

Runtime Verification of Business Cloud
Workflow Temporal Conformance

 Haoyu Luo, Xiao Liu, Senior Member, IEEE, Jin Liu, Member, IEEE,
Yun Yang, Senior Member, IEEE, and John Grundy, Senior Member, IEEE

Abstract—Business cloud workflows are often designed with multiple time constraints for timely response to business requests.
To ensure on-time completion of workflow instances, workflow temporal conformance state needs to be constantly monitored and
verified at runtime. Considering the fact that there are a large number of workflow instances running in a parallel fashion in many
business scenarios, conventional verification approaches for time-related properties using such as temporal logic or timed Petri
nets are not feasible due to the limitation of low efficiency at runtime. To address this issue, we propose a new approach to
automated runtime verification of temporal conformance for parallel workflow instances in a cloud environment. In this paper,
instead of using response time to verify temporal conformance of every single workflow as in conventional strategies, workflow
throughput is employed as the performance measurement to efficiently monitor a large number of parallel workflow instances. On
this basis we present a novel conformance verification strategy. This strategy considers the effect of time delay propagation in
the cloud workflow systems to accurately verify workflow runtime temporal conformance. Our verification strategy is implemented
in a prototype cloud workflow system and the evaluation results show that it outperforms the state-of-the-art workflow temporal
verification strategy.

Index Terms—runtime verification; business workflows; temporal conformance; on-time completion; cloud computing;

—————————— u ——————————

1 INTRODUCTION
usiness workflows are pervasive in many large-scale
business applications such as bank transactions and secu-

rities exchange. A notable characteristic of business work-
flow applications is that there are usually a large number
of workflow instances running in a parallel and distributed
fashion, where each instance represents a business request.
Given the requirement in the processing of concurrent
business requests, cloud computing that can provide cost-
effective scalable resources is an ideal host environment for
running large numbers of workflow instances.

Many large enterprise workflows have to meet multiple
time constraints in order to achieve timely completion of
business goals. However, always on-time completion is not
possible in real business scenarios full of uncertainties. It is
also not always necessary because most customers can
have some level of endurance for small time delays. There-
fore, instead of “hard deadlines”, “soft deadlines” are com-
monly used for business workflows planning, executing
and monitoring. For example, instead of specifying “every
workflow must be completed within 5 minutes” as a hard
deadline, we can specify “90% of workflows must be com-
pleted within 5 minutes” as a kind of soft deadline in QoS

(Quality of Service) specification for business workflow
application. “90%” as an example target on-time comple-
tion rate can be decided by the enterprises based on their
target customer satisfaction rate or economical concerns.

However, due to the dynamic nature and uncertainties
that exist during the running of workflows in the cloud,
temporal violations often occur. Here, “temporal viola-
tion” means an intermediate violation of time constraint
(i.e., time delay) that can be fixed locally to ensure overall
timely completion. A large number of unpredictable tem-
poral violations will seriously jeopardize the timely com-
pletion of massive concurrent user requests, which may
lead to not only the deterioration of user satisfaction but
also the expiration of results, even the deal’s collapse.

To deliver satisfactory on-time completion rate of time-
constrained workflows, workflow temporal conformance
needs to be constantly monitored and verified. Here work-
flow temporal conformance denotes the consistency be-
tween runtime workflow execution states and build-time
temporal QoS specification. The approach for monitoring
workflow temporal conformance is called workflow tem-
poral verification, which is conducted to guarantee satisfac-
tory temporal QoS in workflow systems. Given a workflow
lifecycle, a temporal verification framework consists of three
components, viz, temporal constraint setting [31], temporal
consistency verification [32] and temporal violation han-
dling [33]. Temporal constraint setting assigns time con-
straint for workflow activities according to the deadline
specified in QoS specification. Temporal consistency verifi-
cation monitors and verifies whether workflow temporal
behavior complies as expected, and determines whether a
temporal violation occurs or not. If a temporal violation
is detected, the current temporal behavior needs to be

B

———————————————

• H. Luo is with the School of Computer Science, South China Normal Uni-
versity, Guangzhou, 510631, P.R. China. E-mail: hluo@m.scnu.edu.cn.

• J. Liu is with the School of Computer Science, Wuhan University, Wuhan,
430072, P.R. China. E-mail: jinliu@whu.edu.cn.

• X. Liu is with the School of Information Technology, Deakin University,
Geelong, VIC 3216, Australia. E-mail: xiao.liu@deakin.edu.au.

• Y. Yang is with the School of Software and Electrical Engineering, Swin-
burne University of Technology, Melbourne, VIC 3122, Australia.
E-mail: yyang@swin.edu.au.

• J.C. Grundy is with the Faculty of Information Technology, Monash Uni-
versity, Melbourne, VIC 3800, Australia. E-mail:
John.Grundy@monash.edu.

John Grundy
To appear in IEEE Transactions on Services Computing, accepted 18 Dec 2019 (c) IEEE 2019

adjusted by temporal violation handling strategies.
Workflow temporal verification can be categorized as

build-time verification and runtime verification. Formal
methods based on Petri nets or event algebra [1], [2] mainly
focus on process modeling and verification at workflow
build-time. These static approaches cannot detect and au-
tomatically respond to failures when runtime temporal
conformance states violate the time constraint specifica-
tions. Runtime verification aims to check whether a run of
the system satisfies a given correctness property at any
point in time [3]. Existing research on workflow runtime
verification focuses on monitoring the running state of a
workflow instance and determining whether it complies
with time constraint specifications. However, these ap-
proaches that are designed to monitor single runs of the
system have to be repeated thousands of times to monitor
thousands of parallel workflow instances. It is prohibi-
tively expensive to implement parallel workflow monitors
as the overhead increases dramatically.

Limitations of current business workflow verification
approaches lead us to the following research questions:

RQ1: What do we need to measure for the purpose of moni-
toring the temporal conformance state of a large number of par-
allel workflow instances at runtime?

RQ2: Where or when can we most efficiently monitor the
workflow temporal conformance state?

RQ3: How do we effectively verify workflow temporal con-
formance state?

In this paper, we propose a novel runtime verification
approach to monitor and verify temporal conformance of
parallel business workflows running in the cloud. We aim
to provide an efficient and effective method to monitor
workflow behavior at runtime, which helps to achieve the
target workflow on-time completion rate. Specifically:

1) For the first research question, to reduce the verifica-
tion overhead, instead of using the response time of work-
flow activities to monitor every single workflow instance,
workflow throughput is employed as the performance meas-
urement for describing the behavior of a large batch of par-
allel workflow instances.

2) For the second research question, to achieve high ef-
ficiency, we adapt an efficient throughput based temporal
checkpoint selection method from our earlier work in [4]
to select only a small but sufficient number of time points
along the workflow system execution timeline as temporal
checkpoints where temporal verification needs to be con-
ducted to check the temporal conformance state.

3) For the third research question, a novel temporal ver-
ification strategy is proposed for the temporal conform-
ance monitoring and verification purpose. This strategy

considers the propagation of time delays in the cloud
workflow environment that enables us to produce a much
more accurate verdict of temporal conformance for a large
number of parallel cloud workflow instances.

Note that to keep consistency with other related work
using the above mentioned temporal verification frame-
work, the proposed approach deals with temporal verifi-
cation of business workflow in a cloud environment in this
paper. In terms of the method and models proposed by our
approach, they are in fact applicable in a generic compu-
ting environment.

 Our strategy is implemented in a prototype cloud
workflow system. Experimental results show that our
strategy outperforms the state-of-the-art workflow tem-
poral verification strategy for large-scale parallel workflow
instances.

2 PROBLEM STATEMENT AND ANALYSIS

2.1 A Common Scenario in Securities Exchange
Securities exchange is a typical instances-intensive busi-
ness workflow. In general, a securities exchange workflow
can be divided into online trading and offline settlement.

Online trading processes are completed in several
minutes after a client performs dealing operations on the
terminal. Client entrustment will be sent to the stock mar-
ket to clinch a deal. Then the fitting results are recorded
into the database in Securities Corporation and feed back
to the client. So far, the deal is technically completed but
the share is not legally owned by the client until offline set-
tlement is finished after the market is closed to all clients.

An offline settlement process is responsible for archiv-
ing and clearing all the completed online deals. During of-
fline settlement, a large number of workflow instances are
initialized over a period of time, each instance represents
an online deal record. Figure 1 illustrates the simplified se-
curities exchange workflow of Chinese Shanghai A-Share
Stock Market, which involves a few steps as workflow ac-
tivities, including “register shares variation”, “calculate
capital variation”, “settle the trades”, “transfer capital”
and so on. Some steps of the workflow instance are exe-
cuted concurrently. The process is eventually completed
only if Clearing Corporations finish stock clearing and the
balance of all the capital transferred is zero.

In the scenario of securities exchange, on-time comple-
tion is a key non-functional requirement that should be sat-
isfied. Similar requirements for temporal QoS are common
in many other soft real-time systems. For example, an e-
commerce website needs to process hundreds of thousands
of orders every day. Massive parallel workflow instances

Fig. 1. A securities exchange business process

Entrust

Entrust

Validate

Fit and make deal

Generate trading
data

Generate fee and
balance

Register share
variation

Calculate
capital

variation

Data
transfer

Settle the
trades

Check
balance

Product
clearing file

Receive data
and details

Transfer
detail

Generate
bank transfer

detail

Process
balance Entrust

...
Check
balance

for order processing are initialized within a short time and
need to be completed in a reasonable duration for user sat-
isfaction. But unlike some hard real-time systems (e.g., aer-
ospace control system) that must adhere to strict execution
deadlines, violating a time constraint can be tolerated in
soft real-time system providing that this happens with a
sufficiently low probability. The threshold for the percent-
age of deadline misses (namely target on-time completion
rate) depends on specific scenarios.

2.2 Problem Analysis
In the previous scenario, the number of entrustments of se-
curities transactions can reach several millions per second
at peak time. Therefore, automated run-time verification is
essential for the real-time monitoring purpose. Besides, the
durations of business workflow activities are often very
short so that temporal non-conformance state should be
detected and then be handled as soon as possible. This re-
quires that the temporal verification model is sensitive to
time delays and can accurately determine the transient
temporal state of workflow instances.

When dealing with the monitoring of massive parallel
workflow instances, scalability becomes a critical issue. Re-
sponse-time based strategies which are designed for mon-
itoring single large-scale scientific workflow instance use
the response time of individual workflow activities as the
monitoring target, and one monitoring service is dedicated
to one workflow instance [6]. Therefore, the temporal ver-
ification overhead will grow linearly to the number of par-
allel workflow instances. This is unacceptable in instance-
intensive business workflows where hundreds of thou-
sands of workflow instances can be running in parallel. In
this case, instead of the response time, a new measurement
for a batch of workflow instances is needed to ensure high
scalability of temporal verification.

Therefore, an efficient and effective runtime temporal
verification is required in monitoring temporal conform-
ance state of a large number of parallel workflow instances
running in large-scale business cloud system.

3 DEFINITIONS
In this section, we analyze and address the first two re-
search questions.

RQ1: What do we need to measure for the purpose of moni-
toring the temporal conformance state of a large number of par-
allel workflow instances at runtime?

In runtime verification, checking whether a run of the
system meets a correctness property is performed using a
decision procedure, called monitor. It has been suggested
by Nutt [7] that the most important questions to be an-
swered before attempting to monitor a system are ‘what to
measure’ and ‘why the measurement should be taken’.

Response time and throughput are two primary meas-
urements of workflow applications from the performance
perspective [8]. While response time is to measure the du-
ration of a workflow activity or the makespan of a work-
flow instance, throughput measures the number of work-
flow activities that have been finished per time unit. As

mentioned above, response time is not applicable for mon-
itoring a large number of parallel workflow instances due
to the large monitoring overhead. It is also unnecessary to
check the intermediate temporal state of every single
workflow instance since our ultimate goal is to achieve the
target on-time completion rate for the whole instances.
Therefore, workflow throughput is employed as the per-
formance measurement for business cloud workflows.

In addition, measuring workflow throughput by count-
ing the number of completed workflow activities is not rea-
sonable because the completion of activities with different
durations have different contributions to the on-time com-
pletion of the whole workflow instances. The authors in [4]
have proposed a new definition of workflow throughput
to reflect the contributions of completing individual activ-
ities to the on-time completion of all workflow instances.
Next, before we present the workflow throughput defini-
tion, some basic workflow time attributes are introduced.

Business workflow is made up of a set of activities in
partial order. We denote the 𝑖th activity of a business work-
flow as 𝑎#. The maximum, mean, minimum, expected and
runtime completion duration of 𝑎# is denoted as 𝐷(𝑎#) ,
𝑀(𝑎#) , 𝑑(𝑎#) , 𝐸(𝑎#) and 𝑅(𝑎#) respectively. Accordingly,
𝑊𝐹#	is a workflow instance with its maximum, mean, min-
imum, expected and runtime completion duration denoted
as 𝐷(𝑊𝐹#) , 𝑀(𝑊𝐹#) , 𝑑(𝑊𝐹#) , 𝐸(𝑊𝐹#) and 𝑅(𝑊𝐹#) respec-
tively.
Definition 1 (Workflow Throughput). Given a batch of 𝑞

parallel instances {WF1,WF2,…,WFq} of business workflow
WF which starts at system time 𝑆0, the completion of work-
flow activity 𝑎#1 (namely the 𝑗th activity of 𝑊𝐹#) contributes
to the completion of the entire collection of workflows with a
value of 𝑀(𝑎#1)/𝑇 where T=∑ 𝑀(𝑊𝐹#)

6
#78 . Here, we assume

that at the current observation time point 𝑆9, the set of new
completed activities from the last nearest observation time
point 𝑆9:8 is denoted as 𝑎{}|>?@A

>? , then the system throughput
is defined as 𝑇𝐻|>?@A

>? = 𝑀(𝑎{}|>?@A
>?) 𝑇⁄ .

Definition 1 presents how much of those activities com-
pleted during the last observed time unit contributes to the
completion of all workflow instances. Correspondingly,
workflow throughput constraints need to be defined to
match the use of workflow throughput, which is the ex-
pected accumulated workflow throughput that should be
achieved by a specific system time point.
Definition 2 (Workflow Throughput Constraints). Given

the same batch of workflow instances as defined in Defini-
tion 1, the throughput constraint assigned at system point
𝑆9 is denoted as 𝑇𝐻𝐶𝑜𝑛𝑠|>I

>? which means that the accumu-
lated throughput ∑ 𝑇𝐻|>J@A

>J9
#78 should be no less than the

value of the assigned throughput constraint. The value of
𝑇𝐻𝐶𝑜𝑛𝑠|>I

>? is decided by the deadline assignment strategy.

 Work in [5] presents a representative deadline assign-
ment strategy. This strategy employs a queueing model to
predict workflow activity durations, and then calculates
the expected percentage of workflow instances completion
as local throughput constraint at any system time point.

RQ2: Where or when can we most efficiently monitor the
workflow temporal conformance state?

Workflow temporal verification is the major approach
for delivering satisfactory temporal QoS in business cloud
systems by monitoring workflow temporal conformance
state at runtime. Given the throughput constraint defined
above, workflow temporal verification is to check whether
the target throughput constraints can be satisfied or not at
a specific system time point, also known as a throughput
checkpoint or checkpoint for short.

Theoretically, any time point along the system timeline
can be a checkpoint. However, since in practice monitoring
is usually conducted discretely along the system timeline,
there is normally a basic time unit (e.g., one minute) de-
noted as 𝑏𝑡 , which defines the frequency for updating
workflow time attributes for the monitoring purpose.
Throughput checkpoints are selected based on these mon-
itoring points that are candidate throughput checkpoints.
Definition 3 (Candidate Throughput Checkpoints). Given

the same batch of workflow instances as in Definition 1, a sys-
tem time point 𝑆9 along the workflow execution timeline is a
candidate throughput checkpoint if 𝑆9 − 𝑆9:8 = 𝑘 ∗ 𝑏𝑡	(𝑘 =
1,2,3…).
By definition 3, candidate throughput checkpoints are

statically set before workflow execution, a checkpoint se-
lection strategy is used to select the real checkpoints where
temporal verification needs to be conducted at runtime. In
this paper, since our focus is on temporal verification, we
just adopt a representative throughput based checkpoint
selection strategy as proposed in [9].
Throughput based Checkpoint Selection Strategy: Given

the same collection of workflow instances as in Definition 1,
the rule of throughput based checkpoint selection strategy is
defined as follows: given the candidate throughput checkpoint
𝑆U, if 𝑇𝐻|>V@A

>V <	𝑇𝐻𝐶𝑜𝑛𝑠|>V@A
>V , 𝑆U is selected as a checkpoint.

Otherwise, 𝑆U is not selected as a checkpoint. Here, 𝑇𝐻|>V@A
>V

is the runtime throughput during the time points 𝑆U:8 and
𝑆U , 𝑇𝐻𝐶𝑜𝑛𝑠|>V@A

>V is the expected percentage of completion be-
tween 𝑆U:8 and	𝑆U.
In summary, in our approach workflow time attributes

are monitored at each candidate checkpoint and temporal
verification is conducted at each selected checkpoint to
monitor and verify temporal conformance state.

It should be noted that some definitions in this paper
may be slightly different from others presented in some of
our earlier publications (e.g., in [5] and [9]) when defining
the same concept in the scenario of business workflow tem-
poral verification. The main reason for this is the different
and focus of concern varies in the different research works.
For example, the definition of “workflow throughput” ap-
pears with a W array in [5] and [9], because the influence
of the workflow structure is considered in the proposed
strategies. While in order to focus on the workflow moni-
toring and verification strategy itself, complex workflow
structures are pre-processed into sequential structure in

this paper, thus W array is removed in the related defini-
tions. We are continuously improving and evolving the
models and definitions, which may cause variations
among these different research works.

4 TIME DELAY PROPAGATION ANALYSIS
In the next two sections, we describe our new solution to
solve the third research question, namely:

RQ3: How do we effectively verify workflow temporal con-
formance state?

Based on the answers to the first two research questions,
we can see temporal conformance state of parallel work-
flow instances needs to be verified using a throughput based
temporal verification strategy. In this paper, we propose a
throughput conformance verification strategy which con-
siders the effect of time delay propagation in cloud work-
flow systems to produce more accurate verdicts of work-
flow temporal conformance. In this section, we analyze the
effect of time delay propagation.

Time delay propagation is common during the execu-
tion of parallel workflow instances in business cloud work-
flow systems due to resource sharing and the temporal de-
pendencies among workflow activities. As a large number
of workflow instances are processed in parallel, they have
to be queued up waiting for execution on a limited number
of cloud services. Once an activity violates its local tem-
poral constraint (i.e., the actual response time exceeds the
expected time), all other activities in the same queue will
have to wait longer to be executed. As a consequence, some
activities are likely to violate their own temporal con-
straints as well. Meanwhile, as workflow activities need to
be executed in a partial order, delays to one activity will
postpone the start time of subsequent activities of the same
workflow instance waiting on other cloud services. As a
result, activities of other workflow instances waiting on
those cloud services may also be delayed.

Therefore, a few time delays may result in massive tem-
poral violations since time delays can propagate among
both subsequent activities of the same workflow instance
and activities of other parallel workflow instances that are
competing for the same resources. Finally in the worst case,
many parallel workflow instances may violate their final
deadlines, which results in the failure of achieving the tar-
get on-time completion rate.

Such a of time delay propagation process is similar to
the famous “Butterfly Effect”. Neglecting time delay propa-
gation may lead to false negative verification result since
some potential violations caused by the propagation effect
are not considered and thus cannot be handled in time.
Without timely handling of temporal violations, the accu-
mulated time delays will be impossible to be compensated
and eventually lead to the failure of on-time completion.

For example: Assuming that the target on-time comple-
tion rate of workflow instances is set as 90%. At check-
point	𝑆U, the instant temporal conformance state 𝛽% is ver-
ified to be 95%. Obviously, the result indicates that the tar-
get on-time completion rate can be achieved according to
the workflow execution progress until 𝑆U.

However in fact, due to the “Butterfly Effect”, the de-
tected temporal violations at 𝑆U may introduce more po-
tential temporal violations which will appear after 𝑆U. Alt-
hough these potential violations can eventually be de-
tected at the successive checkpoints, the system may not be
able to fully compensate the accumulated time delays, es-
pecially when the checkpoints are close to the final dead-
line. When the implicit effect of time delay propagation is
considered, the actual temporal conformance state 𝛽′% at
𝑆U may be only 85%, rather than 95%. In this case, temporal
violation handling strategies need to be triggered to timely
compensate for the time delays.

To investigate how time delays propagate in the cloud
system at workflow runtime, we first model the queueing
and execution process of parallel workflow instances in the
cloud system.

4.1 Queueing Model for Cloud Services
At workflow runtime, a large number of parallel instances
of a business process are initialized in a short time (the
middle tier in Figure 2). Each instance has to be executed
step by step according to the business logic. Since the num-
ber of parallel workflow instances is normally much larger
than the dedicated cloud services, workflow activities have
to queue up on limited services. In Figure 2, workflow ac-
tivities with the same colour represent the same kind of
business activities and queue in the same queueing system
with dedicated cloud services. Noted that for ease of dis-
cussion, we assume that each queueing system is dedi-
cated to only one type of cloud service, and one type of
cloud service is only for one type of activity. So if a business
process consists of 𝑘 atomic business activities, there will
be 𝑘 queueing systems. These queueing systems with var-
ious queuing features together form a well-connected
queueing network for the cloud workflow system.

When a workflow instance arrives at the first queueing
system, it will be either served immediately or waiting for
service, and then leaves the queueing system for the next
one after service. We employ M/G/m/m+r model to formu-
late the behavior of the first queueing system.
Definition 4 (M/G/m/m+r Queueing Model for Cloud

Services). M/G/m/m+r model hypothesizes that the inter-ar-
rival time of service requests arrives according to a Poisson
process with rate 𝜆, while execution time of activities are in-
dependent and identically distributed random variables that
follow a general distribution model with a mean value of 𝜇.
The queuing system contains 𝑚 cloud services and service or-
der is First Come First Service. The maximum number of ac-
tivities in the queueing system including those being serviced
is	𝑚 + 𝑟, where 𝑟 is the buffer size for incoming requests.
With this queueing model, we can obtain performance

related attributes that accurately reflect the queuing pro-
cess, such as mean waiting time, mean response time and
mean number of activities in the queuing system [10].

Furthermore, since the service time of the first activity
follows a general distribution in the first queueing system,
the inter-arrival time of activities in the next 𝑘 − 1 queuing
systems will follow a general distribution model as well.

Hence the queuing model for these 𝑘 − 1	queueing sys-
tems is G/G/m/m+r.
Definition 5 (G/G/m/m+r Queuing Model for Cloud Ser-

vices). G/G/m/m+r model hypothesizes that the inter-arrival
time of service requests and execution time of activities are
independent and identically distributed random variables
that follow a general distribution with a mean value of 𝜇. The
queuing system contains 𝑚 cloud services and the service or-
der is First Come First Service. The maximum number of ac-
tivities in the queueing system including those being serviced
is	𝑚 + 𝑟, where 𝑟 is the buffer size for incoming requests.
However, given the variations and complexity of the

G/G/m/m+r model, it is difficult to accurately measure the
performance of the queueing system. In this paper, we
adopt an approximate solution presented by Atmaca et al.
in [11] for G/G/m/m+r queuing system to reduce the com-
plexity of the problem.

4.2 Time Delay Propagation in a Workflow
Queueing Network

The response time of a workflow activity in a queueing sys-
tem can be divided into queueing time and execution time.
Time delay occurred in the queueing period is called pas-
sive delay and the time delay occurred in the execution pe-
riod is called active delay.

Active time delays occur for various reasons. Firstly, the
dynamic nature of cloud services makes performance fluc-
tuation inevitable, which may lead to response time delay
of workflow activities. One active time delay may cause a
single workflow instance to violate its final deadline. How-
ever, the propagation of time delays may cause temporal
non-conformance and jeopardize the timely completion of
a large number of parallel workflow instances in the same
queueing network.

Time delay propagation can be classified into three dif-
ferent stages according to its level of effect on temporal
conformance state. Here, we define some basic annotations:
𝑄𝑆1 is a queueing system with 𝑛 cloud servers (i.e., cloud
server instances) and an average of 	𝑙	activities in the queue.
𝑎#1 is the activity of 𝑊𝐹# in 𝑄𝑆1 with its expected duration

Fig. 2. Queueing models for cloud services

MICROSOFT CORPORATION

Ċ ĊĊ Ċ

Ċ ĊĊ Ċ

Queueing
network

Queueing
network

M/G/mM/G/m G/G/m queueing modelG/G/m queueing model

Parallel
workflow
instances

Parallel
workflow
instances

Activity
queue

Activity
queue

Workflow
activity

Workflow
activity

Queue upQueue up

InitializationInitialization

Business process
activity

Business process
activity

S4
S1

Cloud
service(s)

Cloud
service(s) S5

Workflow
instance

Workflow
instance

Business
logic flow
Business

logic flow

S2
S3

donated as 𝐸(𝑎#1). 𝑇𝐷#1 is the active time delay of 𝑎#1 dur-
ing the execution in 𝑄𝑆1. The passive time delay of work-
flow activity is denoted as 𝛥𝑡. In the following, we analyze
the propagation process in queueing network when time
delay 𝑇𝐷#1 is occurred.

(i) Propagation effect on a single workflow instance
For workflow instance 𝑊𝐹#, the subsequent activities of

𝑎#1 will postpone their start time by 𝑇𝐷#1 since they have to
wait in the queue until 𝑎#1 is completed. If all the other ac-
tivities are timely completed, the overall response time of
this workflow instance will be delayed by 𝑇𝐷#1.

(ii) Propagation effect on workflow activities in the
same queueing system

For a queueing system with 𝑛 servers, a newly arrived
activity can be executed immediately if the queue is empty,
otherwise it has to wait for service. Activities in the queue-
ing system can be divided into three categories according
to their arrival time. (1) The activities that arrive at the
queue before 𝑎#1 starts execution; (2) The activities that ar-
rive at the queue during the execution of 𝑎#1; and (3) the
activities that arrive at the queue after 𝑎#1is completed.

If 𝑛 = 1, for the first kind of activities, they have to post-
pone their start time by 𝑇𝐷#1. Thus, their potential response
time delay 	𝛥𝑡 = 𝑇𝐷#1. For the second kind of activities, 𝛥𝑡
increases with arrival time. The maximum value of 𝛥𝑡 is
denoted as 𝛥𝑇bcd. 𝛥𝑇bcd = 𝛥𝑙 ∗ 𝐸(𝑎#1), where 𝛥𝑙 is the dif-
ference of the queue length before and after 𝑎#1 is com-
pleted. For the third kind of activities, 𝛥𝑙 is equal or less
than 𝛥𝑇bcd.

If 𝑛 > 1, the number of available servers during 𝑇𝐷#1 is
𝑛 − 1 and increases back to 𝑛 after 𝑎#1 is completed. For the
first kind of activities, 𝛥𝑡 = 𝐸(𝑤(𝑛 − 1)) − 𝐸(𝑤(𝑛)), where
𝐸(𝑤(𝑛)) denotes the expected waiting time of activities in
the queue when the number of servers is 𝑛. For the second
kind of activities, since 𝐸(𝑤(𝑛 − 1)) − 𝐸(𝑤(𝑛)) decreases
with the increasing number of servers, 𝐸g𝑤(𝑛 − 1)h −
𝐸g𝑤(𝑛)h ≤ 𝑇𝐷#1. Hence 	𝛥𝑡 ≤ 𝑇𝐷#1. For the third kind of ac-
tivities, response time delays decrease in the order that
they arrive at the queue, since the length of the queue grad-
ually decreases to normal once 𝑎#1 is completed. The max-
imum value of 𝛥𝑡 is denoted as 𝛥𝑇bcd. 𝛥𝑇bcd = 𝛥𝑙 ∗ 𝐸(𝑎#1),
where 𝛥𝑙 is the difference between the expected queue
length and actual queue length.

(iii) Propagation effect on subsequent queueing sys-
tems

The underlying cloud services of a cloud workflow sys-
tem formed a network of queueing systems as shown in
Figure 2. The above two stages describe the time delay
propagation among temporal dependent workflow activi-
ties, while the propagation among queueing systems in the
queueing network is much more complicated as much
more workflow activities and workflow instances are in-
volved. Therefore, workflow throughput instead of re-
sponse time is employed to measure the propagation effect
on subsequent queueing systems.

According to Definitions 1 and 2, the throughput of

queueing system 𝑄𝑆1 is defined as 𝑇𝐻1|>?@A
>? = 𝑤1 ∗ 𝑇𝐻|>?@A

>? ,
where 𝑤1 is the activity duration weight of 𝑎#1 in the over-
all duration of 𝑊𝐹# . The corresponding throughput con-
straint is defined as 𝑇𝐻𝐶𝑜𝑛𝑠1|>?@A

>? = 𝑤1 ∗ 	𝑇𝐻𝐶𝑜𝑛𝑠|>?@A
>? .

When the execution time of one or more activities in 𝑄𝑆1
exceeds the expected time, a throughput constraint may be
violated as the number of completed activities within a
basic time unit is less than expected. We denote the gap be-
tween the actual throughput and the throughput con-
straint as ∆𝑇𝐻1 . ∆𝑇𝐻1 = 𝑇𝐻𝐶𝑜𝑛𝑠1|>?@A

>? − 𝑇𝐻1|>?@A
>? . The de-

tected throughput violation ∆𝑇𝐻1 means that the number
of activities leaving 𝑄𝑆1 in unit time is less than expectation.
Since the arrival rate of 𝑄𝑆1k8 equals to the leaving rate of
𝑄𝑆1, the throughput of 𝑄𝑆1k8 will be less than the expected
value in the following short period for those late arrived
activities. Specifically:

If 𝑙l?@A = 0, namely the queue of 𝑄𝑆1k8 is empty at obser-
vation time point 𝑆9:8, the difference between the number
of completed activities and expected value in 𝑄𝑆1k8 is
equal to the one in 𝑄𝑆1 . Based on Definition 3, ∆𝑇𝐻1k8 =
∆𝑇𝐻1 ∗ (𝐸(𝑎1k8)/(𝐸(𝑎1))).

If 𝑙l?@A > 0, the queue length of 𝑄𝑆1 decreases since the
arrival rate is less than expected. When the queue length
decreases to 0 before arrival rate returns back to normal,
∆𝑇𝐻1k8 = 0, which means throughput violation at 𝑄𝑆1 has
no effect on the throughput of 𝑄𝑆1k8. Otherwise, ∆𝑇𝐻1k8 <
∆𝑇𝐻1 ∗ (𝐸(𝑎1k8)/(𝐸(𝑎1))).

Therefore, given the detected throughput constraint vi-
olation ∆𝑇𝐻1 in 𝑄𝑆1 , the maximum propagation effect on
the throughput of 𝑄𝑆1k8 can be represented as:

𝑇ℎ𝑟𝐸𝑓𝑓𝑀𝑎𝑥1 = ∆𝑇𝐻1 ∗
𝐸g𝑎1k8h
𝐸g𝑎1h

(1)

The maximum propagation effect on the throughput of
the overall workflow system is the accumulation of the
maximum effect on its sequential queueing systems, given
by:

𝑃𝑟𝑜𝑝𝐸𝑓𝑓𝑀𝑎𝑥1 =t𝑇ℎ𝑟𝐸𝑓𝑓𝑀𝑎𝑥#

u

#71

(2)

Clearly, there is a gap between the theoretical maximum
and the actual propagation effect that happens at runtime.
Moreover, since the propagation effect fluctuates con-
stantly in the dynamic cloud environment, it is difficult to
measure the actual effect at runtime. For example, the ef-
fect of time delay may be decreased for the reason that
some response time delays can be automatically compen-
sated by time redundancy produced in the execution pe-
riod [6]. Therefore, we need to constantly update the esti-
mated propagation effect based on the monitoring results
so that the propagation effect in the model gets closer to
actual situation.

5 A NOVEL RUNTIME VERIFICATION STRATEGY
In this section, we first introduce a new propagation-aware
throughput conformance model, and then present a

throughput conformance verification strategy.

5.1 Propagation-aware Throughput Conformance
Model

To define a runtime throughput conformance model, we
need to measure how much throughput has been com-
pleted by the current checkpoint and estimate how much
throughput can be completed between the current check-
point and final deadline. The former can be easily obtained
based on the definition of runtime workflow throughput.
The estimated throughput is decided by the remaining
time and the durations of subsequent activities.
Definition 6 (Estimated Workflow Throughput). Given

the same collection of 𝑞 parallel workflows as in Definition 1,
its fixed-time deadline denoted as 𝐹(𝑊𝐹) and its upper-
bound constraint	𝑈(𝑊𝐹), at throughput checkpoint 𝑆U, the
expected workflow throughput for the remaining time is de-
fined as:

𝐸𝑥𝑝 w	𝑇𝐻|>V
x(yx)z = 𝑇𝐻|>V

x(yx) ∗
𝑞 ∗ 𝑈(𝑊𝐹) − 𝑅 w𝑎{}|>I

>Vz

𝐸 w𝑎{}|>V
x(yx)z

(3)

Besides the above two explicit factors, the implicit prop-
agation effect of time delays has to be included in the
throughput conformance model. Although some minor
temporal violations will not result in a throughput non-
conformance state at current checkpoint, the gradually ac-
cumulated propagation effect of time delays may eventu-
ally cause the failure of timely completion of large collec-
tion of parallel cloud workflow instances.

Based on the above discussion, our novel runtime
throughput conformance model is proposed as follows:
Definition 7 (Propagation-aware Throughput Conform-

ance Model). Given the same collection of 𝑞 parallel work-
flow instances in Definition 1 and its fixed-time deadline de-
noted as 𝐹(𝑊𝐹), at a throughput checkpoint 𝑆U, it is said to
be of 𝛼% conformance if:

𝐹(𝜆|) = 𝑇𝐻|>I
>V + 𝐸𝑥𝑝 w	𝑇𝐻|>V

x(yx)z

−t𝑃𝑟𝑜𝑝𝐸𝑓𝑓𝑀𝑎𝑥#

u

#78

− sU	
(4)

Where 𝜆| is defined as 𝛼%	 confidence percentile with
the cumulative standard normal distribution function of

𝐹(𝜇# + 𝜆𝜎#) =
8

~√��
∫ 𝑒

:(d:�J)�
�� 𝜎#�

�Jk�~J
:� 𝑑𝑥 = 𝛼%.	 𝑇𝐻|>I

>V is

the current runtime throughput until 𝑆U, 𝐸𝑥𝑝 w	𝑇𝐻|>V
x(yx)z is

the expected workflow throughput for the remaining time.
∑ 𝑃𝑟𝑜𝑝𝐸𝑓𝑓𝑀𝑎𝑥#u
#78 is the total propagation effect caused by

the throughput constraint violated queueing systems
which are detected at 𝑆U.

sU in equation (4) is the accumulated propagation effect
caused by the throughput constraint violated queueing
systems which are detected at the checkpoints before 𝑆U.

sU =tt∆𝑇𝐻�1� ∗
𝐸g𝑎1k8h
𝐸g𝑎1h

u

178

U

�78

(5)

Where ∆𝑇𝐻�1� is the actual propagation effect at 𝑆U
which is initially caused by 𝑄𝑆1 and detected at 𝑆�.

In general, 𝛼% conformance is a probability confidence
for on-time completion. It is used to measure the current
service quality comparing with a target on-time comple-
tion rate 𝜃%. 𝜃% is an agreed negotiation result between
the user and the service provider on the service quality.

5.2 Throughput Conformance Verification Strategy
We depict the throughput conformance verification strat-
egy in Table 1. This strategy consists of two steps, namely
checkpoint selection and throughput conformance verifi-
cation at the selected checkpoints.

The checkpoint selection strategy determines whether a
candidate checkpoint (e.g., 𝑆U) should be selected as a
throughput checkpoint in accordance with the current
workflow runtime throughput state and throughput con-
straint. If 𝑆U is selected as a checkpoint, throughput con-
formance verification (step 2) is required. Otherwise, the
strategy will move on until the system time arrives at the
next candidate checkpoint. Step 2 verifies throughput con-
formance state at checkpoints using the proposed propa-
gation-aware throughput conformance model. The aim is
to check whether the current throughput conformance
state	𝛼%, as defined in Definition 7, is no less than the tar-
get on-time completion rate	𝜃% (namely target throughput
conformance). If the throughput conformance state holds
true (i.e., 𝛼% ≥ 𝜃%), nothing needs to be done. Otherwise,
a detected potential temporal violation is reported to the
workflow system and violation handling strategy will be
triggered.

6 IMPLEMENTATION
SwinFlow-Cloud1 is a prototype cloud workflow system

TABLE 1
THROUGHPUT CONFORMANCE VERIFICATION STRATEGY

Input: Target on-time Completion rate 𝜃%
The workflow runtime throughput state at a candidate
checkpoint 𝑆U

Output: Throughput conformance state at 𝑆U
Step1: Throughput-based checkpoint selection
 If 𝑇𝐻|>V@A

>V <	𝑇𝐻𝐶𝑜𝑛𝑠|>V@A
>V

𝑆U is selected as a checkpoint, continue to Step 2;
Else
 Break until the next candidate checkpoint 𝑆Uk8.

Step 2: Throughput Conformance Verification
 Calculate workflow throughput:

(1) the completed workflow throughput until 𝑆U.
(2) the expected remainding throughput from 𝑆U to
𝐹(𝑊𝐹).
Calculate throughput propagation effect:
(1) the newly generated propagation effect between 𝑆U:8
and 𝑆U
(2) the accumulated propagation effect until 𝑆U:8.
Given the throughput conformance model, certificate
the throughput conformance state 𝛼% at checkpoint 𝑆U
If 𝛼% ≥ 𝜃%

Break.
Else report a detected potential temporal violation.

designed to support the running of a large number of par-
allel business processes. As illustrated in Figure 3, adopt-
ing the client-cloud architecture (an extension of WfMC2
proposed workflow reference model), SwinFlow-Cloud
enables workflow users and administrators to easily cre-
ate, run, and monitor workflow instances, and to make use
of the powerful cloud computing infrastructures for run-
ning a large number of parallel workflow instances. The
client side mainly consists of conventional workflow man-
agement tools and new workflow accompaniment tools.
The cloud side is a group of scalable virtualized workflow
engines and service components, it retains all the func-
tional runtime service components of the traditional work-
flow reference model, and introduces many new non-func-
tional service components which are defined as the work-
flow relevant services.

Here, we illustrate the process of cloud workflow tem-
poral verification in SwinFlow-Cloud. The whole process,
namely the temporal verification framework [12], includes
three basic steps: temporal constraint setting, temporal
conformance monitoring, and temporal violations han-
dling. At the build-time stage, users can use the temporal
constraint setting component, part of the Cloud Workflow
Relevant Service Definition Tools on the client side, to deter-
mine the workflow deadlines and target on-time comple-
tion rates which are parts of the service contracts.

At the runtime stage, the start time, end time and other
runtime attributes of workflow activities are logged by the
system. The temporal conformance monitoring component,
part of the Cloud Workflow Relevant Service Administration
and Monitoring Tools, consists of a temporal checkpoint se-
lection component and temporal verification component.
The temporal checkpoint selection component can con-
stantly or periodically read in the time attributes of work-
flow activities from the real-time system logs and use a
checkpoint selection strategy to determine where temporal
verification is needed. If a temporal checkpoint is selected,

the temporal verification components will use the tem-
poral conformance model to determine whether the work-
flow instances under monitoring are currently in a tem-
poral non-conformance state or conformance state, i.e.,
whether an intermediate temporal violation has occurred
or not. If a temporal violation has been detected, the tem-
poral violation handling component, a part of Workflow
Relevant Services at the cloud side, will be triggered. Based
on the level of temporal violations, corresponding han-
dling strategies such as workflow rescheduling and re-
source recruitment [13] will be implemented by the viola-
tion handling component. However, if the temporal viola-
tion cannot be handled automatically due to critical errors,
especially those out of the control of the workflow system
e.g., user input data is corrupted or the network connection
at the client side is broken, an error message will be sent
out to both the system administrators and users for manual
intervention.

It should be noted that our work presented in this paper
can work with or without the existence of cloud workflow
systems. As long as the business processes are running in
the cloud and data on activity runtime durations can be
collected, workflow temporal verification can be con-
ducted. However, with cloud workflow systems, workflow
temporal verification can be easily integrated into the ex-
isting monitoring service. Meanwhile, the collection of ac-
tivity runtime durations does not need to be conducted
specially for temporal verification purpose as the work-
flow engine already have all of them for workflow sched-
uling purpose. Therefore, it is more efficient and cost-effec-
tive with a cloud workflow system.

———————————————
1. http://www.xuanqiyun.com/swinflowcloud/
2: http://www.wfmc.org/standards/model.htm

Fig. 3. SwinFlow-Cloud System Architecture [44]

6

7 EVALUATION
In this section, we demonstrate and validate the performance
of our strategy TVSpro and compare it with other representa-
tive strategies. The simulation experiments are conducted in
SwinFlow-Cloud.

7.1 Experimental Settings for Workflows
Motivated by the securities exchange business process, we
simulate a continuous running of a large number of paral-
lel workflow instances as described in Table 2. We conduct
the experiments with 3 different batches of workflows
where the number of workflow instances increases from
3000, 6000 to 10000. To simplify the experiments and focus
on the evaluation of temporal verification strategy itself, all
simulated workflow instances are composed of only se-
quential activities. Workflow with complex structure (e.g.,
choice, iteration and parallelism) can be pre-processed us-
ing some strategies such as workflow flattening. Business
workflows with 15, 20 and 25 sequential activities are
tested to evaluate the effect of different workflow sizes on
the effectiveness of these strategies. The mean execution
time is randomly generated from the range of 5 to 15 sec-
onds. Coefficient of variation is assigned as 0.2 similar to the
work in [14] to ensure the consistency of comparison. We
use an online queueing calculator3 provided by Kardi
Teknomo to calculate some mean values such as queueing
length and waiting time in the queueing systems for cloud
services. Thus, the expected response time of each work-
flow activity can be accurately obtained. Real arrival time
and execution time of activities are designed to follow gen-
eral distribution which are simulated by Simulink4.

Random noises are also generated to simulate large de-
lays along workflow execution due to unpredictable causes
such as network congestion or other critical software errors.
These delays are often too large to be simulated by random
distribution models. We randomly select 5% of the total ac-
tivities, and increase their execution times by 0%, 25% and
50% according to the noise level.

The deadline assignment strategy proposed in [5] is
adopted in this paper where a confidence value of 90% is
specified, namely the target on-time completion rate is 90%.

The upper bound temporal constraint of the workflow is de-
fined as 120% of the total mean activity response time to sim-
ulate a reasonable deadline. Here, 120% threshold is set as a
reference based on the 3-sigma rule in normal distribution.
Note that 120% is selected as a reasonable threshold. There
may exist an optimal threshold which can help to accurately
distinguish the local violation states from non-violation
states for workflow activities. We will leave the question
about how to obtain the optimal threshold of local temporal
violations as one of our future work.

The deadline constraints in the Service Level Agreement
specifies that the batch of workflows needs to be completed
within 2 hours. The basic time unit is set as equal interval of
one minute, so there are 120 candidate checkpoints along the
system timeline. The violation handling strategy adopted
for these experiments is the one proposed in [15] where a
server instance with fixed lifecycle will be added to the se-
lected queueing system to compensate for the occurred time
delays. Each round of experiment is repeated for 15 times to
get the average experimental results.

In our experiments, we compare our strategy TVSpro with
two representative temporal verification strategies. In our
previous work [9], throughput based verification strategy
has been proved to be more efficient and effective than all
existing response-time based temporal verification strate-
gies. Therefore, we only focus on the comparison with a
throughput-based strategy. The basic idea of the two repre-
sentative strategies are described as follows:

� TVSthr: It is a throughput-based temporal verification
strategy which does not consider the effect of time
delay propagation [16]. It takes every candidate time
point as a checkpoint given in Definition 3.

� TVSn&s: It is a throughput-based temporal verification
strategy which takes each workflow activity as a can-
didate checkpoint [8].

To get the baseline results for comparison purpose, we
record the on-time completion rates of workflow instances
under natural situation, i,e. without any temporal verifica-
tion or violation handling strategies (denoted as NIL).

———————————————

3. http://people.revoledu.com/kardi/tutorial/Queuing/index.html
4: https://www.mathworks.com/products/simulink.html

TABLE 2
EXPERIMENTAL SETTINGS

Workflow instance size Workflow instances with 15, 20, 25 activities are respectively tested.
Number of workflow instances The number of parallel workflow instances increases from 3000, 6000 to 10000.
Workflow structure Every workflow instance has the same workflow structure with sequential activities
Activity durations The execution time of activity is generated using the simulation environment Simulink which is inte-

grated with MATLAB. The mean execution time of activities are randomly selected from a range of 5
to 15 seconds and the coefficient of variation is 0.2.

Noise setting Noise level: 0%, 25% and 50% of the execution time.
Noise range: 5% of the activities.

Temporal constraints The target on-time completion rate is set as 90%. The upper bound of temporal constraints is set as
120% of the mean activity execution time.

Violation handling Once a throughput violation is detected, violation handling will be triggered to locate the queuing
systems where time delays occurred and add a new server instance to that queueing system to com-
pensate for the time delays.

	

7.2 Experimental Results and Analysis
Efficiency: The efficiency of temporal verification strategy
can be measured by time overhead of each strategy. The
overall time overhead is the accumulation of overhead at
each candidate checkpoint including both computation
and communication overhead.

According to the throughput conformance verification strat-
egy depicted in Table 1, both checkpoint selection and tem-
poral verification have low computational cost since they
only require simple calculations. This is consistent to our ex-
perimental results which indicate that the computation
overhead of verification strategy is very small (in millisec-
onds). Given the fact that the durations of workflow activi-
ties are normally on the order of seconds or minutes, the
computation overhead can be considered negligible.

In contrast, the majority time overhead for temporal ver-
ification strategies is the communication time for acquiring
runtime information, such as reading system log to obtain
the start time and end time of workflow activities. For tem-
poral verification strategies that take time points as check-
points (e.g., TVSpro and TVSthr), communication is required
once at each candidate system time point, each communica-
tion needs to read the time-related information of all work-
flow activities within the basic observation time unit. While
for the strategies that take every workflow activities as
checkpoint (e.g., TVSn&s), communication is required at every
workflow activity, but each communication only needs to
read the data of one activity. So the question arises: which
communication overhead is larger?

Recently, an analogy study on EC2 has been conducted
[16]. The authors have recorded and analyzed the commu-
nication time for reading different bytes of date from the
same S3 (Simple Storage Service) file. Experimental results
demonstrate that the average reading time are very close de-
spite of huge difference in the data size. Therefore, for the
above two kinds of strategies, overhead at a candidate
checkpoint is almost the same since the communication
overhead is close and computation overhead can be ne-
glected. The difference of overall time overhead between the
two kinds of verification strategies mainly lies in different
number of candidate checkpoints.

Figure 4 depicts the average number of candidate check-
points by each strategy. The number of parallel workflow in-
stances is 3000. TVSpro and TVSthr take time points as candi-
date checkpoints. Despite the increase of instance size,
there are a constant of 120 candidate checkpoints when the
basic time unit is set as equal interval of one minute. In con-
trast, TVSn&s selects much more candidate checkpoints than
the other two strategies since it is working at each work-
flow activity. Thus, every workflow activity is regarded as
a candidate checkpoint, the number of candidate check-
points increases with workflow instance size and the num-
ber of parallel workflow instances. Compared with TVSn&s,
the reduction rate of candidate checkpoints for TVSpro and
TVSthr are both 98.4% when workflow instance size reaches
25. The results for other two experiments with 6000 and
10000 parallel workflow instances are similar. Due to the
page limit, more details are omitted here.

Effectiveness: On-time completion rate is a critical indi-
cator for temporal QoS of business workflows. While as

mentioned in the introduction, strictly on-time completion
is hardly possible. Higher service quality is also not neces-
sary in business scenarios because the service provider
needs to cover the cost of over-provisioned resources.
Therefore, an effective strategy is the one that reaches tar-
get on-time completion rate (90% in our experiments) with
the least amount of resources consumption. In our experi-
ments, when a throughput violation is detected, new re-
sources will be added into queueing systems at handling
points to speed up activities execution. Thus, the number
of handling points can be regarded as an alternative per-
formance parameter to measure the resource consumption
of verification strategies. We also measure the average han-
dling points for every 1% increment from the baseline on-
time completion rate (namely the on-time completion rate
achieved by NIL), which can represent the cost-effective-
ness for the resources used for violation handling. The for-
mula is as follows:

𝐻
𝛾�%− 𝛾%

(6)

Where 𝐻 denotes the number of total handling points
needed by each strategy, 𝛾% is the baseline on-time com-
pletion rate and 𝛾�% is the on-time completion rate
achieved by each strategy.

Figure 5 depicts the real on-time completion rates by
each strategy with different number of parallel workflow
instances when workflow instance size is 25. Other results
such as the number of detected throughput violations and
handling points are recorded in Table 3.

As shown in Figure 5, each strategy can significantly im-
prove the on-time completion rate when compared with
the baseline. TVSn&s can achieve a higher on-time comple-
tion rate than the other two strategies. Both TVSpro and
TVSn&s can achieve target on-time completion rate 90% (the
red dashed line in Figure 5). In contrast, TVSthr maintains
nearly 90% on-time completion rate but slightly less than the
target when the number of workflow instances are 3000 and
6000. However, as shown in Table 3, since TVSn&s is working
at each workflow activity, the number of detected through-
put violations and handling points are much more than the
other two strategies. The average handling points for every
1% increment from the baseline on-time completion rate by
TVSn&s is several times more than TVSpro and TVSthr, which

Fig. 4. Numbers of candidate checkpoints by each strategy

means the required resources for temporal violation han-
dling is dozens of times more than the other two strategies.
TVSpro and TVSpro detect roughly the same number of
throughput violations and require similar numbers of han-
dling points because both of them take every candidate
time point as a checkpoint. Compared with TVSthr, TVSpro
can maintain over 90% on-time completion rate. The rea-
son is that TVSpro can detect more violations when taking

delay propagation effect into consideration.
Figure 6 and Table 4 show the experimental results un-

der different workflow sizes. The number of parallel work-
flow instances is 6000. For the same reason, TVSn&s can
achieve the highest on-time completion rate with much
more violation handling points and resources consump-
tion. TVSthr fails to achieve the target completion rate in all
cases, while our strategy TVSpro can achieve over 90% on-
time completion rate when the workflow size is larger than
20. However, when workflow size is 15, the on-time com-
pletion rate of TVSpro is less than target rate 90%. We spec-
ulate the reason is that the delay propagation effect is less
detectable when workflow size becomes smaller. Since
TVSpro can detects more violations, the number of handling
points is larger when compared with TVSthr. But the perfor-
mance of TVSpro is still better than TVSn&s and TVSthr.

Finally, we compared our strategy TVSpro with the other
two strategies under different levels of noise, which are
shown in Figure 7 and Table 5. The workflow instance size
is 25. TVSn&s unsurprisingly achieves the highest on-time
completion rate with much more violation handling points
and resource consumption. TVSthr requires the least
amount of handling points and new resources, but it fails
to meet the target on-time completion rate in all cases. Our
strategy TVSpro, by contrast, can ensure steady and satisfac-
tory on-time completion rates under different noise levels.
The resource consumption for temporal violation handling
is slightly larger than TVSthr, but is dozens of times less
than TVSn&s. Compared with TVSthr, the advantage of
TVSpro becomes more evident when the level of noise in-
creases. This shows that our strategy can achieve a satisfac-
tory result when the workflow system suffers from unex-
pected situations where large delays have occurred.

In conclusion, our experimental results demonstrate

Fig. 6. On-time completion rates with different workflow sizes

TABLE 4
RESULTS WITH DIFFERENT WORKFLOW SIZES

Strategies

Detected
throughput vio-

lations
Handling points

Average	handling	points	
for	every	1%	increment	

from	the	baseline
15 20 25 15 20 25 15 20 25

TVSpro 63 83 41 171 201 147 13.93 22.26 13.93
TVSthr 63 52 36 171 166 130 14.12 27.29 13.37
TVSn&s 568 702 873 568 702 873 33.45 48.58 78.86

TABLE 3
RESULTS WITH DIFFERENT PARALLEL INSTANCES

Strategies	

Detected	
throughput	vio-

lations	
Handling	points	

Average	handling	points	
for	every	1%	increment	

from	the	baseline	
3000	6000	10000	3000	6000	 10000	 3000	 6000	 10000	

TVSpro	 40	 41	 81	 126	 147	 367	 13.15	 13.93	 21.57	
TVSthr	 40	 36	 75	 112	 130	 351	 16.49	 13.37	 22.76	
TVSn&s	 532	 873	 1726	 532	 873	 1726	 48.14	 78.86	 84.90	

TABLE 1

Fig. 5. On-time completion rates with different number of instances

Fig. 7. On-time completion rates with different noise levels

TABLE 5
RESULTS WITH DIFFERENT NOISE LEVELS

Strategies

Detected
throughput vio-

lations
Handling points

Average	handling	points	
for	1%	increment	from	

the	baseline
0% 25% 50% 0% 25% 50% 0% 25% 50%

TVSpro 41 76 88 147 392 413 13.93 20.62 16.38
TVSthr 36 63 71 130 314 335 13.37 19.09 16.51
TVSn&s 873 1128 1895 873 1128 1895 78.86 50.31 68.04

that our novel propagation-aware verification strategy can
reach the target on-time completion rate of parallel work-
flow instances with less resource consumption. It is gener-
ally better in terms of both in efficiency and effectiveness
than the state-of-the-art strategy. In addition, our strategy
is scalable and can be applied to fluctuating workload en-
vironments such as the cloud.

7.3 Threads to validity
External threats to validity. The main threat to the external
validity of our experiments is the representativeness of our
motivating business workflow example which sets the
background and affects the parameter settings. This secu-
rities exchange business process is a typical instance-inten-
sive business process which is used by many researchers to
motivate and analyze the needs for business cloud work-
flows. However, different business processes may have dif-
ferent features. To mitigate this threat, in our experimental
settings we deliberately increased the search space by ex-
ploring different parameter settings to test the more gen-
eral applicability of our strategy.

Internal threats to validity. The main threat to the internal
validity is the comprehensiveness of our experiments. To
mitigate this threat, as is a common practice for simulation-
based experiments [17], we adopt two general rules in our
experiments: (1) for static parameters such as coefficient of
variation, we choose representative settings based on the
earlier related work [8], [16]; (2) for dynamic parameters
such as workflow durations, we explored the search space
to a large degree by predefining a series of candidates or
generating randomly on-the-fly.

8 RELATED WORK
Conventional runtime verification approaches. Runtime
verification is pursued as a lightweight technology, where a
monitor checks at runtime whether or not the execution of a
system under scrutiny satisfies a given correctness property
[18]. According to the working mechanisms of the monitor,
monitoring approaches in runtime verification can be classi-
fied as event-triggered or time-triggered. Most literatures on
runtime verification focus on event-triggered solutions, in
the sense that a monitor is invoked for analysis as soon as
any event of interest occurs [19], [20]. However, this frequent
invocation induces significant runtime overhead to the sys-
tem. Some approaches attempt to mitigate this by e.g. im-
proving instrumentation [21], combining static and dynamic
analysis technologies [22]. However, other inherent limita-
tions, such as unpredictable invocation of the monitor and
possible bursts of monitoring invocation, cannot be easily
addressed. To overcome the above defects, a time-triggered
runtime verification approach has been developed [23].
Here runtime monitor is invoked with a constant frequency
and takes samples from the program in order to evaluate the
properties [24], [25]. In the context of large-scale business
workflow system, hundreds of thousands of monitors are
needed for monitoring the parallel workflow instances, and
thus the overhead is a serious obstacle.

Workflow verification. Workflow verification is a
longstanding area of workflow management research. In

general, workflow management systems work at two stages:
build-time and runtime. Workflow verification at build-time
is concerned with determining, in advance, whether a work-
flow model exhibits certain desirable behaviors. Since the
mid-1990s, many researchers have been working on verifi-
cation technologies at workflow build-time [26], [27]. The
need for formal methods in workflow modeling and verifi-
cation has been widely recognized, which provides rigorous
and mathematical semantics to guarantee that a system will
comply with target specifications. Typical formal methods
include Petri nets, event algebra, state charts, and temporal
logic [1], [2]. However, static verification is not sufficient to
tackle compliance problems in a comprehensive way due to
runtime issues such as cloud platform performance vari-
ance.

Workflow runtime verification monitors the running in-
stances of a process and assesses whether they comply with
the business constraints of interest. Dimitra et al. present a
strategy to check a running program against Linear Tem-
poral Logic (LTL) specification [28]. Davide et al. provide a
framework for the specification and automatic verification
of business process based on a temporal extension of answer
set programming (ASP) [29]. Fabrizio et al. present a runtime
verification based on linear temporal logic and colored au-
tomata [30]. However, these approaches cannot directly be
applied in workflow temporal verification as it is incredibly
expensive to repeat these verification strategies thousands
of times when dealing with thousands of parallel workflow
instances in real-world, large-scale business workflow ap-
plication domains.

Workflow temporal verification. Temporal verification
is the major approach for delivering satisfactory temporal
QoS, which focuses on the time-constrained large-scale
workflow systems and applications [45]. Initially, most ef-
forts have been dedicated to the temporal verification of sci-
entific workflow applications. A series of studies on tem-
poral consistency model, including binary-state based, mul-
tiple-state based as well as continuous-state based models,
have been published gradually [34], [35], aiming at provid-
ing a more precise method for workflow temporal verifica-
tion. To deal with large numbers of parallel business work-
flows, a throughput consistency model has been first pro-
posed in [5] for setting throughput constraints. The work in
[9] presents a runtime throughput based temporal con-
sistency model to monitor parallel business workflows. The
work in [36] presents a temporal violation transmission
model at workflow build-time stage to estimate the number
of temporal violations that may occur at runtime. The pre-
diction result can provide essential reference for temporal
violation prevention and handling strategy.

QoS-aweare workflow scheduling. Workflow schedul-
ing is a research hotspot in cloud computing which allocates
each workflow task to a relevant cloud service by ordering
the execution of various resources to obtain satisfactory QoS
requirements. The current state-of-the-art research tackles
different scheduling problems in cloud workflow systems
by focusing on different QoS optimization constraints.
Zhang et al. present an iterative ordinal optimization
method to achieve high throughput with lower memory de-
mand [37]. Sahni et al. present a dynamic cost-minimization

deadline constrained heuristic for scheduling scientific ap-
plications in a public cloud environment, where both time
and cost are considered [38]. Some other scheduling algo-
rithms take multiple QoS parameters such as reliability and
energy requirements as constraints to schedule workflow
tasks to the resources [39, 40]. However, considering the
scheduling efficiency and cost, those strategies for single sci-
entific workflow or multi-workflows with low concurrency
are not applicable to the scheduling of instance-intensive
business workflows.

Benchmarking workflow management system. The
performance of WfMS (workflow management systems)
has a significant impact on the quality of service provided
by hosted workflow applications. In order to assess and
compare existing WfMS and workflow engines with the
aim of selecting appropriate host for execution, a multi-
tude of benchmarks have emerged. BenchFlow project tries
to design and implement the first benchmark to assess and
compare the performance of WfMS that is compliant with
Business Process Model and Notation 2.0 standard [41].
Betsy is a BPEL/BPMN engine test system, which imple-
ments a comprehensive benchmark for workflow engines
[42]. Harrer et al. present a pattern language that captures
common solutions to reoccurring problems in the area of
workflow engine conformance and performance bench-
marking, which help future benchmark authors to design
and implement new workflow engine benchmarks [43].

9 CONCLUSION
A major challenge for business process management and
service-oriented systems is how to achieve the target on-
time completion rate as an essential non-functional require-
ment of parallel business workflow instances. Current
workflow verification approaches cannot be applied directly
in this scenario either due to the performance variation of
runtime cloud computing environments or their limitations
on efficiency and scalability. In this paper, we introduce an
effective temporal conformance verification strategy for a
large number of business cloud workflows. Instead of re-
sponse time, workflow throughput was employed as the
measurement to monitor parallel workflow instances. A
novel propagation-aware throughput conformance verifica-
tion strategy that considers the effect of delay propagation
in cloud system was presented and implemented in a proto-
type cloud workflow system. Experimental results showed
that our strategy outperforms the state-of-the-art strategy in
achieving better efficiency and effectiveness.

ACKNOWLEDGEMENT
The authors would like to acknowledge the support pro-
vided by the grands of the National Natural Science Foun-
dation of China (grant No.61572374, 61300042,
U163620068, U1135005). We would like to thank Dr. Dahai
Cao for his contribution to the development of SwinFlow-
Cloud. Jin Liu and Xiao Liu are corresponding authors.

REFERENCES
[1] W. M. P. van der Aalst, “The application of Petri nets to workflow man-

agement,” J. Circuits, Systems, and Computers, vol. 8, no. 1, pp. 21-66, 1998.
[2] M. P. Singh, G. Meredith, C. Tomlinson, and P. C. Attie, “An event algebra

for specifying and scheduling workflows,” Proc. 4th IEEE Int. Conf. Data-
base Systems for Advanced Applications, pp. 53-60, 1995.

[3] Y. Falcone, K. Havelund, and G. Reger, “A Tutorial on runtime verifica-
tion,” J. Engineering Dependable Software Systems, vol. 34, IOS press, pp.
141-175. 2013,

[4] X. Liu, Y. Yang, D. Cao, and D. Yuan, “Selecting checkpoints along the
time line: A novel temporal checkpoint selection strategy for monitoring
a batch of parallel business processes,” Proc. 35th ACM/IEEE Int. Conf.
Software Engineering, pp. 1281-1284, 2013.

[5] X. Liu, D. Wang, D. Yuan, and Y. Yang, “A novel deadline assignment
strategy for a large batch of parallel tasks with soft deadlines in the
cloud,” Proc. 15th IEEE Int. Conf. High Performance Computing and Commu-
nications & 10th IEEE Int. Conf. Embedded and Ubiquitous Computing
(HPCC_EUC), pp. 51-58, 2013.

[6] X. Liu, Y. Yang, D. Yuan, and J. Chen, “Do we need to handle every tem-
poral violation in scientific workflow systems?” ACM Trans Software En-
gineering and Methodology (TOSEM), vol. 23, no. 1, pp. 1-34, 2014.

[7] G. J. Nutt “Tutorial: computer system monitors,” ACM SIGMETRICS
Performance Evaluation Review, vol. 5, no. 1, pp. 41-51, 1976.

[8] F. Wang, X. Liu, and Y. Yang, “Necessary and sufficient checkpoint selec-
tion for temporal verification of high-confidence cloud workflow sys-
tems,” Science China Information Sciences, vol. 58, no. 5, pp. 1-16, 2015.

[9] X. Liu, D. Wang, D. Yuan, F. Wang and Y. Yang, “Throughput based tem-
poral verification for monitoring large batch of parallel processes,” Proc.
2014 ACM Int. Conf. Software & System Process, pp. 124-133, 2014

[10] X. Chang, B. Wang, J. Muppala, and J. Liu, “Modeling active virtual ma-
chines on IaaS Clouds using an M/G/m/m+K queue,” IEEE Trans. Ser-
vices Computing, vol. 9, no. 3, pp. 408-420, 2016.

[11] T. Atmaca, T. Begin, A. Brandwajn, and H. Castel, “Reducing the com-
plexity of the performance analysis of a multi-server facilities,” Research
Report RR-8617, Institut Telecom, Telecom SudParis, Evry, France; Uni-
versité Lyon 1/LIP (UMR INRIA, ENS Lyon CNRS, UCBL), Lyon,
France; University of California Santa Cruz, Baskin School of Engineer-
ing, USA, 2014.

[12] X. Liu, Z. Ni, D. Yuan, et al., “A novel statistical time-series pattern based
interval forecasting strategy for activity durations in workflow systems,”
J. Systems and Software, vol. 84, no. 3, pp. 354-376, 2011.

[13] X. Liu, J. Chen, Z. Wu, Z. Ni, D. Yuan, and Y. Yang, “Handling recovera-
ble temporal violations in scientific workflow systems: a workflow re-
scheduling based strategy,” Proc. 10th IEEE/ACM Int. Conf. Cluster, Cloud
and Grid Computing, pp. 534-537, 2010.

[14] H. Khazaei, J. Misic, and V. B. Misic, “Performance analysis of cloud com-
puting centers using m/g/m/m+ r queuing systems,” IEEE Trans. Par-
allel and Distributed Systems, vol. 23, no.5, pp. 936-943, 2012.

[15] H. Luo, X. Liu, J. Liu and F. Wang, “Where to fix temporal violations: a
novel handling point selection strategy for business cloud workflows,”
Proc. IEEE Int. Conf. Services Computing, pp. 155-162, 2016.

[16] X. Liu, D. Wang, D. Yuan, F. Wang, and Y. Yang, “Workflow temporal
verification for monitoring parallel business processes,” J. Software Evolu-
tion & Process, vol. 28, no. 4, pp. 286-302, 2016.

[17] A. M. Law, and W. D. Kelton, Simulation Modeling and Analysis, New
York: McGraw-Hill, 1991.

[18] M. Leucker, and C. Schallhart. “A brief account of runtime verification,”.
J. Logic & Algebraic Programming, vol. 78, no. 5, pp. 293-303, 2009.

[19] M. Jaber, T. H. Nguyen, M. Bozga, and S. Bensalem, “Runtime verifica-
tion of component-based systems,” Proc. Int. Conf. Software Engineering
and Formal Methods, Springer Berlin Heidelberg, pp. 204-220, 2011.

[20] Q. Luo, Y. Zhang, C. Lee, et al. “RV-Monitor: Efficient parametric runtime
verification with simultaneous properties,” Proc. Int. Conf. Runtime Verifi-
cation, Springer International Publishing, pp. 285-300, 2014.

[21] J. Seyster, K. Dixit, X. Huang, et al., “Aspect-oriented instrumentation
with GCC,” Proc. Int. Conf. Runtime Verification, Springer Berlin Heidel-
berg, pp. 405-420, 2010.

[22] E. Bodden, “Efficient hybrid typestate analysis by determining continu-
ation-equivalent states,” Proc. 32nd ACM/IEEE Int. Conf. Software Engi-
neering, pp. 5-14, 2010.

[23] B. Bonakdarpour, S. Navabpour, and S. Fischmeister, “Time-triggered
runtime verification,” Formal Methods in System Design, vol. 43, no. 1, pp.
29-60, 2013.

[24] S. Navabpour, B. Bonakdarpour, and S. Fischmeister, “Path-aware time-
triggered runtime verification,” Proc. Int. Conf. Runtime Verification, pp.
199-213, 2012.

[25] S. Navabpour, Y. Joshi, W. Wu, et al., “RiTHM: A tool for enabling time-
triggered runtime verification for c programs,” Proc. 9th ACM Joint Meet-
ing on Foundations of Software Engineering, pp. 603-606, 2013.

[26] C. E. Gerede, and J. Su, “Specification and verification of artifact behav-
iors in business process models,” Proc. Int. Conf. Service-Oriented Compu-
ting, Springer Berlin Heidelberg, pp. 181-192, 2007.

[27] D. Edmond, M. T. Wynn, A.H.M.T. Hofstede, W. M. P. V.D. Aalst, and H.
M. W. Verbeek, “Business process verification–finally a reality!” Business
Process Management Journal, vol. 15, no. 1, pp. 74-92, 2009.

[28] D. Giannakopoulou, and K. Havelund, “Automata-based verification of
temporal properties on running programs,” Proc. 16th IEEE Int. Conf. Au-
tomated Software Engineering, pp. 412-416, 2001.

[29] D. D'Aprile, L. Giordano, V. Gliozzi, A. Martelli, G. L. Pozzato, and D. T.
Dupré, “Verifying compliance of business processes with temporal an-
swer sets,” CILC, pp. 147-161, 2011.

[30] F. M. Maggi, M. Montali, M. Westergaard, and W. M. P. V.D. Aalst, “Mon-
itoring business constraints with linear temporal logic: An approach
based on colored automata,” Proc. Int. Conf. Business Process Management,
Springer Berlin Heidelberg, pp.132-147, 2011.

[31] X. Liu, J. Chen, and Y. Yang, “A probabilistic strategy for setting temporal
constraints in scientific workflows,” Proc. Int. Conf. Business Process Man-
agement, Springer Berlin Heidelberg, pp. 180-195, 2008.

[32] J. Chen, and Y. Yang, “Adaptive selection of necessary and sufficient
checkpoints for dynamic verification of temporal constraints in grid
workflow systems,” ACM Trans. Autonomous & Adaptive Systems, vol. 2,
no. 2, article 6, 2007.

[33] X. Liu, Y. Yang, Y. Jiang, and J. Chen, “Preventing temporal violations in
scientific workflows: where and how,” IEEE Trans. Software Engineering,
vol. 37, no. 6, pp. 805-825, 2011.

[34] J. Eder, E. Panagos, and M. Rabinovich, “Time constraints in workflow
systems,” Proc 11th Int. Conf. Advanced Information Systems Engineering
(CAiSE99), pp. 286–300, 1999.

[35] B. S. Lerner, S. Christov, L. J. Osterweil, R. Bendraou, U. Kannengiesser,
and A. Wise, “Exception handling patterns for process modelling,” IEEE
Trans. Software Engineering, vol. 36, no. 2, pp. 162-18, 2010.

[36] H. Luo, J. Liu, X. Liu and Y. Yang, “Predicting temporal violations for par-
allel business cloud workflows”, Software: Practice and Experience, vol. 48,
no. 4, pp. 775-795, 2018.

[37] F. Zhang, J. Cao, K. Hwang, et al, “Adaptive workflow scheduling on
cloud computing platforms with iterative ordinal optimization”, IEEE
Trans. Cloud Computing, vol. 3, no. 2, pp. 156-168, 2015.

[38] J. Sahni, D. Vidyarthi, “A cost-effective deadline-constrained dynamic

scheduling algorithm for scientific workflows in a cloud environment”,
IEEE Trans. Cloud Computing, vol. 6, no. 1, pp. 2-18, 2018.

[39] Z. Li, J. Ge, H. Hu, et al., “Cost and energy aware scheduling algorithm
for scientific workflows with deadline constraint in clouds”, IEEE Trans.
Services Computing, vol. 11, no. 4, pp. 713-726, 2018.

[40] L. Zhao, Y. Ren, K. Sakurai, “Reliable workflow scheduling with less re-
source redundancy”, Parallel Computing, vol. 39, nol. 10, pp. 567-585,
2013.

[41] V. Ferme, A. Ivanchikj, C, Pautasso, “A framework for benchmarking
BPMN 2.0 workflow management systems”, Proc. Int. Conf. Business Pro-
cess Management, Springer, Cham, pp. 251-259, 2016.

[42] M. Geiger, S. Harrer, J. Lenhard, “Process engine benchmarking with
Betsy-Current status and future directions”, ZEUS, pp. 37-44, 2016.

[43] S. Harrer, J. Lenhard, O. Kopp, et al., “A Pattern Language for Workflow
Engine Conformance and Performance Benchmarking”, Proc. 22nd Eu-
ropean Conference on Pattern Languages of Programs, pp. 1-46, 2017.

[44] D. Cao, X. Liu and Y. Yang,” Novel client-cloud architecture for
scalable instance-intensive workflow systems”, Proc. 14th Int.
Conf. Web Information System Engineering, pp. 270-284, 2013.

[45] X. Liu, J. Chen, and Y. Yang, Temporal QoS management in scientific cloud
workflow systems, Elsevier, 2012.

Haoyu Luo received his PhD. degree from Wuhan
University, China, in 2018. He received his Bachelor
degree from East China Institute of Technology in
2011 and Master degree from Northwest Normal
University in 2014. He is currently an Associate Re-
searcher in School of Computer Science, South
China Normal University. His research interests in-
clude workflow system and cloud computing.

 Xiao Liu received his PhD degree from t Swin-
burne University of Technology, Australia, in 2011.
He received his Master and Bachelor degree from
Hefei University of Technology, China, in 2007 and
2004 respectively. He is currently a Senior Lecturer
at School of Information Technology, Deakin Uni-
versity, Australia. His research interests include
workflow system and cloud computing. More de-
tails about his research can be found at:

https://sites.google.com/site/drxiaoliu/

Jin Liu received his PhD degree from Wuhan Uni-
versity, China, in 2005. He is now a full professor in
School of Computer Science, Wuhan University.
His current research interests include software ser-
vice engineering and software repository mining.
He has published more than 70 papers in well-
known conferences and journals.

Yun Yang received the PhD degree from the Uni-
versity of Queensland, Australia, in 1992. He is a
full professor with Swinburne University of Tech-
nology. His research interests include software en-
gineering, cloud computing, workflow systems
and service-oriented computing. More details
about his research can be found at
https://www.swinburne.edu.au/science-engineer-

ing-technology/staff/profile/index.php?id=yyang.

John C. Grundy received the BSc (Hons), MSc,
and PhD degrees in computer science from the
University of Auckland, New Zealand. He is cur-
rently a Professor of Software Engineering at
Monash University, Australia. He is a Fellow of
Automated Software Engineering, Fellow of Engi-
neers Australia. His current interests include do-
main-specific visual languages, model-driven en-
gineering, large-scale systems engineering, and

software engineering education. More details about his research can be found
at https://sites.google.com/site/johncgrundy/.

