips; and
allowing deployment of generated tools as standalone
applications. Far smaller numbers of comments were made
regarding the metamodel, view type, and event handler
specification elements. Typical suggestions included pro-
viding an n-nary association type, allowing multiple
associations between two entities, allowing association
subtyping, adding more wizard/dialog or automation
support for view mapping; allowing linking of multiple
view types passing common values in between (ie.,
automapping between metamodel elements), and provid-
ing more comprehensive event handler building blocks for
composition and reuse. Of note is that most of the
nontrivial shortcoming comments were in fact in the form
of suggestions for fairly straightforward enhancements,
many of which we incorporated into subsequent iterations,
rather than fundamental issues with our approach.

We conclude from these experience reports that the
Marama approach and core functionality of Marama has
demonstrated itself to be a suitable platform for designing
baseline DSVL notations, with excellent extension points for
behaviors implemented as model/user event handlers. A
key aim was to avoid having Marama users need to write
complex code and use complex API calls as needed for
advanced features in many DSVL toolkits and IDEs. Thus,
much of our research focus has been placed on using visual
languages and metaphors, such as Kaitiaki, MaramaTatau,
MaramacCritic, and MaramaTorua, for event handling,
constraint/critique authoring, and model transformation
specification. These research features we have evaluated for
the most part individually to date.

A few participants each year used an alternative metatool
platform to Marama. These included MS DSL Tools (a Visual
Studio SDK extension), Eclipse GMF, and MetaEdit+. This
was usually because they had previously used Marama on
an Honors or Summer Research project. We asked them to
report anecdotal evidence of their experiences using these
tools compared to Marama. In general, feedback on
Marama’s core capabilities was positive, with students
reporting GMF and DSL tools generally required them to
write much more Java or C# code, respectively. They also
were required to know many more details of the tool
frameworks compared to Marama metatools in order to
achieve similar DSVL tool capabilities. MetaEdit+ provided
good high-level abstractions, though several of these were
form-based or script-based versus visual specifications as in
Marama. We plan to have students use and compare other
metatool platforms to Marama, such as VisualDiaGen and
Tiger, in the future and to more systematically compare and
contrast these tools to Marama.

9.2.3 Other Small Scale Evaluations of Individual
Marama Components

A further technique we used regularly was to use small
groups of users to conduct informal, but usually insightful,
evaluations. Participant numbers were typically too small
for statistically significant quantitative results but sufficient
for qualitative feedback. For example, with the Marama-
Torua mapping tool, our Tool Developer evaluation had
four experienced data translator implementers carry out a
set of mapping tasks (parts of the BPMN->BPEL4AWS
problem described earlier) [37]. They used MaramaTorua
to model the schema, specify a range of mappings,
generate an XSLT-based translator, and test it. Overall
results were very favorable, with all users able to carry out
the task in orders less time than directly implementing
Java or XSLT translators. Users expressed overall satisfac-
tion with MaramaTorua’s capabilities. Some difficulties
found were modeling conditional mappings and string
parsing operations and the specification of complex
expressions using the MaramaTorua formula editor. Users
desired a “design by example” approach for the latter
using actual source and target values with the tool
inferring conversions. Conducting such simple, fast eva-
luations regularly informed our development approach.

9.2.4 Industrial Users and Applications

During the development of Marama, we were fortunate to
develop a strong relationship with a Model Driven Engi-
neering consultancy company who regularly, over the
period of nearly two years, applied Marama to develop
industrial strength visual editors that were deployed into
large corporate organizations. To support this company, we
developed issue reporting and feedback mechanisms, and
obtained regular qualitative feedback from the company
personnel. While informal in comparison to typical “aca-
demic” evaluations, these feedback mechanisms were
incredibly useful to us. Tool developers, in this case, were
professional programmers and hence differed somewhat
from our originally intended target of less technically-able
tool developers. As a result, they preferred using the core
Marama metatool features of metamodel, shape, view
definition, and visual OCL, coupled with handcrafted Java
event handlers (i.e., similar to those features predominantly
used in our large-scale experience report above) over
features more specifically targeted at less technical tool
developers, such as Kaitiaki, MaramaCritic, and Marama-
Torua. We asked them for feedback on their motivation for
choosing to use Marama on industrial projects, their
experiences with Marama on these projects, their assessment
of the Marama approach and prototype tool platform, and
issues that they felt needed to be addressed in future research
to improve the Marama approach for industrial adoption.
Motivation for choosing Marama was threefold: its
approach to designing DSVLs, its support for modeling
with a wide range of generated visual language tools, and
its open-source license. Additionally, its use of Eclipse
projects and close integration with Eclipse toolsets made it
attractive to them. When the company explored options for
a next-generation tool for knowledge engineering, they felt
very few available tools had these characteristics. Marama
was used by the company on two significant projects, each
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involving development of a set of visual languages/editors
and was used in demonstrators along with generated DSVL
tools on a wide variety of occasions. Significant develop-
ment of Marama was undertaken by the company, in
collaboration with our research group, to “industrially
harden” the Marama prototype implementation. This
allowed for more scalable and robust Marama tools to be
developed and deployed, as well as making the Marama
metatools implementations themselves more robust.

Overall, the feedback provided on the core Marama
features, while anecdotal, was extremely positive, with high
satisfaction reported by the tool developers on the
productivity afforded using Marama. Also reported was
strong satisfaction by tool end-users when Marama gener-
ated tools were deployed into their client organizations.
Some of the key “shining aspects” of Marama reported by
the company included its approach to supporting genera-
tion of DSVL editors using predominantly visual specifica-
tion techniques “without confusing technical overheads”
and with good separation of concerns. The ease of turning
conceptual models into visual diagramming tools often
“wowed” industrial partners of the company and the end
users of the tools. The company judged the Marama
approach was significantly ahead of other platforms such
as MetaEdit+, DS Tools, and GMF.

Some limitations of Marama related to its research
prototype nature, the immaturity of its implementation
and a range of usability limitations, some due to its reliance
on Eclipse projects, and some, as also reported by our
student tool developers above, due to its prototypical
nature. Many potential users lacked confidence to develop
Marama-based tools either on their own or exclusively
relying on external parties to assist in these efforts. Much of
this lack of confidence related to a lack of reusable patterns/
diagrams/parts, something we have been addressing in
recent work [49]. Some lack of custom graphic symbols, out-
of-the-box layout managers, and reliance on Eclipse
deployment approaches also drew negative comment from
potential users. The greater platform and usability maturity
of other DSVL tools, such as MetaEdit+, was significantly
attractive to some tool developers.

However, for this high-end tool developer, more funda-
mental limitations with the Marama approach, and realiza-
tion of the approach in our current prototype, were also
identified. These included the lack of a shared, robust, and
highly scalable repository for digital artifacts. This was a
major requirement for many model-centric organizations.
The desire for an entirely web-based user interface for both
specification and generated modeling tools was also
important. Additionally, a clean implementation of a
denotational semantics that completely decouples modeling
from naming, and a desire for a more mathematically based
metamodel including model and category theory under-
pinning the modeling framework was desired by our
partner, rather than using less formal EER metamodels as
currently used by Marama. These requirements are well
beyond those of our target tool developer community for
which a simple, readily understandable metamodel ap-
proach is preferable. Marama currently also lacks textual
DSL tool integration and has no direct support for textual
DSL design and generation. Many organizations adopting
model-driven engineering use textual DSLs and wanted this

support to be as accessible and integrated in Marama as its
current support for DSVLs.

We have also used Marama ourselves on several
industrial projects, predominantly developing proof of
concept tools to assist in our own consulting work or to
assist our industry partners in their R&D projects. Significant
Marama tool projects whose results fed into industrial R&D
efforts included developing an XForms designer, two
business process modeling tools, a supply chain modeler, a
health care plan modeler, and a requirements engineering
support tool. All of these tools, developed with Marama,
were used experimentally by industrial partners and their
target end users. As with our partner experiences above, we
found Marama to be very effective for designing new
domain-specific visual languages and exploratory authoring
of these by end users. The generated DSVL tools could be
rapidly developed and experimented with. However,
limitations with its model repository, limited support for
large model visualization, minor but annoying usability
issues, and lack of textual DSL integration all contributed to
these tools not being widely deployed.

10 DiscussioN

Combined together, our experiences gained from complex
DSVL application development, the core environment
evaluations, the individual component evaluations, and
our industrial users indicate our Marama approach to DSVL
tool engineering is effective. Our small-scale evaluations
separate concerns, allowing focus on individual compo-
nents, and have provided evidence for their efficacy and
usability. Our more substantial whole of environment
evaluation provides evidence that the components work
effectively when combined together. In both cases, good
evidence for the efficacy and usability of Marama has been
provided. Deficiencies noted, particularly from the large-
scale evaluation, are predominantly related to expected
software maturity issues, such as a lack of API documenta-
tion and software stability, and issues specific to nontarget
user groups, such as the need for a more mathematically
robust metamodel, rather than fundamental issues with the
approach. Experience from applying Marama to realize
substantial DSVL environments, both academic and indus-
trial, allows extrapolation from the more formal, and hence
restricted, evaluations to more realistic usage. Both the
developer experience in specifying these environments and
the tool developer evaluations of their usability and efficacy
provide strong support for Marama’s effectiveness as a
metatool.

While our aims in developing Marama were to afford
metatool capability to nontechnical tool developers to allow
them to develop their own modeling environments, we are
not quite at the point of generating sufficiently robust
evidence to demonstrate that we achieved this. Our
evaluations have focused on more technically proficient
tool developers to date. Conducting similar studies on
nontechnically proficient audiences remains future work.

We have, however, met each of the key requirements for
a DSVL metatool we established in Section 2. Looking in
more detail at Sutcliffe’s Design metadomain model [73],
we see that Marama provides strong support in some areas
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and partial support in others, suggesting future work
opportunities as follows:

e Modeling and prototyping support; visualization
support:

Marama’s multiple metaphor meta-DSVL models provide
effective separation of concerns by specifying different DSVL
aspects at different abstraction levels. At a tool level, there is
seamless integration of these multiple abstractions; however,
hard mental operations and hidden dependencies are
introduced as a tradeoff for the resulting specification
flexibility. Users need to decide which visual language to
use at a particular modeling stage. Therefore, there is a need
for a description and guidelines for these metaphors from
which users can make better choices about their specification
approaches. An obvious direction to proceed is to use
MaramaCritic to specify a set of metacritics for the Marama
metatools embodying such high-level guidelines and con-
straints. We aim to operationalize Moody’s Physics of
Notations [65] design principles in these critic-based guide-
lines and to provide some basic visual language assessment
support for evolving DSVLs within Marama itself.

In addition, the expressibility provided by some of the
Marama metatool components is currently limited, making
it difficult to design and realize some types of diagram.
Specifically, modeling tools are limited to box and con-
nector, with some limited containment support. Such
restrictions are common in current metatools. We are
currently looking to extend this to allow for notations such
as Euler graphs [36] which combine box and connector and
overlapping region requirements.

To provide better and more integrated support for
information presentation and visualization, we aim to
merge modeling with visualization, to empower visualiza-
tion with the capability of extracting/generalizing models
for reuse. From this, instead of creating new models from
scratch each time, we will allow users to explore existing
models and capture reusable components by various
visualization functionalities such as querying, filtering,
and abstracting. This extends our Kaitiaki work with more
complex reusable query and visualization support [54].

e Critics and knowledge retrieval/reuse:
MaramaCritic provides good support for specification and
realization of tool level critics. These, however, need to be
manually specified by tool developers, whereas Sutcliffe
envisaged some form of automated reasoning over prior
solutions. Similarly, Marama currently has very limited
support for reuse of designs and part designs. A promising
direction we are exploring is metapattern support, which
provides facilities for representing and instantiating do-
main-specific and domain-independent metafragments [40],
[49], including a set of generalized/generic tasks (e.g.,
formating trees, juxtaposing multiple view display). This
will provide one step toward a more intelligent approach to
design reuse.

e Annotation, collaboration, and creativity support:
While Marama has some useful annotation, collaboration,
and creativity support via its collaborative editing and web
and sketch-based diagramming support, there is room for

enhancement. We plan to employ program-by-demonstra-
tion techniques to provide ways of recording, simulating,
and validating designs. Such techniques should allow users
to play prerecorded macros to learn the visual languages
and their modeling procedures, and to specify their own
domain systems following demonstrated examples or
patterns. In addition to the current procedure of generating
DSVL environments from metalevel structural and beha-
vioral specifications, we wish to also allow users to
demonstrate the intent of their DSVL tools and automati-
cally reverse generate the specifications (both structural and
behavioral) from that, with further refinement allowed via
round-trip engineering.

11 CONCLUSIONS

Models are used in a huge range of domains. This provides
an obvious driving force for good tools to author, visualize,
manage, and evolve models. We have described Marama, a
meta-DSVL tool for multiview DSVL tool generation. The
core of Marama comprises a set of visual meta-DSVL
models for specifying both the structural and behavioral
aspects of DSVL environments. Extensions include design
critics, model transformation, collaborative editing, thin-
client, and sketch-based editing interfaces. We have devel-
oped a number of complex DSVL tool applications in
various domains using Marama. These include perfor-
mance engineering, enterprise/business process modeling,
design patterns, health care planning, data modeling,
software engineering, and so on. We have carried out a
variety of evaluations of Marama itself and Marama-
developed DSVL tools. Overall, while there are a number
of areas for further enhancement of the metatoolset, it
provides an effective set of DSVL-based metatools for
designing and realizing a wide variety of DSVL tools. Key
enhancements proposed include using design critics to
provide “metacritics” and constraints for DSVL language
design, support for knowledge reuse via DSVL patterns and
refactoring support, and further extension and enhance-
ment of annotation, collaboration, and human-centric
modeling interfaces. The Marama toolset has now been
released in an open source form (https://wiki.auckland.
ac.nz/display/csidst/Welcome) and is being taken up by a
number of research groups and industrial partners for
software tool prototyping. It is in the process of commer-
cializing and “industry hardening” with SofismoAG.
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