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Abstract—Edge Computing (EC) enables a new kind of caching system in close geographic proximity to end-users by allowing app
vendors to cache popular data on edge servers deployed at base stations. This edge cache system can better support
latency-sensitive applications. However, transmitting data from the centralized cloud to the edge servers without proper transmission
strategies may cost app vendors dearly. Cost-effective data distribution strategies are of particular importance for applications, whose
data to be cached at the edge often changes dynamically. In this paper, we study this Online Edge Data Distribution (OEDD) problem,
aiming to minimize app vendors’ total transmission cost, while ensuring low transmission latency in the long term. We first model this
problem and prove its NP-hardness. We then combine Lyapunov optimization and game theory to propose a novel Latency-Aware
Online (LAO) approach for solving this OEDD problem over time in a distributed manner with provable performance guarantees. The
evaluation of LAO based on a real-world dataset demonstrates that it can help app vendors formulate cost-effective edge data
distribution strategies in an online manner.
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1 INTRODUCTION

The number of mobile devices has increased exponentially,
approaching 500 billion by 2030 as predicted by CISCO
[1]. These devices generate an enormous load on networks.
Considerable network resources are required to transmit
such massive data. Conventional caching systems facilitated
by cloud computing cannot fulfill the rapidly-increasing
need for low latency raised by real-time applications [2],
such as virtual reality, real-time gaming, Industry 4.0, etc.
Edge Computing (EC) has emerged as the extension of cloud
computing to tackle this critical limitation. EC distributes
resources to edge servers deployed at base stations in geo-
graphic proximity to nearby end-users [3], [4]. App vendors
like Facebook Horizon can hire storage and computing
capacities on edge servers for caching popular data and
hosting their applications to serve users within those edge
servers’ coverage areas with low end-to-end data retrieval
latency [5].
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Data caching has been intensively investigated to reduce
data retrieval latency [6], [7]. A fundamental obstacle to
further advances in caching is the often unpredictable high
latency between end-users and the cache [8]. EC addresses
this issue by expanding the boundary of data caching to
reach geographical proximity to end-users [9], [10], [11].
As edge servers become the entry points for an increasing
number of devices, a lot of traffic go through edge servers.
Caching data on edge servers considerably reduces users’
data retrieval latency as there is no need to retrieve data
from remote cloud servers. Additionally, this could have the
effect of reducing the volume of data transmitted from the
cloud to users and decreasing the corresponding transmis-
sion costs [12].

Edge servers deployed in an area constitute an edge
cache system. Existing research on edge cache systems has
focused on caching data across edge servers for different
optimization objectives, e.g., maximizing hit ratio [6], [11],
minimizing caching cost [13] or minimizing retrieval latency
[14]. Excessive costs incurred by transmitting data to edge
servers from the cloud has been completely ignored. For
example, 1 GB data transferred out charges up to US$0.11
under Amazon Web Services price model1. It is an important
consideration for app vendors when leveraging edge cache
systems. Moreover, taking too long to transmit data onto
edge servers impacts users’ data retrieval latency and causes
user abandonment [15].

Example. Consider the example of Facebook Horizon
(FH), a VR platform. FH application can benefit signifi-
cantly from caching data like popular2 VR videos (and the

1. https://aws.amazon.com/s3/pricing/
2. Data popularity prediction has been investigated extensively in

the past two decades [16]. Thus, the data to be distributed by LAO is
assumed to be popular in this study.
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Fig. 1: Example EDD and OEDD processes. Note: This example presents the distribution of one VR video over time. The
processes for distributing different VR videos are not correlated. Thus, their strategies are individually formulated.

corresponding HTML, CSS, JS and image files) on edge
servers [17]. FH users in the edge cache system can retrieve
popular VR videos from edge servers with low data retrieval
latency. It also considerably reduces the data transmission
cost incurred by the data traffic between FH’s cloud server
and FH users. In Fig. 1(a), an edge cache system involves a
set of edge servers {v1, ..., v7} covering different geographic
areas. In the edge cache system, the edge servers constitute
the edge server network [17]. It overcomes single-point
failures in edge-cloud architectures , where edge servers can
communicate with others through a centralized macro base
station. In time slot t0, a VR video d is requested by many
of the FH users within edge server v5’s coverage areas. As
illustrated by Fig. 1(a), d is transmitted from the remote FH
cloud server to be cached in v5 via a C2E (cloud to edge
server) transmission. Future FH users covered by v5 can
retrieve d with low latency.

In [17], we study an edge data distribution (EDD) problem,
aiming to transmit data cost-effectively to destination edge
servers, i.e., edge servers to cache that data, from the cloud.
However, the approach proposed in [17] is designed to
handle data transmissions in an offline manner without
considering temporal data dynamics in real-world: various
users’ demands on data over time [18]. Every time edge
servers request a piece of data in the system, it has to
be transmitted to the destination edge servers from the
cloud through intermediate ones. Take Fig. 1(b) for example,
where edge servers v1, v3 and v6 need to cache VR video
d after v5 in time slot t1. As demonstrated, the approach
proposed in [17] has to transmit d from the cloud to v3
first via a C2E transmission. Then, v3 will transmits d to
v1, and v6 through v5 via E2E (edge server to edge server)
transmissions. As d goes viral over time, d is requested
by many other edge servers in the system, e.g., v2, v4 and
v7. The inevitable and expensive C2E transmissions can
easily incur excessive transmission costs. In the meantime,
the E2E transmissions incur extra data retrieval latency for
users served by v1 and v6 compared to those served by v3
(and those served by v5 in Fig. 1(a)). This undermines EC’s
pursuit of low data retrieval latency for users.

Data transmissions in a real-world edge cache system
must be handled in an online manner to overcome the
above critical limitations. The key is to source data for
destination edge servers from other edge servers rather

than the cloud if it is more cost-effective to do so. As
illustrated by Fig. 1(c), d can be transmitted from v5 to v1,
v3 and v6. Compared with the strategy presented in Fig.
1(b), this strategy is more cost-effective, because it greatly
reduces the total transmission cost and transmission latency
by avoiding slow and expensive C2E transmissions when
possible. However, sourcing data from an edge server far
away from the destination servers may take excessive time
and incurs high transmission latency which are ignored in
[17]. Thus, to strike a proper balance, cost-effective online edge
data distribution (OEDD) must minimize the total transmission
cost while stabilizing low average transmission latency in the long
term.

This paper proposes LAO, a Latency-Aware Online ap-
proach, for app vendors to formulate cost-effective OEDD
strategies. As the first attempt at the OEDD problem, its key
contributions include:

• We formulate the OEDD problem and prove its NP-
hardness.

• We propose an innovative online approach named
LAO for solving the OEDD problem based on
the Lyapunov optimization. Unlike conventional
Lyapunov approaches that model target systems
as queuing systems and pursue to minimize the
queue(s), LAO aims to stabilize data transmission
latency over time.

• To address the issue of performance bottleneck raised
by centralized Lyapunov optimization, LAO tackles
the OEDD problem in a decentralized manner by
combining game theory and Lyapunov optimization
innovatively.

• We theoretically analyze the performance of LAO
and evaluate LAO with extensive experiments con-
ducted on a real-world dataset.

The rest of this paper is organized as follows. We present
system models, formulate the OEDD problem and prove its
NP-completeness in Section 2. Section 3 presents LAO in
detail and analyzes its performance theoretically. Section 4
evaluates LAO experimentally. We review the related work
and conclude this paper in Section 5 and Section 6.
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2 SYSTEM MODEL

We introduce the edge cache system architecture first in this
section. Then we formally define the transmission cost. After
that, we formulate the OEDD problem and prove its NP-
hardness. The notations are summarized in Appendix A.

2.1 System Architecture

The edge server network in an edge cache system can be
modeled as a graph G(V,E), where V denotes the set
of edge servers and E denotes the set of links. The link
between edge servers and cloud servers is also modeled
as an edge. With one or multiple cloud servers, modeled
as node C , we use G(V,C,E) to represent the entire edge
cache system.

A piece of data d can be transmitted to a destination edge
server from either the cloud or another edge server in the
system. Denote V t

S as the set of source servers in time slot t,
including the cloud C and the edge servers that have d in
cache, e.g., v5 in Fig. 1(b).

Let V t
D denote destination edge servers in time slot t. Let

vector ωt =< ωt
0, ..., ω

t
n >, where ωt

0 = ωt
C and ωt

v ∈ {0, 1}
(0 ≤ v ≤ n), indicate whether node v is a transmission node in
time slot t, i.e., whether v is involved in the transmission of d
as the source node, the intermediate node or the destination
node. Similarly, let vector γt =< γt

0,0, γ
t
0,1, ..., γ

t
n,n > (γt

u,v ∈
{0, 1}) denote whether transmitting d via edge eu,v in t.
Notice that γu,v ≡ 0 if u = v or eu,v /∈ E. For each node
v ∈ V \V t

S , d is transmitted through v if d is transmitted via
an edge connecting another edge server and v:∑

u∈V

γt
u,v ≥ ωt

v,∀v ∈ V \ V t
S (1)

If d is transmitted via eu,v in time slot t, it will be
transmitted through u and v:

γt
u,v = ωt

v · ωt
v,∀u, v ∈ V (2)

2.2 Transmission Cost

The prices for C2E and E2E transmissions are region-specific
and vary in edge cache systems built by different edge in-
frastructure providers. In this paper, we measure transmis-
sion costs in a generic manner, similar to [17]. In this way,
actual C2E and E2E transmission costs can be calculated
with specific pricing models, e.g., Amazon or Google’s. Let
costu,v represent the minimum transmission cost from u to
v and costC,v as that from the cloud C to v. Denoted by
cost(γt), the transmission cost incurred by the EDD strategy
γt in time slot t is:

cost(γt) =
∑
v∈V

γt
C,v · costC,v +

∑
u∈V

∑
v∈V

γt
u,v · costu,v (3)

Please note that cache spaces on edge servers are expensive
because of limited sizes [19]. App vendors need to compete
for the storage spaces in the edge cache system. A common
practice is to reserve cache spaces in advance rather than
on-demand [12]. Thus, the expenses of storing data in the
edge cache system are fixed and not included in (3).

2.3 Transmission Latency

Let l̄ denote the time-averaged maximum transmission la-
tency expected by the app vendor, and lγ

t

v denote the time
taken for transmitting the data to edge server v according
to EDD strategy γt. As discussed in Section 1, cost-effective
OEDD must stabilize low transmission latency in the long
term. This is achieved by stabilizing the average time taken
to transmit data to each destination server below l̄ over T
time slots:

lim
T→∞

1

T

T−1∑
t=0

∑
v∈V t

D
lγ

t

v

|V t
D|

≤ l̄ (4)

In particular, data d does not need to be transmitted to
any of the source servers because d is already in their cache:

lγ
t

v = 0,∀v ∈ V t
S (5)

If d goes through edge eu,v in G according to γt, the
times taken to transmit d to u and v fulfil:

lγ
t

u − lγ
t

v = ltu,v,∀u, v ∈ V, if γt
u,v = 1 (6)

2.4 Problem Formulation and Hardness

As discussed in Section 1, the app vendor wants to minimize
the total transmission cost over time. Thus, in a time slot t,
d can go through any nodes in G only once. Accordingly, (1)
can be refined as follows:∑

u∈V

γt
u,v = ωt

v,∀v ∈ V \ V t
S (7)

For each destination edge server v ∈ V t
D , it must be

included in γt, i.e., the EDD strategy in t:

ωt
v = 1,∀v ∈ V t

D (8)

In the dynamic edge cache system, edge servers may not
always be available, due to cyber attacks, software excep-
tions, hardware faults, etc. These edge servers will block the
data transmission unavailable and must be considered in
the OEDD problem. Let V t

F denote unavailable edge servers
in t. Since data d cannot go through an unavailable node,
we can obtain:∑

u∈V

γt
u,v =

∑
u∈V

γt
v,u = 0,∀v ∈ V t

F (9)

In the edge cache system, users’ data requests arrive
and leave randomly. Formulating edge data distribution
strategies in time slots individually may not ensure low
total transmission cost and time-averaged latency over time.
Thus, these must be considered and managed in the long
term. To achieve the minimum transmission cost over time,
the OEDD problem is formulated as:

P1 : min lim
T→∞

1

T

T−1∑
t=0

cost(γt)

s.t. γt
u,v, ω

t
v ∈ {0, 1},∀u, v ∈ V

(2), (4), (5), (6), (7), (8), (9)

Remark. Please note that the storage cost is not considered
in the OEDD problem. This is because the app vendor has
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already determined which edge servers need the data, i.e.,
the destination edge servers where data storage cost incurs.

Now, we introduce the t-OEDD problem, i.e., the sub-
problem of P1 in an individual time slot t without (4).

Theorem 1. The t-OEDD problem is NP-hard.

The proof of this theorem is provided in Appendix B.
Based on Theorem 1, the OEDD problem is NP-hard,

because the t-OEDD problem is a special case of the OEDD
problem where T = 1.

3 ONLINE ALGORITHM DESIGN AND ANALYSIS

Lyapunov optimization theory has been widely applied in
many domains by modeling dynamic systems as queuing
systems to stabilize queues like task queues and request
queues. In this section, we leverage Lyapunov optimization
theory innovatively to formulate an approximation problem
for stabilizing transmission latency over time. In addition,
game theory, as a powerful tool, is useful for solving edge
computing problems in a decentralized manner [20]. Thus,
we combine Lyapunov optimization and game theory here
to design a Latency-Aware Online (LAO) algorithm to solve
the approximation problem from the OEDD problem effec-
tively and efficiently.

3.1 Latency-Aware Model Translation

InP1, constraint (4) aims to stabilize the time-averaged max-
imum transmission latency. However, it requires complete
information about destination edge servers in all time slots,
which cannot be obtained in advance in real-world edge
cache systems. To tackle this challenge, we introduce the
accumulated latency in Definition 1.

Definition 1. Denoted by σt+1, the accumulated latency is
the overdue delay accumulated in an edge cache system
over t time slots, calculated by:

σt+1 =
⌊
σt +

∑
v∈V t

D

(lγ
t

v − l̄)
⌋
+

(10)

where σ0 = 0, i.e., the initial value of the accumulated
latency. The accumulated latency increases when the aver-
age transmission latency exceeds l̄, i.e., the expected time-
averaged maximum transmission latency. According to Def-
inition 1, the long-term transmission latency constraint (4)
can be converted to:

lim
T→∞

1

T

T−1∑
t=0

E[σt] ≤ 0 (11)

Based on (10), the Lyapunov function L(σ(t)) ≜ 1
2σ

2(t)
is defined to measure the accumulated latency σ(t). Next,
we define ∆(σ(t)) below to introduce constraint (11) as part
of the optimization objective to strike the balance between
time-averaged transmission latency and total transmission
cost in the long term:

∆(σt) = E[L(σt+1)− L(σt)|σt] =
1

2
E[σ2

t+1 − σ2
t |σt]

= E[σt

∑
v∈V t

D

(lγ
t

v − l̄)|σt] +
1

2
E[(

∑
v∈V t

D

(lγ
t

v − l̄))2|σt]
(12)

Next, we combine ∆(σt) with the optimization objective
of P1:

ζ · E[cost(γt)|σt] + ∆(σt) (13)

where ζ is the app-specific parameter representing the ur-
gency to maintain the time-averaged transmission latency
by lowering current transmission latency when (11) was
violated in the previous time slot. In general, a lower
ζ will accelerate the stabilization at a potentially higher
transmission cost. Its impact on LAO will be experimentally
evaluated in Section 4.

According to (12), the calculation of ∆(σt) in time slot
t requires L(σt+1), which is not available in time slot t. To
address this issue, we now try to find the upper bound on
(13) that can be calculated based on information available in
time slot t. Because lγ

t

v is not lower than 0,
∑

v∈V t
D
(lγ

t

v − l̄)2

is not higher than
∑

v∈V t
D
l̄2. Let us define a constant Θ =

1
2

∑
v∈V t

D
l̄2. Based on (12), the upper bound on ∆(σt) fulfils:

∆(σt) ≤ σt · E[
∑
v∈V t

D

(lγ
t

v − l̄)|σt] + Θ (14)

Based on (14), the upper bound on (13) can be found:

ζ · E[cost(γt)|σt] + ∆(σt) ≤
ζ · E[cost(γt)|σt]− σt · E[

∑
v∈V t

D

(l̄ − lγ
t

v )|σt] + Θ (15)

It can be calculated based on the information available in
current time slot. Now, P1 is approximated by finding the
solution to P2 below that minimizes the upper bound on
(13) according to (15) in each time slot over T :

P2 : min ζ · cost(γt)− σt ·
∑
v∈V t

D

(l̄ − lγ
t

v ) + Θ (16)

s.t. : (2), (5), (6), (8), (7)

3.2 Latency-Aware Online Algorithm Design

Finding the optimal solution to P2 in each time slot is
computationally intensive in large-scale OEDD scenarios.
To find a solution quickly, we formulate an EDD game
in each time slot to solve P2 effectively and efficiently. In
the EDD game, each participating node is simulated as a
player to submit its EDD decision consisting of a set of
edges, i.e., a path, based on a specific benefit function for
achieving objective (16) of P2 in each time slot. Nodes will
exchange information about their own data transmission
latency incurred by in implementing the EDD strategy in
each time slot and update their benefit functions based on
the accumulated latency. Then, they make decisions based
on the updated benefit functions. Finally, they formulate
the final solution by reaching a Nash equilibrium in a
decentralized manner.

Let γt
v denote v’s EDD decision in t and γt

−v denote
EDD decisions included in the EDD strategy except v’s in t .
Given γt

−v , EDD decision γt
v is made for node v to maximize

its benefit in terms of data distribution cost and latency,
calculated by benefit function (17):

η(γt
v, γ

t
−v) = max{σt, 1} · (l̄ − lγ

t

v )− ζ ·∆cost(γt
v, γ

t
−v)

(17)
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where ∆cost(γt
v, γ

t
−v) denotes the cost incurred by transmit-

ting data to v based on γt
v and γt

−v . Please note that when
σt = 0, pursuing the minimum cost without considering
latency is likely to incur high latency in time slot t and cause
more costs in subsequent time slots to converge σt. To avoid
such situations, we use max{σt, 1} in this benefit function to
include latency-awareness in the EDD game. The advantage
of this setting is validated and analyzed experimentally in
Section 4.2.1.

According to (17), P2 can be formulated as
the EDD game GameLAO = {V,C,E, {Yt

v}v∈V t
D
,

{η(γt
v, γ

t
−v)}γt

v∈Yt
v
}, where Yt

v is v’s finite set of possible
EDD decisions. In the EDD game, admitting one Nash
equilibrium is significant due to Property 1 [21]:
Property 1. The EDD decision γ∗t

v is v’s best choice in Yt
v

based on γt
−v , if the strategy γ∗t is a Nash equilibrium.

Based on Property 1, a Nash equilibrium in the EDD
game can be employed as a self-enforcing solution. Here,
we introduce the potential game [22]:
Definition 2. A potential function ϕ(γt) = ϕ(γt

v, γ
t
−v) exists

in a potential game, fulfilling:

η(γt
v, γ

t
−v) < η(γ′t

v , γ
t
−v)⇒ ϕ(γt

v, γ
t
−v) < ϕ(γ′t

v , γ
t
−v)
(18)

for any v ∈ V t
D , γt

v, γ
′t
v ∈ Yt

v and γt
−v ∈

∏
u̸=v Yt

u.

The Nash equilibrium in an EDD game can be inter-
preted in different ways. An EDD strategy γ∗t is a Nash
equilibrium if ϕ(γ∗t

v , γ∗t
−v) = maxγt

v∈Yt
v
ϕ(γt

v, γ
∗t
−v), ∀v ∈ V t

D .
Now, we show that the EDD game is a potential game:
Theorem 2. With the potential function ϕ(γt

v, γ
t
−v) below, the

EDD game is a potential game.

ϕ(γt
v, γ

t
−v) = −

∑
v∈V t

D

(max{σt, 1}lγ
t

v + ζ ·∆cost(γt
v, γ

t
−v))

·
∑

u∈V t
D

⋂
¬{u∈V t

v |lγ
′t

u >lγ
t

u }
⋂

¬{v}

(max{σt, 1}lγ
t

u

+ ζ ·∆cost(γt
u, γ

t
−u))

(19)

where V t
v is the set of destination nodes connecting to v

in time slot t.

The proof of this theorem is provided in Appendix C.
After a finite number of iterations, the Nash equilibrium

of a potential game can be found [22]. Here, we propose the
Latency-Aware Online (LAO) approach in Algorithm 1. Its
pseudo code is shown in Algorithm 1. LAO begins with
initializing EDD strategies and the accumulated latency
(Lines 3). In each time slot, it observes the status of all
nodes to find the source nodes V t

S , destination nodes V t
D and

unavailable nodes V t
F (Line 5). The algorithm creates a new

set of destination nodes V
′t
D by removing nodes with the

cached data from V t
D (Line 6). Then, it creates a set of source

candidates V t
Can = C

⋃
V t
S , for distributing data from those

candidates to destination nodes V t
D, and set the benefit of

each node in V
′t
D to −∞ (Lines 7-8).

Next, for each node v ∈ V
′t
D , it calculates the benefit

produced by its current EDD decision γt
v (Line 11). After

that, we use the weighted Dijkstra algorithm to find the
EDD decision with the maximum value of η(γ′t

v , γ
t
−v) (Line

12). When the EDD decision η(γ′t
v , γ

t
−v) produces a higher

benefit than v’s current EDD decision η(γt
v, γ

t
−v), it will be

submitted to contend for update (Line 14). For the winner,
all destination nodes added by γt

v are removed from V t
Can

and those visited by γ′t
v are included in V t

Can (Lines 16-17).
In each iteration, one submitted EDD decision is selected
randomly for implementation. The calculation in Lines 4-
22 is performed in parallel for individual users. It iterates
until no update request. At the end of each time slot, the
accumulated latency σt is updated, according to (10) (Line
25). Finally, the EDD strategy γ is returned as the OEDD
solution (Line 27).

Algorithm 1 Latency-Aware Online (LAO) Approach

1: Input: G(V,C,E), ζ, l̄, T
2: Output: data distribution strategy γ = {γ0, ..., γT−1}
3: σ0 = 0, t = 0, γ ← ∅
4: repeat
5: observe the source nodes V t

S , destination nodes V t
D

and unavailable nodes V t
F

6: create a new set V
′t
D = {v|v ∈ V t

D

⋂
¬V t

S} and set
lγ

t

v = 0,∀v ∈ V t
D

⋂
V t
S

7: create V t
Can ← C

⋃
V t
S /*V t

Can: the set of candidates*/
8: set η(γt

v, γ
t
−v) = −∞ for each node v ∈ V

′t
D

9: repeat
10: for each node v ∈ V

′t
D do

11: calculate v’s benefit η(γt
v, γ

t
−v)

12: obtain the set of EDD decision γ′t
v that includes

the set of edges from v to V t
Can with the max-

imum value of η(γ′t
v , γ

t
−v) by weighted dijkstra

algorithm under (9)
13: if η(γ′t

v , γ
t
−v) > η(γt

v, γ
t
−v) then

14: submit γ′t
v to the contend and wait

15: if v is selected to update γ′t
v then

16: remove all destination nodes added into
V t
Can by γt

v and set their benefits to 0
17: add all destination nodes visited by γ′t

v into
V t
Can and update their benefits according to

γ′t
v

18: γt
v ← γ′t

v

19: end if
20: end if
21: end for
22: until no EDD decisions are submitted
23: γ = γ

⋃
γt

24: t = t+ 1
25: calculate lγ

t

v for each edge server v ∈ V t
D , and update

accumulated latency σt based on (10)
26: until t = T
27: return γ

Algorithm 1 can find the Nash equilibrium of an EDD
game within finite iterations. Let lmin and costmin de-
note the minimum latency and minimum cost of any
edge in G, and I denote the upper bound of the iter-
ation number. In the LAO game, the iteration number
is no more than |V |2∆ϕ

∆η , where ∆ϕ is the difference be-
tween the maximum and minimum values of the poten-
tial function, calculated with max{ϕ(γt

v, γ
t
−v)|v ∈ V, t ∈

T} − min{ϕ(γt
v, γ

t
−v)|v ∈ V, t ∈ T}, and ∆η is the mini-
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mum increase in the value of the potential function, calcu-
lated with min{min{ltu,v|eu,v ∈ E

⋃
{eC,v|v ∈ V }, ltu,v ̸=

lmin, t ∈ T} − lmin, ζ · (min{costu,v|eu,v ∈ E
⋃
{eC,v|v ∈

V }, costu,v ̸= costmin} − costmin)}.
Since the weighted Dijkstra algorithm takes O(|V | ·

log|V |·|E|·log|V |) computation operations, the computation
complexity of the iteration process is also O(|V |·log|V |·|E|),
according to Algorithm 1. Thus, the computation complex-
ity of LAO in each time slot is O(I · |V | · log|V | · |E|).

Considering the space complexity, LAO creates several
arrays to store the benefit, the EDD decision cost and the
EDD decision latency for each node. Since the EDD decision
contains at most |E| edges between the edge servers and
|V | edges between the cloud and edge servers, the space
complexity of LAO is O(|V | ·max{|E|, |V |}).
Remark. In the EC environment, app vendors hire resources
on edge servers for hosting their data [20], [23]. They are not
responsible for detecting or fixing node failures at the edge,
which is the edge infrastructure provider’s responsibility,
e.g., Amazon and Google. App vendors formulate their edge
data distribution strategies based on the current network
status provided by the edge infrastructure provider. When a
node fails, the edge infrastructure provider will notify the
corresponding app vendors so that they can adapt their
edge data distribution strategies.

3.3 Theoretical Performance Analysis
In this section, we theoretically analyze LAO’s effectiveness
in minimizing the total transmission cost and stabilizing
the time-averaged transmission latency with Theorem 3 and
Theorem 4, respectively.
Theorem 3. LAO’s total transmission cost over T time slots is

bounded by O( 1ζ ) compared with the optimal solution.

The proof of this theorem is provided in Appendix D.
Theorem 4. The time-averaged accumulated latency

achieved by LAO is bounded by O(ζ).

The proof of this theorem is provided in Appendix E.
Based on the analysis above, when ζ → ∞, the solution

found by LAO is the near-optimal one to P1. However,
with a higher value of ζ , the accumulated latency will
increase and more time slots are required to stabilize this
time-averaged transmission latency (11). The performance
analysis presented in this section is also validated and
analyzed experimentally in Section 4.

4 EXPERIMENTAL EVALUATION

We experimentally evaluated the performance of LAO in
different OEDD scenarios by varying different parameters.
We conducted all the experiments on a Windows-10 ma-
chine and a real-world dataset.

4.1 Experimental Settings
4.1.1 Benchmark approaches
Three representative approaches are implemented to be
compared against LAO:

• OEDD-IP: This approach finds the optimal solution
to P2 in Section 3.1 with IBM’s CPLEX Optimizer.

• Latency-Oriented data distribution (LO): This approach
always finds the optimal solution with the minimum
data distribution latency in each time slot. It is orig-
inated from the optimal solution presented in [24]
with IBM’s CPLEX Optimizer.

• Enhanced-EDD-IP (EEI): This approach is the en-
hanced version of EDD-IP in [17]. Besides the cloud,
it may also source data for destination edge servers
from other edge servers in the system. If the long-
term transmission latency constraint (4) is fulfilled,
EEI aims to minimize the data distribution cost while
fulfilling constraints (2), (5), (6), (8) and (7), similar to
OEDD-IP. Otherwise, EEI finds the solution that min-
imizes the transmission latency to fulfill constraint
(4), similar to LO. EEI also finds the solution with
IBM’s CPLEX Optimizer.

4.1.2 Performance metrics
Three metrics are implemented in the experiments to evalu-
ate the performance of LAO:

• Time-averaged transmission latency, measured in
milliseconds and calculated according to the left side
of (4), the lower the better. We also observe whether
the approaches fulfill the long-term transmission la-
tency constraint (4).

• Total transmission cost, calculated with (3) over T ,
the lower the better.

• Maximum overhead over T , consisting of the compu-
tation time taken to find a solution and the communi-
cation time incurred. It is measured in milliseconds,
the lower the better.

4.1.3 Dataset
The experiments are conducted on a real-world EUA
dataset, which is widely used to conduct experiments in
the field of edge computing [3], [17], [25]. The EUA dataset
includes the locations of 1,464 real-world base stations and
174,305 end-users within metropolitan Melbourne, Aus-
tralia. Specifically, the geographic locations of 125 base
stations (edge servers) in the Melbourne CBD area, Aus-
tralia are used to simulate EC environments. Similar to
many studies in the EC environment [3], [17], we measure
transmission cost in a generic manner. Specifically, E2E
transmission cost is 1 and C2E transmission cost is ratio.
To simulate real-world OEDD scenarios, we deploy virtual
machines in the ARDC Nectar Research Cloud3 as edge
servers and an Amazon EC2 instance as the cloud. Links are
built between adjacent edge servers based on their locations
until the target density ρ is reached. In this experiment
environment, the E2E transmission latency ranges from 10
to 30 milliseconds and the C2E transmission latency from
160 to 200 milliseconds. In each experiment, the time slot
number is 100 (T = 100). In each experiment, |V | edge
servers are randomly selected to simulate an edge cache
system. In each time slot t, data d is randomly decached
from each individual edge server according to probability
pdec. The edge servers that still cache d will be the source
edge servers in t. In the meantime, a number of the other

3. https://ardc.edu.au/services/nectar-research-cloud/
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TABLE 1: Parameter Settings

|V | ρ ratio l̄ pdec preq ζ

Set #1 20 1.0 10 80 0.5 0.20 1
Set #2 10,15,20,25,30 1.0 10 80 0.5 0.20 1
Set #3 20 1.0,1.1,1.2,1.3,1.4,1.5 10 80 0.5 0.20 1
Set #4 20 1.0 6,8,10,12,14 80 0.5 0.20 1
Set #5 20 1.0 10 60,70,80,90,100 0.5 0.20 1
Set #6 20 1.0 10 80 0.7,0.6,0.5,0.4,0.3 0.20 1
Set #7 20 1.0 10 80 0.5 0.10,0.15,0.20,0.25,0.30 1
Set #8 20 1.0 10 80 0.5 0.10 10,1,0.1

edge servers randomly request d according to probability
preq and become destination edge servers in t. As discussed
in Section 2.4, edge servers may not always be available. In
the experiments, we assume that the unavailable rate of an
edge server is 0.05. Then, the four approaches are performed
to formulate corresponding EDD strategies in time slot t.

4.1.4 Experiment Parameters
To comprehensively analyze the performance of LAO, we
conduct eight sets of experiments, i.e., Set #1 to Set #8, to
simulate various real-world edge cache systems and OEDD
scenarios. In our experiments, we vary the values of the
seven parameters below to observe their impacts on LAO
in different OEDD scenarios. Except in Set #1, we vary the
value of one setting parameter while fixing the other six
parameters in each set of the experiments, as summarized in
Table 1. When the value of one setting parameter varies, we
repeat the experiments for 30 times and obtain the averaged
results.

• Number of edge servers (|V |) - Set #2. This parameter
decides the size of the edge cache system.

• Edge density (ρ) - Set #3. This parameter represents
the density of graph G(V,E) that represents the edge
server network in the system. It is calculated by ρ =
|E|/|V |.

• Ratio of C2E transmission cost over E2E transmis-
sion cost (ratio) - Set #4. This parameter simulates
different pricing models from edge infrastructure
providers for data transmissions.

• Time-averaged maximum transmission latency (l̄) -
Set #5. Used in Eq. (10), this parameter is the app
vendor’s expected time-averaged maximum trans-
mission latency. A low l̄ indicates app vendor’s high
priority for pursuing low latency.

• Data decache probability (pdec) - Set #6. This param-
eter determines the probability for an edge server to
remove d from its cache. It simulates the scarcity of
app vendor’s cache spaces in the system and impacts
the number of source edge servers in each time slot.

• Data request probability (preq) - Set #7. This pa-
rameter controls the probability that an edge server
becomes a destination edge server in each time slot.
A high preq represents high popularity of d.

• Trade-off parameter (ζ) - Set #8. As discussed in Sec-
tion 3.3, this parameter is used in (16) to represent the
urgency to stabilize the time-averaged transmission
latency when (11) was violated.

4.2 Experimental Evaluation

4.2.1 Performance Comparison
The results of Set #1 is shown in Fig. 2. Fig. 2(a) depicts
that LAO quickly stabilizes the transmission latency and
keeps it below l̄, fulfilling the long-term transmission la-
tency constraint (4). We can also see that LAO does this
at the lowest of the total transmission cost among all the
four approaches. OEDD-IP, LO and EEI can also fulfil (4)
over time. Fig. 2(b) demonstrates that LAO significantly
outperforms EEI and LO in minimizing transmission cost,
by an average of 37.79% and 50.81% over T , respectively,
across 100 time slots. Interestingly, the advantage of LAO is
1.89% over OEDD-IP. This is because that the time-averaged
latency incurred by LAO is higher than that incurred by
OEDD-IP. Another reason is that the benefit function (17)
employed by LAO always considers the latency even when
σt = 0. This may incur costs in time slot t but can reduce the
cost of converging σt in subsequent time slots, as discussed
in Section 3.2. LAO’s superior performance demonstrated in
Fig. 2 validates the importance of tackling the EDD problem
in an online manner.

The results of the time-averaged latency achieved by all
the four approaches in Sets #2 - #7 are similar to Fig. 2(a).
Thus, we summarize the average results in Table 2. It shows
that LAO is second only to LO in all the experiments. Next,
we focus on the total transmission costs incurred by the
approaches in Sections 4.2.2 - 4.2.7.

TABLE 2: Time-averaged Latency

Set #1 Set #2 Set #3 Set #4 Set #5 Set #6 Set #7

OEDD-IP 70.48 75.48 69.06 74.89 76.30 79.51 78.61

LAO 72.10 76.89 70.61 75.55 77.45 79.96 79.33

EEI 71.11 76.90 68.13 83.74 79.00 80.09 84.87

LO 67.56 73.18 63.16 74.41 73.76 77.56 78.05

4.2.2 Impact of number of edge servers (|V |)
Fig. 3 compares the transmission costs incurred by the four
approaches when the size of the edge cache system |V |
varies from 10 to 30. It is clear that LAO incurs the lowest
total transmission costs over time when |V | increases from
15 to 30 and LAO, and the cost incurred by LAO is slightly
higher than that incurred by OEDD-IP when |V | is 10. On
average, the advantages of LAO are 2.98% over OEDD-IP,
32.17% over EEI and 48.56% over LO. When |V | increases
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from 10 to 30, more edge servers will request data d on
average in each time slot and it takes more time to transmit
d to all the destination edge servers in general. LAO can
source d for destination edge servers close to them and
thus does not incur much more transmission costs when
|V | increases. Specifically, when |V | increases from 10 to 30
by 300%, LAO’s total transmission cost increases from 806 to
1,214 by only 54.07%, much lower than OEDD-IP’s 66.93%
increase from 798 to 1,332, EEI’s 160.38% increase from 848
to 2,208 and LO’s 134.10% from 1,264 to 2,959.

4.2.3 Impact of edge density (ρ)

Fig. 4 presents the impacts of ρ on the total transmission
costs. Overall, LAO achieves the lowest total transmission
cost. On average, the advantages of LAO are 7.75% over
OEDD-IP, 45.43% over EEI and 57.00% over LO. When ρ
increases from 1.0 to 1.5, the total transmission costs of
all the four approaches decrease, by 35.74% from 1,066 to
685 for LAO, by 31.31% from 1,070 to 735 for OEDD-IP,
by 20.43% from 1,635 to 1,301 for EEI and by 31.04% from

2,281 to 1,573 for LO. The reason is that, with an increase in
ρ, each edge server is connected to more others averagely.
In this case, the average distance between edge servers is
shortened, and data can be sourced to destination edge
servers with lower transmission costs.

4.2.4 Impact of ratio of C2E transmission cost over E2E
transmission cost (ratio)

Fig. 5 compares the total transmission costs when ratio
increases from 6 to 14 in Set #4. Overall, LAO outperforms
OEDD-IP by 1.92%, while outperforming EEI and LO with
large margins, i.e., 23.97% against EEI and 43.37% against
LO. The increase in ratio increase the cost of C2E transmis-
sions over E2E transmissions and consequently increases the
total transmission costs incurred all the four approaches.
Fig. 5 also shows that given different ratio values, LAO
can always formulate the most cost-effective solutions by
finding the best combinations of C2E and E2E transmissions.
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Fig. 9: Latency and Cost achieved by LAO vs. ζ (Set #8)

4.2.5 Impact of time-averaged maximum transmission la-
tency l̄

Fig. 6 illustrates the impact of l̄ on the total transmission
costs in Set #5. Again LAO is the clear winner, with its
34.57% transmission cost decrease from 1,316 to 861 when l̄
increases from 60 milliseconds to 100 milliseconds. OEDD-
IP and EEI’s costs also decrease, from 1,285 to 985 by 23.35%
and from 1,752 t0 1,364 by 22.15%, respectively. The increase
in l̄ relaxes the constraint for low data retrieval latency.
LAO, OEDD-IP and EEI can source data for destination edge
servers from edge servers further away to lower their total
transmission costs. LO does not consider l̄ and thus are not
impacted by the value of l̄.

4.2.6 Impact of data decache probability (pdec)
Fig. 7 shows the impact of pdec on the four approaches in
Set #6. Overall, LAO outperforms OEDD-IP, EEI and LO,
by 2.55%, 26.51% and 43.95% respectively. As pdec increases,
it is more likely for LAO, OEDD-IP, EEI and LO to source
data from within the system rather than the cloud. Using
this advantage, their costs decrease with the increase in pdec
significantly, from 1,545 to 703 by 54.50% for LAO, from
1,516 to 826 by 45.51% for OEDD-IP, from 1,855 to 1,284 by
30.78% for EEI and from 2,534 to 1,449 by 42.82% for LO.

4.2.7 Impact of data request probability (preq)
Fig. 8 demonstrates the impact of preq on the total trans-
mission costs. Overall, the advantages of LAO are again
significant, in terms of the total transmission cost, i.e. 1.01%
over OEDD-IP, 23.23% over EEI and 40.92% over LO. With
a higher requestq , there are more destination edge servers
in each time slot. Thus, total transmission costs incurred by
all approaches increase when requestq increases from 0.10
to 0.20. However, when requestq increases from 0.20 to 0.30,
the total transmission costs incurred by LAO, OEDD-IP, EEI
and LO decrease. This is because more edge servers become
source edge servers due to a fixed data decache probability
at 0.5. In this way, there is a higher chance for destination
edge servers to obtain data from within the system and the
costs incurred by LAO, OEDD-IP, EEI and LO decrease.

4.2.8 Impact of trade-off parameter (ζ)
Fig. 9 shows the impact of ζ (introduced by (13) into P2) on
LAO. As discussed in Section 3.2, a lower ζ will accelerate
the stabilization of the time-averaged transmission latency
at a potentially higher transmission cost. It is validated

experimentally by the results presented in Fig. 9(b) and
Fig. 9(a). As shown in Fig. 9(a), at the very beginning of
the experiments, the average latency is high because data
d has to be sourced from the cloud. When ζ = 10, LAO
takes 92 time slots to decrease the average latency to below
l̄ before it is stabilized. When ζ = 1 and 0.1, LAO takes
only 38 and 30 time slots, respectively, to do the same. Fast
stabilization comes the price of high cost, as demonstrated
in Fig. 9(b). When ζ = 0.1, LAO incurs the highest cost
of 11,647, 7.71% and 12.57% higher than when ζ = 1 and
ζ = 10, respectively.

4.2.9 Efficiency

TABLE 3: Maximum overhead over T . The values in the
parentheses are the communication overhead incurred.

OEDD-IP LAO EEI LO

Set #1 12,004 (84) 426 (420) 12,351 (90) 19,174 (94)

Set #2 192,137 (102) 642 (629) 267,228 (101) 297,333 (104)

Set #3 277,065 (80) 475 (465) 674,619 (82) 938,134 (86)

Set #4 8,026 (81) 424 (408) 10,392 (86) 33,052 (83)

Set #5 6,996 (80) 453 (437) 25,726 (84) 38,709 (81)

Set #6 8,123 (95) 550 (546) 35,719 (94) 36,034 (95)

Set #7 30,760 (98) 618 (600) 38,043 (106) 41,190 (101)

Table 3 presents the results of Set #1 - #7. It demonstrates
that LAO takes multiple-order-of-magnitude less computation
overhead than others. The maximum computation overheads
taken by OEDD-IP, EEI and LO are 277,065 milliseconds,
674,612 milliseconds and 938,134 milliseconds, respectively,
in Set #3, while the maximum computation overhead taken
by LAO is 642 milliseconds. This shows that LAO can solve
very large-scale OEDD problems efficiently.

LAO incurs the most communication overhead, i.e., 629
milliseconds, while OEDD-IP, EEI and LO take 80-106 mil-
liseconds to find a solution. The reason is that LAO is
the only decentralized approach, which requires frequent
decision exchanges between edge servers to achieve a Nash
equilibrium. Compared with the maximum overheads in-
curred by other three approaches, such minor differences in
the communication overhead are negligible.
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4.3 Threats to Validity

4.3.1 Threats to Internal Validity
Whether the experiment setting favors LAO over other
approaches is the main threat to the internal validity. Thus,
various OEDD scenarios were simulated by changing seven
parameters to tackle this threat. This way, we could compre-
hensively and fairly compare different approaches. More-
over, we repeated the experiments for 30 times when a
parameter was changed. Another one is the data popularity
in the experiments. Data popularity prediction is a research
topic orthogonal to this study. Thus, we employ pdec and
preq to generically indicate the results of data popularity
prediction. Their values may vary, depending on the data
popularity prediction approaches and data storage strate-
gies, and impact the performance of the approaches. The
last main threat is the EUA dataset used in the experiments.
This is because user and edge server distributions are dif-
ferent across various cities. Different user and edge server
distributions can thus lead to different OEDD strategies
and impact the performance of the approaches. However,
the values of pdec and preq , and the distributions of users
and edge servers do not impact the performance differences
between these approaches in general.

4.3.2 Threats to External Validity
To the external validity, LAO’s generalization and applica-
tion in different OEDD scenarios are the main threats. To
reduce such threat, the unit transmission cost was used
to measure the C2E transmission cost and E2E transmis-
sion cost, similar to [17], and specific cost models can be
easily interpreted, e.g. Amazon or Google’s price model.
Furthermore, the EUA dataset was adopted to execute the
experiments. We also vary the size and the complexity of
the OEDD scenarios by changing parameters to improve the
comprehensiveness of the evaluation and mitigate the threat
to external validity.

5 RELATED WORK

The evolution of broad and mobile communications in the
past two decades has continuously lowered the expenses
of bandwidth and latency has become the main obstacle
to improving service performance [8]. In large-scale con-
tent delivery infrastructures like content delivery networks
(CDNs), end-users still have to retrieve data from the public
internet and it is difficult to predict, control or reduce their
data retrieval latency [8]. It is the main barrier to further per-
formance improvement of data caching for latency-sensitive
applications like gaming and VR.

Edge computing (EC) enables 5G to break that barrier
by caching data on edge servers [4]. The caching system
facilitated by edge servers reduces the physical distance
between end-users and data to hundreds of meters [6]. In
very recent years, edge data caching has attracted great
quantity of attention [12]. Similar to studies of conventional
cloud cache systems like CDN, existing studies of edge
cache systems try to achieve various optimization goals,
e.g., maximizing caching revenue [12] and minimizing data
retrieve latency [14]. The approaches proposed in these
studies leverage the short physical distance between data

and end-users in edge cache systems. However, the impacts
of the long distance between the cloud and edge servers on
edge cache systems have been ignored completely, including
the potentially high costs and latency incurred by the data
transmission from the cloud.

Game theory is a well-acknowledged mathematical tool
for solving optimization problems distributively in edge
computing [26]. To name a few, the authors of [27] inves-
tigated the resource allocation problem for fulfilling service
providers’ resource requirements in edge computing with
consideration of fairness. Based on game theory, they de-
signed a convex programming approach to achieve a Nash
equilibrium. Cui et al. [28] studied edge demand response,
aiming to maximize user coverage, minimize energy con-
sumption and maximize users’ data rate. They solved the
problem in a distributed manner by a game-theoretically ap-
proach. However, those approaches can only solve problems
in quasi-static scenarios, without consideration of system
dynamics over time.

Lyapunov optimization has been proven to be a power-
ful tool for solving online problems by building a queuing
system [29]. Kwak et al. [30] investigated a content caching
problem and applied Lyapunov optimization to control
caching on the cloud side or edge side, based on the length
of the data request queue. In [25], the authors also studied
an edge data caching problem. An online approach based
on Lyapunov optimization was proposed to minimize total
cost while guaranteeing users’ low latency. Similarly, Asher-
alieva et al. [31] studied the edge data caching and sharing
problem, considering wireless communication. They min-
imized both caching and sharing costs while stabilizing
request queuing system based on Lyapunov optimization.
However, those centralized approaches are standard imple-
mentations of Lyapunov optimization and suffer from high
computational overheads.

Recently, some researchers have attempted the leverage
of game theory and Lyapunov optimization to solve op-
timization problems [32], [33], [34], [35]. To name a few,
Liu et al. [35] investigated the task offloading and resource
allocation problem in edge computing. They designed a
matching game to allocate user devices to edge servers,
considering task queue, edge servers’ available resources
and communication interference. According to the user al-
location strategy obtained by the matching game, they em-
ployed a Lyapunov-based approach to minimize the power
consumption in task offloading, while stabilizing the queue
length. The authors of [34] studied the content delivery
problem among devices and unmanned aerial vehicles in a
cloud-based content delivery network. They first proposed
a game-theoretical approach to minimize the transmission
cost, and then proposed a Lyapunov-based approach for
the network operator to maximize its revenue and stabilize
the cache queue. These studies utilize the advantages of
game theory and Lyapunov optimization in different phases
separately, unlike LAO that integrates game theory into
Lyapunov optimization to combine their advantages.

To help app vendors utilize edge cache systems cost-
effectively in the long term, this study tackles the online
edge data distribution (OEDD) problem with a new ap-
proach named LAO. It allows data to be sourced from
within the edge cache system. It innovatively combines
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Lyapunov optimization and game theory to solve the OEDD
problem in a distributed and online manner. The experimen-
tal results presented and discussed in Section 4 demonstrate
its superior performance in minimizing data transmission
costs and stabilizing data transmission latency over time.

6 CONCLUSION

In this paper, we studied an online edge data distribution
(OEDD) problem from the app vendor’s perspective in the
Edge Computing (EC) environment. We first formulated the
OEDD problem and proved itsNP-hardness. Then, we pro-
posed a new Latency-Aware OEDD algorithm, named LAO,
that formulates cost-effective EDD strategies online over
time. It combines game theory and Lyapunov optimization
to tackle the OEDD problem effectively and efficiently in
a decentralized manner. Its performance is evaluated both
theoretically and experimentally. This research builds a solid
foundation for enabling edge cache systems in the real
world and opens up a number of new research directions
along the line. In our future work, we will investigate
the distribution of streaming data in OEDD scenarios and
consider fault-tolerant and failure detection during the data
distribution process.

ACKNOWLEDGEMENT

This research is partially funded by Australian Research
Council Discovery Projects No. DP200102491 and Laureate
Fellowship FL190100035. We gratefully thank Guangming
Cui for his technical support.

REFERENCES

[1] CISCO, Cisco Edge-to-Enterprise IoT Analytics for Electric Utilities
Solution Overview, February 1, 2018. [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/data-
center-virtualization/big-data/solution-overview-c22-
740248.html

[2] L. Yuan, Q. He, S. Tan, B. Li, J. Yu, F. Chen, H. Jin, and Y. Yang,
“Coopedge: A decentralized blockchain-based platform for coop-
erative edge computing,” in Proceedings of the Web Conference, 2021,
pp. 2245–2257.

[3] Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y. Li, and
Y. Yang, “A game-theoretical approach for user allocation in
edge computing environment,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 3, pp. 515–529, 2019.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on
mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[5] Q. He, Z. Dong, F. Chen, S. Deng, W. Liang, and Y. Yang,
“Pyramid: Enabling hierarchical neural networks with edge
computing,” in The Web Conference, 2022, pp. 1860—-1870.
[Online]. Available: http://dx.doi.org/10.1145/3485447.3511990

[6] N. Garg, M. Sellathurai, V. Bhatia, B. Bharath, and T. Ratnarajah,
“Online content popularity prediction and learning in wireless
edge caching,” IEEE Transactions on Communications, vol. 68, no. 2,
pp. 1087–1100, 2019.

[7] Y. Wang, B. Veeravalli, and C.-K. Tham, “On data staging algo-
rithms for shared data accesses in clouds,” IEEE Transactions on
Parallel and Distributed Systems, vol. 24, no. 4, pp. 825–838, 2012.

[8] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell,
Y. Cheng, A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan, “Re-
ducing web latency: the virtue of gentle aggression,” in Proceedings
of the ACM SIGCOMM 2013 conference on SIGCOMM. ACM, 2013,
pp. 159–170.

[9] X. Xia, F. Chen, G. Cui, M. Abdelrazek, J. Grundy, H. Jin, and
Q. He, “Budgeted data caching based on k-median in mobile edge
computing,” in 27th IEEE International Conference on Web Services.
IEEE, 2020, pp. 197–206.

[10] X. Xia, F. Chen, Q. He, G. Cui, P. Lai, M. Abdelrazek, J. Grundy, and
H. Jin, “Graph-based optimal data caching in edge computing,” in
International Conference on Service-Oriented Computing. Springer,
2019, pp. 477–493.

[11] Q. Li, Y. Zhang, A. Pandharipande, Y. Xiao, and X. Ge, “Edge
caching in wireless infostation networks: Deployment and cache
content placement,” in IEEE Conference on Computer Communica-
tions Workshops. IEEE, 2019, pp. 1–6.

[12] X. Xia, F. Chen, Q. He, G. Cui, J. Grundy, M. Abdelrazek,
A. Bouguettaya, and H. Jin, “Ol-medc: An online approach for
cost-effective data caching in mobile edge computing systems,”
IEEE Transactions on Mobile Computing, 2021. [Online]. Available:
http://dx.doi.org/10.1109/TMC.2021.3107918

[13] Z. Ning, P. Dong, X. Wang, S. Wang, X. Hu, S. Guo, T. Qiu, B. Hu,
and R. Kwok, “Distributed and dynamic service placement in
pervasive edge computing networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 32, no. 6, pp. 1277–1292, 2021.

[14] T. Tran and D. Pompili, “Adaptive bitrate video caching and pro-
cessing in mobile-edge computing networks,” IEEE Transactions on
Mobile Computing, pp. 1–15, 2018.

[15] E. Schurman and J. Brutlag, “The user and business impact of
server delays, additional bytes, and http chunking in web search,”
in Velocity Web Performance and Operations Conference. oreilly, 2009.

[16] M. Zhang, H. Luo, and H. Zhang, “A survey of caching mech-
anisms in information-centric networking,” IEEE Communications
Surveys & Tutorials, vol. 17, no. 3, pp. 1473–1499, 2015.

[17] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin,
“Cost-effective app data distribution in edge computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 1, pp.
31–44, 2021.

[18] Y. Jiang, M. Ma, M. Bennis, F.-C. Zheng, and X. You, “User pref-
erence learning-based edge caching for fog radio access network,”
IEEE Transactions on Communications, vol. 67, no. 2, pp. 1268–1283,
2018.

[19] Y. Huang, J. Zhang, J. Duan, B. Xiao, F. Ye,
and Y. Yang, “Resource allocation and consensus of
blockchains in pervasive edge computing environments,”
IEEE Transactions on Mobile Computing, 2021. [Online]. Available:
http://dx.doi.org/10.1109/TMC.2021.3053230

[20] X. Xia, F. Chen, Q. He, G. Cui, J. Grundy, M. Abdelrazek, X. Xu,
and H. Jin, “Data, user and power allocations for caching in
multi-access edge computing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 5, pp. 1144–1155, 2021. [Online].
Available: http://dx.doi.org/10.1109/TPDS.2021.3104241

[21] C. A. Holt and A. E. Roth, “The nash equilibrium: A perspective,”
Proceedings of the National Academy of Sciences, vol. 101, no. 12, pp.
3999–4002, 2004.

[22] D. Monderer and L. S. Shapley, “Potential games,” Games and
economic behavior, vol. 14, no. 1, pp. 124–143, 1996.

[23] D. Sabella, V. Sukhomlinov, L. Trang, P. Paglierani, R. Rossbach,
X. Li, Y. Fang, D. Druta, F. Giust, L. Cominardi, W. Featherstone,
B. Pike, and S. Hadad, “Developing software for multi-access edge
computing,” ETSI White Paper No. 20, pp. 1–38, 2019.

[24] F. Tang, H. Zhang, and L. T. Yang, “Multipath cooperative routing
with efficient acknowledgement for leo satellite networks,” IEEE
Transactions on Mobile Computing, vol. 18, no. 1, pp. 179–192, 2018.

[25] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin,
“Online collaborative data caching in edge computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 2, pp.
281–294, 2020.

[26] J. Moura and D. Hutchison, “Game theory for multi-access edge
computing: Survey, use cases, and future trends,” IEEE Communi-
cations Surveys & Tutorials, vol. 21, no. 1, pp. 260–288, 2018.

[27] E. Moro and I. Filippini, “Joint management of compute and
radio resources in mobile edge computing: a market equilibrium
approach,” IEEE Transactions on Mobile Computing, 2021. [Online].
Available: http://dx.doi.org/10.1109/TMC.2021.3091764

[28] G. Cui, Q. He, X. Xia, F. Chen, T. Gu, H. Jin, and
Y. Yang, “Demand response in noma-based mobile edge
computing: A two-phase game-theoretical approach,” IEEE
Transactions on Mobile Computing, 2021. [Online]. Available:
http://dx.doi.org/10.1109/TMC.2021.310858



12

[29] M. J. Neely, “Stochastic network optimization with application
to communication and queueing systems,” Synthesis Lectures on
Communication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[30] J. Kwak, Y. Kim, L. B. Le, and S. Chong, “Hybrid content caching
in 5g wireless networks: Cloud versus edge caching,” IEEE Trans-
actions on Wireless Communications, vol. 17, no. 5, pp. 3030–3045,
2018.

[31] A. Asheralieva and D. Niyato, “Combining contract theory and
lyapunov optimization for content sharing with edge caching
and device-to-device communications,” IEEE/ACM Transactions on
Networking, vol. 28, no. 3, pp. 1213–1226, 2020.

[32] Y. Sun, M. Peng, and S. Mao, “A game-theoretic approach to cache
and radio resource management in fog radio access networks,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 10, pp. 10 145–
10 159, 2019.

[33] J. Zhao, X. Sun, Q. Li, and X. Ma, “Edge caching and computation
management for real-time internet of vehicles: an online and dis-
tributed approach,” IEEE Transactions on Intelligent Transportation
Systems, vol. 22, no. 4, pp. 2183–2197, 2020.

[34] A. Asheralieva and D. Niyato, “Game theory and lyapunov opti-
mization for cloud-based content delivery networks with device-
to-device and uav-enabled caching,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 10, pp. 10 094–10 110, 2019.

[35] C.-F. Liu, M. Bennis, M. Debbah, and H. V. Poor, “Dynamic task
offloading and resource allocation for ultra-reliable low-latency
edge computing,” IEEE Transactions on Communications, vol. 67,
no. 6, pp. 4132–4150, 2019.

Xiaoyu Xia received his Master degree from
The University of Melbourne, Australia and his
PhD degree from Deakin University, Australia.
He is a research fellow at The University of
Adelaide, Australia. His research interests in-
clude edge computing, service computing, soft-
ware engineering and cloud computing. More
details about his research can be found at
https://sites.google.com/view/xiaoyuxia.

Feifei Chen received her PhD degree from
Swinburne University of Technology, Australia in
2015. She is a senior lecturer at Deakin Uni-
versity. Her research interests include software
engineering, cloud computing and green com-
puting.

Qiang He received his first PhD degree
from Swinburne University of Technology, Aus-
tralia, in 2009 and his second PhD degree
in computer science and engineering from
Huazhong University of Science and Technol-
ogy, China, in 2010. He is an Associate Pro-
fessor at Swinburne. His research interests in-
clude edge computing, software engineering,
service computing and cloud computing. More
details about his research can be found at
https://sites.google.com/site/heqiang/.

John C. Grundy received the BSc (Hons), MSc,
and PhD degrees in computer science from the
University of Auckland, New Zealand. He is cur-
rently Australian Laureate Fellow and a profes-
sor of software engineering at Monash Univer-
sity, Melbourne, Australia. He is an associate
editor of the IEEE Transactions on Software En-
gineering, the Automated Software Engineering
Journal, and IEEE Software. His current inter-
ests include domain-specific visual languages,
model-driven engineering, large-scale systems

engineering, and software engineering education. More details about
his research can be found at https://sites.google.com/site/johncgrundy/.

Mohamed Abdelrazek is an Associate Pro-
fessor of Software Engineering and IoT at
Deakin University. Before joining Deakin Uni-
versity in 2015, he worked as a senior re-
search fellow at Swinburne University of Tech-
nology and Swinburne-NICTA software innova-
tion lab (SSIL). Before 2010, he was the head of
software development department at Microtech.
More details about his research can be found at
https://sites.google.com/site/mohamedalmorsy/.

Jun Shen is an Associate Professor at the Uni-
versity of Wollongong in Wollongong, NSW Aus-
tralia. His expertise is on web services and Se-
mantic Web. He has been an editor, PC chair,
guest editor, and a PC member for numerous
journals and conferences published by the IEEE,
ACM, Elsevier, and Springer. From 2007, he was
a chair of Education Chapter of IEEE NSW sec-
tion. He is a senior member of the IEEE.

Athman Bouguettaya is a Professor in the
School of Computer Science at University of
Sydney, Australia. He received his PhD in Com-
puter Science from the University of Colorado
at Boulder (USA) in 1992. He was previously
Science Leader in Service Computing at CSIRO
ICT Centre, Canberra. Australia. Before that, he
was a tenured faculty member and Program di-
rector in the Computer Science department at
Virginia Polytechnic Institute and State Univer-
sity (USA). He is or has been on the editorial

boards of several journals including, the IEEE Transactions on Services
Computing, ACM Transactions on Internet Technology and VLDB Jour-
nal. He is a Fellow of the IEEE and a Distinguished Scientist of the ACM.

Hai Jin is a Cheung Kung Scholars Chair Pro-
fessor of computer science and engineering at
Huazhong University of Science and Technology
(HUST) in China. Jin received his PhD in com-
puter engineering from HUST in 1994. His re-
search interests include computer architecture,
virtualization technology, cluster computing and
cloud computing, peer-to-peer computing, net-
work storage, and network security.



13

APPENDIX A
SUMMARY OF NOTATIONS

TABLE 4: Summary of Notations

Notation Description
C remote cloud servers
cost(γt) transmission cost incurred by γt

costu,v minimum cost of transmission through edge eu,v

d data to be cached
E set of links/edges existing in G

eu,v edge from node u to v

G graph presenting a particular area
l̄ time-averaged maximum transmission latency
ltu,v time taken to transmit the data via edge eu,v in time

slot t

lγ
t

v time taken to transmit the data to v according to γt

V t
D set of destination edge servers in time slot t

V t
F set of unavailable servers in time slot t

V t
S set of source servers in time slot t

V t
D←S set of destination nodes retrieving data from a source

node in time slot t
t time slot t
T number of time slots
u, v nodes u, v in graph G

V set of edge servers
γ EDD strategy
γt set of binary variables indicating whether data is

transmitted through any edge in E in time slot t
γt
u,v binary variable indicating whether data is transmitted

through eu,v in time slot t
ωt set of binary variables indicating whether data

transmission strategy visits node v ∈ V in time slot t
ωt
v binary variable indicating whether data transmission

strategy visits node v in time slot t

APPENDIX B
PROOF OF THEOREM 1
Proof To do this proof, we first introduce a known NP-
hard problem, the Rooted Minimum Steiner Tree (RMST)
problem. Given a set of nodes V , a set of edges E and
a graph G(V,E,R,W, r) where R is the set of destination
nodes R ∈ V , and W is the weights of edges ∀e ∈ E, the
RMST problem is to find a Steiner tree from G that starts
from node r with minimum weights. Now we present how
to reduce the t-OEDD problem to the RMST problem. We
first include a virtual node r′ into graph G. Then, we add
an edge to connect this virtual node to each of the source
nodes in G. In the t-OEDD problem, each edge eu,v has a
specific transmission cost costu,v , which can be treated as
the weight of the corresponding edge in the RMST problem.
In this way, the t-OEDD problem is converted to: given a
graph G and a starting point r′, find the Steiner tree with
the minimum total weight (the minimum transmission cost).
A solution that fulfills this reduced t-OEDD problem also
fulfills the RMST problem. This indicates that the t-OEDD
problem can be reduced to the RMST problem and the t-
OEDD problem is thus NP-hard. □

APPENDIX C
PROOF OF THEOREM 2
Proof Assuming two EDD decisions γt

v and γ′t
v that fulfill

η(γt
v, γ

t
−v) < η(γ′t

v , γ
t
−v). In this case, this node should

change its EDD decision from γt
v to γ′t

v . Based on (17), we
can obtain:

max{σt, 1}lγ
t

v + ζ ·∆cost(γt
v, γ

t
−v)

> max{σt, 1}lγ
′t

v + ζ ·∆cost(γ′t
v , γ

t
−v)

(20)

Once node v needs to update its EDD decision, the
benefits of nodes V t

v , might be impacted by v’s new latency .
Thus, we analyze the following two cases: 1) lγ

′t

v > lγ
t

v ; and
2) lγ

′t

v ≤ lγ
′t

v .
Case 1: lγ

′t

v > lγ
t

v .
In this case, the latencies of all nodes in V t

v increase.
Thus, those nodes are not in the set of V t

D

⋂
¬{u ∈ V t

v |lγ
′t

u >
lγ

t

u }
⋂
¬{v}. In this way, we can obtain:∑

u∈V t
D

⋂
¬{u∈V t

v |lγ
′t

u >lγ
t

u }
⋂

¬{v}

(max{σt, 1}lγ
t

u +

ζ ·∆cost(γt
u, γ

t
−u)) >

∑
u∈V t

D

⋂
¬{u∈V t

v |lγ
′t

u >lγ
t

u }
⋂

¬{v}

(max{σt, 1}lγ
′t

u + ζ ·∆cost(γ′t
u , γ

t
−u))

(21)

Based on (19), (20) and (21), we can obtain:

ϕ(γt
v, γ

t
−v) < ϕ(γ′t

v , γ
t
−v) (22)

Case 2: lγ
′t

v ≤ lγ
t

v .
In this case, nodes in V t

v would keep their current
decisions because their benefits increase, due to the lower
latency and same cost. Thus, we also can obtain (21) and
prove (22).

According to Definition 2, ϕ(γt
v, γ

t
−v) is a potential func-

tion and this theorem stands. □

APPENDIX D
PROOF OF THEOREM 3
Proof Let γ∗ = {γ∗0, ..., γ∗T−1} denote the optimal
solution to P1, which incurs transmission cost cost∗t and
γ′ = {γ′0, ..., γ′T−1} denote the optimal solution to P2,
which incurs transmission cost cost′t. The solution to P2

from its solution space contains the solution space of P1.
Now, we deduce the upper bound on (13) with respect to
cost∗t:

ζ · E[cost′t|σt] + ∆(σt)
(15)
≤ ζ · E[cost′t|σt]− E[σt ·

∑
v∈Rt

(l̄ − lγ
t

v )|σt] + Θ

≤ ζ · E[cost∗t|σt]− E[σt ·
∑
v∈Rt

(l̄ − lγ
∗t

v )|σt] + Θ

(†)
≤ ζ · E[cost∗t|σt]− σt ·

∑
v∈Rt

(l̄ − lγ
∗t

v ) + Θ

(‡)
≤ ζ · E[cost∗t|σt] + Θ

(23)

Note that the optimal solution γ∗ is independent of the
accumulated latency. Thus, inequality (†) in (23) stands.
Inequality (‡) holds because constraint (4) must be fulfilled
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by the optimal solution γ∗ to problemP1 while σt ≥ 0 based
on (10). By summing (23) across t ∈ [0, T−1], we can obtain:

lim
T→∞

ζ

T
·
T−1∑
t=0

E[cost′t|σt]

≤ lim
T→∞

ζ

T
·
T−1∑
t=0

E[cost∗t|σt] + Θ− E[L(σT )− L(0)]
T

≤ lim
T→∞

ζ

T
·
T−1∑
t=0

E[cost∗t|σt] + Θ

(24)

where L(σT ) − L(0) is always non-negative according to
definition of L(σt).

Thus, the margin between the solution γ′ found by P2

and the optimal solution γ∗ is bounded by Θ
ζ :

lim
T→∞

1

T
·
T−1∑
t=0

E[cost′t − cost∗t|σt] ≤
Θ

ζ
(25)

Now, we analyze the margin between γ found by LAO
and the optimal solution γ∗ found by P1. Let costmm

denote the maximum value of the minimum transmis-
sion cost between any two nodes in G, calculated with
max{costu,v|u, v ∈ V

⋃
C}. Please note that the strategy

found by LAO in time slot t does not impact the sets of
source nodes, destination nodes and unavailable nodes in
the following time slot. Thus, the difference between the
total cost incurred by LAO and that incurred by the optimal
solution γ′ found by P2 is at most ∆V · (costmm− costmin),
where ∆V = limT→∞ |V t

D¬
⋂
V t
S |:

lim
T→∞

1

T
·
T−1∑
t=0

E[costt − cost′t|σt] ≤ ∆V · (costmm − costmin)

(26)

Based on (25) and (26), we can obtain the margin be-
tween γ found by LAO and γ∗ found by P1:

lim
T→∞

1

T
·
T−1∑
t=0

E[costt − cost∗t|σt] ≤

∆V · (costmm − costmin) +
Θ

ζ

(27)

As mentioned in Section 3.2, Θ is a constant of
1
2

∑
v∈Rt l̄2. Since costmm, costmin and ∆V are also con-

stants in an EDD scenario, the margin between γ and γ∗ is
O((costmm − costmin) ·∆V + Θ

ζ ) = O( 1ζ ). □

APPENDIX E
PROOF OF THEOREM 4

Proof According to (10) and (11), let us assume a positive
value X and the existence of a γ′t that fulfill:

E[
∑
v∈V t

D

(lγ
′t

v − l̄)|σt] ≤ −X (28)

Let costmin and costmax denote the lowest and highest
transmission costs achieved by the all the possible solutions

to P1, respectively. Introducing costmin and costmax into
(15) leads to:

∆(σt)+ζ · costmin ≤
Θ+ ζ · costmax + σt · E[

∑
v∈V t

D

(lγ
′t

v − l̄)|σt] (29)

Define Θ′ = Θ + ζ · (costmax − costmin). We have the
following:

∆(σt) ≤ Θ′ + σt · E[
∑
v∈V t

D

(lγ
′t

v − l̄)|σt]

(28)
≤ Θ′ −X · σt

(30)

The upper bound on the average accumulated latency
across all the time slots can be obtained:

1

T

T−1∑
t=0

σt

(30)
≤ Θ′

X
−

∑T−1
t=0 ∆(σt)

TX
(12)
=

Θ′

X
− E[L(σT )− E[L(σ0)]

TX
≤ Θ′

X

(31)

Considering the fact that O(Θ
′

X ) = O(ζ), the averaged
accumulate latency across all the time slots of LAO is
bounded by O(ζ). With a lower ζ , the time-averaged ac-
cumulate latency is also lower, indicating the acceleration of
the stabilization. □


