
© IEEE 2012 – REVISED VERSION TO APPEAR IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2011-02-0059 1

Generating Domain-Specific Visual Language
Tools from Abstract Visual Specifications

John Grundy, John Hosking, Karen Na Li, Norhayati Mohd Ali, Jun Huh and Richard Lei Li

Abstract—
Domain-specific visual languages support high-level modeling for a wide range of application domains. However,
building tools to support such languages is very challenging. We describe a set of key conceptual requirements for
such tools and our approach to addressing these requirements, a set of visual language-based meta-tools. These
support definition of meta-models, visual notations, views, modeling behaviours, design critics and model
transformations and provide a platform to realize target visual modeling tools. Extensions support collaborative
work, human-centric tool interaction, and multi-platform deployment. We illustrate application of the meta-
toolset on tools developed with our approach. We describe Tool Developer and cognitive evaluations of our
platflorm and our exemplar tools, and summarise key future research directions.

Index Terms—

————————————————————	

1. Introduction

Software Engineers use models to describe software requirements, design, processes, networks, tests, configurations and
code. Construction, Engineering and Computer Systems professionals use models representing structures, plant, plumb-
ing/electrics, materials, VHDL, elctromagnetics, and processes/tasks. Health professionals have models for patient diag-
noses, treatments and imaging. Business, Finance and Economics professionals use models to design and monitor pro-
cesses/workflow. Families and friends may use models for family trees or to establish social networks. Our interest has
been in the use of Domain-Specific Visual Languages (DSVLs) in these widely varied domains to assist domain users to
better work with their complex domain models. A DSVL has a meta-model and visual notation allowing domain users to
express complex models in one or more visual forms. Often, multiple visual forms are used to represent overlapping
parts of the meta-model. Ideally DSVLs afford a “closeness of fit” to the Tool Developer’s problem domain [23, 65].

Working with models involves authoring, visualising, navigating, transforming, understanding, managing, and evolving
models. There is a demand for appropriate, usable, scalable, sharable, robust and extensible tools to support these pro-
cesses. Often multiple domain users must work together to author and review visual models. They sometimes want to
model or access models in varying notations or interfaces, e.g. web or mobile device. They want effective tools to sup-
port the use of these DSVLs. However, building such tools is very challenging with the need for multi-view, multi-
notational, and multi-user support, the ability for non-programmer Tool Developers to (re-)configure specifications while
in use, and an open architecture for tool extension and integration.

Current approaches to constructing DSVL tools suffer from a range of deficiencies. These include limited domain tar-
gets, the need to use complex APIs and code for developing even simple environments, and a complex edit-compile-run
cycle for reflecting even minor changes. These deficiencies provide barriers to use and typically prevent domain users
and even developers from producing suitable DSVL tools. Visual specification approaches, compared to writing custom
code, have shown their advantages in minimising design and implementation effort and improving understandability of
programs [14,17,23,27,29]. This suggested to us that a visual language approach to support DSVL definition is likely to
be a positive approach for the design and construction of domain-specific modelling environments, both for domain
modelling tool users but also potentially for tool developers.

Manuscript	 received	 Feb	 2011,	 Revised	 Aug	 2011.	 Revised	 Jan	 2012.	 Accepted	 April	 2012.	
Grundy	 is	 with	 Centre	 for	 Computing	 and	 Engineering	 Software	 Systems,	 Swinburne	 University	 of	 Technology,	 PO	 Box	 218,	 Hawthorn,	 Victoria	 3122,	 	
	 	 	 	 Australia	 	 (Email:	 jgrundy@swin.edu.au)	
Hosking	 is	 with	 College	 of	 Engineering	 and	 Computer	 Science,	 Australian	 National	 University,	 Canberra,	 ACT	 0200,	 Australia	 (Email	 john.hosking@anu.edu.au)	
Huh	 is	 with	 Computer	 Science	 Department,	 University	 of	 Auckland,	 Private	 Bag	 92019,	 Auckland,	 New	 Zealand	 	
	 	 	 	 (E-‐mail:	 designersheep@gmail.com)	
Ali	 is	 with	 Faculty	 of	 Computer	 Science	 and	 Information	 Technology,	 Universiti	 Putra	 Malaysia	 (Email:	 hayati@fsktm.upm.edu.my)	 	
Karen	 Li	 is	 with	 SolNet	 Solutions	 Ltd	 (Email:	 Karen.Li@solnetsolutions.co.nz)	
Richard	 Li	 is	 with	 Beefand	 Lamb	 New	 Zealand	 Ltd	 (Email:	 Richard.Li@beeflambnz.com)	

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2011-02-0059

	

We focus on our conceptual/theoretic contributions to DSVL tool development and their realisation in this paper. We
describe the key motivation for this research (Section 2) and survey related work (Section 3). We then provide an over-
view of our meta-tool approach (Section 4) by describing its key features and conceptual foundation. We then describe
our integrated set of meta-DSVLs with a focus on novel behaviour specifications (Section 5), critic authoring and model
transformation (Section 6). These are followed by a set of human-centric elements supporting accessibility and collabo-
ration (Section 7) and then platform realisation (Section 8). We describe evaluation of our approach via exemplar DSVL
tool development and a variety of more formal evaluations (Section 9) then provide discussion (Section 10) and conclude
with a summary of key contributions from this research (Section 11).

2. Motivation

Software engineers use a range of models to describe software systems at various levels of abstraction. Some are very
general and can be used to describe a wide range of software system characteristics. Some examples of such general-
purpose visual modelling languages include the Unified Modelling Language (UML), Architectural Description Lan-
guages (ADLs), Entity-Relationship (ER) and Dataflow Diagrams (DFDs), and State Charts (SDs). This is akin to gen-
eral purpose programming languages like C, C++, Java etc, compared to domain-specific languages (DSLs) for special
purpose domains e.g. ATL for data transformation, BPEL for process orchestration and the Ant build scripting language.
Many tools have been developed to support these general-purpose modelling languages. As they are general-purpose,
investment in bespoke visual modelling tools for these modelling languages has generally been worthwhile.

Domain-specific visual languages (DSVLs) are more limited-domain modelling languages intended for modelling of
limited classes of software systems or for modelling narrow aspects of systems, as DSLs are more limited, special-
purpose forms of textual languages. One of the more successful DSVLs is the LabView visual language and environment
[38], designed for instrumentation engineers configuring software and hardware interfaces in their domain. Other exam-
ples include various process modelling languages e.g. BPMN [75], load modelling languages e.g. Form Charts [19],
component and service composition [25], and visual modelling languages for specific software application domains,
such as health care plans [43], business workflow [51] and statistical surveying [44]. As these have much more limited
purpose and scope, large investment in developing sophisticated tools for such domains is sometimes hard to justify or
afford.

Figure 1.MaramaEML diagrams: (a) tree-based servicesspecification with process overlay; and (b) BPMN process flow.

Consider an environment to support business service and process modelling, such as our MaramaEML domain-specific
visual language tool [51]. Two DSVL examples from this tool are shown in Figure 1. MaramaEML needs to provide
users with various visual notations for representing and understanding organisational services and process flows (Figure

(1)	 (2)	 (3)	

(4)	

(5)	

(7)	 (6)	
(8)	

GRUNDY ET AL.: GENERATING DOMAIN-SPECIFIC VISUAL LANGUAGE TOOLS FROM ABSTRACT VISUAL SPECIFICATIONS 3

1 (1)). In this example, the Enterprise Modelling Language (EML) DSVL is used in Figure 1 (1) to model a University
student management application business processes. Other DSVLs may also be used, such as the Business Process Mod-
elling Notation (BPMN), an emerging standard for process modelling for both engineers and business analysis. Figure 1
(2) shows a BPMN process model for the “enrole student” business process. Such DSVL tools require sophisticated dia-
gram editing tool features (Figure 1 (3-5)), detailed property editing (Figure 1 (6)), script and code generators, such as a
BPMN to BPEL generator (Figure 1 (7)), and various analysis tools, such as consistency checking of process models
(Figure 1 (8)). Developing such DSVL tool features in e.g. Eclipse or Visual Studio is very time-consuming, requires
detailed knowledge of many platform APIs, requires significant coding and debugging, and are difficult to maintain. As
an example, to develop the EML tool in Eclipse using EMF, OCL and GEF projects to produce only a basic visual edi-
tor, approximately 2,500 lines of code need to be produced (ignoring the auto-generated EMF data structure code),
roughly 2,100 implementing the GEF graphical editor and 400 implementing various meta-model constraints and behav-
iour. Use of GMF supports generation of around 1,800 lines of the graphical editor and additional controller code. The
tool developer still needs to intimately understand and use Eclipse GEF, GMF, EMF, and OCL APIs, along with the dif-
ferent Event notification and Command frameworks, the XMI serialiser, the Eclipse plug-in and parts models, the OSGi-
based plug-in configuration and deployment tool, and complex inter-dependencies between all of these.

As developing such DSVL environments is such a complex task it is generally exclusive to experienced software devel-
opers. Ideally we want this process to be simplified by leveraging meta-tool capabilities. Given many DSVLs may be
useful and used by non-technical Tool Developers, ideally we want non-programmer Tool Developers to be able to de-
velop visual notations and tools of relevance to their domain using their own domain knowledge. Thus our key goals
include: 1) making DSVL tool implementation easier for experienced domain modellers (who may not always be experi-
enced software developers), and users familiar with basic modelling concepts e.g. EER, OCL and meta-models; 2) al-
lowing users to construct basic DSVL tools within one day, plus time for additional complexity such as backend code
generators; and 3) leveraging the strength of the Eclipse platform, as our previous efforts with our standalone Pounamu
[79] left us with infrastructure support needs that were too large and an inability to integrate seamlessly with other work.

Sutcliffe provides a useful conceptual framework for design modeling tools [73], shown in Figure 2. He argues that tools
for model management should provide suitable model authoring (drawing) tools (1); simulation and prototyping support
(2); design critics (3), knowledge reuse (4) and visualization (5) support; and annotation (6) and collaboration support
(7).

Figure 2.Sutcliffe's Design metadomain model, from [73]

Using Sutcliffe’s conceptual model and our own experiences developing previous meta-tools, we have identified some
key requirements for a meta-tool to construct DSVL tools as per our goals established above:

• Specifying modelling elements (Requirement 1) – these comprise (i) meta-model(s) representing canonical mod-
el(s) of domain-specific information, including entities and relationships, in the target DSVL; (ii) visual elements,
made up of various icons and connectors, which form the visual representation(s) of domain models and elements;
and (iii) diagrammatic views, which comprise notational elements for each DSVL diagram type and view-to-model
mappings for the management of view-model consistency.

(1)

(5)

(3)

(2)

(4)

(6) (7)

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2011-02-0059

	

• Specifying modelling behaviours (Requirement 2) – these include dynamic and interactive tool effects such as
event and constraint handling for both model and view manipulations and automated operations or processes.

• Model critiquing and transformation (Requirement 3) – to support proactive feedback on model quality and the ex-
change of view and model information with other tools, and backend code generation.

• Human-centric modelling (Requirement 4) - including scalable, sharable, usable, and intelligent support for collab-
orative and sketch-based editing and review.

• Modelling platforms (Requirement 5) – leveraging existing IDE facilities and related tools and making models
available to domain users in appropriate ways.

3. Related Work

Three main approaches exist for the development of visual, multiple view DSVL environments: reusable class frame-
works, diagram generation toolkits, and meta-tools.

General-purpose graphical frameworks provide low-level yet powerful sets of reusable facilities for building diagram-
ming tools or applications. These include MVC [45], Unidraw [74], COAST [72], HotDoc [13] and Eclipse’s GEF [1].
While flexible and powerful, these frameworks typically lack abstractions specific to multi-notation and multi-view vis-
ual language environments. Thus construction of DSVL tools is very time-consuming. For example, supporting multiple
views of a shared model in GEF requires significant programming effort. Given the challenge, a variety of special pur-
pose frameworks for building multi-view diagramming tools have been developed. These include JViews [30], IBM
ILOG JViewsDiagrammer [3] and NetBeans Visual Library [6]. These offer reusable facilities for visual language-based
environments, but still require detailed programming and a edit-compile-run cycle, limiting their ease of use for explora-
tory development and for tool developers without detailed technical knowledge.

A number of more targeted diagram generation toolkits have been produced to make DSVL tool development easier.
These include Vampire [60], VisPro [77], JComposer [30], PROGRES [70], DiaGen [62], VisualDiaGen [63], Merlin [4]
and VEGGIE [78]. All of these diagram generation toolkits use code generation from high-level specifications. Some use
meta-models and associated editor characterisation as their source specifications e.g. JComposer and Merlin (using EMF
model). Others, e.g. DiaGen, VisualDiaGen, PROGRES, VEGGIE and VisPro, use formalisms such as graph grammars
and graph rewriting for high-level syntactic and semantic specification of visual tools. Code generation approaches suf-
fer from similar problems to many toolkits: often requiring an edit-compile-run cycle and difficulty in integrating third
party solutions. Tool developers sometimes have to resort to code for some editor capabilities (e.g. customisation of
shapes in Merlin), or cannot add some desired support features to their target tools. Formalism-based visual language
toolkits typically limit the range of visual languages supported and are often difficult to extend in unplanned ways. They
also require understanding of the formalism, most commonly graph grammars that specify a set of valid transformations
from one graph state to another. Historically graph-grammar based visual editors had more limited editing capabilities
than toolkit or framework coded tools, requiring valid graph transforms only and menu-driven editing approaches. More
recent toolkits such as DiaGen provide graphical editors with growing flexibility.

A third approach to realising DSVL tools is using meta-tools. Meta-tools provide a purpose-designed IDE for generation,
configuration and exploratory development of other tools. These include KOGGE [20], MetaEdit+ [41], MOOT [67],
GME [47], Pounamu [79], TIGER [21], DiaMeta [64], Eclipse Graphical Modelling Framework (GMF) [2], AToM3 [46]
and Microsoft DSL Tools [5]. Meta-tools for DSVL environments typically provide separate specifications of different
tool aspects. High-level definitions of tool metamodels, shapes, connectors, and mappings from metamodel elements to
shapes and connectors are used to effectively generate a tool structure implementation. While a popular mechanism has
been provided to allow DSVL tools to be quickly generated and configured with minimal user specification effort, fea-
tures such as complex editing behaviour, tool integration, code generation, design critics, human-centric editing and ac-
cessibility are generally not directly supported and must be hand-coded if required. Typical distinctions of the existing
meta-tools include the paradigms used for metamodelling (e.g. UML used by DSL Tools, EMF used by GMF, ER used
by Pounamu, and graph grammars used by TIGER), the variety of facilities offered for visual notation design (e.g. draw-
ings, forms, templates and abstract specifications), the directness of multiple view specification support (e.g. automated,
via visual mapping, or with the need for substantial coding), and of particular concern to us, the abstraction level of
DSVL tool behavioural specification support (e.g. using scripting languages, building blocks provided in the meta-tool
frameworks or visual notations). Microsoft DSL Tools provides an integrated visual specification editor with designated
parts for metamodel, visual notations and their representational mappings. Multiple, linked views are however not direct-
ly supported and realising them in generated tools requires much coding and configuration. Model validation, diagram-
ming rule definition and artefact generation are well supported in the SDK through the use of framework APIs, metadata
attributes (annotations), object-oriented inheritance and template-based generators. Reuse and integration are also well
supported leveraging Visual Studio’s extensibility. However, these are not raised to a visual abstraction level. Pounamu
provides built-in support and a form-based mapper for multiple, linked views. It also allows some limited form of visual

GRUNDY ET AL.: GENERATING DOMAIN-SPECIFIC VISUAL LANGUAGE TOOLS FROM ABSTRACT VISUAL SPECIFICATIONS 5

event handling behaviour specification. DiaMeta allows rule-based diagram layout control behaviour to be specified us-
ing metamodels in EMF. AToM3 provides a DSVL (called SLAMMER [31]) for the use of generalised visual patterns
for DSVL model measurement and redesign. MetaEdit+ provides common rules for Tool Developers to choose/adapt,
and automatically delivers them in model instances. For code generation and integration, advanced built-in scripting
commands are used. GMF supports live validation of diagrams. It also allows models to be specified in OCL leveraging
the EMF validation framework. C-SAW [76] in GME supports model constraint specification in OCL using a separate
form-based editor view. Most meta-tools aim for a degree of round-trip engineering of the target tools. Typically they
provide support for their target domain environmentsand tool developers may need little technical programming ability
to use the meta-tools. However many are limited in their flexibility in terms of target tool capabilities able to be specified
and their integration with other tools. Pounamu and IPSEN are good examples of these limitations, and additionally incur
large effort to build features provided by general-purpose IDEs. Thus a recent trend has been to build both diagram edi-
tor toolkits and meta-tools on top of existing IDES such as Eclipse and Visual Studio. These can then leverage save/load
resource management featues, modelling frameworks, graphical and text editor frameworks, a common user interface
look and feel, and many third party extensions.

Considerable research has gone into providing proactive critiquing support in software IDEs, DSVL tools and other de-
sign-oriented domains. These give proactive support to users as they model. Good examples include design advice in
ArgoUML and advice on Java programming constructs in Java Critiquer [69, 71]. However, no high-level critic defini-
tion approaches have been incorporated into DSVL meta-tools. Model transformation and code generation support has
been recognised as a critical feature for many DSVL tools employed for model-driven engineering problems. This has
included approaches such as enterprise data mapping, GXL and VMTS [11, 34, 48]. Typically these approaches have
been standalone model transformation or exchange tools rather than integrated DSVL meta-tool support features. Provid-
ing more human-centric editing capabilities for DSVL tools has also been recognised in much recent research. A num-
ber of approaches to provide sketching-based support have been developed, such as extensions to DiaGen for sketch-
based recognition [12]. Diagram differencing, merging and collaborative editing support, have been explored by Mehra
et al. [61] and Lin et al. [52]. Most of these approaches provide fixed, closed groupware functionality, however, and we
desired more flexibility over target visual design tool collaborative work facilities. In addition, we wanted these capabili-
ties to support integration with existing tools. Thin-client, or rich internet application interfaces, have been explored;
examples include MILOS [59], a web-based process management tool, BSCW [9], a shared workspace system, Web-
CASRE [56], which provides software reliability management support, web-based tool integration, and CHIME [39],
which provides a hypermedia environment for software engineering. Most of these provide conventional, form-based
web interfaces and lack web-based diagramming tools. Recent efforts at building web-based diagramming tools include
Seek [42], a UML sequence diagramming tool, NutCASE [22], a UML class-diagramming tool, and Cliki [57], a thin-
client meta-diagramming tool. All have used custom approaches to realise thin-client diagramming. They also provide
limited tool tailorability by Tool Developers and limited integration support with other software tools. Many are stand-
alone efforts whereas ideally meta-tools should be able to support these capabilities for all target DSVL tools.

In summary, a number of approaches have demonstrated the capability to capture domain model elements using high-
level specifications (our Requirement 1). However, the majority require detailed programming and framework
knowledge, or understanding of complex formal information representation models (e.g. graph grammars), for DSVL
tool development. Few have managed to support behaviour specifications accessible to non-programmer Tool Develop-
ers (Requirement 2). There is to date limited support for DSVL tool critic editing based on knowledge (best practices)
reuse and for model transformations (Requirement 3). Few approaches support simple, live, evolutionary, and collabora-
tive development of DSVL tools with good accessibility and the use of Tool Developers’ own domain knowledge (Re-
quirement 4). More approaches are leveraging IDEs to realise target DSVL tools but these still lack high-level support
for tool integration (Requirement 5).

4. Overview of Our Approach

We wanted to simplify the DSVL tool development process by extending meta-tool capabilities. Our approach is to gen-
erate DSVL tools from a variety of high-level, visual specifications in a meta-tool, called Marama. Figure 3 relates our
key requirements for DSVL meta-tools from Section 2 above to Sutcliffe’s Design metadomain model [73].

Our Marama approach addresses most of the components in the Design metadomain, providing strong support in some
areas and partial in others. Our core approach is a set of visual, declarative specifications of domain meta-models, their
visual representations and their views. These include an extended entity-relationship (EER) modeller for the specifica-
tion of domain specific meta-models (defined using a “Meta-model Designer”); a WYSIWYG “compose-and-edit” ap-
proach to visual notational element specification (the “Shape Designer”); and mapping tool for the filtering of model
elements into (possibly multiple) views (diagrams) and the facilitation of consistent view and model editing (the “View
Type Designer”). These collectively address our key Requirement 1.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2011-02-0059

	

Several approaches are used to specify advanced DSVL tool behaviours, our key Requirement 2. One is a visual, de-
clarative specification of constraints on models that augments the Meta-model Designer. A form of OCL constraints is
supported by visual representations of model element dependency and a spreadsheet-like model/formulae metaphor. A
visual, imperative specification of event-based behaviour provides a set of “Event Handler Designers”. A declarative
augmentation of shape designs and view type designs is used to specify (limited) automatic layout functionality. A high-
level architectural component model allows Tool Developers to specify intra- and inter-tool communication and co-
ordination. These all make use of an integrated event handling behavioural model based on event-condition-action rules.
Together, these meta-tools provide strong support for defining models, visual notations for models, and drawing tools for
authoring visual notations of models. They provide basic support for information visualisation, visual debugging and
simulations in target DSVL tools.

Figure 3.Relating Sutcliffe’s model to Marama capabilities.

A visual, template-based critique and feedback authoring system is used to specify a set of “design critics” for proactive
advice to DSVL tool users (the “Critic Designer”). A visual, tree-based schema mapping approach facilitates model
transformation, model import and code generation (the “Transform Designer”). Together these support a range of proac-
tive design critics for a target DSVL tool and a range of information exchange, reuse and code generation facilities, ad-
dressing our key Requirement 3.

We have experimented with a range of ways of supporting human-centric modeling in Marama DSVL tools. These in-
clude a sketched-based overlay for diagram editing via intelligent ink annotations, support for multi-user collaborative
editing, and thin-client, web-based interfaces for more accessible information presentation and authoring. Together these
allow generated DSVL tools to support flexible annotation, collaboration and brainstorming. They provide some limited
support for creative design and information visualisation and thus partially address our Requirement 4. We have realised
Marama as a set of plug-ins using the Eclipse IDE, addressing our Requirement 5.

5. Meta-model and behavioural specifications

We use our MaramaEML business process modelling tool introduced in Section 2 as a running example of a complex
DSVL tool to be specified and generated with Marama. Consider a tool developer wanting to develop such a tool to ena-
ble high-level business process modelling, BPEL script generation, integration of a third party LTSA model checker for
BPEL, and information visualisation support. We first show how the basics of such a DSVL tool can be specified in
Marama. Later we illustrate how we can augment the basic tool specification with design critics, model transformation
and human-centric modelling support. We then describe our realisation of the Marama DVSL meta-tool using Eclipse
and Microsoft DSL Tools IDEs.

5. 1. Specifying DSVL structural aspects (Requirement 1)

Structural elements, including entities, relationships, shapes, connectors and view types, form the backbone of a DSVL
tool specification. Defining domain specific concepts is a mind-mapping process of abstracting out entities, relationships,
sub-typing, roles, attributes and keys as encountered in the Tool Developer domain. In Marama, this process is meta-
modelling. The Marama Meta-model Designer tool, illustrated in Figure 4, uses an EER representation. We chose an
EER approach, rather than MOF or UML, for simplicity for our target Tool Developer community, which includes non-

GRUNDY ET AL.: GENERATING DOMAIN-SPECIFIC VISUAL LANGUAGE TOOLS FROM ABSTRACT VISUAL SPECIFICATIONS 7

technical DSVL tool developers. The Marama EER meta-model can, however, be transformed to and from other meta-
modelling representations. Figure 4 shows a basic meta-model for representing MaramaEML BPMN constructs.

In this example, the MaramaEML tool designer has specified a range of entities (green square icons) to represent funda-
mental domain concepts e.g. Activity, StartEvent, StopEvent, Gateway, Comment, Swimlane etc. Some of these have
been generalised to super-types e.g. Element, Event and ProcessElement via generalisation relationships (unfilled arrow
pointing to general type). This allows types to share common information including attributes and associations. Several
associations have been specified, shown as pink oval rectangles e.g. Comment-to-Element, Activity-to-Activity etc. The-
se connect elements via named association links. Multiple meta-model diagrams are possible to manage complexity.

The tool developer can also specify “event handlers” which detect editing events or provide tool users with pop-up men-
us to invoke additional functionality. In this example, a GenerateUniqueID event handler creates a unique ID upon the
creation of new Elements. Event handlers are tool developer written Java-coded scripts, reused and parameterised scripts,
or are generated by various other Marama visual specification meta-tools (see later). Marama provides a comprehensive
set of APIs allowing tool developers to query and manipulate any aspect of Marama meta-model or diagram data struc-
tures. Event handler code can also access any Eclipse APIs used by Marama.

	

Figure 4.An example MaramaEML meta-model in the Marama meta-model designer tool.

A WYSIWYG Shape Designer tool, illustrated in Figure 5, allows rapid composition of icons and connectors for represent-
ing the domain specific concepts defined in the meta-model. Icons and connectors are specified in a generic, abstract
form via drag-and-drop. This uses a semi-concrete representation of the specified shape and connector notation for im-
mediate design feedback. In this example, Start and Stop event shapes (ovals); an Activity shape, a Group shape, a
Comment shape and a Gateway shape have been designed. Some of the editable attribute values for the Activity shape
specification are shown. Some associations are shown, including event flow, comment anchor and grouping.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2011-02-0059

	

	

Figure 5.An example of some MaramaEML BPMN concrete notation shape and connector designs in the Marama
Shape Designer.

The View Type Designer tool, illustrated in Figure 6, specifies which visual elements are included in a diagram (which
we call a “view type”) and their relationships to the underlying model elements (including attribute mappings). In this
example, the main BPMN view type is specified. This includes Activity, Group, Comment, Event and gateway shape
mappings to appropriate meta-model entities, and mappings of various connectors such as Flow and Comment anchored
to meta-model associations. Various attributes of shapes and connectors can be mapped to meta-model entity and associ-
ation attributes. This implies automatic maintenance of a bi-directional consistency between realised view and model
element attributes in models developed using the generated DSVL tool. A view type wizard is provided to select defined
entity, association, shape and connectors and generate an initial view type. View types may also have event handlers
defined. For example, in this example GroupContainsProcess and AlignContainedShapes are “event triggered” handlers
for managing grouped BPMN process elements inside a Group shape. A generateBPEL event handler is a user-selected
pop-up menu item that generates BPEL script from the BPMN meta-model elements.

	
Figure 6.Example of Marama view type designer (left) and view type creation wizard (right).

Having specified a DSVL or set of DSVLs using these basic structural specifications (meta-model representations of
domain concepts, their visual representations and view mappings), users can, with no further work, realise the specified
tool and use it to create domain specific models and diagrams using the DSVL(s). A model project contains one model

GRUNDY ET AL.: GENERATING DOMAIN-SPECIFIC VISUAL LANGUAGE TOOLS FROM ABSTRACT VISUAL SPECIFICATIONS 9

instance with multiple view (diagram) instances, all kept consistent with one another. Both the model and view instances
can be manipulated via user interactions. A view instance realises all the icon and connector types defined in the View
Designer as Palette tools. As per the mappings of visual elements (icons and connectors) and model elements (entities
and relationships) specified in the View Designer, an icon/connector instance in the view instance automatically gener-
ates a model entity/relationship, with appropriately mapped property values. Unmapped visual/model properties of a
visual/model element are persisted independently. The model project contains a model file (file extension “.model”),
which stores the runtime model state.

5. 2. Specifying DSVL Tool behavioural aspects (Requirement 2)

Developing modelling behaviours is a key challenge in DSVL tools. Many approaches require programming knowledge
and access to complex APIs. Our Marama event handlers written in Java code are very powerful but suffer these same
problems. However, behavioural specification from a high-level abstraction is generally difficult to achieve. Appropri-
ately chosen metaphors are important for mapping a specification onto a user’s domain knowledge, not only for structure
but also for behaviour specifications.

In Marama we chose a declarative spreadsheet-like metaphor to specify model level dependencies and constraints and an
imperative dataflow-like Event-Condition-Action-based metaphor for view level event handlers. We use a subscribe-
notify Tool Abstraction metaphor to describe event-based tool architecture and multi-view dependency and consistency.
These three different metaphors were generalised from our earlier work on domain-specific event handling specification
[53, 54, 55], integrated via a common model and unified user interface representation [50].

5. 2. 1. Declarative model constraint specification

A number of approaches separate model constraint specifications from their meta-model specifications [5, 41]. This
causes potentially serious hidden dependency issues (one of the Cognitive Dimensions framework dimensions [23]). We
believe constraints such as attribute value boundaries and dependencies, relationship multiplicities and cyclic reference
checking can be presented more simply and clearly within the same meta-model specification by annotating existing
contextual elements. MaramaTatau is an extension of Marama’s EER meta-model designer specifications adding de-
clarative dependency/constraint specifications and high-level visual annotations. Value dependencies and modelling con-
straints are state-change events handled in Marama via a uni-directional change-propagation mechanism with side-
effects to dependent components, the same approach used by formula evaluation in spreadsheets. However, we wished to
minimise Cognitive Dimensions [23] tradeoffs such as hidden dependency and visibility issues between constraint and
meta-model specifications that are common in spreadsheet like approaches. MaramaTatau supports visual construction
of formulae to specify model structural dependencies and constraints at a type rather than the usual spreadsheet instance
level. We chose OCL as the primary textual formula notation as: OCL expressions are relatively compact; OCL has
primitives for common constraint expression needs; OCL is a standardised language; and the quality of OCL implemen-
tation is increasing.

In Figure 7 we have used MaramaTatau to extend the MaramaEML meta-model with a constraint specifying that a
StartEvent must have at least one Activity connected to it. Small green circular annotations on an attribute or entity indi-
cate that an OCL formula has been defined to calculate a value (eg the id of an Element) or provide an invariant (e.g. the
cardinality constraint on a StartState). We use green arrowed lines to show formula dependency annotations and grey
borders to annotate sensible elements to be involved in a formula construction at a certain stage. Formula construction
can be done textually, via a Formula Construction (OCL) view, or “visually” by direct manipulation of the meta-model
and OCL views to automatically construct entity, path, and attribute references and function calls. Clicking on an attrib-
ute places an appropriate reference to it into the formula.

In this example, the tool developers create a formula for the StartEvent entity (1). They then begin specifying the con-
straint using a combination of the visual elements in the meta-model and the formula editor view (2). They specify the
StartEvent entity (self) by clicking on it (3), which highlights in the visual meta-model elements, associations and/or
attributes that can next be validly added to the formula (4). In this example, the developers choose its named association
“start”, linking StartEntity to the first Activity entity for the BPMN specification (5). Clicking on a relationship and then
an attribute generates a path reference in the formula (self.start in this example). A difference from the spreadsheet ap-
proach is that only certain elements are semantically sensible at each stage of editing, whereas in spreadsheets, almost
any cell may be referenced. The tool developers then specify the size() function, from the available functions list on the
right (6), and add a constraint of <>0 (i.e. a StartEntity must have one or more connected Activity entities to be valid).

The cardinality constraint on the Service entity is thus specified by the OCL expression“self.start->size()<>0”. When
this formula evaluates false for a StartState in a model instance, a constraint violation error is generated, with a problem
marker representation appearing in the Eclipse Problems view to provide the user with details of the violated constraint.
In this example, to solve the error, the user needs to connect the StartState entity to an Activity entity in the BPMN dia-
gram. When this is done, the constraint evaluates to true and the constraint error is removed from the Problems view.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2011-02-0059

	

We have carefully defined interaction between the OCL and meta-model views to enhance visibility and mitigate hidden
dependency issues. OCL and EER editors are juxtaposed, improving visibility, and simple annotation of the model ele-
ments indicates formulae related to them are present and semantically correct/incorrect. Formulae can be selected from
either view so constraints can be readily navigated to/accessed. The dependency links permit more detailed understand-
ing of a formula. The annotations are modified dynamically during editing for consistency. Dependencies are only made
visible if a constraint is selected to minimise scalability issues and support task focus. The approach is similar to conven-
tional spreadsheet dependency links but applied to graphical modelling. Constraints with formula errors are highlighted
in red (7). A set of example constraint indicators and formulae are shown in the final example screen dump (8).

5. 2. 2. Declarative diagram constraint specification

Some specialised visual relationships in views, such as various composite icon layout mechanisms can also be expressed
declaratively using the same formulaic approach. Instead of using Java event handler specifications, the tool developer
can reuse some limited visual specifications. We have extended our OCL-based meta-model dependency/constraint spec-
ification technique by adding some reusable functions and applying them to iconic notations at the view level. Figure 8
(left) shows a visual constraint specified in the BPMN view type design of MaramaEML. The enclosure relationship
(icon is contained in but can be moved within the enclosing icon) is specified between a GroupShape and ActivityShape,
using the FlowConnector connector to manage this relationship i.e. all AcitvityShapes related to a GroupShape by a
FlowConnector are “grouped” with that GroupShape. When the GroupShape is moved or resized, Marama automatically
moves and resizes the grouped ActivityShapes, Figure 8 (right). Adding, moving, resizing or deleting ActivityShapes in
the group may cause the GroupShape to be automatically resized/moved to continue to contain them. Other constraints
that can be specified in this way include full containment with vertical or horizontal layout of contained shapes, shapes
auto-aligned (“pinned”) to the edge of another shape, and shapes auto-located within another shape.

	

Figure 7.Examples of visual constraint specification using the MaramaTatau extensions to the Marama meta-
model designer.

	

(1
)	

(4)	

(2)	

(7)	

(8)	

(6)	

(5)	

(3)	

GRUNDY ET AL.: GENERATING DOMAIN-SPECIFIC VISUAL LANGUAGE TOOLS FROM ABSTRACT VISUAL SPECIFICATIONS 11

	
Figure 8.(a) example of an encloses() shape layout constraint being specified in the Marama view type designer and (b) its ef-

fect in the Marama generated BPMN editor.

5. 2. 3. Declarative diagramlayout specification

More complicated auto-layout using trees and force-directed layout is supported by further visual augmentation of Shape
and view type specifications. MaramaALM (Automatic Layout Mechanism) is an extension to the shape and view type
designers that allows shapes to be specified as participating in complex tree (vertical or horizontal) and/or automatic
force-directed layouts [66]. Figure 9 (left) shows the tool designer augmenting shape designs in the Marama shape de-
signer with visual annotations (small dark green octagon shapes). These indicate participation of the shape in automatic
layouts in target diagrams. The augmented view type designer in Figure 9 (right) shows layout event handlers added to a
view type that will use these augmented shape type specifications to apply tree and/or force-directed layouts in the target
Marama design tool. The tool designer specifies the shapes that participate in the tree or force-directed layout, connect-
ors used to link these related shapes, and configurations e.g. horizontal or vertical tree; auto-resize or not; and amounts to
space and auto-relocate.

	 	 	 	
Figure 9. Specifying participation in auto-layouts (left) and type of auto-laout(s) to add to a view type definition (right).

Figure 10 shows the specified auto-layouts in use. In the top figure a diagram has hierarchical tree layout. The user can
change this to a horizontal layout as shown on the right. Marama automatically re-lays out the diagram components for
shapes participating in the tree. Figure 10 (bottom) shows a force-directed layout in use. The right-hand side shows the
resizing and repositioning of shapes in the view that participate in the force-directed automatic layout specified above.
Note MaramaALM supports combination of tree and force-direct layouts for the same diagram e.g. a horizontal tree lays
out the oval shapes and a force-directed layout lays out the rounded rectangle shapes.

	

	

	

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2011-02-0059

	

	 	 	 	 	 	
Figure 10.Tree layout (top) and force-directed layout and optimisation (bottom).

5. 2. 4. Visual event handler specification

Our declarative spreadsheet-like approach allows tool designers to specify constraints in a simple visual and declarative
way. However, there are limitations with this approach. It is awkward to express more operational behaviours such as
composite queries, filters and actions in event handling, and the flow of data between them. To address this, we devel-
oped a visual event flow language (Kaitiaki): an “Event-Query-Filter-Action (EQFA)” notation for expressing view level
constraints/operations. The approach is based on our earlier Serendipity [27] visual event processing language. When
constructing event handlers Tool Developers select an event type of interest; add queries on the event and Marama tool
state (usually diagram content or model objects that triggered the event); specify conditional or iterative filtering of the
event/tool state data; and then state-changing actions to perform on target tool state objects. Complex event handlers can
be built up in parts, via sub-views, and queries, filters and actions can be parameterised and reused.

The visual language design focuses on modularity and explicit representation of data propagation. We have avoided ab-
stract control structures and used a dataflow paradigm to reduce cognitive load. Key visual constructs are events, filters,
tool objects, queries on a tool’s state, state changing actions plus iteration over collections of objects, and dataflow input
and output ports and connectors. A single event or a set of events is the starting point. From this data flows out: event
type, affected object(s), property values changed, etc. Queries, filters and actions have parameter bindings via data prop-
agated through inputs. Queries retrieve elements from a model repository and output data elements; filters apply pattern-
matching to input data, passing matching data on as outputs; actions execute operations which may modify incoming
data, display information, or generate new events.

Queries and actions execute when input data are available (data push). If there are no input parameters, queries and ac-
tions trigger whenever parameters to a subsequent flow element have values (pull). We predefined a set of primitives for
these constructs providing operations useful for diagram manipulation, by abstracting from a large set of diagram manip-
ulation examples. These involve collecting, filtering, locating or creating elements, property setting, relocat-
ing/alignment, and connection. Multiple flows are supported. Concrete DSVL icons, specified in the shape designer, are
also incorporated into the visual specification of event handling as placeholders for Marama tool state, to annotate and
mitigate the abstraction, making the language more readable.

Figure 11 shows an event handler specified for aligning ActivityShape shapes. The handler responds to a Marama
“shapeAdded” or “ShapeMoved” event (1). The concrete representations of Activity and Gateway shapes (2) filter the
added and moved events to only these types of shapes. A further filter checks that the Activity and Gateway shapes are
contained within a Group shape (3). All of the shapes within the GroupShape are then retrieved by a Query (4) and an
Action aligns all of the grouped shapes (5).

GRUNDY ET AL.: GENERATING DOMAIN-SPECIFIC VISUAL LANGUAGE TOOLS FROM ABSTRACT VISUAL SPECIFICATIONS 13

	

Figure 11. Specifying an event-driven shape alignment algorithm with the MaramaKaitiaki visual language.

5. 2. 5. Visual event-based architecture specification

The declarative and imperative constraint/event handling approaches described above are of low-to-medium abstraction
and lack the ability to describe and affect the overall high-level architecture of a DSVL tool. We chose to use the Tool
Abstraction (TA) [26] metaphor, with a notation designed for our ViTABaL-WS web service composition [53] work, to
provide a view to describe event-based tool architecture. This mitigates multi-view dependency and consistency issues.
TA is a message propagation-centric metaphor describing connections between “toolies” (behaviour encapsulations
which respond to events to carry out system functions) and “abstract data structures” (ADSs: data encapsulations which
respond to events to store/retrieve/modify data) that are instances of “abstract data types” (ADTs: typed opera-
tions/messages/events). Connection of toolies to other toolies and ADSs is via typed ports. TA supports data, control and
event flow relationships in a homogeneous way, allowing a focus on architecture level abstractions and describing sepa-
rated concerns including tool specific events, event generators and receivers, and responding behaviours such as event
handlers. Key modelling constructs include event sources/sinks, Marama components, event handlers, toolies (data pro-
cessing), ADSs (data management), data storage and error handlers.

Figure 12.Event-based tool architecture integration specification.

Figure 12 shows specification of user-defined events and propagation of their notifications between various Mara-
maEML event handling toolies and structural components. This example specifies that when a BPMN diagram is modi-
fied and has no constraint violations (1), a BPEL script is generated from the underlying BPMN meta-model entities and
associations (2). This BPEL script is then submitted to an LTSA-based model checker (3). This performs a number of
consistency checks on the model. Errors detected by the model checking are used to open, annotate and highlight in the
BPMN view (4).

(1)	

(2)	

(3)	

(4)	 (5)	

(1)	

(2)	

(3)	

(4)	

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2011-02-0059

	

5. 2. 6. Integrated runtime visualisation support

Visualisation support for a running DSVL tool is also necessary to allow users to track and control system behaviour
using the same level of abstraction as they are defined in [26, 28]. Synthesised runtime visualisation is achieved in
Marama via a specialised debugging and inspection tool (a “Visual Debugger”). Our Marama Visual Debugger provides
a common user interface that connects the three metaphoric event specification views with an underlying debug model
based on the model-view-controller pattern. We use the debugging service instrumentation mechanism [53] to generate
low-level tracing events on modelling elements. Marama handles those events by sending the event data to appropriate
modelling elements and annotates them with colours and state information. Marama EMF is the common high-level rep-
resentation that glues different behavioural views together, and supplies dynamic state information to the Visual Debug-
ger. The user has full control of execution, with step-by-step visualisation of results (e.g. query results or state changes)
at the point of execution of each building block in a particular view. Figure 13 illustrates the visualisation of an event
handler (a) followed by a runtime-interpreted formula (b). The Meta-model Designer view and the Event Handler Defin-
er view with the respective formula and event handler specifications are juxtaposed with the runtime diagram modelling
view. From the Visual Debugger, the user has control over the execution/interpretation of a behavioural building block.
Once the behaviour is interpreted, the affected runtime model element is annotated (with a yellow background) to indi-
cate the application of the formula/handler, and meanwhile, the corresponding formula/handler node and their dependen-
cy links defined in the corresponding meta-model view are annotated in the same manner to show the behaviour specifi-
cation and its execution status.

	

Figure 13. Visual debugging of a Kaitiaki event handler (left) followed by a MaramaTatau formula (right).

6. Critics and Transformations (Requirement 3)

Using the Marama capabilities described in the previous section, a tool developer can specify and realize a wide range of
DSVL tools. However, our initial Tool Developer evaluations of Marama found two aspects that were problematic: spec-
ifying constraints and proactive design advice; and specifying model transformations and code generation. To address
these we developed two further visual specification meta-tools for Marama: a Design Critic specification tool; and a
Model Transformation specification tool.

6. 1. Specifying Design Critics

Research has shown that DVSL tools can greatly benefit from the addition of proactive “design critics” [8]. These critics
monitor the state of DSVL tool models and provide proactive feedback to the tool user around model quality. Some crit-
ics support “fix up” actions to modify an incorrect or inefficient design structure under user direction. While these can be
specified with our declarative and imperative visual event handler specification tools described in Section 5, evaluations
of Marama found these to be sub-optimal approaches for most Tool Developers.

To this end we have developed a visual and form-based critic specification meta-tool for Marama, MaramaCritic De-
signer. MaramaCritic provides a high-level, declarative specification approach to add design critics to DSVL tools. It
uses a combination of a high-level visual critic model and a more detailed form-based critic specification. Together these
provide a critic definition approach that is more accessible, though more restricted in its expressability, than the other
behavioural definition approaches.

The main underlying idea in MaramaCritic is to use information expressed in a meta-diagram (i.e. the Marama meta-
model diagram) as input for critics to be realized in a diagram (i.e. a Marama diagram in the realized modeling tool spec-

GRUNDY ET AL.: GENERATING DOMAIN-SPECIFIC VISUAL LANGUAGE TOOLS FROM ABSTRACT VISUAL SPECIFICATIONS 15

ified by the meta-model). It is important to mention that MaramaCritic is only minimally dependent on the notation used
in the meta-diagram. As we discussed earlier, the Marama meta-model diagram is expressed using an Extended Entity
Relationship (EER) notation. If a richer notation is used in the future, more information can be extracted from the meta-
model diagram and, thus, can be used for specifying critics and checking user diagrams.Figure 14 (1) shows a simplified
meta-model for MaramaEML comprising some of the relevant entities, attributes and associations. As shown in Figure
14(a), MaramaEML’s main features include service, operation and process entities. A service entity implies a task within
a business process of an organization. An operation entity represents an atomic activity that is included in a service. A
process entity has two specialisations: process start and process end entities, representing respectively the start and end
of a process. Associations between the required entities support the modelling of the business process structure. All ser-
vices, operations and processes are organized in a tree structure to model a business process system. Figure 14 (2) shows
several possible critics for the MaramaEML tool. These specify named design critics to be invoked when various events
are generated by Marama model editing operations. Some critics simply provide a “critique” to the user, suggesting
problems or issues with the DSVL model state. Others provide “fix up” actions to proactively correct the DSVL model
or to enforce constraints on the model expressed in the DSVL. Figure 14 (3) shows a simple example of a MaramaEML
structure model for a basic university enrolment service (modified from [51]). Here, the student, university, and
StudyLink services are sub-services of the university enrolment service. These are represented as oval shapes. Each ser-
vice may (or may not) include a sub-service. The university service includes four embedded services (i.e. enrolment of-
fice, finance office, credit check and department). Each service must include at least one operation. The operation entity
is represented using a rectangle shape. For instance, the Student Service manages four operations: search courses, apply
enrolment, apply loan and make payment.

The bottom-most critic in Figure 14 (2) is an example of an action assertion critic. Suppose the tool developer wants to
specify a critic that constrains the service entity (i.e. EMLService) to have no more than four operations (i.e. EMLOpera-
tion). This might be sensible in order to encourage designers to split large hierarchies of services into smaller, more
manageable and understandable groups as our evaluation of MaramaEML found that service entities with large numbers
of operations look cumbersome to the Tool Developers. A critic can be specified for this by defining the relevant proper-
ties for event, condition and action via an action assertion template as shown in Figure 14 (4)-the form-based interface.
Here, the event triggering the critic is the creation of an association link, the condition is that the cardinality is greater
than 4 and the action is to delete the new association. MaramaCritic generates, from its visual and form-based specifica-
tions, a set of OCL constraints and Java event handlers that augment the generated Marama DSVL tool. When the user
runs the tool, these event handlers and constraints are triggered at appropriate times by editing events. A critique (mes-
sage to the DSVL tool user) is displayed if an event occurs and the model state matches that specified in a critic.

In the arity constraint example, a critique is displayed to warn the user, followed by execution of the action, as shown in
Figure 14 (5). Three other critics are specified in Figure 14 (2). The first and second critics at the top specify name
uniqueness constraints. A logical operator, OR is used to link the two critics so that both critics share a common feed-
back mechanism. The second-to-bottom critic shows a situation where one critic is dependent on another. The dependen-
cy of critics can be represented visually by using the CriticDependencyLink connector, which implies a sequence of crit-
ic execution between two critics. A critic that depends on another critic will only run when the critic it depends on is not
violated. For instance, in Figure 14 (2) it shows the critic: “EMLService name must have a unique name” is dependent on
a critic: “EMLService name must not equall null”. This means the unique name critic is executed only if the service name
is not null.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2011-02-0059

	

Figure 14. Meta-model for a simplified MaramaEML (1) followed by a visual and form-based critic specifications (2), an ex-
ample of MaramaEML structure (3) an action assertion template (4) and critic execution (5).

These critics could all have been implemented using Java event handlers to implement similar constraint testing and
feedback to the user. However, specifying constraints and feedback using event handlers is time-consuming and difficult
to maintain as the meta-model evolves over time. Also, as MaramaEML has several integrated modelling notations and a
canonical meta-model, it was a complex task to implement inter-notation constraints. Applying our critic designer to the
canonical meta-model is straightforward; implementations of critics that took several hours to specify, test and evolve
using event handlers can be done in a matter of minutes. Understanding the critics is far easier than browsing and under-
standing the previous individual Java event handlers, which comprised hundreds of lines of Java code with Marama API
calls. In contrast, the form-based critic specifications are very clear, concise, understandable, reusable and maintainable.
The trade-off, of course, is that the more accessible notation provides more restricted expressability.

6. 2. Model transformation

DSVL models often need to be transformed. Sometimes transformation is from one model to another e.g. in Mara-
maMTE+, we need to transform a Business Process Modelling Notation (BPMN) process flow specification into parts of
an architecture specification [25]. We also often need to import information from another format into a tool, such as im-
porting a BPEL specification and transforming it into a BPMN model. To support model-driven development we often
need to generate code, such as Java and C# in MTE+, or scripts, such as JMeter or BPEL. Implementing such transfor-
mations using conventional programming languages, or even with higher-level transformation DSLs like XSLT, QVT or

	

	

(2)	

(3)	

(1)	

(5)	

(4)	

GRUNDY ET AL.: GENERATING DOMAIN-SPECIFIC VISUAL LANGUAGE TOOLS FROM ABSTRACT VISUAL SPECIFICATIONS 17

ATL, means that users need considerable programming expertise. Originally Marama tool developers had to write Java
code in event handlers to implement code generation and model transforms. We then used a combination of XSLT trans-
forms or ATL transform scripting languages to implement complex code generation and model transformation. Marama
tool developer evaluations showed these approaches were very time-consuming, error-prone, complex and difficult to
maintain.

Figure 15. Model transformation specification.

To facilitate much more accessible ways to specify model transformation, model import, and code and script generation,
we have developed a visual model transformation approach called MaramaTorua [37], now incorporated into Marama as
the Transformation Designer. Figure 15 (1) shows an example of MaramaTorua being used to transform a BPMN nota-
tion model (left hand side) into a BPEL4WS executable representation (right hand side). In the middle is a set of trans-
forms that map source BPMN model elements and relationships into target BPEL4WS elements and relationships.
Transforms can be packaged and reused (Figure 15 (2)). Detailed formulae, including element selection, data reformat-
ting, and iteration constructs are specified using forms (Figure 15 (3)). The visual transform is specified at the type level
and is used to generate a transformer implementation. In this example, we generate an XSLT script to implement the
specified model transform (Figure 15 (4)). Integrating the generated model transformation into a Marama DSVL tool is
achieved by adding a view event handler to a view specification in the relevant View Designer diagram (Figure 15 (5)).
The user of the target DSVL tool then selects the transform in a diagram of this view type (Figure 15 (6)) to execute it.
MaramaTorua also provides a visual debugger allowing specified transforms to be stepped through as they are run.

MaramaTorua supports XSLT and Java code generation from its visual model transformation specification models. The
visual language and formulae allow quite complex multi-element and attribute model transformations to be generated. It
does however have limitations when complex transforms need complex algorithmic computation, low-level data parsing

	

(1)

(2)

(3)

(4)

	

	

(5)

(6)

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2011-02-0059

	

or complex iterative transformations. In this case, MaramaTorua allows Java code to be specified for the transform using
an API. Such code is weaved into the generated XSLT (as Java function call) or Java code, in much the same way
Marama model and view event handler code is generated and added to Marama-specified tools.

7. Human-Centric Tool Interaction (Requirement 4)

So far, we have described a set of abstract, visual specification approaches we have developed for Marama meta-tools to
enable high-level specification of DSVL tools. These specifications are used to generate an Eclipse-based implementa-
tion of the target tool. However, as identified by Sutcliffe’s design metadomain approach, the generated DSVL tools
ideally require a range of facilities to support what we term “human centric” modelling capabilities. These include sup-
port for collaborative modelling, sketch-based modelling and web-based modelling. We have developed a set of plug-in
extensions to Marama to support each of these human-centric approaches in Marama-generated DSVL tools. We outline
these capabilies in this section to demonstrate the range of human-centric modelling that can be provided for generated
DSVL tools. However, while we address some of Suttclife’s design metadomain support characteristics, most of these
should be viewed as preliminary prototypes requiring further research and experimentation.

Figure 16. (1) collaborating editing; (2) sketch-based input; (3, 4) web-based editing and tool specification.

To support collaborative use of a Marama DSVL tool, we have developed a distributed support mechanism. This pro-
vides asynchronous editing support via visual differencing (MaramaDiffer) and synchronous editing support via event
propagation between Marama instances [29, 61]. Figure 16 (1) shows an example of the asynchronous editing support in
use. A MaramaMTE+ form chart diagram has been edited by user “john”, and user “akhil” is comparing his version of
the diagram to john’s. Visual annotations are added to the Marama form chart diagram on the right hand side showing
differences. A change log is shown in the view at the bottom of the screen. Akhil can select to accept all, some or no
changes of john’s, and have these applied to his version of the diagram. As some edits are inter-dependent, and some are
mutually exclusive, MaramaDiffer provides the user support to merge changes that are consistent. Semantic errors are
highlighted in the Eclipse Problems view by appropriate design critics specified for the DSVL tool.

Sketch-based interaction with design tools is an interesting alternative approach to conventional drag-and-drop dia-
gramming tool interfaces [16, 68]. We wanted to support this approach for Marama design tools as early-phase design
has been shown to benefit from this less rigid interaction approach. We developed a new plug-in, MaramaSketch [24]

(1) (2)

(3)

(4)

GRUNDY ET AL.: GENERATING DOMAIN-SPECIFIC VISUAL LANGUAGE TOOLS FROM ABSTRACT VISUAL SPECIFICATIONS 19

that provides an overlay for Marama diagrams allowing sketching-based input and manipulation of diagram content
along with associated shape and text recognition support. Figure 16 (2) shows an example of a user drawing content (in
this example with a Tablet PC stylus) onto a MaramaMTE ArchitectureView diagram. The user simply selects the
sketching tool (highlighted in the left hand side editing palette) and draws with the mouse/stylus on the diagram canvas.
In this example the user has drawn a ClientShape (rectangle, “Web UI”), an ApplicationServerShape (oval, “Server”), a
DatabaseShape (cylinder, “DB”) and two connections between shapes. As each set of strokes is completed Mara-
maSketch recognises the shape type and remembers this.

The Marama DSVL tool diagrams shown so far require use of a desktop Eclipse IDE. Rich internet applications (RIAs)
do not require desktop application installation but instead provide web browser-based access to information. To make
Marama DSVL tools more widely accessible we have developed a RIA diagramming component, MaramaThin. This is
implemented by provision of a set of services within Marama that allow a remote client to query diagram specifications
(diagram meta-descriptions) and state (diagram model data) via XML messages. The remote clients can also update the
state of these diagram models i.e. modify the diagrams. Figure 16 (3) shows an example of our browser-based diagram-
ming tool MaramaThin in use. User “john” wants to do some ER diagramming for a MaramaMTE+ database. John
opens an existing MaramaMTE+ database model diagram. John then begins to edit the diagram. The MaramaThin user
interface provides a tool palette, basic editing command toolbar, an ER diagram made up of shapes and connectors that
can be manipulated via drag and drop in browser, and pop-up property windows. In this example, John is editing the
properties of an Entity “UniName”. MaramaThin also provides web-based access to most Marama meta-tools, including
the meta-model editor, shape designer, view type designer, and constraint and event handler designers. This allows
Marama/Thin users to modify their diagram specifications, or even create whole new diagramming tools, using their web
browser instead of the Marama Eclipse desktop client. In Figure 16 (4) John is viewing the meta-model for the Mara-
maMTE+ ER diagrams. He may add new constraints to the tool using the Formula meta-model shape, modify existing
constraints, or add a new property, element or association.

8. Architecture and Implementation (Requirement 5)

We have realised Marama as a set of Eclipse IDE-based plug-ins using a range of third party Eclipse projects and plug-
ins. This was major departure from our earlier Pounamu meta-tool [79], where we built the whole tool infrastructure.
Leveraging the range of Eclipse tool-building projects, makes it easier to integrate Marama-generated DSVL tools with
other tools, and allows other Eclipse community members to use Marama in their own Eclipse-based tool research.

Figure 17.The basic architecture of Marama.

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2011-02-0059

	

Figure 17 shows the architecture of the Marama meta-tools and Marama-generated DSVL tools. Marama provides a
range of visual specification meta-tools. Each Marama meta-tool itself provides an editable domain-specific visual lan-
guage used to specify aspects of a target DSVL tool. Tool developers initially specify a description, comprising evolva-
ble instances of the meta-DSVL models, of their desired DSVL tool using the various visual specification tools in
Marama. This DSVL tool specification is opened by a tool user and used to construct an instance of the specified tool.
The tool user can then create multiple DSVL models based on this meta-description. Tool developers, and even tool us-
ers, can use the Marama meta-tools to modify a tool specification, often when the tool is “live” (i.e. in use). There are
limits to this e.g. if meta-model descriptions are significantly modified then an old tool model instance may need to be
transformed to the new format before being edited.

Tool specifications are stored as XML documents in a tool specification repository as shown in Figure 17 (1). DSVL tool
users locate a desired existing DSVL tool specification to open or request one to be created via the standard Eclipse re-
source browser (2). When a tool is opened or created in Marama, the corresponding XML tool specifications are read
and loaded into XML DOM objects (3). These are parsed and provide an in-memory representation of the Marama tool
configuration, which is used to configure an Eclipse Modelling Framework (EMF)-based in-memory model of both the
DSVL tool model and view data i.e. the properties of all entities, associations, shapes and connectors. It is also used to
produce the editing controls of Eclipse Graphical Editing Framework (GEF)-based diagram editors i.e. the allowable
shapes and connectors, their rendering and properties editing (4). When a diagram is opened, Marama configures a GEF
editor and renders the diagram (5).

An OCL interpreter is used to implement the MaramaTatau modelled constraints on tool model and view elements (6).
The MaramaTatau meta-tool designer compiles the user-specified constraint formulae into OCL definitions that are
stored with the tool specification XML. When a tool is opened, these OCL definitions are loaded, compiled into the
Eclipse OCL API representation used by the Eclipse OCL plug-in, and a set of event handlers used to detect changes to
model data structures (add/update/delete element or association). These changes are used to trigger recomputation of
OCL expressions in much the same way spreadsheet recomputation occurs. Constraints and user feedback are imple-
mented by Marama API calls triggered by MaramaTatu-inserted OCL expression function calls.

Marama provides a comprehensive API that allows access to all of the Marama data structures and modification of these
data structures via Java “event handler” code calls. This Marama API also allows controlled access to the Eclipse GEF
drawing APIs and Eclipse plug-in extension mechanism. This allows expert tool developers to extend and augment
Marama’s core capabilties and support very complex tool integration. Generated event handler and other behavioural and
transformational objects are loaded by Marama adapter and Eclipse plug-in APIs when a tool is opened, or when the
event hander definitions and code are updated in one of the Marama meta-tools (7). These Java coded event handlers are
triggered when Marama model or view data structures are modified or when certain events occur e.g. button or menu
selections or extension point-trigger tool events. Marama uses EMF’s XMI save and load support to store and load mod-
elling project data (8), all managed within the Eclipse resource workspace. We have developed a set of extension points
for Marama allowing new meta-tools to be created and integrated into the Marama meta-tools suite. We have also creat-
ed a set of extension points allowing multiple Marama and third party tools to be integrated within a target Marama
DSVL tool framework. Our event-based architectural modelling and integration visual language uses the event handler
API and Marama extension points to achieve this tool integration.

Expert tool users can code complex Java event handlers to achieve sophisticated tool behaviours. We also use Java code
to implement event handlers that are generated from the imperative event handler specifications from Kaitiaki and
MaramaCritic specifications and the declarative MaramaALM specifications. Kaitiaki and our architectural-level event
handler specifications generate event handlers to encode their event-condition-query-action models. Typically tool de-
velopers use them to achieve imperative event-based behaviours difficult or OCL-based constraints impossible to code
using MaramaTatau. MaramaALM augments the shape and view type definitions and also adds generated event handlers
to achieve tree and force-directed layouts for specified view types.

MaramaCritic generates a combination of OCL and Java event handler implementations, augmenting the tool specifica-
tions generated by the meta-model and view designer meta-tools. It also has a set of event handlers (9) used to co-
ordinate processing of events, provide various critiques to tool users (via dialogue boxes and Eclipse problem markers),
and carry out semi-automated “fix ups” of problematic model constructs.

The MaramaTorua model transformation meta-tool generates XSLT transformation scripts, saved with Marama tool
specifications, along with Java code event handlers used to invoke these transformations in target DSVL tools (10). The-
se event handlers convert a Marama DSVL tool model to an XML representation via EMF, then use an XSLT engine to
transform the EMF structure to the target model (into XML), code (e.g. Java or C#), or script (e.g. Ant, JMeter, BPEL
etc). An extension mechanism similar to Marama event handlers allows model transformation specifications to include
Java code, called from the XSLT scripts, to implement e.g. low-level data format parsing and very complex transfor-
mations difficult or impossible to specify in MaramaTorua’s visual language.

GRUNDY ET AL.: GENERATING DOMAIN-SPECIFIC VISUAL LANGUAGE TOOLS FROM ABSTRACT VISUAL SPECIFICATIONS 21

MaramaSketch is a plug-in providing a “sketching overlay” which can be used with any Marama-generated DSVL tool
(11). Sketching operations on the overlay are recognised using the HHReco sketch recognition engine [33], which in turn
uses a training set of example sketch elements. Sketched items or groups of sketched items are turned into Marama dia-
gram shapes, lines or text, or groups of these. MaramaDiffer is a plug-in that allows comparing and visual differencing
of any Marama DSVL tool diagrams (12). MaramaThin extracts a Marama diagram data structure into XML format us-
ing EMF object serialisation. It then transforms this into an OpenLazslo-based [7] web-diagramming component, real-
ized using Flash in a web browser to provide a rich internet client interface (13). MaramaThin uses a set of Java-
implemented web services hosted in a web server (Tomcat) to communicate between the OpenLazslo-implemented dia-
gramming client and the Eclipse-hosted Marama tool instance. MaramaThin uses MaramaDiffer to update the Marama
tool diagrams, allowing multiple users to collaborate on diagram editing via a web infrastructure.

MaramaDiffer takes two diagram versions and applies a differencing algorithm to their EMF-based data structures. It
determines a set of changes that would transform one diagram into the other and visually presents these as diagram anno-
tations and a list of differences [61]. It provides support for multiple diagram version management including branching
and merging. While this supports diagram merging, it does not fully support model version management, which has lim-
ited current support in Marama tools. As tools evolve, their models need to be updated along with their event handlers.
Currently our Marama prototype provides limited, though not complete, support for this. Basic model version updates
can be incorporated including new entities, relationships and limited change (renaming) of existing entities and attrib-
utes. However, transformation scripts need to be written to transform an old model to a new one for more complex
changes e.g. split/merge entity, move attributes between entities, etc. The MaramaTorua meta-tool can be used to aid
this. Marama event handlers are saved as Java clases and can be versioned using conventional repository check-in/check-
out/revision processes. Marama supports simple management of meta-model version and event handler code version.
Marama meta-tool models can each also be versioned, though limited support for configuration management is currently
provided.

9. Evaluation

It is not a straightforward task to evaluate a substantial environment/toolset such as Marama, as it involves multiple
points of views including those of meta-tool developer, Tool Developers of developed tools, usability and utility and an
enormous number of variables [79]. Most formal usability evaluation approaches are limited to understanding the effect
of one or two variables [18, 32]. Controlling for variability is thus an impossible undertaking when assessing the usabil-
ity of a large environment. We have therefore adopted a variety of less formal, but overlapping approaches to obtain a
range of evidence for usability and efficacy. Firstly, we, and our industrial collaborators, have used Marama to construct
a range of different modeling tools, some very sophisticated. These provide a proof of concept demonstration that
Marama is fit for purpose: it can be used to specify and realize a wide variety of DSVL environments. Secondly, we have
undertaken a variety of formal and informal Tool Developer evaluations of both the core aspects of the Marama envi-
ronment, and individual component extensions to it. Combined these evaluations demonstrate both efficacy and Tool
Developer acceptability of our Marama approach.

9. 1. Experience

We have used Marama to construct a variety of modelling tools in addition to MaramaMTE+, the exemplar used
throughout this paper. The Marama meta-tools themselves (Meta-model Designer, Shape Designer, View Designer,
Event Handler Designer, Critic Designer and Transformation Designer) are all implemented using Marama in a boot-
strapped manner and were the first substantial exemplars developed. Four other major model-driven DSVL-based devel-
opment tools are illustrated in Figure 18.

MaramaMTE+ [15] is a performance-engineering tool providing two key domain-specific visual languages and a code
and deployment script generator. An architectural DSVL is used to model multi-tier architectures for systems, as illus-
trated on a simple example in Figure 18 (1). A stochastic form chart DSVL is used to model probabilistic loadings on the
defined application. From these models, MaramaMTE+ generates Java or C# code, JMeter or Microsoft ATC load test-
ing scripts, Ant compilation and deployment scripts, database schema and definitions, and various other deployment de-
scrpitors for J2EE and .NET applications. It then uses remote agents to run the generated load tests on this model gener-
ated software system, captures the performance results, and visualises the results in the architecture DSVL diagrams.
MaramaMTE+ was part of a PhD project and took 2-3 weeks to specify and generate the core modelling capabilities
using an early version of Marama. The code generators and visualisation support took the bulk of the remaining several
months work, including experimentation on numerous architectures, target platforms and load models.

MaramaSUDDEN, Figure 18 (2), provides an environment for integrated supply chain modelling [35]. This allows Tool
Developers, supply chain managers and SME owners, to model and configure supply chains. It includes support for re-
use of supply chain models, complex diagram layout control, and integration with external tools to store, validate and

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2011-02-0059

	

enact supply chain models. MaramaSUDDEN was developed iteratively over a few weeks elapsed as part of a collabora-
tive project. Much of this elapsed time was spent waiting on globally distributed partners to provide feedback on each
iteration.

MaramaDPML (Design Pattern Modelling Language) provides a tool to model and instantiate Design Patterns in a
UML-based design tool [58]. An example design pattern instantiation diagram is shown in Figure 18 (3), showing the
Abstract Factory pattern being instantiated in a UML design for a GUI library project. MaramaDPML provides code
generation from the UML models to Java code, multiple, integrated design diagrams with inter-diagram consistency
management, and validation of design pattern usage in UML designs. Tool Developers are software designers. Mara-
maDPML was developed over a 4-5 week period based on an earlier prototype using the JViews DSVL tool framework.
The main modelling framework took only a few days to specify; the bulk of the implementation time was for back end
code generation etc.

The final example, Figure 18 (4), is MaramaVCPML (Visual Care Plan Modelling Language) [43]. MaramaVCPML is
used to model generic care plans for chronic disease management, which are then instantiated for individual patients.
Care plans include modelling of treatments, physical exercise programmes, food, and review of key health indicators.
Template generic care plan models are reused for multiple patients. MaramaVCPML generates a full mobile device ap-
plication implementation allowing patients and their physician to monitor patient progress against their individual care
plan. MaramaVCPML supports multiple model integration, code generation and model template reuse. MaramaVCPML
was developed as part of a Masters project over a 3-4 month period.

Figure 18. Examples of Marama generated tools: (1) MaramaMTE+; (2) MaramaSUDDEN; (3) MaramaDPML and (4)

MaramaVCPML.

9. 2. Formal Evaluations

We have undertaken a significant number of qualitative and quantitative evaluations of DSVL tools developed using
Marama [35, 51, 58]. These have been uniformly positive in their overall appraisals of the developed tools. Feedback
from tool developers using Marama to produce these tools has also been very positive. We have used Marama over sev-
eral years in advanced visual language courses, including setting tool development taks using Marama and surveying the
post-graduate students for feedback on core Marama functionality. We have carried out focused qualitative and quantita-
tive studies of individual Marama components to test their usability and effectiveness for specifying DSVL tools and to
identify potential problems. We, and a small number of others, have used Marama on several industrial DSVL tool de-
velopment problems. These evaluation results have been sufficiently positive for us to release Marama as a publicly ac-
cessible toolset. We summarise this range of evaluations in the subsections below.

(1)

(4)

(2)

(3)

GRUNDY ET AL.: GENERATING DOMAIN-SPECIFIC VISUAL LANGUAGE TOOLS FROM ABSTRACT VISUAL SPECIFICATIONS 23

9. 2. 1. Cognitive Dimensions Evaluations of Individual Marama Components

We have conducted several Cognitive Dimensions (CD) [23] evaluations as we developed Marama capabilities to inform
the design of the visual meta-DSVL specifications. A CD evaluation provides an understanding of usability tradeoffs and
hence where mitigations need to be placed without a need for heavyweight conventional usabilty evaluations. Typically,
as we have developed modeling extensions, such as Kaitiaki and MaramaCritic, we have undertaken an individual CD
assessment of that extension. These have taken two forms: 1) applying CDs ourselves directly in a similar manner to that
proposed by [23] to explore design tradeoffs and 2) using Tool Developer evaluations coupled with a CD-based survey
instrument adapted from [10], which reframes CDs into questions understandable by Tool Developers but which allow a
CD analysis of their perceptions to be undertaken.

Direct CD Evaluations
To illustrate the former approach, consider the Kaitiaki visual handler specification component. In CD terms, we can
describe the tradeoffs made as follows (where CD dimension names are in italics). As our target users are inexperienced
programmers, we have chosena low-to-medium abstraction gradient based on iconic constructs and data flow between
them. The abstractions support query/action composition allowing users to specify Marama data and state changing ac-
tions as discrete, linked building blocks. The abstractions require hard mental operations but are mitigated by concrete
Tool Developer domain objects. We have experimented with elision techniques to allow concrete icons and abstract
event handler elements to be collapsed into a single meaningful icon. The dataflow metaphor used to compose event
specification building blocks seems to map well onto users’ cognitive perception of the metaphor, providing good close-
ness of mapping. The current approach has reasonable visibility and juxtaposability. Information for each element of an
event handler is readily accessible. The event handler specification can be juxtaposed with the modelling view that trig-
gers its execution. However, it still has the usual “box and connector” diagram viscosity problems; the user typically has
to rearrange the diagram to insert elements.

As another example of this approach, we undertook a similar evaluation for MaramaTatau, the OCL constraint specifica-
tion designer. In developing MaramaTatau, our focus was on providing a compact and accessible constraint representa-
tion for Marama, while minimising hidden dependency, juxtaposability and visibility issues. The visual abstractions in-
troduced are visual iconic constructs and data dependency links between them. This is quite a terse (low diffuseness)
extension to the existing metamodel notation and the abstractions are quite low level, providing a simple overview of
constraints and dependencies, and hence have low abstraction gradient. Error proneness has been reduced significantly.
The pre-existing Marama Java-based Marama event handler designer is very error-prone for both novice and experienced
users due to its reliance on API knowledge and Java coding together with the numerous hidden dependencies with the
visual metamodel. MaramaTatau reduces error proneness by avoiding API details and directly using concepts visible in
the metamodel. The verbosity (high diffuseness) of the textual OCL, due to its many built in functions, does, however,
present similar opportunities for error as does API mastery. The verbosity also introduces some degree of hard mental
operations as users must remember what function is appropriate for a given purpose. However, the relative familiarity of
OCL with the target Tool Developer group mitigates this and also means good closeness of mapping for them. The com-
pact nature of the representation, point and click construction, and automatic construction of the visual model annota-
tions, means viscosity is low. MaramaTatau allows progressive evaluation of a constraint specification via Marama’s live
update mechanism. Modifications to formulae take effect immediately after re-registration in a Tool Developer tool. A
visual debugger allows users to step through a formula’s interpretation using the same abstraction level as they were de-
veloped in. By contrast, java event handlers require conventional java debuggers and a good knowledge of Marama’s
internal structure.

Similar evaluations were undertaken for MaramaSketch and MaramaALM [27, 66], where the emphasis is more on envi-
ronmental factors than just on the notation. For MaramaSketch, much emphasis was placed on minimising premature
commitment, through deferment of recognition of sketch elements, and support of progressive evaluation via the ability
to recognise on demand. Vicosity is much lower than pen and paper sketching equivalents and closeness of mapping was
central to our motivation i.e. that sketching is a more natural mechanism for expressing initial designs than standard
computer diagramming approaches.

MaramaALM offers a terse notation with simple abstractions (low abstraction gradient) and low viscosity by encapsulat-
ing the low-level implementations into a generalised component that can be easily applied to any Marama-generated
tools. It also assists in reducing viscosity problems in the generated modelling tools by providing automatic layout in
those tools. The tool-designers can change the involved shapes and connector in one place and this modification will be
reflected throughout the whole mechanism (relatively low hidden dependencies). However, the approach comes with the
cognitive dimensions trade offs of some hidden dependency issues and premature commitment problems. During the
specification process, the use of Shape Designer and View Designer is inseparable due to the structural dependency be-
tween both of them. Each depends on the other to generate necessary properties and manage shape-entity mappings in
order for MaramaALM to function properly; hence from one view there is a hidden dependency to the other. Premature

24 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2011-02-0059

	

commitment is required, as meta-modellers need to decide which shapes and connectors are to be included in the layout
support during the specification process.

Cognitive Dimsions-based Survey Based Evaluations
As an illustration of the second CD evaluation approach, we conducted a user evaluation for our MaramaCritic tool with
twelve volunteer researchers and students who had basic background knowledge of the Marama meta-tools and who
were interested in modeling and the development of modeling tools to support their work. The CD-based survey tool
provided questions targeted at each of the cognitive dimensions as we were interested in the tradeoffs amongst those
dimensions that respondents observed.

MaramaCritic offers good visibility and viscosity for the target Tool Developers. Eleven out of the 12 respondents an-
swered that it is easy to see various parts of the tool and make changes. The only respondent who reported otherwise
commented that, due to a lack understanding of meta-tool concept and as a novice user, it was hard to understand the
functionality of various parts of the tool. Diffuseness refers to the verbosity of language, i.e. the number of symbols re-
quired to express the meaning. Ten respondents reported the notation to be succinct and not long-winded. Participants
noted that the notation is a straightforward representation of a critic and its feedback, as well as the connectors that link
them. MaramaCritic suffers from some hard mental operations (degree of demand on cognitive resources): four re-
spondents claimed that they needed to think carefully about the use of critic templates for specifying a critic. Four re-
spondents disagreed and four were undecided. MaramaCritic is not regarded as being error prone as five respondents
claimed that the notation is very straightforward and supported by form-based interfaces that are familiar to most users.
The respondents that answered otherwise raised the issue that unfamiliarity with the templates can cause users to make
mistakes in specifying critics. MaramaCritic provides good closeness of mapping. All respondents noted that the Mara-
maCritic editor provides a notation closely related to the domain. Role Expressiveness for MaramaCritic is obvious as
nine respondents answered it is easy to tell what each part is for when reading the notation. Ten respondents said that the
dependencies are visible and two respondents are undecided. Hidden dependencies are primarily between the visual critic
definer view and the form based template views. Moody argues that this type of hierarchical dependency is of positive
benefit in his Principal of Complexity Management [65]. MaramaCritic supports progressive evaluation well. Eleven
respondents stated it is easy to stop and check work progress. Critics and feedbacks properties can easily be edited and
any new changes will take effect during the model execution of the tool. All respondents agreed that there are no prema-
ture commitments in the Marama Critic Definer view. The user can freely specify a critic using any critic templates.
However, the user needs to define a critic first before a critic feedback can be specified and linked with the defined critic.
The user can add a critic as well as the critic feedback for the Marama tool incrementally as he/she encounters new crit-
ics.

The survey results show our respondents have a good degree of satisfaction with our critic design tool integrated with the
Marama meta-tools. The survey results demonstrated that for most respondents our approach appears to be useful in as-
sisting these respondents in the critic specification task. Our approach also appears to nicely complement the other com-
ponents of the Marama meta-tools and is integrated with these. However, limitations of the tool are also revealed through
the survey results. Thus, some minor improvements are needed to improve the usability of the critic specification editor
integrated with Marama meta-tools. The feedback and limitations that were identified from the survey have led us to
refine the current critic specification editor and develop an improved critic specification editor.

9. 2. 2. Large Scale Tool Developer Usage of Core Marama Functionality

We used Marama over four years in two final year undergraduate and post-graduate courses. Student Tool Developers
were set a project to build a DSVL tool of their choice and use a range of “core” Marama functionality. We define the
“core” Marama functionality as the meta-model designer (excluding constraints), shape designer, view designer, visual
OCL editor, and basic event handler specification (non-visual). These student Tool Developers documented their work in
a short report which included tool description, tool usage example, and reflection on using Marama to develop their
DSVL tool. We collated these reports to analyse the range of DSVL tool domains and complexity, usage of Marama
features, and feedback on the Marama prototype used. These experiences help us to understand whether student Tool
Developers found the Marama approach and these key Marama meta-tool features easy and effective for realising their
chosen DSVL tools. We used the Tool Developers’ feedback to improve Marama, and Marama meta-tool enhancement
was undertaken after every iteration.

277 graduate-level student Tool Developers participated. These were fourth year Computer Science or Software Engi-
neering students, i.e. novice short-term research task-oriented users: in 2007 - 121; 2008 - 59; 2009 - 77; and 2010 – 20.
They had used many software tools, though few had used tools for meta-modelling similar to Marama. Nothing should
be read into the variation in numbers of participants between years: this just reflects cohort availability and time availa-
ble by the researchers to undertake the DSVL tool development tasks.

GRUNDY ET AL.: GENERATING DOMAIN-SPECIFIC VISUAL LANGUAGE TOOLS FROM ABSTRACT VISUAL SPECIFICATIONS 25

These student Tool Developers were asked to construct a DSVL tool of their choice, but with at least a minimal set of
required components, so that tools with a realistic level of complexity were developed and participants were required to
exploit a core set of the Marama functionality. The required component set included: appropriate numbers of metamodel
entity types and associations; appropriate shapes, possibly of differing complexity (of the icon) and connectors; at least
two different view types, i.e. showing different types of information within each view type; a few simple event handlers
managing things such as diagram layout, editing constraints, model (entity) constraints, mock code generation, data im-
port, etc. Preparatory training sessions were provided on: (i) general DSVL design concepts and principles; (ii) a general
introduction to meta-tools and metamodelling concepts; and (iii) a specific introduction to Marama architecture and im-
plementation. Student Tool Developers were also provided with exemplar tools, demonstrations and tutorials. The Tool
Developers worked individually, in pairs, or in teams of 3. The larger the team the more complex the tool required.

Tool developers were then given three weeks elapsed time (working alongside other commitments) to complete the pro-
totype development together with an individual survey report answering a set of open ended questions to qualitatively
express both strengths and weaknesses of Marama in constructing their desired DSVL tool. We analysed the open-ended
surveys and categorised the responses into nominal qualitative attributes representing the strengths and weaknesses of
Marama from the Tool Developer’s point of view.

184 DSVL tool instances were developed using Marama in the projects (in 2007 - 93; 2008 - 43; 2009 - 43; and 2010 -
5). These included, in order of popularity, data modelling (69), component and architecture design (58), process model-
ling or planning (23), management (22), interface design (7), and requirements modelling (5) tools, summarised in Fig-
ure 19. This indicates that Marama can be effective in application across a large breadth of DSVL application domains.
Our set of basic requirements, described above, was met in 69% (127 out of 184) of the tools developed. Among those
57 tools that failed to meet all basic requirements, 1 failed the shape definitions (due to an invalid shape design not re-
flected in the shape viewers), 33 failed the view type specifications (either omitting a view type or containing unloadable
information in the views), and 36 failed the event handler implementation requirements (either not functioning with
runtime errors or not implemented at all, with reported reasons including the steep learning curve, difficulty of debug-
ging and time constraints). Many struggled with the MaramaTatau visual OCL constraints in earlier years due to prob-
lems with its implementation.

Figure 19. Broad domains of DSVL tools developed with Marama (left) and tools developed per year (right).

Most Tool Developers responded in the surveys that Marama was suited to develop their tools effectively (i.e. they were
able to achieve the requirements of the assignment) and efficiently (i.e. they were able to achieve their desired DSVL
tool results in a “reasonable” time frame) in general. However, there was still room for improvement. We specifically
asked students for lists of both strengths and weaknesses, so a comparison of the absolute numbers of strength and
weakness responses is not appropriate, however a categorisation of each is instructive.

Figure 20 (a) shows a broad categorization of strengths identified by Tool Developers in their reports. Strengths high-
lighted include: the rapidity of constructing DSVL tools; the simple approach for defining tool data structures with sepa-
ration of concerns and a seamless integration process; and the consistent, easy to understand metamodel, visual notation
and multiple view type abstractions. These reflect the core aims of Marama: the ability to efficiently construct new
DSVL-based modeling environments. Lesser numbers of comments related to extensibility and customizability. Com-
ments in reports from tool developers here include ones relating to the powerful event handling mechanism for extending
tool behaviours; and the low effort needed and minimum hidden dependency issues arising when customising and con-
straining Tool Developer models and views effectively in the generated tools. The lower numbers here probably reflect
that these features are secondary in novice tool developers’ minds to those of core meta-model and view definition.

26 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2011-02-0059

	

Figure 20 (b) categorises the weakness responses. The largest categories concerned the general Marama development
environment, and its stability and performance. Participants compared Marama to typical robust open source software
and thus expected it to have sound API documentation (access to API documentation is needed for complex event pro-
cessing) and comprehensive user manuals to help smooth the initial steep learning curve. Neither of these is available to
the level of quality desired, due to the research prototype nature of the system. Similarly, various modern IDE capabili-
ties were noted to be lacking by different participants. These included automated searching and registration, automatic
layout, model validation and refactoring, progress tracking, dynamic debugging, copy/paste, undo/redo, automatic back-
up and version control, multiple platform portability and collaboration support. Many of these had been addressed in the
research branches of the toolset, but had not found their way into the core branch released to the Tool Developer partici-
pants. Stability and performance issues also irritated Tool Developers, including the need to: fix a variety of annoying
bugs; provide more user friendly error messages and handle errors more gracefully; roll back unsuccessful operations;
reduce memory and resource consumption; and optimise the edit-compile-run and dynamic loading processes. These
weaknesses are all typical of the leading edge development of complex software environments and hence, while irritat-
ing, did not give us cause for concern over the viability of our approaches.

Figure 20. Strengths of Marama reported from student Tool Developer reports (left); and weaknesses reported (right).

The most significant “non-trivial” shortcoming of Marama was its limitation for visual notation design. Tool Developers
found the range of shape/connector types, the flexibility of drawing mechanisms, and the configuration of visual varia-
bles (e.g. layout, texture) to be lacking. This category accounted for over half of the remaining identified weaknesses.
Respondents also, but to a lesser extent, noted a variety of limitations of Marama generated tools and suggested includ-
ing better modelling element identification management; allowing a “smart” connection type that dynamically infers
actual types; allowing customisable toolbox items, icons and tooltips; and allowing deployment of generated tools as
standalone applications. Far smaller numbers of comments were made regarding the metamodel, view type and event
handler specification elements. Typical suggestions included providing an n-nary association type; allowing multiple
associations between two entities; allowing association sub-typing; adding more wizard/dialog or automation support for
view mapping; allowing linking of multiple view types passing common values in between (i.e. auto mapping between
meta model elements); and providing more comprehensive event handler building blocks for composition and reuse. Of
note is that most of the non-trivial shortcoming comments were in fact in the form of suggestions for fairly straightfor-
ward enhancements, many we incorporated into subsequent iterations, rather than fundamental issues with our approach.

We conclude from these experience reports that the Marama approach and core functionality of Marama has demonstrat-
ed itself to be a suitable platform for designing baseline DSVL notations, with excellent extension points for behaviours
implemented as model/user event handlers. A key aim was to avoid having Marama users need to write complex code
and use complex API calls as needed for advanced features in many DSVL toolkits and IDEs. Thus much of our research
focus has been placed on using visual languages and metaphors, such as Kaitiaki, MaramaTatau, MaramaCritic and
MaramaTorua, for event handling, constraint/critique authoring and model transformation specification. These research
features we have evaluated for the most part individually to date.

A few participants each year used an alternative meta-tool platform to Marama. These included MS DSL Tools (a Visual
Studio SDK extension), Eclipse GMF, and MetaEdit+. This was usually because they had previously used Marama on an
Honors or Summer Research project. We asked them to report anecdotal evidence of their experiences using these tools
compared to Marama. In general, feedback on Marama’s core capabilities was positive, with students reporting GMF and
DSL tools generally required them to write much more Java or C# code respectively. They also were required to know
many more details of the tool frameworks compared to Marama meta-tools in order to achieve similar DSVL tool capa-
bilities. MetaEdit+ provided good high-level abstractions though several of these were form-based or script-based vs
visual specifications as in Marama. We plan to have students use and compare other meta-tool platforms to Marama,
such as VisualDiaGen and Tiger, in the future, and to more systematically compare and contrast these tools to Marama.

GRUNDY ET AL.: GENERATING DOMAIN-SPECIFIC VISUAL LANGUAGE TOOLS FROM ABSTRACT VISUAL SPECIFICATIONS 27

9. 2. 3. Other Small Scale Evaluations of Individual Marama Components

A further technique we used regularly was to use small groups of users to conduct informal, but usually insightful, eval-
uations. Participant numbers were typically too small for statistically significant quantitative results but sufficient for
qualitative feedback. For example with the MaramaTorua mapping tool, our Tool Developer evaluation had four experi-
enced data translator implementers carry out a set of mapping tasks (parts of the BPMN->BPEL4WS problem described
ealrier) [37]. They used MaramaTorua to model the schema, specify a range of mappings, generate an XSLT-based
translator, and test it. Overall results were very favorable with all users able to carry out the task in orders less time than
directly implementing Java or XSLT translators. Users expressed overall satisfaction with MaramaTorua’s capabilities.
Some difficulties found were modeling conditional mappings and string parsing operations and the specification of com-
plex expressions using the MaramaTorua formula editor. Users desired a “design by example” approach for the latter
using actual source and target values with the tool inferring conversions. Conducting such simple, fast evaluations regu-
larly informed our development approach.

9. 2. 4. Industrial users and applications

During the development of Marama, we were fortunate to develop a strong relationship with a Model Driven Engineer-
ing consultancy company, who regularly, over the period of nearly 2 years, applied Marama to develop industrial
strength visual editors that were deployed into large corporate organisations. To support this company, we developed an
issue reporting and feedback mechanisms, and obtained regular qualitiative feedback from the company personnel.
While informal, in comparison to typical “academic” evaluations, these feedback mechanisms were incredibly useful to
us. Tool developers, in this case, were professional programmers and hence differed somewhat from our originally in-
tended target of less technically-able tool developers. As a result they preferred using the core marama meta-tool features
of meta-model, shape, view definition and visual OCL, coupled with handcrafted Java event handlers (i.e. similar to
those features predominantly used in our large-scale experience report above) over features more specifically targeted at
less technical Tool Developers, such as Kaitiaki, MaramaCritic and MaramaTorua. We asked them for feedback on their
motivation for choosing to use Marama on industrial projects, their experiences with Marama on these projects, their
assessment of the Marama approach and prototype tool platform, and issues that they felt needed to be addressed in fu-
ture research to improve the Marama approach for industrial adoption.

Motivation for choosing Marama was three-fold: its approach to designing DSVLs, its support for modelling with a wide
range of generated visual language tools, and its open-source license. Additionally, its use of Eclipse projects and close
integration with Eclipse toolsets made it attractive to them. When the company explored options for a next-generation
tool for knowledge engineering, they felt very few available tools had these characteristics. Marama was used by the
company on two significant projects each involving development of a set of visual languages/editors and was used in
demonstrators along with generated DSVL tools on a wide variety of occasions. Significant development of Marama was
undertaken by the company, in collaboration with our research group, to “industrially harden” the Marama prototype
implementation. This allowed for more scalable and robust Marama tools to be developed and deployed, as well as mak-
ing the Marama meta-tools implementations themselves more robust.

Overall the feedback provided on the core Marama features, while anecdotal, was extremely positive, with high satisfac-
tion reported by the tool developers on the productivity afforded using Marama. Also reported was strong satisfaction by
tool end-users when Marama generated tools were deployed into their client organisations. Some of the key “shining
aspects” of Marama reported by the company included its approach to supporting generation of DSVL editors using pre-
dominantly visual specification techniques “without confusing technical overheads” and with good separation of con-
cerns. The ease of turning conceptual models into visual diagramming tools often “wowed” industrial partners of the
company and the end users of the tools. The company judged the Marama approach was significantly ahead of other
platforms such as MetaEdit+, DS Tools and GMF.

Some limitations of Marama related to its research prototype nature; the immaturity of its implementation and a range of
usability limitations, some due to its reliance on Eclipse projects, and some, as also reported by our student tool develop-
ers above, due to its prototypical nature. Many potential users lacked confidence to develop Marama-based tools either
on their own or exclusively relying on external parties to assist in these efforts. Much of this lack of confidence related to
a lack of reusable patterns/diagrams/parts, something we have been addressing in recent work [49]. Some lack of custom
graphic symbols, out-of-the-box layout managers, and reliance on Eclipse deployment approaches also drew negative
comment from potential users. The greater platform and usability maturity of other DSVL tools, such as MetaEdit+, was
significantly attractive to some tool developers.

However, for this high-end Tool Developer, more fundamental limitations with the Marama approach, and realisation of
the approach in our current prototype, were also identified. These included the lack of a shared, robust and highly scala-

28 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2011-02-0059

	

ble repository for digital artefacts. This was a major requirement for many model-centric organisations. The desire for an
entirely web-based user interface for both specification and generated modelling tools was also important. Additionally,
a clean implementation of a denotational semantics that completely decouples modelling from naming, and a desire for a
more mathematically-based meta-model including model and category theory underpinning the modelling framework
was desired by our partner, rather than using less formal EER meta-models as currently used by Marama. These re-
quirements are well beyond those of our target Tool Developer community for which a simple, readily understandable
meta-model approach is preferable. Marama currently also lacks textual DSL tool integration and has no direct support
for textual DSL design and generation. Many organisations adopting model-driven engineering use textual DSLs and
wanted this support to be as accessible and integrated in Marama as its current support for DSVLs.

We have also used Marama ourselves on several industrial projects, predominantly developing proof of concept tools to
assist in our own consulting work or to assist our industry partners in their R&D projects. Significant Marama tool pro-
jects whose results fed into industrial R&D efforts included developing an XForms designer, two business process mod-
elling tools, a supply chain modeller, a health care plan modeller, and a requirements engineering support tool. All of
these tools, developed with Marama, were used experimentally by industrial partners and their target end users. As with
our partner experiences above, we found Marama to be very effective for designing new domain-specific visual lan-
guages and exploratory authoring of these by end users. The generated DSVL tools could be rapidly developed and ex-
perimented with. However, limitations with its model repository, limited support for large model visualisation, minor but
annoying usability issues, and lack of textual DSL integration, all contributed to these tools not being widely deployed.

10. Discussion

Combined together, our experiences gained from complex DSVL application development, the core environment evalua-
tions, the individual component evaluations and our industrial users indicate our Marama approach to DSVL tool engi-
neering is effective. Our small-scale evaluations separate concerns, allowing focus on individual components, and have
provided evidence for their efficacy and usability. Our more substantial whole of environment evaluation provides evi-
dence that the components work effectively when combined together. In both cases good evidence for the efficacy and
usability of Marama has been provided. Deficiencies noted, particularly from the large-scale evaluation, are predomi-
nantly related to expected software maturity issues, such as a lack of API documentation and software stability, and is-
sues specific to non-target user groups, such as the need for a more mathematically robust meta model, rather than fun-
damental issues with the approach. Experience from applying Marama to realize substantial DSVL environments, both
academic and industrial, allows extrapolation from the more formal, and hence restricted, evaluations, to more realistic
usage. Both the developer experience in specifying these environments and the Tool Developer evaluations of their usa-
bility and efficacy provide strong support for Marama’s effectiveness as a meta-tool.

While our aims in developing Marama were to afford meta-tool capability to non-technical Tool Developers to allow
them to develop their own modelling environments, we are not quite at the point of generating sufficiently robust evi-
dence to demonstrate that we achieved this. Our evaluations have focussed on more technically proficient Tool Develop-
ers to date. Conducting similar studies on non-technically proficient audiences remains future work.

We have, however, met each of the key requirements for a DSVL meta-tool we established in Section 2. Looking in
more detail at Sutcliffe’s Design meta-domain model [73], we see that Marama provides strong support in some areas
and partial support in others, suggesting future work opportunities as follows:

• Modelling and protyping support; visualization support

Marama’s multiple metaphor meta-DSVL models provide effective separation of concerns by specifying different DSVL
aspects at different abstraction levels. At a tool level, there is seamless integration of these multiple abstractions, howev-
er hard mental operations and hidden dependencies are introduced as a trade-off for the resulting specification flexibility.
Users need to decide which visual language to use at a particular modelling stage. Therefore, there is a need for a de-
scription and guidelines for these metaphors, from which users can make better choices about their specification ap-
proaches. An obvious direction to proceed is to use MaramaCritic to specify a set of meta-critics for the Marama meta-
tools embodying such high-level guidelines and constraints. We aim to operationalise Moody’s Physics of Notations
[65] design principles in these critic-based guidelines and to provide some basic visual language assessment support for
evolving DSVLs within Marama itself.

In addition, the expressability provided by some of the Marama meta-tool components is currently limited, making it
difficult to design and realize some types of diagram. Specifically, modeling tools are limited to box and connector, with
some limited containment support. Such restrictions are common in current meta-tools. We are currently looking to ex-
tend this to allow for notations such as Euler graphs [36] which combine box and connector and overlapping region re-
quirements.

GRUNDY ET AL.: GENERATING DOMAIN-SPECIFIC VISUAL LANGUAGE TOOLS FROM ABSTRACT VISUAL SPECIFICATIONS 29

To provide better and more integrated support for information presentation and visualisation, we aim to merge modelling
with visualisation, to empower visualisation with the capability of extracting/generalising models for reuse. From this,
instead of creating new models from scratch each time, we will allow users to explore existing models and capture reus-
able components by various visualisation functionalities such as querying, filtering and abstracting. This extends our
Kaitiaki work with more complex reusable query and visualization support [54].

• Critics and knowledge retrieval/reuse

MaramaCritic provides good support for specification and realization of tool level critics. These, however, need to be
manually specified by tool developers, whereas Sutcliffe envisaged some form of automated reasoning over prior solu-
tions. Similarly, Marama currently has very limited support for reuse of designs and part designs. A promising direction
we are exploring is meta-pattern support, which provides facilities for representing and instantiating domain-specific and
domain-independent meta-fragments [40, 49] including a set of generalised/generic tasks (e.g. formating trees, juxtapos-
ing multiple view display). This will provide one step towards a more intelligent approach to design reuse.

• Annotation, collaboration and creativity support

While Marama has some useful annotation, collaboration and creativity support via its collaborative editing, and web
and sketch based diagramming support, there is room for enhancement. We plan to employ program-by-demonstration
techniques to provide ways of recording, simulating and validating designs. Such techniques should allow users to play
pre-recorded macros to learn the visual languages and their modelling procedures, and to specify their own domain sys-
tems following demonstrated examples or patterns. In addition to the current procedure of generating DSVL environ-
ments from meta-level structural and behavioural specifications, we wish to also allow users to demonstrate the intent of
their DSVL tools and automatically reverse generate the specifications (both structural and behavioural) from that, with
further refinement allowed via round-trip engineering.

11. Conclusions

Models are used in a huge range of domains. This provides an obvious driving force for good tools to author, visualise,
manage, and evolve models. We have described Marama, a meta-DSVL tool for multi-view DSVL tool generation. The
core of Marama comprises a set of visual meta-DSVL models for specifying both the structural and behavioural aspects
of DSVL environments. Extensions include design critics, model transformation, collaborative editing, thin-client and
sketch-based editing interfaces. We have developed a number of complex DSVL tool applications in various domains
using Marama. These include performance engineering, enterprise/business process modelling, design patterns, health
care planning, data modeling, software engineering, and so on. We have carried out a variey of evaluations of Marama
itself and Marama-developed DSVL tools. Overall, while there are a number of areas for further enhancement of the
meta-toolset, it provides an effective set of DSVL-based meta-tools for designing and realizing a wide variety of DSVL
tools. Key enhancements proposed include using design critics to provide “meta-critics” and constraints for DSVL lan-
guage design; support for knowledge reuse via DSVL patterns and refactoring support; and further extension and en-
hancement of annotation, collaboration and human-centric modeling interfaces. The Marama toolset has now been re-
leased in an open source form (https://wiki.auckland.ac.nz/display/csidst/Welcome) and is being taken up by a number
of research groups and industrial partners for software tool prototyping. It is in the process of commercialising and “in-
dustry hardening” with SofismoAG.

Acknowledgments

The authors gratefully acknowledge the support of our colleagues Assoc Prof Robert Amor, Dr Beryl Plimmer, Dr Ger-
ald Weber, Dr Rainbow Cai, and many project students and industry partners. We also acknowledge funding provided by
The New Zealand Ministry of Science & Innovation’s Software Process and Product Improvement project, the Malaysi-
an Government, the University of Auckland, and the Tertiary Education Commision’s funded BuildIT project.

References

1. Eclipse	 Graphical	 Editing	 Framework.	 Available	 from:	 www.eclipse.org/gef.	
2. Eclipse	 Graphical	 Modelling	 Framework.	 Available	 from:	 http://www.eclipse.org/gmf/.	
3. IBM	 ILOG	 JViewsDiagrammer.	 Available	 from:	 http://www-‐

01.ibm.com/software/integration/visualization/jviews/diagrammer/.	
4. Merlin	 Generator.	 Available	 from:	 http://sourceforge.net/projects/merlingenerator/.	
5. Microsoft	 Domain	 Specific	 Language	 Tools.	 Available	 from:	 http://code.msdn.microsoft.com/vsvmsdk.	
6. NetBeans	 Visual	 Library.	 Available	 from:	 http://platform.netbeans.org/graph/.	

30 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2011-02-0059

	

7. OpenLaszlo.	 Available	 from:	 http://www.openlaszlo.org/.	
8. Ali,	 N.M.,	 et	 al.,	 End-‐user	 oriented	 critic	 specification	 for	 domain-‐specific	 visual	 language	 tools,	 in	 Proceedings	 of	 the	 IEEE/ACM	

international	 conference	 on	 Automated	 software	 engineering.	 2010,	 ACM:	 Antwerp,	 Belgium.	 p.	 297-‐300.	
9. Bentley,	 R.,	 et	 al.,	 Supporting	 collaborative	 information	 sharing	 with	 the	 World-‐Wide	 Web:	 The	 BSCW	 Shared	 Workspace	 sys-‐

tem,	 in	 Proceedings	 of	 the	 fourth	 International	 WWW	 Conference.	 1995:	 Boston,	 MA.	
10. Blackwell,	 A.F.	 and	 Green,	 T.R.G.	 A	 Cognitive	 Dimensions	 Questionnaire	 Optimised	 for	 Users.	 in	 Twelfth	 Annual	 Meeting	 of	 the	

Psychology	 of	 Programming	 Interest	 Group	 (PPIG-‐12).	 2000.	 CoriglianoCalabro,	 Cosenza,	 Italy.	
11. Bottcher,	 S.	 and	 Grope,	 S.,	 Automated	 data	 mapping	 for	 cross	 enterprise	 data	 integration,	 in	 2003	 International	 Conference	 on	

Enterprise	 Information	 Systems.	 2003.	
12. Brieler,	 F.	 and	 Minas,	 M.,	 A	 model-‐based	 recognition	 engine	 for	 sketched	 diagrams.	 J.	 Vis.	 Lang.	 Comput.,	 2010.	 21(2):	 p.	 81-‐97.	
13. Buchner,	 J.,	 Fehnl,	 T.,	 and	 Kuntsmann,	 T.,	 HotDoc	 a	 flexible	 framework	 for	 spatial	 composition,	 in	 the	 1997	 IEEE	 Symposium	 on	

Visual	 Languages.	 1997,	 IEEE	 CS	 Press.	 p.	 92-‐99.	
14. Burnett,	 M.,	 et	 al.,	 Forms/3:	 A	 first-‐order	 visual	 language	 to	 explore	 the	 boundaries	 of	 the	 spreadsheet	 paradigm.	 Journal	 of	

Functional	 Programming,	 2001.	 11(2):	 p.	 155-‐206.	
15. Cai,	 Y.,	 Grundy,	 J.,	 and	 Hosking,	 J.,	 Synthesizing	 client	 load	 models	 for	 performance	 engineering	 via	 web	 crawling,	 in	 Proceed-‐

ings	 of	 the	 twenty-‐second	 IEEE/ACM	 international	 conference	 on	 Automated	 software	 engineering.	 2007,	 ACM:	 Atlanta,	 Geor-‐
gia,	 USA.	 p.	 353-‐362.	

16. Chen,	 Q.,	 Grundy,	 J.,	 and	 Hosking,	 J.,	 An	 e-‐whiteboard	 application	 to	 support	 early	 design-‐stage	 sketching	 of	 UML	 diagrams,	 in	
Proceedings	 of	 the	 2003	 IEEE	 Symposium	 on	 Human	 Centric	 Computing	 Languages	 and	 Environments.	 2003,	 IEEE	 Computer	
Society.	 p.	 219-‐226.	

17. Cox,	 P.T.,	 et	 al.,	 Experiences	 with	 Visual	 Programming	 in	 a	 Specific	 Domain	 -‐	 Visual	 Language	 Challenge	 ’96,	 in	 the	 1997	 IEEE	
Symposium	 on	 Visual	 Languages.	 1997.	

18. Dillon,	 A.,	 Usability	 evaluation.	 W.	 Karwowski	 (ed.),	 Encyclopedia	 of	 Human	 Factors	 and	 Ergonomics,	 2001.	
19. Draheim,	 D.	 and	 Weber,	 G.,	 Modeling	 Submit/Response	 Style	 Systems	 with	 Form	 Charts	 and	 Dialogue	 Constraints,	 Lecture	

Notes	 in	 Computer	 Science,	 2003,	 Volume	 2889/2003,	 267-‐278.	

20. Ebert,	 J.,	 Süttenbach,	 R.,	 and	 Uhe,	 I.,	 Meta-‐CASE	 in	 practice:	 A	 CASE	 for	 KOGGE,	 in	 Advanced	 Information	 Systems	 Engineering,	
A.	 Olivé	 and	 J.	 Pastor,	 Editors.	 1997,	 Springer	 Berlin	 /	 Heidelberg.	 p.	 203-‐216.	

21. Ehrig,	 K.,	 et	 al.,	 Generation	 of	 visual	 editors	 as	 eclipse	 plug-‐ins,	 in	 Proceedings	 of	 the	 20th	 IEEE/ACM	 international	 Conference	
on	 Automated	 software	 engineering.	 2005,	 ACM:	 Long	 Beach,	 CA,	 USA.	 p.	 134-‐143.	

22. Gordon,	 D.,	 et	 al.,	 A	 technology	 for	 lightweight	 web-‐based	 visual	 applications,	 in	 Proceedings	 of	 the	 2003	 IEEE	 Conference	 on	
Human-‐Centric	 Computing.	 2003,	 IEEE	 CS	 Press:	 Auckland,	 New	 Zealand.	 p.	 28-‐31.	

23. Green,	 T.R.G.	 and	 Petre,	 M.,	 Usability	 analysis	 of	 visual	 programming	 environments:	 a	 'cognitive	 dimensions'	 framework.	 JVLC,	
1996.	 7:	 p.	 131-‐174.	

24. Grundy,	 J.	 and	 Hosking,	 J.,	 Supporting	 Generic	 Sketching-‐Based	 Input	 of	 Diagrams	 in	 a	 Domain-‐Specific	 Visual	 Language	 Meta-‐
Tool,	 in	 Proceedings	 of	 the	 29th	 international	 conference	 on	 Software	 Engineering.	 2007,	 IEEE	 Computer	 Society.	 p.	 282-‐291.	

25. Grundy,	 J.,	 et	 al.,	 Performance	 engineering	 of	 service	 compositions,	 in	 Proceedings	 of	 the	 2006	 international	 workshop	 on	
Service-‐oriented	 software	 engineering.	 2006,	 ACM:	 Shanghai,	 China.	 p.	 26-‐32.	

26. Grundy,	 J.C.	 and	 Hosking,	 J.G.,	 ViTABaL:	 A	 Visual	 Language	 Supporting	 Design	 by	 Tool	 Abstraction,	 in	 the	 1995	 IEEE	 Symposium	
on	 Visual	 Languages.	 1995,	 IEEE	 CS	 Press:	 Darmsdart,	 Germany.	 p.	 53-‐60.	

27. Grundy,	 J.C.	 and	 Hosking,	 J.G.,	 Serendipity:	 integrated	 environment	 support	 for	 process	 modelling,	 enactment	 and	 work	 coor-‐
dination.	 Automated	 Software	 Engineering:	 Special	 Issue	 on	 Process	 Technology,	 1998.	 5(1):	 p.	 27-‐60.	

28. Grundy,	 J.C.,	 Hosking,	 J.G.,	 and	 Mugridge,	 W.B.,	 Visualising	 Event-‐based	 Software	 Systems:	 Issues	 and	 Experiences,	 in	
SoftVis97.	 1997:	 Adelaide,	 Australia.	

29. Grundy,	 J.C.,	 et	 al.,	 Generating	 Domain-‐Specific	 Visual	 Language	 Editors	 from	 High-‐level	 Tool	 Specifications,	 in	 the	 21st	
IEEE/ACM	 International	 Conference	 on	 Automated	 Software	 Engineering.	 2006:	 Tokyo,	 Japan.	 p.	 25-‐36.	

30. Grundy,	 J.C.,	 Mugridge,	 W.B.,	 and	 Hosking,	 J.G.,	 Constructing	 component-‐based	 software	 engineering	 environments:	 issues	
and	 experiences.	 Journal	 of	 Information	 and	 Software	 Technology,	 2000.	 42	 (2):	 p.	 117-‐128.	

31. Guerra,	 E.,	 Lara,	 J.d.,	 and	 Diaz,	 P.,	 Visual	 specification	 of	 measurements	 and	 redesigns	 for	 domain	 specific	 visual	 languages.	
JVLC,	 2008.	 19(3):	 p.	 399-‐425.	

32. Hartson,	 H.R.,	 Andre,	 T.S.,	 and	 Williges,	 R.C.,	 Criteria	 for	 evaluating	 usability	 evaluation	 methods.	 International	 Journal	 of	 Hu-‐
man-‐Computer	 Interaction,	 2003.	 15(1):	 p.	 145-‐181.	

33. Heloise,	 H.	 and	 Newton,	 A.R.	 Sketched	 Symbol	 Recognition	 using	 Zernike	 Moments.	 in	 17th	 International	 Conference	 on	 Pat-‐
tern	 Recognition	 (ICPR'04)	 2004.	

34. Holt,	 R.C.,	 Winter,	 A.,	 and	 Schurr,	 A.	 GXL:	 toward	 a	 standard	 exchange	 format.	 in	 Reverse	 Engineering,	 2000.	 Proceedings.	 Sev-‐
enth	 Working	 Conference	 on.	 2000.	

35. Hosking,	 J.,	 Mehandjiev,	 N.,	 and	 Grundy,	 J.,	 A	 domain	 specific	 visual	 language	 for	 design	 and	 coordination	 of	 supply	 networks,	
in	 Proceedings	 of	 the	 2008	 IEEE	 Symposium	 on	 Visual	 Languages	 and	 Human-‐Centric	 Computing.	 2008,	 IEEE	 Computer	 Society.	
p.	 109-‐112.	

36. Howse,	 J.,	 Rodgers,	 P.,	 and	 Stapleton,	 G.,	 Drawing	 euler	 diagrams	 for	 information	 visualization,	 in	 Proceedings	 of	 the	 6th	 inter-‐
national	 conference	 on	 Diagrammatic	 representation	 and	 inference.	 2010,	 Springer-‐Verlag:	 Portland,	 OR,	 USA.	 p.	 4-‐4.	

37. Huh,	 J.,	 et	 al.,	 Integrated	 Data	 Mapping	 for	 a	 Software	 Meta-‐tool,	 in	 Proceedings	 of	 the	 2009	 Australian	 Software	 Engineering	
Conference.	 2009,	 IEEE	 Computer	 Society.	 p.	 111-‐120.	

GRUNDY ET AL.: GENERATING DOMAIN-SPECIFIC VISUAL LANGUAGE TOOLS FROM ABSTRACT VISUAL SPECIFICATIONS 31

38. Johnson,	 G.	 LabVIEW	 Graphical	 Programming:	 Practical	 Applications	 in	 Instrumentation	 and	 Control,	 2nd	 Edition,	 	 McGraw-‐Hill	
School	 Education	 Group,1997.	

39. Kaiser,	 G.E.,	 et	 al.,	 WWW-‐based	 collaboration	 environments	 with	 distributed	 tool	 services.	 World	 Wide	 Web,	 1998.	 1(1):	 p.	 3-‐
25.	

40. Kamalrudin,	 M.,	 Hosking,	 J.,	 and	 Grundy,	 J.,	 Improving	 Requirements	 Quality	 using	 Essential	 Use	 Case	 Interaction	 Patterns,	 in	
33rd	 International	 Conference	 on	 Software	 Engineering	 (ICSE	 2011).	 2011:	 Waikiki,	 Honolulu,	 Hawaii.	

41. Kelly,	 S.,	 Lyytinen,	 K.,	 and	 Rossi,	 M.,	 Meta	 Edit+:	 A	 Fully	 configurable	 Multi-‐User	 and	 Multi-‐Tool	 CASE	 Environment,	 in	 Proc.	 of	
CAiSE'96.	 1996,	 LNCS	 1080.	

42. Khaled,	 R.,	 et	 al.,	 A	 lightweight	 web-‐based	 case	 tool	 for	 sequence	 diagrams,	 in	 SIGCHI-‐NZ	 Symposium	 On	 Computer-‐Human	
Interaction.	 2002:	 Hamilton,	 New	 Zealand.	

43. Khambati,	 A.,	 Grundy,	 J.C.,	 Hosking,	 J.G.	 and	 Warren,	 J.	 Model-‐Driven	 Development	 of	 Mobile	 Personal	 Health	 Care	 Applica-‐
tions	 ,Proceedings	 of	 the	 2008	 23rd	 IEEE/ACM	 International	 Conference	 on	 Automated	 Software	 Engineering,	 L’Aquila,	 Italy,	
Sept	 2008,	 IEEE.	

44. Kim,	 C.H.,	 Hosking,	 J.G.	 and	 Grundy,	 J.C.	 A	 Suite	 of	 Visual	 Languages	 for	 Statistical	 Survey	 Specification,	 IEEE	 Symposium	 on	
Visual	 Languages	 and	 Human-‐Centric	 Computing	 (VL/HCC'05),	 2005,	 pp.19-‐26.	

45. Krasner,	 G.E.	 and	 Pope,	 S.T.,	 A	 cookbook	 for	 using	 the	 model-‐view-‐controller	 user	 interface	 paradigm	 in	 Smalltalk-‐80.	 JOOP,	
1988.	 1(3):	 p.	 26-‐49.	

46. Lara,	 J.	 and	 Vangheluwe,	 H.,	 AToM3:	 A	 Tool	 for	 Multi-‐formalism	 and	 Meta-‐modelling,	 in	 Fundamental	 Approaches	 to	 Software	
Engineering,	 R.-‐D.	 Kutsche	 and	 H.	 Weber,	 Editors.	 2002,	 Springer	 Berlin	 /	 Heidelberg.	 p.	 174-‐188.	

47. Ledeczi,	 A.,	 et	 al.,	 Composing	 Domain-‐Specific	 Design	 Environments.	 Computer,	 2001:	 p.	 44-‐51.	
48. Levendovszky,	 T.,	 et	 al.,	 A	 Systematic	 Approach	 to	 Metamodeling	 Environments	 and	 Model	 Transformation	 Systems	 in	 VMTS.	

Electronic	 Notes	 in	 Theoretical	 Computer	 Science,	 2005.	 127(1):	 p.	 65-‐75.	
49. Li,	 K.,	 et	 al.,	 Augmenting	 DSVL	 Meta-‐Tools	 with	 Pattern	 Specification,	 Instantiation	 and	 Reuse.	 VFfP	 2010,	 Electronic	 Communi-‐

cations	 of	 the	 EASST,	 2010.	 31.	
50. Li,	 K.N.L.,	 Hosking,	 J.G.,	 and	 Grundy,	 J.C.,	 A	 Generalised	 Event	 Handling	 Framework,	 in	 KISS	 Workshop,	 Workshop	 at	 2009	

IEEE/ACM	 Automated	 Software	 Engineering	 Conference.	 2009:	 Auckland,	 New	 Zealand.	
51. Li,	 L.,	 Grundy,	 J.C.,	 and	 Hosking,	 J.G.,	 EML:	 A	 Tree	 Overlay-‐based	 Visual	 Language	 for	 Business	 Process	 Modelling,	 in	 ICEIS.	

2007:	 Portugal.	
52. Lin,	 Y.,	 Gray,	 J.,	 and	 Jouault,	 F.,	 DSMDiff:	 a	 differentiation	 tool	 for	 domain-‐specific	 models.	 Eur	 J	 InfSyst,	 2007.	 16(4):	 p.	 349-‐

361.	
53. Liu,	 N.,	 Grundy,	 J.C.,	 and	 Hosking,	 J.G.,	 A	 visual	 language	 and	 environment	 for	 composing	 web	 services,	 in	 the	 2005	 ACM/IEEE	

International	 Conference	 on	 Automated	 Software	 Engineering.	 2005,	 IEEE	 Press:	 Long	 Beach,	 California.	
54. Liu,	 N.,	 Grundy,	 J.C.,	 and	 Hosking,	 J.G.,	 A	 visual	 language	 and	 environment	 for	 specifying	 user	 interface	 event	 handling	 in	 de-‐

sign	 tools,	 in	 The	 Eighth	 Australasian	 User	 Interface	 Conference	 -‐	 AUIC	 2007.	 2007,	 CRPIT	 Press:	 Ballarat,	 Australia.	
55. Liu,	 N.,	 Hosking,	 J.G.,	 and	 Grundy,	 J.C.,	 MaramaTatau:	 Extending	 a	 Domain	 Specific	 Visual	 Language	 Meta	 Tool	 with	 a	 Declara-‐

tive	 Constraint	 Mechanism,	 in	 2007	 IEEE	 Symposium	 on	 Visual	 Languages	 and	 Human-‐Centric	 Computing.	 2007:	 Coeur	 d'Alène,	
Idaho,	 USA.	

56. Lyu,	 M.	 and	 Schoenwaelder,	 J.,	 Web-‐CASRE:	 A	 Web-‐Based	 Tool	 for	 Software	 Reliability	 Measurement,	 in	 Proceedings	 of	 Inter-‐
national	 Symposium	 on	 Software	 Reliability	 Engineering.	 1998,	 IEEE	 CS	 Press:	 Paderborn,	 Germany.	

57. Mackay,	 D.,	 Noble,	 J.,	 and	 Biddle,	 R.,	 A	 lightweight	 web-‐based	 case	 tool	 for	 UML	 class	 diagrams,	 in	 Proceedings	 of	 the	 Fourth	
Australasian	 user	 interface	 conference	 on	 User	 interfaces	 2003	 -‐	 Volume	 18.	 2003,	 Australian	 Computer	 Society,	 Inc.:	 Adelaide,	
Australia.	 p.	 95-‐98.	

58. Maplesden,	 D.,	 Hosking,	 J.G.,	 and	 Grundy,	 J.C.,	 A	 Visual	 Language	 for	 Design	 Pattern	 Modelling	 and	 Instantiation,	 in	 Design	
Patterns	 Formalization	 Techniques.	 2007,	 ToufikTaibi	 (Ed),	 Idea	 Group	 Inc.:	 Hershey,	 USA.	

59. Maurer,	 F.,	 et	 al.,	 Merging	 project	 planning	 and	 Web	 enabled	 dynamic	 workflow	 technologies.	 Internet	 Computing,	 IEEE,	 2000.	
4(3):	 p.	 65-‐74.	

60. McIntyre,	 D.W.,	 Design	 and	 implementation	 with	 Vampire,	 in	 Visual	 object-‐oriented	 programming.	 1995,	 Manning	 Publications	
Co.	 p.	 129-‐159.	

61. Mehra,	 A.,	 Grundy,	 J.C.,	 and	 Hosking,	 J.G.,	 A	 generic	 approach	 to	 supporting	 diagram	 differencing	 and	 merging	 for	 collabora-‐
tive	 design,	 in	 2005	 IEEE/ACM	 Automated	 Software	 Engineering.	 2005:	 Long	 Beach	 CA.	

62. Minas,	 M.,	 Concepts	 and	 realization	 of	 a	 diagram	 editor	 generator	 based	 on	 hypergraph	 transformation.	 Science	 of	 Computer	
Programming,	 2002.	 44(2):	 p.	 157-‐180.	

63. Minas,	 M.,	 Visual	 Specification	 of	 Visual	 Editors	 with	 VisualDiaGen,	 in	 Applications	 of	 Graph	 Transformations	 with	 Industrial	
Relevance,	 J.L.	 Pfaltz,	 M.	 Nagl,	 and	 B.	 Böhlen,	 Editors.	 2004,	 Springer	 Berlin	 /	 Heidelberg.	 p.	 473-‐478.	

64. Minas,	 M.,	 Generating	 Meta-‐Model-‐Based	 Freehand	 Editors,	 in	 Electronic	 Communications	 of	 the	 EASST,	 Proc.	 of	 3rd	 Interna-‐
tional	 Workshop	 on	 Graph	 Based	 Tools	 (GraBaTs	 2006),	 Satellite	 event	 of	 the	 3rd	 International	 Conference	 on	 Graph	 Trans-‐
formation.	 2006:	 Natal,	 Brazil.	

65. Moody,	 D.L.,	 The	 “Physics”	 of	 Notations:	 Towards	 a	 Scientific	 Basis	 for	 Constructing	 Visual	 Notations	 in	 Software	 Engineering.	
IEEE	 TSE	 2009.	

66. Pei,	 Y.S.,	 Hosking,	 J.G.	 and	 Grundy,	 J.C.	 Automatic	 Diagram	 Layout	 Support	 for	 the	 Marama	 Meta-‐toolset,	 In	 Proceedings	 of	 the	
2011	 IEEE	 Symposium	 on	 Visual	 Languages	 and	 Human-‐Centric	 Computing,	 Pittsburgh,	 USA,	 Sept	 18-‐22	 2011,	 IEEE	 Press.	

32 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, TSE-2011-02-0059

	

67. Phillips,	 C.,	 et	 al.	 The	 design	 of	 the	 client	 user	 interface	 for	 a	 meta	 object-‐oriented	 CASE	 tool.	 in	 Proceedings	 of	 Technology	 of	
Object-‐Oriented	 Languages,	 1998.	 TOOLS	 28.	 1998.	

68. Plimmer,	 B.	 and	 Apperley,	 M.,	 INTERACTING	 with	 sketched	 interface	 designs:	 an	 evaluation	 study,	 in	 CHI	 '04	 extended	 ab-‐
stracts	 on	 Human	 factors	 in	 computing	 systems.	 2004,	 ACM:	 Vienna,	 Austria.	 p.	 1337-‐1340.	

69. Qiu,	 L.	 and	 Riesbeck,	 C.K.,	 An	 incremental	 model	 for	 developing	 educational	 critiquing	 systems:	 experiences	 with	 the	 Java	 Cri-‐
tiquer.	 Journal	 of	 Interactive	 Learning	 Research,	 2008.	 19:	 p.	 119-‐145.	

70. Rekers,	 J.	 and	 Schuerr,	 A.,	 Defining	 and	 parsing	 visual	 languages	 with	 layered	 graph	 grammars.	 Journal	 Visual	 Languages	 and	
Computing,	 1997.	 8(1):	 p.	 27-‐55.	

71. Robbins,	 J.E.	 and	 Redmiles,	 D.F.,	 Cognitive	 support,	 UML	 adherence,	 and	 XMI	 interchange	 in	 Argo/UML.	 Journal	 of	 Information	
and	 Software	 Technology,	 2000.	 42(2):	 p.	 79-‐89.	

72. Schuckmann,	 C.,	 et	 al.,	 Designing	 object-‐oriented	 synchronous	 groupware	 with	 COAST,	 in	 Proceedings	 of	 the	 1996	 ACM	 con-‐
ference	 on	 Computer	 supported	 cooperative	 work.	 1996,	 ACM:	 Boston,	 Massachusetts,	 United	 States.	 p.	 30-‐38.	

73. Sutcliffe,	 A.,	 The	 domain	 theory:	 patterns	 for	 knowledge	 and	 software	 reuse	 2002:	 Mahwah,	 N.J.:	 L.	 Erlbaum	 Associates.	
74. Vlissides,	 J.M.	 and	 Linton,	 M.,	 Unidraw:	 A	 framework	 for	 building	 domain	 specific	 graphical	 editors,	 in	 UIST’89.	 1989,	 ACM	

Press.	 p.	 158-‐167.	
75. Wohed,	 P.,	 van	 der	 Aalst,	 W.	 M.	 P.,	 Dumas,	 M.,	 terHofstede,	 A.	 H.	 M.	 and	 Russell,	 N.	 On	 the	 Suitability	 of	 BPMN	 for	 Business	

Process	 Modelling,	 Lecture	 Notes	 in	 Computer	 Science,	 2006,	 Volume	 4102/2006,	 161-‐176.	

76. Zhang,	 J.,	 Lin,	 Y.,	 and	 Gray,	 J.,	 Generic	 and	 domain-‐specific	 model	 refactoring	 using	 a	 model	 transformation	 engine.	 Research	
and	 Practice	 in	 Software	 Engineering,	 2005.	 II:	 p.	 199-‐218.	

77. Zhang,	 K.,	 Zhang,	 D.-‐Q.,	 and	 Cao,	 J.,	 Design,	 construction,	 and	 application	 of	 a	 generic	 visual	 language	 generation	 environment.	
IEEE	 TSE,	 April	 2001.	 27(4):	 p.	 289-‐307.	

78. Zhao,	 C.,	 Kong,	 J.,	 and	 Zhang,	 K.,	 Program	 Behavior	 Discovery	 and	 Verification:	 A	 Graph	 Grammar	 Approach.	 Software	 Engi-‐
neering,	 IEEE	 Transactions	 on,	 2010.	 36(3):	 p.	 431-‐448.	

79. Zhu,	 N.,	 et	 al.,	 Pounamu:	 a	 meta-‐tool	 for	 exploratory	 domain-‐specific	 visual	 language	 tool	 development.	 Journal	 of	 Systems	
and	 Software,	 2007.	 80	 (8).	
	

GRUNDY ET AL.: GENERATING DOMAIN-SPECIFIC VISUAL LANGUAGE TOOLS FROM ABSTRACT VISUAL SPECIFICATIONS 33

John C. Grundy is a member of the IEEE and the IEEE Computer Society. He holds the BSc(Hons), MSc and PhD de-
grees, all in Computer Science and all from the University of Auckland, New Zealand. Previously he was Lecturer and
Senior Lecturer at the University of Waikato, New Zealand, and Professor of Software Engineer- ing and Head of Elec-
trical & Computer Engineering at the University of Auckland, New Zealand. He is currently Professor of Software Engi-
neering and Head, Computer Science and Software Engineering, at the Swinburne University of Technology, Mel-
bourne, Australia. He is an Associate Editor of IEEE Transactions on Software Engineering, Automated Software Engi-
neering journal, and IEEE Software. His current interests include domain-specific visual languages, model-driven engi-
neering, large scale systems engineering, and software engineering education.

John Hosking is Dean of Engineering and Computer Science at the Australian National University. John completed a
PhD in Physics at the University of Auckland before join gin the academic staff there. He progressed through to the rank
of Professor and had 6 years as Head of Department before taking up his role at ANU. John has research interests in
software tools, software engineering, and visual languages and environments. He is a Fellow of the Royal Society of
New Zealand and MemIEEE.

Karen Li conducted a PhD followed by a Post-doctoral research in the University of Auckland from 2004-2011, special-
izing in visual software development notations and techniques. Karen is now working in industry, practicing visual pro-
gramming (in particular the use of IBM technology stack) for client software development, through which she is gaining
more insights in visual software techniques.

Norhayati Mohd Ali received the PhD degree in computer science from the University of Auckland, New Zealand in
2011. She is a senior lecturer at the Information System Department, Faculty of Computer Science and Information
Technology, Universiti Putra Malaysia. Her research interests include critiquing tools in software engineering, visualiza-
tion in software engineering, software engineering education, and human-computer interaction.

Jun Huh has worked as a research assistant for Prof. John Hosking and Prof. John Grundy since 2005, specialising in
model driven visual development. He has been heavily involved in developing prototypes using and for the Marama
meta-tools. Jun is currently working as a researcher and developer in Visual Wiki project, which involves visualisation
of web-based information and knowledges.

Dr. Richard Li (Lei) is the Enterprise Information Services Manager at Beef + Lamb New Zealand. This role directly
reporting the Chief Operating Officer is to design the enterprise level information management strategy and lead the de-
velopment of technical solutions. Richard's expertise predominantly in the Business Process Modeling and Technology
Integration and Transformation, but also covers Human Computer Interaction, Visual Languages and Information Man-
agement Strategy.

	

