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Abstract—Business cloud workflows are often designed with multiple time constraints for timely response to business requests. 
To ensure on-time completion of workflow instances, workflow temporal conformance state needs to be constantly monitored and 
verified at runtime. Considering the fact that there are a large number of workflow instances running in a parallel fashion in many 
business scenarios, conventional verification approaches for time-related properties using such as temporal logic or timed Petri 
nets are not feasible due to the limitation of low efficiency at runtime. To address this issue, we propose a new approach to 
automated runtime verification of temporal conformance for parallel workflow instances in a cloud environment. In this paper, 
instead of using response time to verify temporal conformance of every single workflow as in conventional strategies, workflow 
throughput is employed as the performance measurement to efficiently monitor a large number of parallel workflow instances. On 
this basis we present a novel conformance verification strategy. This strategy considers the effect of time delay propagation in 
the cloud workflow systems to accurately verify workflow runtime temporal conformance. Our verification strategy is implemented 
in a prototype cloud workflow system and the evaluation results show that it outperforms the state-of-the-art workflow temporal 
verification strategy. 
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1 INTRODUCTION
usiness workflows are pervasive in many large-scale 
business applications such as bank transactions and secu-

rities exchange. A notable characteristic of business work-
flow applications is that there are usually a large number 
of workflow instances running in a parallel and distributed 
fashion, where each instance represents a business request. 
Given the requirement in the processing of concurrent 
business requests, cloud computing that can provide cost-
effective scalable resources is an ideal host environment for 
running large numbers of workflow instances.  

Many large enterprise workflows have to meet multiple 
time constraints in order to achieve timely completion of 
business goals. However, always on-time completion is not 
possible in real business scenarios full of uncertainties. It is 
also not always necessary because most customers can 
have some level of endurance for small time delays. There-
fore, instead of “hard deadlines”, “soft deadlines” are com-
monly used for business workflows planning, executing 
and monitoring. For example, instead of specifying “every 
workflow must be completed within 5 minutes” as a hard 
deadline, we can specify “90% of workflows must be com-
pleted within 5 minutes” as a kind of soft deadline in QoS 

(Quality of Service) specification for business workflow 
application. “90%” as an example target on-time comple-
tion rate can be decided by the enterprises based on their 
target customer satisfaction rate or economical concerns. 

However, due to the dynamic nature and uncertainties 
that exist during the running of workflows in the cloud, 
temporal violations often occur. Here, “temporal viola-
tion” means an intermediate violation of time constraint 
(i.e., time delay) that can be fixed locally to ensure overall 
timely completion. A large number of unpredictable tem-
poral violations will seriously jeopardize the timely com-
pletion of massive concurrent user requests, which may 
lead to not only the deterioration of user satisfaction but 
also the expiration of results, even the deal’s collapse. 

To deliver satisfactory on-time completion rate of time-
constrained workflows, workflow temporal conformance 
needs to be constantly monitored and verified. Here work-
flow temporal conformance denotes the consistency be-
tween runtime workflow execution states and build-time 
temporal QoS specification. The approach for monitoring 
workflow temporal conformance is called workflow tem-
poral verification, which is conducted to guarantee satisfac-
tory temporal QoS in workflow systems. Given a workflow 
lifecycle, a temporal verification framework consists of three 
components, viz, temporal constraint setting [31], temporal 
consistency verification [32] and temporal violation han-
dling [33]. Temporal constraint setting assigns time con-
straint for workflow activities according to the deadline 
specified in QoS specification. Temporal consistency verifi-
cation monitors and verifies whether workflow temporal 
behavior complies as expected, and determines whether a 
temporal violation occurs or not. If a temporal violation 
is detected, the current temporal behavior needs to be 
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adjusted by temporal violation handling strategies. 
Workflow temporal verification can be categorized as 

build-time verification and runtime verification. Formal 
methods based on Petri nets or event algebra [1], [2] mainly 
focus on process modeling and verification at workflow 
build-time. These static approaches cannot detect and au-
tomatically respond to failures when runtime temporal 
conformance states violate the time constraint specifica-
tions. Runtime verification aims to check whether a run of 
the system satisfies a given correctness property at any 
point in time [3]. Existing research on workflow runtime 
verification focuses on monitoring the running state of a 
workflow instance and determining whether it complies 
with time constraint specifications. However, these ap-
proaches that are designed to monitor single runs of the 
system have to be repeated thousands of times to monitor 
thousands of parallel workflow instances. It is prohibi-
tively expensive to implement parallel workflow monitors 
as the overhead increases dramatically. 

Limitations of current business workflow verification 
approaches lead us to the following research questions: 

RQ1: What do we need to measure for the purpose of moni-
toring the temporal conformance state of a large number of par-
allel workflow instances at runtime? 

RQ2: Where or when can we most efficiently monitor the 
workflow temporal conformance state? 

RQ3: How do we effectively verify workflow temporal con-
formance state? 

In this paper, we propose a novel runtime verification 
approach to monitor and verify temporal conformance of 
parallel business workflows running in the cloud. We aim 
to provide an efficient and effective method to monitor 
workflow behavior at runtime, which helps to achieve the 
target workflow on-time completion rate. Specifically: 

1) For the first research question, to reduce the verifica-
tion overhead, instead of using the response time of work-
flow activities to monitor every single workflow instance, 
workflow throughput  is employed as the performance meas-
urement for describing the behavior of a large batch of par-
allel workflow instances. 

2) For the second research question, to achieve high ef-
ficiency, we adapt an efficient throughput based temporal 
checkpoint selection method from our earlier work in [4] 
to select only a small but sufficient number of time points 
along the workflow system execution timeline as temporal 
checkpoints where temporal verification needs to be con-
ducted to check the temporal conformance state. 

3) For the third research question, a novel temporal ver-
ification strategy is proposed for the temporal conform-
ance monitoring and verification purpose. This strategy 

considers the propagation of time delays in the cloud 
workflow environment that enables us to produce a much 
more accurate verdict of temporal conformance for a large 
number of parallel cloud workflow instances. 

Note that to keep consistency with other related work 
using the above mentioned temporal verification frame-
work, the proposed approach deals with temporal verifi-
cation of business workflow in a cloud environment in this 
paper. In terms of the method and models proposed by our 
approach, they are in fact applicable in a generic compu-
ting environment. 

 Our strategy is implemented in a prototype cloud 
workflow system. Experimental results show that our 
strategy outperforms the state-of-the-art workflow tem-
poral verification strategy for large-scale parallel workflow 
instances. 

2 PROBLEM STATEMENT AND ANALYSIS 

2.1 A Common Scenario in Securities Exchange 
Securities exchange is a typical instances-intensive busi-
ness workflow. In general, a securities exchange workflow 
can be divided into online trading and offline settlement. 

Online trading processes are completed in several 
minutes after a client performs dealing operations on the 
terminal. Client entrustment will be sent to the stock mar-
ket to clinch a deal. Then the fitting results are recorded 
into the database in Securities Corporation and feed back 
to the client. So far, the deal is technically completed but 
the share is not legally owned by the client until offline set-
tlement is finished after the market is closed to all clients. 

An offline settlement process is responsible for archiv-
ing and clearing all the completed online deals. During of-
fline settlement, a large number of workflow instances are 
initialized over a period of time, each instance represents 
an online deal record. Figure 1 illustrates the simplified se-
curities exchange workflow of Chinese Shanghai A-Share 
Stock Market, which involves a few steps as workflow ac-
tivities, including “register shares variation”, “calculate 
capital variation”, “settle the trades”, “transfer capital” 
and so on. Some steps of the workflow instance are exe-
cuted concurrently. The process is eventually completed 
only if Clearing Corporations finish stock clearing and the 
balance of all the capital transferred is zero.  

In the scenario of securities exchange, on-time comple-
tion is a key non-functional requirement that should be sat-
isfied. Similar requirements for temporal QoS are common 
in many other soft real-time systems. For example, an e-
commerce website needs to process hundreds of thousands 
of orders every day. Massive parallel workflow instances 

    
Fig. 1. A securities exchange business process 
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for order processing are initialized within a short time and 
need to be completed in a reasonable duration for user sat-
isfaction. But unlike some hard real-time systems (e.g., aer-
ospace control system) that must adhere to strict execution 
deadlines, violating a time constraint can be tolerated in 
soft real-time system providing that this happens with a 
sufficiently low probability. The threshold for the percent-
age of deadline misses (namely target on-time completion 
rate) depends on specific scenarios. 

2.2 Problem Analysis 
In the previous scenario, the number of entrustments of se-
curities transactions can reach several millions per second 
at peak time. Therefore, automated run-time verification is 
essential for the real-time monitoring purpose. Besides, the 
durations of business workflow activities are often very 
short so that temporal non-conformance state should be 
detected and then be handled as soon as possible. This re-
quires that the temporal verification model is sensitive to 
time delays and can accurately determine the transient 
temporal state of workflow instances. 

When dealing with the monitoring of massive parallel 
workflow instances, scalability becomes a critical issue. Re-
sponse-time based strategies which are designed for mon-
itoring single large-scale scientific workflow instance use 
the response time of individual workflow activities as the 
monitoring target, and one monitoring service is dedicated 
to one workflow instance [6]. Therefore, the temporal ver-
ification overhead will grow linearly to the number of par-
allel workflow instances. This is unacceptable in instance-
intensive business workflows where hundreds of thou-
sands of workflow instances can be running in parallel. In 
this case, instead of the response time, a new measurement 
for a batch of workflow instances is needed to ensure high 
scalability of temporal verification. 

Therefore, an efficient and effective runtime temporal 
verification is required in monitoring temporal conform-
ance state of a large number of parallel workflow instances 
running in large-scale business cloud system. 

3 DEFINITIONS 
In this section, we analyze and address the first two re-
search questions. 

RQ1: What do we need to measure for the purpose of moni-
toring the temporal conformance state of a large number of par-
allel workflow instances at runtime? 

In runtime verification, checking whether a run of the 
system meets a correctness property is performed using a 
decision procedure, called monitor. It has been suggested 
by Nutt [7] that the most important questions to be an-
swered before attempting to monitor a system are ‘what to 
measure’ and ‘why the measurement should be taken’. 

Response time and throughput are two primary meas-
urements of workflow applications from the performance 
perspective [8]. While response time is to measure the du-
ration of a workflow activity or the makespan of a work-
flow instance, throughput measures the number of work-
flow activities that have been finished per time unit. As 

mentioned above, response time is not applicable for mon-
itoring a large number of parallel workflow instances due 
to the large monitoring overhead. It is also unnecessary to 
check the intermediate temporal state of every single 
workflow instance since our ultimate goal is to achieve the 
target on-time completion rate for the whole instances. 
Therefore, workflow throughput is employed as the per-
formance measurement for business cloud workflows. 

In addition, measuring workflow throughput by count-
ing the number of completed workflow activities is not rea-
sonable because the completion of activities with different 
durations have different contributions to the on-time com-
pletion of the whole workflow instances. The authors in [4] 
have proposed a new definition of workflow throughput 
to reflect the contributions of completing individual activ-
ities to the on-time completion of all workflow instances. 
Next, before we present the workflow throughput defini-
tion, some basic workflow time attributes are introduced. 

Business workflow is made up of a set of activities in 
partial order. We denote the 𝑖th activity of a business work-
flow as 𝑎#. The maximum, mean, minimum, expected and 
runtime completion duration of 𝑎#  is denoted as 𝐷(𝑎#) , 
𝑀(𝑎#) , 𝑑(𝑎#) , 𝐸(𝑎#) and 𝑅(𝑎#)  respectively. Accordingly, 
𝑊𝐹#	is a workflow instance with its maximum, mean, min-
imum, expected and runtime completion duration denoted 
as 𝐷(𝑊𝐹#) , 𝑀(𝑊𝐹#) , 𝑑(𝑊𝐹#) , 𝐸(𝑊𝐹#)  and 𝑅(𝑊𝐹#)  respec-
tively.  
Definition 1 (Workflow Throughput). Given a batch of 𝑞 

parallel instances {WF1,WF2,…,WFq} of business workflow 
WF which starts at system time 𝑆0, the completion of work-
flow activity 𝑎#1 (namely the 𝑗th activity of 𝑊𝐹# ) contributes 
to the completion of the entire collection of workflows with a 
value of 𝑀(𝑎#1)/𝑇 where T=∑ 𝑀(𝑊𝐹#)

6
#78 . Here, we assume 

that at the current observation time point 𝑆9, the set of new 
completed activities from the last nearest observation time 
point 𝑆9:8 is denoted as 𝑎{}|>?@A

>? , then the system throughput 
is defined as 𝑇𝐻|>?@A

>? = 𝑀(𝑎{}|>?@A
>? ) 𝑇⁄ . 

Definition 1 presents how much of those activities com-
pleted during the last observed time unit contributes to the 
completion of all workflow instances. Correspondingly, 
workflow throughput constraints need to be defined to 
match the use of workflow throughput, which is the ex-
pected accumulated workflow throughput that should be 
achieved by a specific system time point. 
Definition 2 (Workflow Throughput Constraints). Given 

the same batch of workflow instances as defined in Defini-
tion 1, the throughput constraint assigned at system point 
𝑆9 is denoted as 𝑇𝐻𝐶𝑜𝑛𝑠|>I

>?  which means that the accumu-
lated throughput ∑ 𝑇𝐻|>J@A

>J9
#78  should be no less than the 

value of the assigned throughput constraint. The value of 
𝑇𝐻𝐶𝑜𝑛𝑠|>I

>?  is decided by the deadline assignment strategy. 

 Work in [5] presents a representative deadline assign-
ment strategy. This strategy employs a queueing model to 
predict workflow activity durations, and then calculates 
the expected percentage of workflow instances completion 
as local throughput constraint at any system time point.  



 

 

RQ2: Where or when can we most efficiently monitor the 
workflow temporal conformance state? 

Workflow temporal verification is the major approach 
for delivering satisfactory temporal QoS in business cloud 
systems by monitoring workflow temporal conformance 
state at runtime. Given the throughput constraint defined 
above, workflow temporal verification is to check whether 
the target throughput constraints can be satisfied or not at 
a specific system time point, also known as a throughput 
checkpoint or checkpoint for short. 

Theoretically, any time point along the system timeline 
can be a checkpoint. However, since in practice monitoring 
is usually conducted discretely along the system timeline, 
there is normally a basic time unit (e.g., one minute) de-
noted as 𝑏𝑡 , which defines the frequency for updating 
workflow time attributes for the monitoring purpose. 
Throughput checkpoints are selected based on these mon-
itoring points that are candidate throughput checkpoints. 
Definition 3 (Candidate Throughput Checkpoints). Given 

the same batch of workflow instances as in Definition 1, a sys-
tem time point 𝑆9 along the workflow execution timeline is a 
candidate throughput checkpoint if 𝑆9 − 𝑆9:8 = 𝑘 ∗ 𝑏𝑡	(𝑘 =
1,2,3… ). 
By definition 3, candidate throughput checkpoints are 

statically set before workflow execution, a checkpoint se-
lection strategy is used to select the real checkpoints where 
temporal verification needs to be conducted at runtime. In 
this paper, since our focus is on temporal verification, we 
just adopt a representative throughput based checkpoint 
selection strategy as proposed in [9]. 
Throughput based Checkpoint Selection Strategy: Given 

the same collection of workflow instances as in Definition 1, 
the rule of throughput based checkpoint selection strategy is 
defined as follows: given the candidate throughput checkpoint 
𝑆U, if 𝑇𝐻|>V@A

>V <	𝑇𝐻𝐶𝑜𝑛𝑠|>V@A
>V , 𝑆U is selected as a checkpoint. 

Otherwise, 𝑆U is not selected as a checkpoint. Here, 𝑇𝐻|>V@A
>V  

is the runtime throughput during the time points 𝑆U:8 and 
𝑆U , 𝑇𝐻𝐶𝑜𝑛𝑠|>V@A

>V  is the expected percentage of completion be-
tween 𝑆U:8 and	𝑆U. 
In summary, in our approach workflow time attributes 

are monitored at each candidate checkpoint and temporal 
verification is conducted at each selected checkpoint to 
monitor and verify temporal conformance state. 

It should be noted that some definitions in this paper 
may be slightly different from others presented in some of 
our earlier publications (e.g., in [5] and [9]) when defining 
the same concept in the scenario of business workflow tem-
poral verification. The main reason for this is the different 
and focus of concern varies in the different research works. 
For example, the definition of “workflow throughput” ap-
pears with a W array in [5] and [9], because the influence 
of the workflow structure is considered in the proposed 
strategies. While in order to focus on the workflow moni-
toring and verification strategy itself, complex workflow 
structures are pre-processed into sequential structure in 

this paper, thus W array is removed in the related defini-
tions. We are continuously improving and evolving the 
models and definitions, which may cause variations 
among these different research works. 

4 TIME DELAY PROPAGATION ANALYSIS 
In the next two sections, we describe our new solution to 
solve the third research question, namely: 

RQ3: How do we effectively verify workflow temporal con-
formance state? 

Based on the answers to the first two research questions, 
we can see temporal conformance state of parallel work-
flow instances needs to be verified using a throughput based 
temporal verification strategy. In this paper, we propose a 
throughput conformance verification strategy which con-
siders the effect of time delay propagation in cloud work-
flow systems to produce more accurate verdicts of work-
flow temporal conformance. In this section, we analyze the 
effect of time delay propagation. 

Time delay propagation is common during the execu-
tion of parallel workflow instances in business cloud work-
flow systems due to resource sharing and the temporal de-
pendencies among workflow activities. As a large number 
of workflow instances are processed in parallel, they have 
to be queued up waiting for execution on a limited number 
of cloud services. Once an activity violates its local tem-
poral constraint (i.e., the actual response time exceeds the 
expected time), all other activities in the same queue will 
have to wait longer to be executed. As a consequence, some 
activities are likely to violate their own temporal con-
straints as well. Meanwhile, as workflow activities need to 
be executed in a partial order, delays to one activity will 
postpone the start time of subsequent activities of the same 
workflow instance waiting on other cloud services. As a 
result, activities of other workflow instances waiting on 
those cloud services may also be delayed. 

Therefore, a few time delays may result in massive tem-
poral violations since time delays can propagate among 
both subsequent activities of the same workflow instance 
and activities of other parallel workflow instances that are 
competing for the same resources. Finally in the worst case, 
many parallel workflow instances may violate their final 
deadlines, which results in the failure of achieving the tar-
get on-time completion rate. 

Such a of time delay propagation process is similar to 
the famous “Butterfly Effect”. Neglecting time delay propa-
gation may lead to false negative verification result since 
some potential violations caused by the propagation effect 
are not considered and thus cannot be handled in time. 
Without timely handling of temporal violations, the accu-
mulated time delays will be impossible to be compensated 
and eventually lead to the failure of on-time completion. 

For example: Assuming that the target on-time comple-
tion rate of workflow instances is set as 90%. At check-
point	𝑆U, the instant temporal conformance state 𝛽% is ver-
ified to be 95%. Obviously, the result indicates that the tar-
get on-time completion rate can be achieved according to 
the workflow execution progress until 𝑆U. 



 

 

However in fact, due to the “Butterfly Effect”, the de-
tected temporal violations at 𝑆U  may introduce more po-
tential temporal violations which will appear after 𝑆U. Alt-
hough these potential violations can eventually be de-
tected at the successive checkpoints, the system may not be 
able to fully compensate the accumulated time delays, es-
pecially when the checkpoints are close to the final dead-
line. When the implicit effect of time delay propagation is 
considered, the actual temporal conformance state 𝛽′% at 
𝑆U may be only 85%, rather than 95%. In this case, temporal 
violation handling strategies need to be triggered to timely 
compensate for the time delays.  

To investigate how time delays propagate in the cloud 
system at workflow runtime, we first model the queueing 
and execution process of parallel workflow instances in the 
cloud system.  

4.1 Queueing Model for Cloud Services 
At workflow runtime, a large number of parallel instances 
of a business process are initialized in a short time (the 
middle tier in Figure 2). Each instance has to be executed 
step by step according to the business logic. Since the num-
ber of parallel workflow instances is normally much larger 
than the dedicated cloud services, workflow activities have 
to queue up on limited services. In Figure 2, workflow ac-
tivities with the same colour represent the same kind of 
business activities and queue in the same queueing system 
with dedicated cloud services. Noted that for ease of dis-
cussion, we assume that each queueing system is dedi-
cated to only one type of cloud service, and one type of 
cloud service is only for one type of activity. So if a business 
process consists of 𝑘 atomic business activities, there will 
be 𝑘 queueing systems. These queueing systems with var-
ious queuing features together form a well-connected 
queueing network for the cloud workflow system. 

When a workflow instance arrives at the first queueing 
system, it will be either served immediately or waiting for 
service, and then leaves the queueing system for the next 
one after service. We employ M/G/m/m+r model to formu-
late the behavior of the first queueing system. 
Definition 4 (M/G/m/m+r Queueing Model for Cloud 

Services). M/G/m/m+r model hypothesizes that the inter-ar-
rival time of service requests arrives according to a Poisson 
process with rate 𝜆, while execution time of activities are in-
dependent and identically distributed random variables that 
follow a general distribution model with a mean value of 𝜇. 
The queuing system contains 𝑚 cloud services and service or-
der is First Come First Service. The maximum number of ac-
tivities in the queueing system including those being serviced 
is	𝑚 + 𝑟, where 𝑟 is the buffer size for incoming requests. 
With this queueing model, we can obtain performance 

related attributes that accurately reflect the queuing pro-
cess, such as mean waiting time, mean response time and 
mean number of activities in the queuing system [10]. 

Furthermore, since the service time of the first activity 
follows a general distribution in the first queueing system, 
the inter-arrival time of activities in the next 𝑘 − 1 queuing 
systems will follow a general distribution model as well. 

Hence the queuing model for these 𝑘 − 1	queueing sys-
tems is G/G/m/m+r. 
Definition 5 (G/G/m/m+r Queuing Model for Cloud Ser-

vices). G/G/m/m+r model hypothesizes that the inter-arrival 
time of service requests and execution time of activities are 
independent and identically distributed random variables 
that follow a general distribution with a mean value of 𝜇. The 
queuing system contains 𝑚 cloud services and the service or-
der is First Come First Service. The maximum number of ac-
tivities in the queueing system including those being serviced 
is	𝑚 + 𝑟, where 𝑟 is the buffer size for incoming requests. 
However, given the variations and complexity of the 

G/G/m/m+r model, it is difficult to accurately measure the 
performance of the queueing system. In this paper, we 
adopt an approximate solution presented by Atmaca et al. 
in [11] for G/G/m/m+r queuing system to reduce the com-
plexity of the problem. 

4.2 Time Delay Propagation in a Workflow 
Queueing Network 

The response time of a workflow activity in a queueing sys-
tem can be divided into queueing time and execution time. 
Time delay occurred in the queueing period is called pas-
sive delay and the time delay occurred in the execution pe-
riod is called active delay.  

Active time delays occur for various reasons. Firstly, the 
dynamic nature of cloud services makes performance fluc-
tuation inevitable, which may lead to response time delay 
of workflow activities. One active time delay may cause a 
single workflow instance to violate its final deadline. How-
ever, the propagation of time delays may cause temporal 
non-conformance and jeopardize the timely completion of 
a large number of parallel workflow instances in the same 
queueing network. 

Time delay propagation can be classified into three dif-
ferent stages according to its level of effect on temporal 
conformance state. Here, we define some basic annotations: 
𝑄𝑆1 is a queueing system with 𝑛 cloud servers (i.e., cloud 
server instances) and an average of 	𝑙	activities in the queue. 
𝑎#1 is the activity of 𝑊𝐹# in 𝑄𝑆1 with its expected duration 

Fig. 2. Queueing models for cloud services 
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donated as 𝐸(𝑎#1). 𝑇𝐷#1 is the active time delay of 𝑎#1 dur-
ing the execution in 𝑄𝑆1. The passive time delay of work-
flow activity is denoted as 𝛥𝑡. In the following, we analyze 
the propagation process in queueing network when time 
delay 𝑇𝐷#1 is occurred. 

(i) Propagation effect on a single workflow instance 
For workflow instance 𝑊𝐹#, the subsequent activities of 

𝑎#1 will postpone their start time by 𝑇𝐷#1 since they have to 
wait in the queue until 𝑎#1 is completed. If all the other ac-
tivities are timely completed, the overall response time of 
this workflow instance will be delayed by 𝑇𝐷#1. 

(ii) Propagation effect on workflow activities in the 
same queueing system 

For a queueing system with 𝑛 servers, a newly arrived 
activity can be executed immediately if the queue is empty, 
otherwise it has to wait for service. Activities in the queue-
ing system can be divided into three categories according 
to their arrival time. (1) The activities that arrive at the 
queue before 𝑎#1 starts execution; (2) The activities that ar-
rive at the queue during the execution of 𝑎#1; and (3) the 
activities that arrive at the queue after 𝑎#1is completed. 

If 𝑛 = 1, for the first kind of activities, they have to post-
pone their start time by 𝑇𝐷#1. Thus, their potential response 
time delay 	𝛥𝑡 = 𝑇𝐷#1. For the second kind of activities, 𝛥𝑡 
increases with arrival time. The maximum value of 𝛥𝑡 is 
denoted as 𝛥𝑇bcd. 𝛥𝑇bcd = 𝛥𝑙 ∗ 𝐸(𝑎#1), where 𝛥𝑙 is the dif-
ference of the queue length before and after 𝑎#1  is com-
pleted. For the third kind of activities, 𝛥𝑙 is equal or less 
than 𝛥𝑇bcd. 

If 𝑛 > 1, the number of available servers during 𝑇𝐷#1 is 
𝑛 − 1 and increases back to 𝑛 after 𝑎#1 is completed. For the 
first kind of activities, 𝛥𝑡 = 𝐸(𝑤(𝑛 − 1)) − 𝐸(𝑤(𝑛)), where 
𝐸(𝑤(𝑛)) denotes the expected waiting time of activities in 
the queue when the number of servers is 𝑛. For the second 
kind of activities, since 𝐸(𝑤(𝑛 − 1)) − 𝐸(𝑤(𝑛)) decreases 
with the increasing number of servers, 𝐸g𝑤(𝑛 − 1)h −
𝐸g𝑤(𝑛)h ≤ 𝑇𝐷#1. Hence 	𝛥𝑡 ≤ 𝑇𝐷#1. For the third kind of ac-
tivities, response time delays decrease in the order that 
they arrive at the queue, since the length of the queue grad-
ually decreases to normal once 𝑎#1 is completed. The max-
imum value of 𝛥𝑡 is denoted as 𝛥𝑇bcd. 𝛥𝑇bcd = 𝛥𝑙 ∗ 𝐸(𝑎#1), 
where 𝛥𝑙  is the difference between the expected queue 
length and actual queue length. 

(iii) Propagation effect on subsequent queueing sys-
tems 

The underlying cloud services of a cloud workflow sys-
tem formed a network of queueing systems as shown in 
Figure 2. The above two stages describe the time delay 
propagation among temporal dependent workflow activi-
ties, while the propagation among queueing systems in the 
queueing network is much more complicated as much 
more workflow activities and workflow instances are in-
volved. Therefore, workflow throughput instead of re-
sponse time is employed to measure the propagation effect 
on subsequent queueing systems. 

According to Definitions 1 and 2, the throughput of 

queueing system 𝑄𝑆1  is defined as 𝑇𝐻1|>?@A
>? = 𝑤1 ∗ 𝑇𝐻|>?@A

>? , 
where 𝑤1 is the activity duration weight of 𝑎#1 in the over-
all duration of 𝑊𝐹# . The corresponding throughput con-
straint is defined as 𝑇𝐻𝐶𝑜𝑛𝑠1|>?@A

>? = 𝑤1 ∗ 	𝑇𝐻𝐶𝑜𝑛𝑠|>?@A
>? . 

When the execution time of one or more activities in 𝑄𝑆1 
exceeds the expected time, a throughput constraint may be 
violated as the number of completed activities within a 
basic time unit is less than expected. We denote the gap be-
tween the actual throughput and the throughput con-
straint as ∆𝑇𝐻1 . ∆𝑇𝐻1 = 𝑇𝐻𝐶𝑜𝑛𝑠1|>?@A

>? − 𝑇𝐻1|>?@A
>? . The de-

tected throughput violation ∆𝑇𝐻1 means that the number 
of activities leaving 𝑄𝑆1 in unit time is less than expectation. 
Since the arrival rate of 𝑄𝑆1k8 equals to the leaving rate of 
𝑄𝑆1, the throughput of 𝑄𝑆1k8 will be less than the expected 
value in the following short period for those late arrived 
activities. Specifically: 

If 𝑙l?@A = 0, namely the queue of 𝑄𝑆1k8 is empty at obser-
vation time point 𝑆9:8, the difference between the number 
of completed activities and expected value in 𝑄𝑆1k8  is 
equal to the one in 𝑄𝑆1 . Based on Definition 3, ∆𝑇𝐻1k8 =
∆𝑇𝐻1 ∗ (𝐸(𝑎1k8)/(𝐸(𝑎1))). 

If 𝑙l?@A > 0, the queue length of 𝑄𝑆1 decreases since the 
arrival rate is less than expected. When the queue length 
decreases to 0 before arrival rate returns back to normal, 
∆𝑇𝐻1k8 = 0, which means throughput violation at 𝑄𝑆1 has 
no effect on the throughput of 𝑄𝑆1k8. Otherwise, ∆𝑇𝐻1k8 <
∆𝑇𝐻1 ∗ (𝐸(𝑎1k8)/(𝐸(𝑎1))). 

Therefore, given the detected throughput constraint vi-
olation ∆𝑇𝐻1  in 𝑄𝑆1 , the maximum propagation effect on 
the throughput of 𝑄𝑆1k8 can be represented as: 

𝑇ℎ𝑟𝐸𝑓𝑓𝑀𝑎𝑥1 = ∆𝑇𝐻1 ∗
𝐸g𝑎1k8h
𝐸g𝑎1h

 
 
(1) 

The maximum propagation effect on the throughput of 
the overall workflow system is the accumulation of the 
maximum effect on its sequential queueing systems, given 
by: 

𝑃𝑟𝑜𝑝𝐸𝑓𝑓𝑀𝑎𝑥1 =t𝑇ℎ𝑟𝐸𝑓𝑓𝑀𝑎𝑥#
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(2) 

Clearly, there is a gap between the theoretical maximum 
and the actual propagation effect that happens at runtime. 
Moreover, since the propagation effect fluctuates con-
stantly in the dynamic cloud environment, it is difficult to 
measure the actual effect at runtime. For example, the ef-
fect of time delay may be decreased for the reason that 
some response time delays can be automatically compen-
sated by time redundancy produced in the execution pe-
riod [6]. Therefore, we need to constantly update the esti-
mated propagation effect based on the monitoring results 
so that the propagation effect in the model gets closer to 
actual situation. 

5 A NOVEL RUNTIME VERIFICATION STRATEGY 
In this section, we first introduce a new propagation-aware 
throughput conformance model, and then present a 



 

 

throughput conformance verification strategy. 

5.1 Propagation-aware Throughput Conformance 
Model 

To define a runtime throughput conformance model, we 
need to measure how much throughput has been com-
pleted by the current checkpoint and estimate how much 
throughput can be completed between the current check-
point and final deadline. The former can be easily obtained 
based on the definition of runtime workflow throughput. 
The estimated throughput is decided by the remaining 
time and the durations of subsequent activities. 
Definition 6 (Estimated Workflow Throughput). Given 

the same collection of 𝑞 parallel workflows as in Definition 1, 
its fixed-time deadline denoted as 𝐹(𝑊𝐹)  and its upper-
bound constraint	𝑈(𝑊𝐹), at throughput checkpoint 𝑆U, the 
expected workflow throughput for the remaining time is de-
fined as:  

𝐸𝑥𝑝 w	𝑇𝐻|>V
x(yx)z = 𝑇𝐻|>V

x(yx) ∗
𝑞 ∗ 𝑈(𝑊𝐹) − 𝑅 w𝑎{}|>I

>Vz

𝐸 w𝑎{}|>V
x(yx)z

 

 
 
(3) 

Besides the above two explicit factors, the implicit prop-
agation effect of time delays has to be included in the 
throughput conformance model. Although some minor 
temporal violations will not result in a throughput non-
conformance state at current checkpoint, the gradually ac-
cumulated propagation effect of time delays may eventu-
ally cause the failure of timely completion of large collec-
tion of parallel cloud workflow instances. 

Based on the above discussion, our novel runtime 
throughput conformance model is proposed as follows: 
Definition 7 (Propagation-aware Throughput Conform-

ance Model). Given the same collection of 𝑞 parallel work-
flow instances in Definition 1 and its fixed-time deadline de-
noted as 𝐹(𝑊𝐹), at a throughput checkpoint 𝑆U, it is said to 
be of 𝛼% conformance if: 

𝐹(𝜆|) = 𝑇𝐻|>I
>V + 𝐸𝑥𝑝 w	𝑇𝐻|>V

x(yx)z

−t𝑃𝑟𝑜𝑝𝐸𝑓𝑓𝑀𝑎𝑥#

u

#78

− sU	
(4) 

Where 𝜆|  is defined as 𝛼%	 confidence percentile with 
the cumulative standard normal distribution function of 

𝐹(𝜇# + 𝜆𝜎#) =
8

~√��
∫ 𝑒

:(d:�J)�
�� 𝜎#�

�Jk�~J
:� 𝑑𝑥 = 𝛼%.	  𝑇𝐻|>I

>V  is 

the current runtime throughput until 𝑆U, 𝐸𝑥𝑝 w	𝑇𝐻|>V
x(yx)z is 

the expected workflow throughput for the remaining time. 
∑ 𝑃𝑟𝑜𝑝𝐸𝑓𝑓𝑀𝑎𝑥#u
#78  is the total propagation effect caused by 

the throughput constraint violated queueing systems 
which are detected at 𝑆U. 

sU in equation (4) is the accumulated propagation effect 
caused by the throughput constraint violated queueing 
systems which are detected at the checkpoints before 𝑆U.  

sU =tt∆𝑇𝐻�1� ∗
𝐸g𝑎1k8h
𝐸g𝑎1h

u
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(5) 

Where ∆𝑇𝐻�1�  is the actual propagation effect at 𝑆U 
which is initially caused by 𝑄𝑆1 and detected at 𝑆�. 

In general, 𝛼% conformance is a probability confidence 
for on-time completion. It is used to measure the current 
service quality comparing with a target on-time comple-
tion rate 𝜃%. 𝜃% is an agreed negotiation result between 
the user and the service provider on the service quality. 

5.2 Throughput Conformance Verification Strategy 
We depict the throughput conformance verification strat-
egy in Table 1. This strategy consists of two steps, namely 
checkpoint selection and throughput conformance verifi-
cation at the selected checkpoints. 

The checkpoint selection strategy determines whether a 
candidate checkpoint (e.g., 𝑆U ) should be selected as a 
throughput checkpoint in accordance with the current 
workflow runtime throughput state and throughput con-
straint. If 𝑆U is selected as a checkpoint, throughput con-
formance verification (step 2) is required. Otherwise, the 
strategy will move on until the system time arrives at the 
next candidate checkpoint. Step 2 verifies throughput con-
formance state at checkpoints using the proposed propa-
gation-aware throughput conformance model. The aim is 
to check whether the current throughput conformance 
state	𝛼%, as defined in Definition 7, is no less than the tar-
get on-time completion rate	𝜃% (namely target throughput 
conformance). If the throughput conformance state holds 
true (i.e., 𝛼% ≥ 𝜃%), nothing needs to be done. Otherwise, 
a detected potential temporal violation is reported to the 
workflow system and violation handling strategy will be 
triggered. 

6 IMPLEMENTATION 
SwinFlow-Cloud1 is a prototype cloud workflow system 

TABLE 1 
THROUGHPUT CONFORMANCE VERIFICATION STRATEGY 

Input: Target on-time Completion rate 𝜃% 
The workflow runtime throughput state at a candidate 
checkpoint 𝑆U 

Output: Throughput conformance state at 𝑆U  
Step1: Throughput-based checkpoint selection 
 If 𝑇𝐻|>V@A

>V <	𝑇𝐻𝐶𝑜𝑛𝑠|>V@A
>V  

𝑆U is selected as a checkpoint, continue to Step 2; 
Else 
    Break until the next candidate checkpoint 𝑆Uk8. 

Step 2: Throughput Conformance Verification 
 Calculate workflow throughput: 

(1) the completed workflow throughput until 𝑆U. 
(2) the expected remainding throughput from 𝑆U to 
𝐹(𝑊𝐹). 
Calculate throughput propagation effect: 
(1) the newly generated propagation effect between 𝑆U:8 
and 𝑆U  
(2) the accumulated propagation effect until 𝑆U:8. 
Given the throughput conformance model, certificate 
the throughput conformance state 𝛼% at checkpoint 𝑆U 
If 𝛼% ≥ 𝜃% 

Break. 
Else  report a detected potential temporal violation. 

 



 

 

designed to support the running of a large number of par-
allel business processes. As illustrated in Figure 3, adopt-
ing the client-cloud architecture (an extension of WfMC2 
proposed workflow reference model), SwinFlow-Cloud 
enables workflow users and administrators to easily cre-
ate, run, and monitor workflow instances, and to make use 
of the powerful cloud computing infrastructures for run-
ning a large number of parallel workflow instances. The 
client side mainly consists of conventional workflow man-
agement tools and new workflow accompaniment tools. 
The cloud side is a group of scalable virtualized workflow 
engines and service components, it retains all the func-
tional runtime service components of the traditional work-
flow reference model, and introduces many new non-func-
tional service components which are defined as the work-
flow relevant services. 

Here, we illustrate the process of cloud workflow tem-
poral verification in SwinFlow-Cloud. The whole process, 
namely the temporal verification framework [12], includes 
three basic steps: temporal constraint setting, temporal 
conformance monitoring, and temporal violations han-
dling. At the build-time stage, users can use the temporal 
constraint setting component, part of the Cloud Workflow 
Relevant Service Definition Tools on the client side, to deter-
mine the workflow deadlines and target on-time comple-
tion rates which are parts of the service contracts. 

At the runtime stage, the start time, end time and other 
runtime attributes of workflow activities are logged by the 
system. The temporal conformance monitoring component, 
part of the Cloud Workflow Relevant Service Administration 
and Monitoring Tools, consists of a temporal checkpoint se-
lection component and temporal verification component. 
The temporal checkpoint selection component can con-
stantly or periodically read in the time attributes of work-
flow activities from the real-time system logs and use a 
checkpoint selection strategy to determine where temporal 
verification is needed. If a temporal checkpoint is selected, 

the temporal verification components will use the tem-
poral conformance model to determine whether the work-
flow instances under monitoring are currently in a tem-
poral non-conformance state or conformance state, i.e., 
whether an intermediate temporal violation has occurred 
or not. If a temporal violation has been detected, the tem-
poral violation handling component, a part of Workflow 
Relevant Services at the cloud side, will be triggered. Based 
on the level of temporal violations, corresponding han-
dling strategies such as workflow rescheduling and re-
source recruitment [13] will be implemented by the viola-
tion handling component. However, if the temporal viola-
tion cannot be handled automatically due to critical errors, 
especially those out of the control of the workflow system 
e.g., user input data is corrupted or the network connection 
at the client side is broken, an error message will be sent 
out to both the system administrators and users for manual 
intervention. 

It should be noted that our work presented in this paper 
can work with or without the existence of cloud workflow 
systems. As long as the business processes are running in 
the cloud and data on activity runtime durations can be 
collected, workflow temporal verification can be con-
ducted. However, with cloud workflow systems, workflow 
temporal verification can be easily integrated into the ex-
isting monitoring service. Meanwhile, the collection of ac-
tivity runtime durations does not need to be conducted 
specially for temporal verification purpose as the work-
flow engine already have all of them for workflow sched-
uling purpose. Therefore, it is more efficient and cost-effec-
tive with a cloud workflow system. 

——————————————— 
1. http://www.xuanqiyun.com/swinflowcloud/ 
2: http://www.wfmc.org/standards/model.htm 

 
Fig. 3. SwinFlow-Cloud System Architecture [44] 
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7 EVALUATION 
In this section, we demonstrate and validate the performance 
of our strategy TVSpro and compare it with other representa-
tive strategies. The simulation experiments are conducted in 
SwinFlow-Cloud. 

7.1 Experimental Settings for Workflows 
Motivated by the securities exchange business process, we 
simulate a continuous running of a large number of paral-
lel workflow instances as described in Table 2. We conduct 
the experiments with 3 different batches of workflows 
where the number of workflow instances increases from 
3000, 6000 to 10000. To simplify the experiments and focus 
on the evaluation of temporal verification strategy itself, all 
simulated workflow instances are composed of only se-
quential activities. Workflow with complex structure (e.g., 
choice, iteration and parallelism) can be pre-processed us-
ing some strategies such as workflow flattening. Business 
workflows with 15, 20 and 25 sequential activities are 
tested to evaluate the effect of different workflow sizes on 
the effectiveness of these strategies. The mean execution 
time is randomly generated from the range of 5 to 15 sec-
onds. Coefficient of variation is assigned as 0.2 similar to the 
work in [14] to ensure the consistency of comparison. We 
use an online queueing calculator3 provided by Kardi 
Teknomo to calculate some mean values such as queueing 
length and waiting time in the queueing systems for cloud 
services. Thus, the expected response time of each work-
flow activity can be accurately obtained. Real arrival time 
and execution time of activities are designed to follow gen-
eral distribution which are simulated by Simulink4.  

Random noises are also generated to simulate large de-
lays along workflow execution due to unpredictable causes 
such as network congestion or other critical software errors. 
These delays are often too large to be simulated by random 
distribution models. We randomly select 5% of the total ac-
tivities, and increase their execution times by 0%, 25% and 
50% according to the noise level. 

The deadline assignment strategy proposed in [5] is 
adopted in this paper where a confidence value of 90% is 
specified, namely the target on-time completion rate is 90%. 

The upper bound temporal constraint of the workflow is de-
fined as 120% of the total mean activity response time to sim-
ulate a reasonable deadline. Here, 120% threshold is set as a 
reference based on the 3-sigma rule in normal distribution. 
Note that 120% is selected as a reasonable threshold. There 
may exist an optimal threshold which can help to accurately 
distinguish the local violation states from non-violation 
states for workflow activities. We will leave the question 
about how to obtain the optimal threshold of local temporal 
violations as one of our future work. 

The deadline constraints in the Service Level Agreement 
specifies that the batch of workflows needs to be completed 
within 2 hours. The basic time unit is set as equal interval of 
one minute, so there are 120 candidate checkpoints along the 
system timeline. The violation handling strategy adopted 
for these experiments is the one proposed in [15] where a 
server instance with fixed lifecycle will be added to the se-
lected queueing system to compensate for the occurred time 
delays. Each round of experiment is repeated for 15 times to 
get the average experimental results. 

In our experiments, we compare our strategy TVSpro with 
two representative temporal verification strategies. In our 
previous work [9], throughput based verification strategy 
has been proved to be more efficient and effective than all 
existing response-time based temporal verification strate-
gies. Therefore, we only focus on the comparison with a 
throughput-based strategy. The basic idea of the two repre-
sentative strategies are described as follows: 

� TVSthr: It is a throughput-based temporal verification 
strategy which does not consider the effect of time 
delay propagation [16]. It takes every candidate time 
point as a checkpoint given in Definition 3. 

� TVSn&s: It is a throughput-based temporal verification 
strategy which takes each workflow activity as a can-
didate checkpoint [8]. 

To get the baseline results for comparison purpose, we 
record the on-time completion rates of workflow instances 
under natural situation, i,e. without any temporal verifica-
tion or violation handling strategies (denoted as NIL). 

——————————————— 

3. http://people.revoledu.com/kardi/tutorial/Queuing/index.html 
4: https://www.mathworks.com/products/simulink.html 

TABLE 2 
EXPERIMENTAL SETTINGS 

Workflow instance size Workflow instances with 15, 20, 25 activities are respectively tested. 
Number of workflow instances The number of parallel workflow instances increases from 3000, 6000 to 10000. 
Workflow structure Every workflow instance has the same workflow structure with sequential activities 
Activity durations The execution time of activity is generated using the simulation environment Simulink which is inte-

grated with MATLAB. The mean execution time of activities are randomly selected from a range of 5 
to 15 seconds and the coefficient of variation is 0.2. 

Noise setting Noise level: 0%, 25% and 50% of the execution time. 
Noise range: 5% of the activities. 

Temporal constraints The target on-time completion rate is set as 90%. The upper bound of temporal constraints is set as 
120% of the mean activity execution time. 

Violation handling Once a throughput violation is detected, violation handling will be triggered to locate the queuing 
systems where time delays occurred and add a new server instance to that queueing system to com-
pensate for the time delays. 

	



 

 

7.2 Experimental Results and Analysis 
Efficiency: The efficiency of temporal verification strategy 
can be measured by time overhead of each strategy. The 
overall time overhead is the accumulation of overhead at 
each candidate checkpoint including both computation 
and communication overhead. 

According to the throughput conformance verification strat-
egy depicted in Table 1, both checkpoint selection and tem-
poral verification have low computational cost since they 
only require simple calculations. This is consistent to our ex-
perimental results which indicate that the computation 
overhead of verification strategy is very small (in millisec-
onds). Given the fact that the durations of workflow activi-
ties are normally on the order of seconds or minutes, the 
computation overhead can be considered negligible. 

In contrast, the majority time overhead for temporal ver-
ification strategies is the communication time for acquiring 
runtime information, such as reading system log to obtain 
the start time and end time of workflow activities. For tem-
poral verification strategies that take time points as check-
points (e.g., TVSpro and TVSthr), communication is required 
once at each candidate system time point, each communica-
tion needs to read the time-related information of all work-
flow activities within the basic observation time unit. While 
for the strategies that take every workflow activities as 
checkpoint (e.g., TVSn&s), communication is required at every 
workflow activity, but each communication only needs to 
read the data of one activity. So the question arises: which 
communication overhead is larger? 

Recently, an analogy study on EC2 has been conducted 
[16]. The authors have recorded and analyzed the commu-
nication time for reading different bytes of date from the 
same S3 (Simple Storage Service) file. Experimental results 
demonstrate that the average reading time are very close de-
spite of huge difference in the data size. Therefore, for the 
above two kinds of strategies, overhead at a candidate 
checkpoint is almost the same since the communication 
overhead is close and computation overhead can be ne-
glected. The difference of overall time overhead between the 
two kinds of verification strategies mainly lies in different 
number of candidate checkpoints. 

Figure 4 depicts the average number of candidate check-
points by each strategy. The number of parallel workflow in-
stances is 3000. TVSpro and TVSthr take  time points as candi-
date checkpoints. Despite the increase of instance size, 
there are a constant of 120 candidate checkpoints when the 
basic time unit is set as equal interval of one minute. In con-
trast, TVSn&s selects much more candidate checkpoints than 
the other two strategies since it is working at each work-
flow activity. Thus, every workflow activity is regarded as 
a candidate checkpoint, the number of candidate check-
points increases with workflow instance size and the num-
ber of parallel workflow instances. Compared with TVSn&s, 
the reduction rate of candidate checkpoints for TVSpro and 
TVSthr are both 98.4% when workflow instance size reaches 
25. The results for other two experiments with 6000 and 
10000 parallel workflow instances are similar. Due to the 
page limit, more details are omitted here. 

Effectiveness: On-time completion rate is a critical indi-
cator for temporal QoS of business workflows. While as 

mentioned in the introduction, strictly on-time completion 
is hardly possible. Higher service quality is also not neces-
sary in business scenarios because the service provider 
needs to cover the cost of over-provisioned resources. 
Therefore, an effective strategy is the one that reaches tar-
get on-time completion rate (90% in our experiments) with 
the least amount of resources consumption. In our experi-
ments, when a throughput violation is detected, new re-
sources will be added into queueing systems at handling 
points to speed up activities execution. Thus, the number 
of handling points can be regarded as an alternative per-
formance parameter to measure the resource consumption 
of verification strategies. We also measure the average han-
dling points for every 1% increment from the baseline on-
time completion rate (namely the on-time completion rate 
achieved by NIL), which can represent the cost-effective-
ness for the resources used for violation handling. The for-
mula is as follows: 

𝐻
𝛾�%− 𝛾% 

 
(6) 

Where 𝐻 denotes the number of total handling points 
needed by each strategy, 𝛾% is the baseline on-time com-
pletion rate and 𝛾�%  is the on-time completion rate 
achieved by each strategy. 

Figure 5 depicts the real on-time completion rates by 
each strategy with different number of parallel workflow 
instances when workflow instance size is 25. Other results 
such as the number of detected throughput violations and 
handling points are recorded in Table 3. 

As shown in Figure 5, each strategy can significantly im-
prove the on-time completion rate when compared with 
the baseline. TVSn&s can achieve a higher on-time comple-
tion rate than the other two strategies. Both TVSpro and 
TVSn&s can achieve target on-time completion rate 90% (the 
red dashed line in Figure 5). In contrast, TVSthr maintains 
nearly 90% on-time completion rate but slightly less than the 
target when the number of workflow instances are 3000 and 
6000. However, as shown in Table 3, since TVSn&s is working 
at each workflow activity, the number of detected through-
put violations and handling points are much more than the 
other two strategies. The average handling points for every 
1% increment from the baseline on-time completion rate by 
TVSn&s is several times more than TVSpro and TVSthr, which 

 

Fig. 4. Numbers of candidate checkpoints by each strategy 



 

 

means the required resources for temporal violation han-
dling is dozens of times more than the other two strategies. 
TVSpro and TVSpro detect roughly the same number of 
throughput violations and require similar numbers of han-
dling points because both of them take every candidate 
time point as a checkpoint. Compared with TVSthr, TVSpro 
can maintain over 90% on-time completion rate. The rea-
son is that TVSpro can detect more violations when taking 

delay propagation effect into consideration. 
Figure 6 and Table 4 show the experimental results un-

der different workflow sizes. The number of parallel work-
flow instances is 6000. For the same reason, TVSn&s can 
achieve the highest on-time completion rate with much 
more violation handling points and resources consump-
tion. TVSthr fails to achieve the target completion rate in all 
cases, while our strategy TVSpro can achieve over 90% on-
time completion rate when the workflow size is larger than 
20. However, when workflow size is 15, the on-time com-
pletion rate of TVSpro is less than target rate 90%. We spec-
ulate the reason is that the delay propagation effect is less 
detectable when workflow size becomes smaller. Since 
TVSpro can detects more violations, the number of handling 
points is larger when compared with TVSthr. But the perfor-
mance of TVSpro is still better than TVSn&s and TVSthr. 

Finally, we compared our strategy TVSpro with the other 
two strategies under different levels of noise, which are 
shown in Figure 7 and Table 5. The workflow instance size 
is 25. TVSn&s unsurprisingly achieves the highest on-time 
completion rate with much more violation handling points 
and resource consumption. TVSthr requires the least 
amount of handling points and new resources, but it fails 
to meet the target on-time completion rate in all cases. Our 
strategy TVSpro, by contrast, can ensure steady and satisfac-
tory on-time completion rates under different noise levels. 
The resource consumption for temporal violation handling 
is slightly larger than TVSthr, but is dozens of times less 
than TVSn&s. Compared with TVSthr, the advantage of 
TVSpro becomes more evident when the level of noise in-
creases. This shows that our strategy can achieve a satisfac-
tory result when the workflow system suffers from unex-
pected situations where large delays have occurred. 

In conclusion, our experimental results demonstrate 

Fig. 6. On-time completion rates with different workflow sizes 

TABLE 4 
RESULTS WITH DIFFERENT WORKFLOW SIZES 

Strategies 

Detected  
throughput vio-

lations 
Handling points 

Average	handling	points	
for	every	1%	increment	

from	the	baseline 
15 20 25 15 20 25 15 20 25 

TVSpro 63 83 41 171 201 147 13.93 22.26 13.93 
TVSthr 63 52 36 171 166 130 14.12 27.29 13.37 
TVSn&s 568 702 873 568 702 873 33.45 48.58 78.86 

TABLE 3 
RESULTS WITH DIFFERENT PARALLEL INSTANCES 

Strategies	

Detected	
throughput	vio-

lations	
Handling	points	

Average	handling	points	
for	every	1%	increment	

from	the	baseline	
3000	6000	10000	3000	6000	 10000	 3000	 6000	 10000	

TVSpro	 40	 41	 81	 126	 147	 367	 13.15	 13.93	 21.57	
TVSthr	 40	 36	 75	 112	 130	 351	 16.49	 13.37	 22.76	
TVSn&s	 532	 873	 1726	 532	 873	 1726	 48.14	 78.86	 84.90	

TABLE 1  

Fig. 5. On-time completion rates with different number of instances 

Fig. 7. On-time completion rates with different noise levels 

TABLE 5 
RESULTS WITH DIFFERENT NOISE LEVELS 

Strategies 

Detected 
throughput vio-

lations 
Handling points 

Average	handling	points	
for	1%	increment	from	

the	baseline 
0% 25% 50% 0% 25% 50% 0% 25% 50% 

TVSpro 41 76 88 147 392 413 13.93 20.62 16.38 
TVSthr 36 63 71 130 314 335 13.37 19.09 16.51 
TVSn&s 873 1128 1895 873 1128 1895 78.86 50.31 68.04 



 

 

that our novel propagation-aware verification strategy can 
reach the target on-time completion rate of parallel work-
flow instances with less resource consumption. It is gener-
ally better in terms of both in efficiency and effectiveness 
than the state-of-the-art strategy. In addition, our strategy 
is scalable and can be applied to fluctuating workload en-
vironments such as the cloud. 

7.3 Threads to validity 
External threats to validity. The main threat to the external 
validity of our experiments is the representativeness of our 
motivating business workflow example which sets the 
background and affects the parameter settings. This secu-
rities exchange business process is a typical instance-inten-
sive business process which is used by many researchers to 
motivate and analyze the needs for business cloud work-
flows. However, different business processes may have dif-
ferent features. To mitigate this threat, in our experimental 
settings we deliberately increased the search space by ex-
ploring different parameter settings to test the more gen-
eral applicability of our strategy. 

Internal threats to validity. The main threat to the internal 
validity is the comprehensiveness of our experiments. To 
mitigate this threat, as is a common practice for simulation-
based experiments [17], we adopt two general rules in our 
experiments: (1) for static parameters such as coefficient of 
variation, we choose representative settings based on the 
earlier related work [8], [16]; (2) for dynamic parameters 
such as workflow durations, we explored the search space 
to a large degree by predefining a series of candidates or 
generating randomly on-the-fly. 

8 RELATED WORK 
Conventional runtime verification approaches. Runtime 
verification is pursued as a lightweight technology, where a 
monitor checks at runtime whether or not the execution of a 
system under scrutiny satisfies a given correctness property 
[18]. According to the working mechanisms of the monitor, 
monitoring approaches in runtime verification can be classi-
fied as event-triggered or time-triggered. Most literatures on 
runtime verification focus on event-triggered solutions, in 
the sense that a monitor is invoked for analysis as soon as 
any event of interest occurs [19], [20]. However, this frequent 
invocation induces significant runtime overhead to the sys-
tem. Some approaches attempt to mitigate this by e.g. im-
proving instrumentation [21], combining static and dynamic 
analysis technologies [22]. However, other inherent limita-
tions, such as unpredictable invocation of the monitor and 
possible bursts of monitoring invocation, cannot be easily 
addressed. To overcome the above defects, a time-triggered 
runtime verification approach has been developed [23]. 
Here runtime monitor is invoked with a constant frequency 
and takes samples from the program in order to evaluate the 
properties [24], [25]. In the context of large-scale business 
workflow system, hundreds of thousands of monitors are 
needed for monitoring the parallel workflow instances, and 
thus the overhead is a serious obstacle. 

Workflow verification. Workflow verification is a 
longstanding area of workflow management research. In 

general, workflow management systems work at two stages: 
build-time and runtime. Workflow verification at build-time 
is concerned with determining, in advance, whether a work-
flow model exhibits certain desirable behaviors. Since the 
mid-1990s, many researchers have been working on verifi-
cation technologies at workflow build-time [26], [27]. The 
need for formal methods in workflow modeling and verifi-
cation has been widely recognized, which provides rigorous 
and mathematical semantics to guarantee that a system will 
comply with target specifications. Typical formal methods 
include Petri nets, event algebra, state charts, and temporal 
logic [1], [2]. However, static verification is not sufficient to 
tackle compliance problems in a comprehensive way due to 
runtime issues such as cloud platform performance vari-
ance. 

Workflow runtime verification monitors the running in-
stances of a process and assesses whether they comply with 
the business constraints of interest. Dimitra et al. present a 
strategy to check a running program against Linear Tem-
poral Logic (LTL) specification [28]. Davide et al. provide a 
framework for the specification and automatic verification 
of business process based on a temporal extension of answer 
set programming (ASP) [29]. Fabrizio et al. present a runtime 
verification based on linear temporal logic and colored au-
tomata [30]. However, these approaches cannot directly be 
applied in workflow temporal verification as it is incredibly 
expensive to repeat these verification strategies thousands 
of times when dealing with thousands of parallel workflow 
instances in real-world, large-scale business workflow ap-
plication domains. 

Workflow temporal verification. Temporal verification 
is the major approach for delivering satisfactory temporal 
QoS, which focuses on the time-constrained large-scale 
workflow systems and applications [45]. Initially, most ef-
forts have been dedicated to the temporal verification of sci-
entific workflow applications. A series of studies on tem-
poral consistency model, including binary-state based, mul-
tiple-state based as well as continuous-state based models, 
have been published gradually [34], [35], aiming at provid-
ing a more precise method for workflow temporal verifica-
tion. To deal with large numbers of parallel business work-
flows, a throughput consistency model has been first pro-
posed in [5] for setting throughput constraints. The work in 
[9] presents a runtime throughput based temporal con-
sistency model to monitor parallel business workflows. The 
work in [36] presents a temporal violation transmission 
model at workflow build-time stage to estimate the number 
of temporal violations that may occur at runtime. The pre-
diction result can provide essential reference for temporal 
violation prevention and handling strategy. 

QoS-aweare workflow scheduling. Workflow schedul-
ing is a research hotspot in cloud computing which allocates 
each workflow task to a relevant cloud service by ordering 
the execution of various resources to obtain satisfactory QoS 
requirements. The current state-of-the-art research tackles 
different scheduling problems in cloud workflow systems 
by focusing on different QoS optimization constraints. 
Zhang et al. present an iterative ordinal optimization 
method to achieve high throughput with lower memory de-
mand [37]. Sahni et al. present a dynamic cost-minimization 



 

 

deadline constrained heuristic for scheduling scientific ap-
plications in a public cloud environment, where both time 
and cost are considered [38]. Some other scheduling algo-
rithms take multiple QoS parameters such as reliability and 
energy requirements as constraints to schedule workflow 
tasks to the resources [39, 40]. However, considering the 
scheduling efficiency and cost, those strategies for single sci-
entific workflow or multi-workflows with low concurrency 
are not applicable to the scheduling of instance-intensive 
business workflows. 

Benchmarking workflow management system. The 
performance of WfMS (workflow management systems) 
has a significant impact on the quality of service provided 
by hosted workflow applications. In order to assess and 
compare existing WfMS and workflow engines with the 
aim of selecting appropriate host for execution, a multi-
tude of benchmarks have emerged. BenchFlow project tries 
to design and implement the first benchmark to assess and 
compare the performance of WfMS that is compliant with 
Business Process Model and Notation 2.0 standard [41]. 
Betsy is a BPEL/BPMN engine test system, which imple-
ments a comprehensive benchmark for workflow engines 
[42]. Harrer et al. present a pattern language that captures 
common solutions to reoccurring problems in the area of 
workflow engine conformance and performance bench-
marking, which help future benchmark authors to design 
and implement new workflow engine benchmarks [43]. 

9 CONCLUSION 
A major challenge for business process management and 
service-oriented systems is how to achieve the target on-
time completion rate as an essential non-functional require-
ment of parallel business workflow instances. Current 
workflow verification approaches cannot be applied directly 
in this scenario either due to the performance variation of 
runtime cloud computing environments or their limitations 
on efficiency and scalability. In this paper, we introduce an 
effective temporal conformance verification strategy for a 
large number of business cloud workflows. Instead of re-
sponse time, workflow throughput was employed as the 
measurement to monitor parallel workflow instances. A 
novel propagation-aware throughput conformance verifica-
tion strategy that considers the effect of delay propagation 
in cloud system was presented and implemented in a proto-
type cloud workflow system. Experimental results showed 
that our strategy outperforms the state-of-the-art strategy in 
achieving better efficiency and effectiveness. 
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