
Software Engineering by and for Humans in an AI Era

SILVIA ABRAHÃO, JOHN GRUNDY, MAURO PEZZÈ, MARGARET-ANNE STOREY, and DAMIAN

ANDREW TAMBURRI

The landscape of software engineering is undergoing a transformative shift driven by advancements in machine learning, artificial

intelligence (AI), and autonomous systems. This roadmap paper explores how these technologies are reshaping the field, positioning

humans not only as end users but also as critical components within expansive software ecosystems. We examine the challenges

and opportunities arising from this human-centered paradigm, including ethical considerations, fairness, and the intricate interplay

between technical and human factors. By recognizing humans at the heart of the software lifecycle —spanning professional engineers,

end users, and end-user developers —we emphasize the importance of inclusivity, human-aligned workflows, and the seamless

integration of AI-augmented socio-technical systems. As software systems evolve to become more intelligent and human-centric,

software engineering practices must adapt to this new reality. This paper provides a comprehensive examination of this transformation,

outlining current trends, key challenges, and opportunities that define the emerging research and practice landscape, and envisioning

a future where software engineering and AI work synergistically to place humans at the core of the ecosystem.

ACM Reference Format:
Silvia Abrahão, John Grundy, Mauro Pezzè, Margaret-Anne Storey, and Damian Andrew Tamburri. 2015. Software Engineering by

and for Humans in an AI Era. ACM Trans. Softw. Eng. Methodol. 52, 4, Article 111 (August 2015), 45 pages. https://doi.org/XXXXXXX.

XXXXXXX

1 INTRODUCTION

The last decade has seen a sudden acceleration of many new technologies that radically change software production

and its impact on human life, work and society. Generative AI, extended reality and the evolving internet of things have

opened major new frontiers. These have upset current and future research and practice with a disruptive revolution

greatly beyond the significant changes of even the last decade. Generative AI has already redefined the production of

software systems with improvement of productivity and sometimes disruptive side effects [76, 85]. Current tools and

practices are just scratching the surface of a deep revolution that may have major impacts on the way we engineer

software systems in the next decades [46, 58, 128]. Generative AI, extended reality and the internet of things enable

new ways for humans to interact with their diverse software systems. Machine-learning-powered systems and bots

autonomously evolve and interact with humans in many ways that were unforeseen till few years ago. Increasingly

humans are begining to interact more seamlessly and unconsciously with a range of complex software systems simply

by living in increasingly software-driven smart cities. Extended reality and the internet of things enable human-system

interactions far beyond the classic keyboard-mouse-display interactions.

Generative AI empowers new scenarios for both designing software systems and living within human-centric

systems. However, these developments are not without a variety of risks, including concerns over what SE jobs will

Authors’ address: Silvia Abrahão; John Grundy; Mauro Pezzè; Margaret-Anne Storey; Damian Andrew Tamburri.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


2 Abrahão et al.

Fig. 1. Mc Luhan’s Tetrad

look like, AI bias, ethical and responsible engineering practices, inclusive solutions and how to best educate future

AI-powered system engineers [86, 92, 130, 147].

In the Artificial Intelligence for Software Engineering: The Journey so far and the Road ahead paper in this issue,

Chatzigeorgiou et al. [28] discuss the impact of AI on software engineering practices. In this paper we focus on human

factors in the area of AI, and propose a roadmap for research on human aspects in both SE development processes and

human-centric software systems. We discuss the way new AI-powered tools dramatically change the development of

software systems and the dynamics of development teams, the SE profession and SE education. We discuss the need

for software adaptation for diverse end users and usage contexts by leveraging AI and human interaction, and the

validation of human-centric self-adaptive ecosystems. We argue how human-centric, self-adaptive ecosystems reshape

the role of software in human life and society.

We illustrate the impact of Generative AI and human-centric self-adaptive ecosystems throughout Sections 2 and 3,

with McLuhan’s Tetrad [110]. The Tetrad is a diagram that the Canadian philosopher Herbert Marshall McLuhan

defined in the mid seventies to explain the disruptive effect of media on the society. McLuhan observed that disruptive

technologies always follow intrinsic laws: they amplify certain human abilities, render previous technologies obsolete,

and when pushed to their extremes, create a need for new innovations to address emergent new challenges. In this

paper we use McLuhan’s Tetrad to highlight some of the key effects of disruptive innovation, as Storey et al. suggest in

their disruptive research playbook [152]. Figure 1 shows the four diamonds that illustrate the effect of the technology

(in the center in the diagram) by indicating how the new technology enhances software development and systems,

obsolesces technologies and approaches, reverses common practice, and retrieves past results, to propose a roadmap for

software engineering by and for humans systems in the AI era. For example, the Internet, in the middle of Figure 1, has

amplified distributed development (the enhances diamond), and has driven out of practice tarballs and zip files (the

obsolesces diamond), by offering a new support to collaborative development, it has recovered standardized processes

to organize distributed development (the retrieves diamond) and it has emphasized social coding when pushed to the

limit (the reverses diamond).

2 SOFTWARE DEVELOPMENT IN THE ERA OF AI

Software development is one of the most creative, complex but also rewarding forms of knowledge work. Facilitated by

the internet, tens of thousands of developers are able to work together, directly and indirectly, to produce long-lived

Manuscript submitted to ACM



Software Engineering by and for Humans in an AI Era 3

multi-version complex systems (such as Windows and Google) with millions of static and dynamic system and software

dependencies that change rapidly over time to keep up with the demand for new or different user features.

To keep pace with such complexity, developers innovate and adopt new processes, novel technologies and powerful

automation to augment their capabilities for creating and orchestrating how software system versions are managed by

these distributed networks of thousands of developers. These innovations, such as the internet and social coding tools,

and processes, such as agile, change not just the speed and quality of the software being developed, but they also alter

the very essence of how software is authored by developers, and the ways they work together.

Generative AI-based tools are the latest disruption to reshape how software is being engineered. We use McLuhan’s

Tetrad, introduced in Section 1, as a lens for laying out a multi-path roadmap of how AI will disrupt development

practices and experiences in expected and unexpected ways, as well as potentially both positive and negative ways

(see Figure 2). We may anticipate that AI may enhance the speed and creativity of developers, and remove (makes

obsolete) friction and tedium in work and the need to know lower level technical details. However, it may also retrieve
artifacts and activities from times before - for instance, interaction with ICQ style chatbots and more reliance on “natural

language” as the design language. What it will reverse into is also of concern - loss of control, trust, and quality over

time.

Fig. 2. An idealised view of the disruptive effects of AI

In the following we first lay out how AI is reshaping how we conceptualize developer productivity and experience

(Section 2.1), next we explore how AI is disrupting the tools used in software engineering (Section 2.2), how AI is

transforming how humans and machines together create software collaboratively (Section 2.3), how AI will impact

who will be designing software and the software engineering profession (Section 2.4) and finally how AI will impact

software engineering education (Section 2.5).

2.1 The Impact of AI on the Developer Productivity and Experience

Improving tools and processes to enhance developer productivity and their experience, has been an ongoing quest since

even before the term “software engineering” was coined in the NATO 1968 conference on the software crisis [120].

Manuscript submitted to ACM



4 Abrahão et al.

Before we discuss how AI is impacting developer tooling (see Section 2.2), we revisit some historical landmarks in

developer productivity and experience, the ongoing challenges we face today and a roadmap for future work to be

considered about how AI impacts developer productivity and experience.

2.1.1 Trends and Historical Landmarks. Frederick J. Brooks was one of the first authors to write about developer

productivity in his famous 1975 Mythical Man Month book [23]
1
. The essays in his book, based on his experience

managing a large, complex project at IBM on the OS/360, led to several timeless project management insights that still

hold today. He recognized that the inherent essential complexity in software cannot be tamed by simply adding more

developers to the project, in part due to communication and coordination overhead and difficulties maintaining an

understanding of the overall design of a complex project. Brooks also famously noted that there is likely no silver bullet

to significantly improve developer productivity. He argues that tools, languages and processes can only help us address

what he termed accidental complexity in software, but do little to address the essential complexity inherent in the

problem and solution domains. Brooks also discussed how software is not visible until there is an early prototype, and it

is only with these early prototypes, that users will discover what they want, putting pressure on the requirements and

the software to change. Brooks recognized many of the challenges we still experience with versioning, documentation,

project estimation, administrative overhead and increasing errors over time.

Gerald Weinberg, another luminary, also discussed some of the same important themes about human factors in his

landmark 1971 The Psychology of Programming book [170], and noted that software development is a human activity,

rather than a technical activity. He talks about the psychological challenges in understanding program complexity, and

the importance of effective communication and positive team dynamics for distinguishing high performing software

teams. He also mentioned the importance of continuous improvement, made possible by learning during debugging. He

further proposed innovative ideas for developer documentation, whereby developers would write customized answers

to specific developer questions that capture the context and needs of the questioning developers. This idea is prescient

of Stack Overflow, a tool that did not appear for almost 40 years. The concepts behind continuous software engineering

and collaborative and interactive learning are still the cornerstones of successful development today.

The argument that software development is much more than the technical details captured by code, was also

strongly advocated by Peter Naur in his famous 1986 essay [119]. Naur considered software as theories in the minds of

developers: theories about the problem domain, theories about how the software implements solutions to those problems,

and theories about how the program can be evolved to support new and changing features. He also recognized the

importance of mentorship and knowledge sharing among team members.

Another seminal book on software developer productivity was DeMarco and Lister’s 1987 Peopleware: Productive

Projects and Teams book [36]. DeMarco and Lister discussed the importance of developer psychology, team work and

the developer’s environment. They also recognized the importance of project management and the critical role of the

manager, and how intrinsic motivation, driven by a developer’s personal interest and satisfaction in their work, is an

important key to a team’s success (even more so than bonuses and extrinsic rewards).

During the 1990’s and into the 2000’s and beyond, practitioners and researchers, building on the recognition of the

importance of human factors and teamwork, synthesized and shared wisdom to improve programming techniques [79],

more advanced programming languages [87] and programming tools (see Section 2.2). Extreme programming [17] and

the agile movement [148] further led to insights of how to improve developer productivity and their experience, with

practices such as refactoring, pair programming, customer focus, communication, test driven development, testing,

1
This is the reference to the first of several editions

Manuscript submitted to ACM



Software Engineering by and for Humans in an AI Era 5

scrum and continuous integration showing widespread adoption with positive impacts. While at the same time, others

paid significant attention to how to measure, and hopefully, better control or influence productivity [15, 83, 155].

In the past decade, there has been additional substantive research on developer productivity [164], developer

happiness [70] and satisfaction [154], developer motivation [18] and developer experience [72], and widespread

adoption in industry of approaches for framing and measuring productivity [51, 52].

2.1.2 Open Challenges. AI dramatically impacts on developer productivity, experience, flow and creativity.

Productivity: How to define, understand and measure developer productivity is an ongoing challenge, tackled by both

industry and research. Not that long ago, many large companies used lines of code as a way of measuring development

productivity. We have come a long way from then and realized that productivity is a complex concept and if it is to

be measured (some argue it should not be!), it should be measured across many dimensions. Forsgren, Storey and

collaborators [52] proposed that productivity should be conceptualized across at least five dimensions: developer

satisfaction and well-being, performance and quality, activity (such as lines of code, code reviews done), collaboration

and communication, and finally developer/project efficiency and flow. The SPACE framework emerged from decades of

research on developer productivity, and it has been adopted across the industry to understand different dimensions

behind improvement interventions as well as ways of measurement. SPACE has also been used as a framework for

understanding the different impacts as AI (implemented with Copilot) was adopted by GitHub developers [85]. But

much remains to understand and improve how AI impacts developer productivity and developer experience. The

dimensions in SPACE are one way to capture those insights, but as AI is adopted, we will expect to see new ways to

measure these dimensions of productivity.

Trust and Autonomy: Important aspects of developer experience will relate to their trust in generative AI (and how it

will impact the quality of their work) as well as their autonomy over how any automated developed work is done. Trust

will also be influenced by how developers feel secure in how they use AI to generate code and other artifacts, as well as

how using AI will influence their sense of identity [77].

Creativity: Software development is a highly creative endeavour. Researchers in our community are just starting to

question how AI will enhance (or impede) creativity in the software activities of brainstorming, design, development and

analysis [81]. When developers work with AI, will they become less or more creative? How can AI support creativity

at the individual and team levels, while also helping developers, stay on track with their assigned work. Jackson et

al. speculate that individual creativity can be enhanced by bringing in inspirations from other disciplines, bringing

perspectives from the future users of the software, and relating those ideas to architecture design issues [81]. These

authors also suggest that Generative AI may level the playing field and make individual personality traits less relevant,

but at the same time may reduce reliance on human mentorship. How AI may further engage discussions between the

end users and developers is discussed further below in this paper when we consider how generative AI will impact

collaboration (see Section 2.3) and is an important open challenge.

2.1.3 Roadmap. There are many open research issues about developers’ productivity and experience, and the industry

is hungry to know how to conceptualize these concepts and how to measure the impact of tools, processes and practices.

Specifically, the challenges mentioned above lead to the following research activities.

• Which theories should we borrow and extend from other disciplines, and what new theories do we
need to develop? Developer productivity and developer experience both rely on concepts from many other

Manuscript submitted to ACM



6 Abrahão et al.

disciplines, including the management sciences, HCI, behavioural psychology and the social sciences. At the

same time, we will have to build brand new theories, and revisit older theories as AI disrupts what we know and

assume about developer productivity and their experience. For example, how AI will impact developer creativity

is a topic of interest
2
. We will need to consult and be aware of theories of creativity from other disciplines as

suggested by Jackson et al. [81].

• How to measure developer productivity and experience? As AI is rolled out, and as it extends its reach

and capabilities, we need to know how to measure its impact on developer productivity, across many different

dimensions such as those captured by the SPACE framework and on developer experience. We likely need new

metrics and new ways of measuring and presenting impacts on productivity, experience, flow, creativity, trust

and autonomy on developers, managers and researchers.

• How will AI-powered tools and developer agents impact the creative side of software development
processes and work? Creativity is an often overlooked aspect of SE work. We need to study how AI-powered

developer agents impact this, especially in terms of human collaboration around producing creative solutions

to currently unknown, unsolved software solutions, domains, users and usage contexts. Will they dampen or

improve creativity, and how can we ensure the latter vs the former.

2.2 The Impact of AI on Software Development Tools

2.2.1 Software Development Trends Over Time. Software developers are always on the forefront of either developing

or adopting new technical innovations to support and transform their work. Indeed, software engineering has been

assisted by automation since the first assembly language tools were constructed.

There are many different innovations that have emerged over time that support the inner loop of how developers

write and test code, as well as innovations that support the outer loop of going from idea to deployed feature. Figure 3

shows a historical timeline of emerging tools that support the different phases of the software development lifecycle

(both the inner and outer loops). Tools that support requirements elicitation, their capture and formalization; tools

and languages that support and enhance how code is authored or auto-generated; tools that help ensure the quality of

current and future work through testing and analysis; tools that allow developers to review each other’s work and

work together by versioning their work and systems; tools that automate the build and deployment processes; and

tools that help manage the project management process.

The figure clusters tools according to their main supportive role. All tools followed an arc that was shaped by inspiring

movements in how software engineering should be done (see the top row of Figure 3). For example, the recognition

that there was a looming software crisis in the late 60’s spurred the need for tools to manage software complexity

and support the then recognized inevitable need for software to continually evolve. The agile movement recognized

the importance of humans and how they communicate and co-create in the process of software development led to

tools that emphasized social interactions and distributed development. The Devops movement, as another example,

influenced the development of continuous integration pipelines and tooling.

Over the past several years, the latest disruptive movement of generative AI has led to an increasing number of

AI-powered software engineering support tools. The suggestion to use AI in developer tools is also not new. Rich et al.

back in 1988 proposed the “programmer’s apprentice”, a vision of how tooling could use AI to help developers complete

a wide range of tasks [136]. Although much of this early vision was not fully realized, of late, AI is mow leaving its

2
This topic will be explored in an upcoming Dagstuhl seminar, see https://www.dagstuhl.de/25412

Manuscript submitted to ACM

https://www.dagstuhl.de/25412


Software Engineering by and for Humans in an AI Era 7

mark on code authoring, testing, code review, build, deployment, security and documentation tools among others. AI is

reshaping the entire tooling environment in which software engineers practice. The right side of Figure 3 indicates that

AI and the use of agents or automation is likely to transform all tools across the development life cycle, with new tools

that we cannot even conceive of yet likely emerging.

The needs driven emergence of innovations in software developer tools that are shaped by important movements in software engineering (such as agile,

devops and recently AI), with rows below representing the outer loop (requirements/design and project management) and inner loop (from code to

deployment). This figure also shows the uncertainty of how these tools will evolve by 2030. For the inner loop, we expect that automation will play a

bigger role by 2030, but expect humans to continue playing a large role for outer loop but be assisted by AI and collaborate with AI agents.

Fig. 3. Historic timeline of tools supporting the software engineering lifecycle

2.2.2 Open Challenges. As software engineering systems are augmented with AI capabilities, the new opportunities

they bring also lead to several open challenges. We describe these opportunities and challenges using the different

categories of tools used across the entire life cycle of software development (as displayed in Figure 3).

Requirements Elicitation, Management and Documentation: The mechanisms for requirements elicitation, management

and documentation are predicted to go through several transformative and disruptive changes due to the adoption

of generative AI and Natural Language Processing
3
. Formerly, eliciting and documenting requirements was a labour

intensive task involving time consuming customer inquiries, and the negotiation of competing requests and design

activities. Validating and modeling requirements (to ensure completeness and consistency), and tracing of requirements

to code and other artifacts were also time consuming and error prone tasks. Indeed, more often than not, requirements

were never written down, and rarely explicitly linked to associated code artifacts.

3
https://medium.com/@workboxtech/ai-in-requirements-engineering-clarity-and-consistency-boost-1c7fbf2d28dd

Manuscript submitted to ACM

https://medium.com/@workboxtech/ai-in-requirements-engineering-clarity-and-consistency-boost-1c7fbf2d28dd


8 Abrahão et al.

The industry has started using generative AI to model user personas and to check for consistency and compliance

among requirements, conversational bots to assist in eliciting requirements, analysis of text in feedback forums and

social media to identify new and changing features, text generation to assist in documentation, links to show the

traceability of requirements to code, rapid prototyping to assist in brainstorming of new requirements, and the use of

generative AI to help in predicting requirements to improve non functional requirements such as security, privacy and

performance. These new tool features are just some of the possibilities that are just around the corner.

In the academic domain, the latest conference on requirements engineering showcases many papers on how AI

can be used across the field of requirements engineering
4
, while the literature review by Hou et al. mentions several

papers that have explored how LLMs are used in requirements engineering to date (key topics include: requirements

disambiguation inherent in natural language, coherence across stakeholders, requirements classification, and traceability

automation) [78].

These new capabilities and opportunities, although exciting, bring new challenges - some of which may be hard to

predict. More rapid elicitation of requirements puts more pressure on the design and delivery of code to meet those

needs, in turn putting pressure on quality. AI assisted or automated modeling of users and requirements, automated

documentation and validation may lead to a lack of human control and oversight or recognition of biases that may

emerge from the training data used. Verification of the suggested requirements and their documentation will need to be

made by the “humans” involved. Designing with diversity in mind requires special attention that may be missed when

large language models are used. Furthermore, although AI could be used to help address security concerns, using AI in

the requirements elicitation process may introduce new threat attack vectors that may be close to impossible for the

humans involved to detect without proactive monitoring.

Coding Velocity and Ease: There are already well established tools (for instance, Copilot from GitHub) and results from

empirical studies to indicate that the use of generative AI for code generation helps improve the speed of coding [85]

and there are well over 100 published academic papers on the topic of code generation alone [78].

Generative AI techniques can assist in generating snippets of code, removing the need for developers to write tedious

blocks of code or the need to know how to use frameworks or APIs, and also has shown potential in generating code

not just from text prompts in chat interfaces but also from sketches of user interfaces, or from other examples of user

interactions (for instance, from user stories). Beyond code generation, many techniques also assist in program synthesis

(generating code from formal requirements), code completion, code documentation, API’s, code summarizations and

search. There has also been great strides in the area of program repair (generating patches for bugs in maintenance

tasks), especially when generative AI is combined with static analysis [175].

The increases in coding velocity and ease for both new, evolving and legacy code [78], but may introduce challenges

in terms of software quality, feature and code bloat, security risks and unnecessary technical debt. Although generative

AI may increase velocity, over time it may slow things down even more
5
as well as have disastrous effects on the

environment if care is not taken in how large language models and other expensive AI techniques are used. A bigger

concern may be the eventual need for a “developer” to remain in the loop when things go wrong or when the automation

or AI breaks down. In these cases, having techniques to help a human debug, understand and repair the AI generated or

repaired code, may be essential given the scale and complexity of new code that is likely to be generated. That is, tools

to help address the new cognitive challenges AI SE coding tools may introduce is essential to consider up front.

4
https://conf.researchr.org/home/RE-2024

5
just as the introduction of the car sped up transportation until too many cars were on the road

Manuscript submitted to ACM

https://conf.researchr.org/home/RE-2024


Software Engineering by and for Humans in an AI Era 9

Finally, the focus to date has predominantly been on development speed, but there is a need to study more on

the impact of these tools on developer flow experiences and their motivation [94], as well as how these tools impact

developer learning of new skills [77].

Testing and Debugging: How software is tested and analyzed is undergoing rapid changes also due to the use of

generative AI. Tests and test data can be generated from natural language requirements, from formal specifications,

from prompts, from conversations with bots, from code, or from similar systems, and from user interactions. These

tests, unit, integration, and end-to-end tests, can be used to safeguard against regressions as future changes are made,

testing both functional and non-functional requirements such as security. Indeed, large language models are already

being used for vulnerability detection [78] and compliance violations during development tasks.

Generative AI can be used to determine ideal test configurations and to take into consideration performance issues

when building software, and to suggest architectural changes to the underlying system to facilitate more efficient

testing and analysis over time. Generative AI shows great potential in bug localization [97].

But there are some risks and challenges to be considered across the use of AI in testing, analysis and debugging

activities. There may, over time, be too much reliance and trust on generated tests and bug detection/localizations, and

the data that the generated tests and recommendations are trained from may be limited, especially in the face of a

rapidly evolving software system and user base. Developer knowledge about how to test and debug may erode over

time, and they may need new skills to use the AI to effectively test and debug tomorrow’s software systems. Debugging,

in the face of subtle errors, may be substantially more difficult when there is a complex and not well understood testing

or verification framework being used. Safeguarding also against the “bystander” effect is something to be wary about.

Developers may become complacent over time and possibly ignore signals that indicate things are not working right

or that there have been security concerns introduced during the process of testing, quality analysis and debugging.

Understanding human aspects of this new generation of testing and debugging tools is critical.

Continuous Integration and Deployment: Modern software development relies on continuous integration to support

hundreds (and even thousands) of developers pushing changes to multiple versions of software across one or more

software repositories. Ensuring that developers can work on the system at the same time (or on parts others depend

on), is made possibly by build tools and merge conflict features. Tools such as GitHub further support developers

collaborating and sharing insights on what they are working on and the changes that have been done, and the rationale

for these changes, through work items and issues. Continuous integration is a socio-technical activity [43] that requires

the orchestration of both human and tools to achieve speed and quality advantages it provides.

Code review is an essential practice to ensure that developers check and validate each others’ changes. Code review

is not just about verifying code, but it is also about sharing awareness and knowledge of what others are doing and

knowledge about some of the code as it is developed over time. No single developer will know the entire system, but

having multiple developers work on and review the same parts of the code, means that knowledge is distributed in

a way that supports change over time. However, code review is often a bottleneck in rapid software development,

and much code review work is to check for trivial matters. Because of this, there is some ongoing research on how

AI can automate or augment code review activities. However, the limitation of using LLMs to automate or augment

code review, is that it may reduce the other human and social benefits attained from doing manual code review - the

advantages of knowledge transfer, skill acquisition, awareness of others’ work, connections made between developers,

and co-ownership across a code base may be reduced.

Manuscript submitted to ACM



10 Abrahão et al.

Project and Product Management: The use of generative AI for project and product management is an emerging topic of

interest across the industry with limited attention by researchers so far [78]. Generative AI shows potential to support

planning, cost estimations, tracking of work, communication, coordination, and decision making [78]. Some of the

challenges for these tools are similar to challenges we already mentioned above including over reliance on automation,

lack of accountability, bias and reduced oversight by humans and lack of communication and awareness. When any

system is automated, end users often suffer at the expense of more efficiency for the producers or owners of the system.

The reduction in human communication ability to deal with “exceptions” often leads to disastrous friction for the end

users. These concerns need to be considered if and when AI is used for automating parts of the project management

process.

2.2.3 Roadmap. Extensive research efforts are already well underway to study the impact of AI on the tooling landscape

that supports the entire software engineering life-cycle. Inspired by McLuhan’s laws of technology that are captured

by his tetrad, we frame some future research avenues our community can continue or start to explore in terms of the

different ways AI can be used to support software engineering activities and how we can go about understanding its

impact.

• How to Leverage Software Knowledge to Improve LLMs for SE? Recent research on how to go beyond

treating programs as text [175], and that leverage program presentation techniques, dynamic analysis and

semantic analysis show great potential for improving how LLMs will support code generation, program synthesis,

program repair, program comprehension, software evolution, code review, feature testing, security testing and

build performance. That is, these techniques, perhaps put aside as AI was first introduced, should be “brought

back” (to use McLuhan’s term) to augment and enhance how the AI models are used.

• How to Leverage Domain Knowledge and the Development History to Improve SE Tooling? The research
on mining software repositories (MSR) has demonstrated how knowledge from software repositories (for instance,

hosted on GitHub), and communication channels, such as Stack Overflow and GitHub coding, can be leveraged

to ease software evolution. These knowledge resources are being used indirectly by large language models, but

there is potential to directly revisit and use text mining and summarization techniques from MSR research in

combination with large language models to provide further insights that can facilitate process understanding

and tool enhancements.

• How to Capture and Leverage Developer Context to Enhance how AI improves Engineering tools? For
AI tools to provide the right support at the right time, they will need much more context about the development

tasks and the developers’ context — what tasks did they do before, what other tasks are they doing, what do they

know, who do they know, what are their values. As researchers we need to study what context is needed, how to

capture that context, and how to use that context in a way that doesn’t impinge on a developer’s privacy, while

supporting them in a way that feels natural and allows them to feel in control and supported (we discuss these

aspects more below). That is, capturing this context will further “enhance” how the AI will improve its use in

software engineering tooling.

• How to Leverage and Synthesize AI Support Across the Entire Life-cycle of Engineering Tools? The
biggest change that is mostly likely to happen is the use of integrated AI-powered assistants (such as GitHub

Co-pilot) that is integrated across the entire tool chain. There is some ongoing work and progress on this direction

by Tufano et al. where they propose an AI driven framework called “AutoDev” for the “autonomous planning

and execution of intricate software engineering tasks” [161]. This paper demonstrates how the framework can

Manuscript submitted to ACM



Software Engineering by and for Humans in an AI Era 11

be used to auto-generate code, build, test and deploy from the Pull Request system, using multiple agents that

communicate with each other. The process is invoked by and controlled by an end user. So far, it has been

evaluated on simple tasks, with plans to extend to more complex tasks [161]. We expect to see more frameworks

like AutoDev emerge that will rely on the orchestration of multiple agents as guided by interactions within

the IDE or engineering system to support across both the inner and out loops of software development. These

agents will also rely on programming language, development history and the task and developer context to

act as needed. It will be important to study and understand the impacts of how those agents will make the

need for some interactions from developers “obsolete” (for example, manually running tests) to introducing new

interaction modes for the developers to learn and adapt to (probably through a chat interface).

2.3 The Impact of AI on Collaboration Practices in Software Development

2.3.1 Trends. Originally software developers had to work in the same room, or at least the same building, to access

centralised computing hardware and its software components [138, 157, 172], as illustrated to the left of Figure 4.

With the advent of distributed personal computers, collaboration and communication practices began to evolve,

supporting more distributed development work [100, 138]. Video conferencing, messaging, shared repository, social

media platforms and personal devices all combined in the late 90s and 2000s to enable much more flexible SE work

practices [100]. Development tools began to integrate various distributed collaborative working processes and tools.

Various messaging, video conferencing and co-ordination tools support a variety of asynchronous and synchronous

collaborations [116, 153, 172]. More recently, AR/VR, AI-powered project management and development tools, developer

agents, and collaboration with bots (bot generated content, messages, co-ordination) have led to increasing impacts

on SE collaboration practices [11, 32, 111]. This includes AI-mediated collaborations, AI-support project planning

and tracking, a variety of AI-powered tools, and increasingly, AI-implemented development tasks, including commit

messages, comments, and notifications, shown in Figure 4 (right) [4, 50, 128].

Fig. 4. Changing communication, collanoration and co-ordination practices as hardware, platforms and AI support evolve.

Manuscript submitted to ACM



12 Abrahão et al.

2.3.2 Open Challenges. A number of challenges emerge as we consider how software development collaboration

practices may change in 2030 and beyond. Teams are increasingly hybrid, both in terms of distribution and with mixed

human developer/AI-powered development agents [14, 35, 171]. Team and stakeholder dynamics will be increasingly

impacted by this trend, as well as the trend to AI-powered agents and applications as software ’end users’. It is unclear

how human developers and stakeholders feel about these trends [47, 162]. The nature of future communication media

may undergo further changes, where significant consumers of the communications are AI-powered developer agents

and not humans. How trusted, or untrusted, these significantly AI-powered developer ‘team members’ and developers

are is yet to be determined [92]. How this will impact human collaboration and communication capabilities is also yet

to be determined, not only in software development field but more widely in society.

Nature of ‘hybrid’ teams: Software teams used to be relatively homogeneous in terms of location, tooling, responsibilities

and focus. Increasingly teams need to include diverse human developer capabilities, and increasingly AI-powered ‘team

members’ – developer bots or agents [46]. A software engineering team thus includes a mix of differently skilled and

experienced humans and differently capable AI-powered agents. It is unclear what impact this is having and going

to have on team climate, collaboration modes, co-ordination and communication [40]. There is already evidence of

significant changing practices around co-ordination and communication with bot-generated content, comments, commit

messages, notifications etc [11, 128]. An interesting impact is on bot-to-bot communications. Most software development

communication artefact content is still quite human-centric. Is this the right format? Is the volume appropriate for

human-bot and bot-bot communication and co-ordination?

Team and stakeholder dynamics: AI-powered development tools and agents will impact team dynamics, but also

developer-stakeholder dynamics. It is unclear how stakeholders feel about interacting with software bots to for instance

to specify defects, request changes etc [46, 96]. Can an AI software development agent improve the interaction of

stakeholders and hybrid software teams? How and when will end users interact with AI-powered developers [137]? In

terms of empathy, can AI development agents ‘understand’ diverse stakeholders, their software needs, usage contexts,

etc? Might there be opportunities for improved team-stakeholder collaboration when leveraging AI-powered developer

agents? What is the ‘right’ way to use these agents in hybrid team / stakeholder collaborations? Increasingly AI-powered

software systems will be ‘end users’ of other software systems. What does it mean to have AI as a stakeholder? How

can a hybrid team collaborate with AI-powered stakeholders?

Individual developer and stakeholder perceptions: How do software engineers feel about the increasing nature of hybrid

teams they work in [162]? Will they accept more and more AI-powered tools / developer agents? Will some collaborative

aspects of software development effectively disappear as AI-powered developer agents carry them out individually

or collectively without human intervention [92]? How do stakeholders feel about increasingly interacting with AI-

dominated development teams? Increasingly humans have been interacting with AI-powered devices and software for

instance smart home controllers, Siri-type assistants, increasingly sophisticated chatbots, ChatGPT-style agents etc. Is a

natural extension to request new software features and software changes directly from AI-powered developer agents,

potentially with no stakeholder-human developer direct collaboration?

Communication media: To date, most communication media used in software engineering - code, comments, commit

messages, discussions, designs, documentation etc – assumes a human creator and a human reader. With increasing

AI-powered developer agent generation and consumption of artefacts, including that for team communications, we may

Manuscript submitted to ACM



Software Engineering by and for Humans in an AI Era 13

want to revisit this assumption [45]. Some SE tasks that traditionally needed a form of developer communication may be

wholely or mostly AI-performed tasks [1]. AI-based developer agent communication rather than human-human or even

human-AI may be better accommodated in very different ways. There may be a reduction in the need for some forms

of communication. For example, some human-human tasks may become wholely or very substantially AI-performed,

obviating the need for substantive associated communication media. Some forms of communication may have multiple

formats - human-readable and AI-optimised. The tools used to generate/create, read/consume, summarise/translate

communication-related media may of course also substantially evolve, likely being heavily AI-supported.

Ttrust and understanding: In current SE teams it is sometimes hard to tell an AI-powered bot ‘team member’ from

a human collaborator. This is likely to increase, and the distinction between different AI-powered developer agents,

their capabilities and responsibilities, and those of human software engineers may further blur [105]. These synthetic

developers that are hard (or impossible) to distinguish from human developers will be a part of the development team

and be utilising the same communication channels and within the same physical/virtual spaces as human SEs. How will

this impact on intra- and inter-team trust [104]? Related to the previous challenge, if communication media, contents

and frequency change, how will this impact understanding of other team members, their work, their communications?

The nature of SE work has already been substantially impacted by AI-powered development tools. AI-powered developer

agents, their increasing deployment, the tasks and roles they perform will all impact team dynamics, professional

responsibilities and collaboration styles.

Human collaboration capabilities: Humans have developed their collaboration capabilities over thousands of years. These

have substantially changed in the 21st century with much greater remote work, efficiency and effectiveness supporting

tools (especially AI-powered ones), evolving work places, rapid pace evolutionary demands on many software systems,

and widespread adoption of new processes like DevOps [80, 116, 172]. In the realm of software engineering practice,

developers worked originally in large rooms with substantive hardware platforms, moved to rooms with remote access

terminals and personal computers, utilised open plan cubicles, worked remotely and from home, and currently often have

hybrid work and collaboration contexts [88]. Each of these has brought both opportunities and challenges: freedom to

work alongside others but also brought distractions; headphones and focus but with a need for controlled interruptions;

synchronous video call meetings and asynchronous work, but having to manage timezones; achieving a work life

balance but at a cost of living environment conflicts; and challenges in work co-ordination with physical vs virtual

meetings. The COVID-19 pandemic greatly increased the practice of hyrid work for teams previous co-located [34].

With increasing AI-powered developer agents in teams, continued demands for hybrid and remote work, the impacts on

human SE communication and collaboration capabilities are very important to consider [55, 156]. AI-powered software

project management, communication and collaboration support, and SE work support may also both support but also

challenge human SE abilities. Will virtual and augmented reality hardware be of any assistance (the metaverse for SE)

[44, 149]? What will human stakeholders expect from software teams, both human and AI-powered virtual members?

Might software engineering soft-skills including communication and collaboration practices be enhanced, reduced and

even appraised by AI-powered tools [55]?

2.3.3 Roadmap.

• How will increasingly common AI-powered tools and developer agents impact human-human col-
laboration and communication over time?We have seen a move from collaborative spaces to headphone-

dominated individual and virtual workspaces, and these have had varying impacts on human collaborative

Manuscript submitted to ACM



14 Abrahão et al.

capabilities. With the increasing use of AI, we need studies on the emerging impacts on how humans collaborate /

will collaborate as they increasingly use AI-powered tools and collaborate with non-human AI-powered developer

agents. This may bring some collaboration benefits, but introduces dangers of reduced capacity for effective

collaboration. We need to study current and future impacts of more AI-dominated SE work, collaboration between

humans mediated by AI, and in overall workplaces comprising hybrid human and AI teams.

• How will increasingly powerful AI-powered tools and developer agents, such as bots, impact human-
agent and agent-agent collaboration and communication?Communication channelsmay become dominated

by AI-AI developer agent and/or bot communication, some channels may need optimization for these AI-powered

developer agents, and some communication artifacts may fundamentally change to better accommodate such

AI-powered developer agents. We need studies that explore the impact on humans of such changes, whether

multiple communication channels and artifacts need to co-exist, and how AI-powered developer agents impact SE

collaboration and communication needs and practices. We need to studies to compare human-human and human-

AI collaboration and communication patterns. We may need vastly different collaboration and communication

platforms for AI-AI or AI-human collaborations.

• Will AI-powered developer agents improve developer/stakeholder and developer/developer empathy
or add barriers? An under-researched and not well understood area of SE is developer/stakeholder empathy –

understanding each others’ different perspectives, capabilities, needs etc, both in terms of software development

but also more generally as humans. Increasing our understanding of AI-powered developer agent impact on

empathy is needed, as well as increasing our understanding of the importance and role of empathy between

humans in SE.

• How will increasingly powerful AI-powered tools and developer agents impact theories of distributed
cognition, both human andAI-powered?Humans andAI-powered developer agents have different capabilities,

roles, communication needs, collaboration and co-ordination strategies, and will approach SE tasks with these

differences. We need to develop new cognition theories about each and in combination to inform SE practices

but also future human training and management and AI development and deployment.

• Will increasing collaboration with AI-powered bots improve or decrease trust between/with humans
and agents?Many work areas have seen challenges to trust of AI-generated content, AI-performed work outputs,

and AI-influenced work practices. We need to study impacts on trust between humans, humans and AI-powered

tools and developer agents, and potentially also between diverse AI-powered developer agents themselves.

2.4 Impact of AI on the Future Software Engineering Profession

2.4.1 Trends. Figure 5 (left) summarises software development until recently. SE was the preserve of trained profes-

sionals who used complex software tools to engineer code and data used by end users (left). This significant software

developer population needed substantial training and experience, attracted a professional software developer cohort,

and was the intermediary between a large end user population and receiving software solutions. Many studies have

looked into expectations of the profession, SE team leadership, professional ethics and responsibilities, recruitment

and training, skills needs and gaps [5, 26, 69, 84, 102, 118, 150, 168]. This professionalism has the advantage of trained

professionals responsible for complex safety and security critical software engineering. It has the disadvantages of

potentially long lag times to fix defects, misunderstandings between stakeholders and software engineers, high costs,

lack of sufficient engagement with diverse stakeholders, and potentially lack of specialised target domain expertise in

the software team [20, 90, 127]. AI is already beginning to redefine what is software engineering, what does a software

Manuscript submitted to ACM



Software Engineering by and for Humans in an AI Era 15

engineer do, and even who is a software engineer [12]. As outlined above, there have been numerous changes to

software tools, productivity, and to developer communication and collaboration.

As AI-powered tools continue to be adopted, their nature and incorporation into software engineering practices

will greatly impact software engineering practices and both professional and citizen software engineers [25]. As the

capability of these tools continues to improve, who is able to carry out (aspects of) software engineering will also

arguably continue to broaden. Developing ML- and AI-powered software applications themselves is inherently quite

different to more ‘traditional’ software systems engineering [147, 165]. Thus some key trends are emerging: the advent

of "AI agents" or AI-powered bots that carry out more and more traditionally human SE tasks; the advent and growth

of ’citizen software developers’, which is likely to result in growth in ’citizen software engineers’; the greatly increasing

demand for ML- and AI-powered software solutions across all domains; and redefinition and re-imagining of professional

software engineer roles, recruitment, retention and responsibilities.

Fig. 5. Evolution of the context of software development with increasing AI-powered developer agents and AI-powered software ‘end
users’.

2.4.2 Open Challenges. There are several significant outstanding challenges of these emerging trends in software

profession. Arguably chief among them for this audience is understanding the impacts on (human) professional software

engineers [95]? A second major challenge is knowing how to support emerging ‘citizen software engineers’ – what

similar but also quite different needs do they have to traditional professional engineers [12, 58, 127]? Developers are

not the only role involved in software projects. Other roles include project managers, business analysts, UX designers,

customer liaison etc. The impact of AI-powered software tools and developer agents on these roles are also unfolding at

a rapid rate [54, 151]. A long standing challenge to the software engineering profession has been a lack of diversity –

gender, age, culture, neuro-diversity, etc [139, 168]. Will AI-powered tools provide – as for increasingly citizen software

engineer capabilities – a more diverse workforce [3]? Or will it exacerbate existing diversity issues? Or create new

Manuscript submitted to ACM



16 Abrahão et al.

ones [146]? Will there be such a thing as a ‘professional software engineer’ in a form we might recognise it in 10 years

time [92]? Finally, with significant development work being done by/with AI-powered tools, that will likely further

increase over time, what are the professional responsibilities going to be for (human) software engineers vs AI-powered

developer agents, especially when things go wrong [147]?

AI software engineers: There has been a huge increase in the range and capabilities of tools. A big change is the advent of

AI “software developer” agents that are becoming an increasingly important part of software teams. These AI developers

will likely take on more and more responsibilities/tasks. They will likely collaborate with SEs – and increasingly with

each other – to carry out a wide range of software engineering tasks [45, 46, 156]. Figure 5 (centre) outlines this trend.

AI-powered tools are becoming increasingly available and adopted. Developer agents, most of which are accessible to

software engineers, but increasingly also to end user developers, are becoming more common place (centre). Human

developers still predominantly use SE tools to build software systems for end users. In the main, human developers

invoke several AI-powered tools to carry out specific tasks. Increasingly a greater range of more powerful developer

agents provide support for a wider variety of SE tasks [104]. We will move more to a model of Figure 5 (right) where a

greater portion of SE work is carried out by more sophisticated AI-powered ’developers’, interacting with each other to

carryout out autonomously large SE activities. Increasingly software will be autonomously used by other software –

end user agents – that may need and expect very different software to human users. More and more end users will be

‘developers’, supported by these powerful developer agents. Software using agents may themselves become developer

agents to autonomously evolve software systems. This trend poses a number of challenges: what tasks do we hand

over/partially hand over/not hand over? How do we check quality of work done by AI developers? How do we constrain

and control development done by highly autonomous developer agents? How do we protect software development

tasks being done by developer agents from both deliberate attacks and accidental errors?

Citizen software engineers: The emergence of low-code programming tools targeted to non-professional software

developers in many domains – finance, resources, science, health, education, smart cities, etc – has resulted in the

advent of the ’citizen developer’ [20]. These citizen developers use these low-code platforms to carry out sometimes

quite detailed and substantive software development for niche domains and projects [12, 127]. These citizen developers

are the domain experts, and the low-code platforms provide much faster, accessible routes to complex software solutions

than employing professional software engineers to do all of the development. With the growth of AI-powered support

in low-code tools, more and more complex ’software engineering’ tasks are becoming feasible for ’non-professional’

software engineers. Figure 5 (right) suggests significant growth in such ’citizen software engineers’, interacting with

(increasingly) powerful ’AI SEs’ and (less) with human SEs. The impact of these emerging AI SEs on citizen software

engineering work is likely to be at least, if not more, profound and pronounced than on professional SEs [58]. Many

issues remain: what can be supported by the AI SEs so that technical details are hidden from the citizen SEs; when are

professional human SEs needed; and what do professional human SEs do. If SE bots and citizen developer tools continue

to grow in uptake and usage, what is role of the citizen software engineer vs the professional software engineer going

to look like in 5-10 years time? How do SE tasks fit into some of the emerging AI tools for other disciplines for instance

scientific discovery, materials engineering, smart cities, health research and delivery, and of course the stock market.

Other roles: There are many other roles involved in the development and deployment of software besides just ‘software

engineers’. These include project managers, product managers, business analysts, UX and customer teams, operations

team (even if being supplanted by DevOps), documentation experts, usability engineers, help desk operators, data

Manuscript submitted to ACM



Software Engineering by and for Humans in an AI Era 17

scientists and AI experts, domain experts etc. The impact of AI-powered tools and processes on all of these roles will be

profound, and indeed many changes are already being witnessed. How can AI-powered project management support

software development in the future [54]? What is the role of a product manager, UX designer and business analyst

when many aspects of their traditional roles can be performed, to a greater or lesser degree, with AI-powered tool

support [151]? Are some of these roles going to blur with citizen software engineers? When are they a distinct role vs a

composite role when leveraging AI-powered tools? Increasingly we see help desk and customer support roles in many

fields devolved to AI chatbots. A significant amount of software documentation is being produced by AI-powered tools.

Will customers expect to interact increasingly with AI-powered ‘helpers’ in their applications?

Profession diversity: Software engineering teams have slowly become more diverse in terms of gender, age, location and

cognitive differences. However, team diversity is still nowhere near end user diversity, and there continue to be many

efforts to diversify the workforce [139]. This includes recruiting more diverse SE students, identifying problematic

team recruitment, management and advancement practices, and identifying biases in software tools and processes. The

future of AI empowered development and developnent of AI-powered software brings into the question of how AI

powered tools will help enhance professional SE diversity as barriers are lowered in terms of development background

[3]. As noted above, citizen or end user developers may emerge who can interact more directly with AI-powered agents

or bots than those who we traditionally recruit into SE. However, AI-powered tools and AI SEs may also create new

barriers to being part of the population that designs and developers software [3, 146]. This is especially a concern when

we look to the future of the possibility of AI developer agents playing a critical and intensive role in software teams.

Understanding the impact these tools will have on developer inclusion, productivity, experience and well-being is of

paramount concern across our industry. Issues with biased AI-powered SE tools that we currently have highlight the

need to carefully address this issue [166]. There are already age, gender and ethnicity biases in the SE workforce we

want to address and not exacerbate.

Job security and task responsibilities: One emergent concern of software engineers and prospective SE students is – will

I have a job in 5+ years time [92]? What SE jobs will there be and what will be their nature [95]? How will I retrain

to make the best use of AI SEs and related? How are and will SE jobs be reshaped by AI-powered tools and teams

[91]? It is unclear just what SE tasks will be able to be effectively given to AI-powered SEs, what kept by professional

human SEs and citizen SEs, how this mix of SEs will work together, and implications on technical skills, teamwork,

empathy, belonging, SE workforce diversity and inclusion, etc [141, 143]. Should we worry about the possibility that

some existing developers that may be put out of work? Are there training programs we should be more proactively

putting into place to reskill the SE workforce?

Responsibility and ethics: We have touched on the issue of addressing and not exacerbating SE workforce bias when

adopting AI-powered tools and ’team-mates’ [3]. Other related issues include what are ethical uses of AI-powered

tools in the workplace, including data provenance and ownership of derivative works [104]? Who is responsible if an

AI SE makes a mistake leading to a critical failure? How do we reason about risks, responsibilities, audits, etc in the

presence of significant AI-powered SE work, perhaps across large numbers of SE agents and organisations [106, 147]?

What is software quality from the perspective of engineering AI-based systems with AI-based tools [68]? How do we

combat adversarial SE agents in a potentially ever increasingly complex SE environment? How should future SE teams

be managed – should an AI-powered SE agent be responsible for human work and welfare? How should professional

ethical frameworks be amended to accommodate AI SEs?

Manuscript submitted to ACM



18 Abrahão et al.

2.4.3 Roadmap.

• What will future SEs do? Who will they work with? How will they work with AI agents? How can they
best be supported by AI?We need a variety of studies to explore emerging work practices in SE as AI-powered

tools and developer agents are rolled out. This includes a rethink of traditionally human-dominated tasks, roles,

responsibilities, as well as the associated collaboration, co-ordination and communication practices as outlined

in the previous section. Potentially experiments with radically different approaches to SE could shed light on the

future of the SE profession.

• What can/should citizen SEs do? Not do? How can they best be supported by AI? A traditional danger of

providing non-SE expert, non-technically trained and experienced people with tools to develop software is their

inability to understand, fix or even notice when things have gone wrong. Future AI-powered SE tools need to

account for increasingly common citizen software ‘engineers’, providing them appropriate support for their lack

of deep SE knowledge while leveraging their domain expertise. Studies identifying key areas of need, and indeed

tasks that must remain the preserve of professional software engineers, need to be identified.

• What are future AI-powered tools for other roles? Everyone is looking into the impact of AI on their work,

since anyone even tangentially associated with software development is impacted and will be even greater

impacted. Studies need to explore emerging and needed AI-powered support for non-SE roles, their impact on

these roles but also on professional software engineers they must work with.

• Who will be responsible for failures? What is Ethical SE by an SE bot? Hybrid team? Responsible SE

with and for AI is critical. Studies must investigate root cause of diverse software and software project failure and

seek to both mitigate these, but also determine appropriate responsibilities. This includes identifying unethical,

too risky, unfair, and other potential negative impacts of both AI-powered SE work and AI-powered software

systems.

• How can we anticipate and prepare for bad actors as AI is adopted in Software Tools? One of the biggest
risks many software companies face are threats from bad actors that also use AI empowered tools to find novel

and unexpected ways to attack software systems and steal user data. Attack vectors may be introduced at

any phase of the software engineering life-cycle and thus the AI driven SE tools of the future will need to be

designed with the ability to block, identify and mitigate threats in a way that is seamless across the entire tooling

framework. Unfortunately the use of AI that will speed up and ease much of the friction in development tasks,

may over time lead to new security threats, that will require a different type of automation to address them,

forcing the design of new tools to help manage this new friction. Anticipating what AI in SE tools may “flip” or

“reverse” into may help us recognize the risks and preemtively design tools to mitigate these concerns.

2.5 Impact on Software Engineering Education

2.5.1 Trends. We have built up over several decades the foundations of a software profession, including initial education

and on the job training. The Software Body of Knowledge (SWEBOK) has been refined over many years by ACM and

IEEE to try and guide us in ensuring well-trained software engineers are available to society [22]. We have used this

body of knowledge to construct higher education and workforce training for professional software engineers and to

better understand their skills gaps and how to address them [60]. Our curricula and body of knowledge have undergone

periodic updates to incorporate a number of technical and professional changes. These include for instance adoption

Manuscript submitted to ACM



Software Engineering by and for Humans in an AI Era 19

of agile methods, cloud platforms, DevOps, security and privacy, codifying various professional responsibilities, and

incorporation of more team- and project-based learning approaches.

2.5.2 Open Challenges. A number of professional education challenges present. What should the SWEBOK contain

now? In 5 years time? What does the emergence of AI-powered software tools, citizen software engineers, developer

software agents, and AI-powered software ‘end users’ mean for software education [89, 107]? What are the future skills

needed by professional software engineers, citizen software engineers, other roles involved in SE, and indeed software

development agents [30, 54, 95, 151]?

SWEBOK: It has been a challenge to keep the software body of knowledge up to date as the technical, professional and

societal demands on the profession have changed. As discussed in the previous subsections, it is difficult to foresee just

what the change in software engineer tools, collaborations, professional skills and expectations and roles will actually

be. With the advent and increase in AI-powered software tools, just what skills does a software engineer of the near and

more distant future actually need? It may be that new processes, tools and techniuqes, supported by AI-powered tools

and developer agents, substantially change the nature of software engineering and mean some traditional skillsd are not

required, or much less commonly required. The ability of domain experts and end users – citizen software engineers –

to develop substantial aspects of software systems may mean the number and nature of skills of professional software

engineers substantially change. Should there be a SWEBOK for citizen software engineers? For AI-powered developer

software agents? It seems essential for software engineering students to gain knowledge of engineering AI-powered

software systems, including the various technologies involved [29, 141, 143].

Training for work in hybrid development teams: Software engineers increasingly work with AI-powered tools, collections

of AI-powered tools, and developer agents. They will continue to work with humans, including other software engineers,

other development-related roles and end users and stakeholders. However, the expectations, tasks and roles of both

other humans and AI-powered agents and tools may greatly change. It is unclear how a hybrid development team

of humans and AI-powered developer agents should be formed, organised, managed, tracked etc. It is unclear what

the impact on human software engineers will be of their changing roles and expectations, heavy use of AI-powered

tools and collaboration with AI-powered software agents, hybrid and remote work, and how changing roles of other

humans involved in development may impact professional software engineers [27]. At the least, it seems essential that

software engineering students will need to gain significant experience and skills with choosing, configuring, using and

assessing a wide variety of current and emerging AI-powered tools and ‘teammates’ [29, 141]. They also need experience

in building a variety of ML- and AI-powered systems [86, 165] and carefully addressing ethical and responsible AI

issues [130]. They may also need to gain a better understanding and experience with changing expectations of their

stakeholders who themselves are becoming much more familiar with and much heavier users of AI-powered software in

their own work domains. AI-mediated stakeholder interaction seems likely to continue to increase. As noted in earlier

subsections, AI-mediated developer interaction also seems likely to continue to increase. Training and experience in

such environments is likely to be essential for future software engineers.

Software engineering education delivery: Like all other educators, software engineering educators are carefully considering

how to leverage AI in their teaching and assessment, both in a higher education setting and in the workplace [133].

AI-powered tutors and assessors have been experimented with in many domains. Many outstanding issues remain, but it

seems highly likely that software engineering education delivery itself will be highly impacted by AI-powered tools [53].

Manuscript submitted to ACM



20 Abrahão et al.

Some challenges we are familiar with for instance did the student write their code/tests/design or was it copied/adapted

(or produced by generative AI)? The SE and CS education community has deployed various AI-powered tools including

code and other software artefact plagiarism detectors for many years. Many software engineering programmes have

been experimenting with incorporating generative AI and other techniques into curricula [37, 53, 76, 133]. Thus

deploying AI-powered software tools and developer agents during software engineer training does not seem a big

stretch. However, assessment practices are likely to need a significant rethinking. Software engineers have been heavy

adopters of generative AI in supporting on the job training, technical question answering, generation of tutorials and

other supporting materials for learning.

Attracting and retaining future software engineers: Given the dramatic changes likely in the software engineering

profession, including much traditional work being taken up by AI-powered tools and developer agents, many are

wondering just what the future profession will look like – and indeed if there will be one [92]. Increasing questions at

University open days around what the future careers in software engineering will look like, what career trajectory

they will bring, and whether it is going to be a good career choice demand responses. It may be that many aspects of

software engineering that attracted people to the professional no longer exist or are massively changed in the near, let

alone distant, future. It may be that a very different set of skills and aptitude will make for a ‘good software engineer’

of the future [102]. How will we ‘sell’ the prospect of software engineering and being a software engineer? Will there

be vastly different pathways into software engineering and career pathways within the profession? Will the need for

the traditional concept of the professional software engineer increase, decrease or remain largely the same with the

continued development of AI-powered developer agents. Will domain knowledge be far more important than software

engineering skills and knowledge, with much of software engineering undertaken by developer agents under the

instruction of end users and citizen software engineers? Or will the increasingly complexity, range and capability of

software systems necessitate a continued substantive profession?

2.5.3 Roadmap.

• What should be in the Software Body of Knowledge in 2030?We need to engage with practitioners and

educators to reformulate the SWEBOK cognisant of the big impact AI-powered tools and developer agents are

having in SE work and education. The degree of change in emphasis on topics in SE curricula and for different

future SE roles also needs careful consideration.

• What does a SE curriculum and an SE career of the future look like? A danger of all education curricula

is backwards-looking or current skill demand driven design, instead of future likely need. Educating all future

workers for better awareness and skill in working with emerging AI-powered technologies is essential, including

their current and likely limitations. Significant experience with diverse current and emerging AI-powered tools

when educating software engineers seems critical. Is the curriculum similar or quite different for a ‘citizen

software engineer’ to that of a professional software engineer curricula? The needs of non-professional citizen

software engineers must not be ignored and their education may need to be quite different to future professional

software engineers. For start, they are likely to need a primary domain-specific education with engineering

software leveraging this domain expertise a secondary focus, however well-integrated. On the job citizen SE

training (perhaps significantly AI-enabled) may be more viable in many instances.

• How do we effectively deliver a future SE curricula, including leveraging AI educational tools and
providing experiential learning and practice with AI SEs?While SE education has always had to be a degree

Manuscript submitted to ACM



Software Engineering by and for Humans in an AI Era 21

process, technique and especially tool agnostic – all organisations have greater or lesser degree of variation in

each of these – providing knowledge, training and experience with some practical combination of these has been

a feature of almost all SE degree programmes for many years. However, many software engineers have gained

significant skill enhancement via tutorials, workshops, video tutorials, online communities and – increasingly –

AI-supported guidance and support. It seems likely that further AI-supported education and training studies are

needed, including emerging AI-supported approaches to delivery and assessment.

• How do we attract and retain excellent software engineers of the future? There are promising and

threatening aspects to greater use of AI-powered tools and emergence of AI-powered developer agents. Studies

need to include a diversity, inclusion and equity aspect to adopting AI-powered SE. This includes addressing bias

and unfairness in AI training, diverse usage practices, diverse human SE needs and expectations, and carefully

assessing negative consequences or potential consequences of adopting varied AI-powered solutions. It also

remains to be seen if the emergence of AI-powered tools that significantly change SE work and SE job expectations

enable many who previously did not embark on an SE career to do so. Proactive efforts to present varied SE

work of the present and of the likely future, engagement with potential future students and professionals, and

increasingly engagement with likely future citizen software engineers and part-time professional software

engineers are needed. Ultimately we need to include risk assessments of AI-powered solutions from individual,

team, organisational and societal perspectives.

3 HUMAN-CENTRIC SOFTWARE SYSTEMS IN THE ERA OF AI

Software systems are inherently designed for humans, who interact with them either directly, such as with software

applications, or indirectly, as with embedded systems. Over the years, advancements in technology have transformed

these interactions. From mice and GUIs in the 1970s to the internet and web in the 1980s, mobile devices andWi-Fi in the

1990s, and cloud computing at the turn of the century, technological shifts have continuously redefined human-computer

interaction. More recently, extended reality, wearable devices, and generative AI exemplify the innovations driving

these changes.

The rapid evolution of extended reality and generative AI is fundamentally altering human-software interactions. The

blurring lines between virtual and actual reality, coupled with the rise of voice, video, and gesture-based interactions,

are gradually replacing traditional GUI-based interfaces. Generative AI further amplifies this shift, reshaping the

role of humans from passive users to active participants in smart, human-centric systems and ecosystems. These

ecosystems range from smart living applications, such as smart homes, smart grids, smart transportation systems, to

large heterogeneous human-centric ecosystems that emerge from the coexistence of systems and humans in complex

environments.

However, human diversity —encompassing personality, emotions, ethics, culture, age, and gender —significantly

influences how individuals interact with AI-powered systems. These interactions, enabled by generative AI, extended

reality, and multimodal communication methods, redefine not only software design but also the way humans live and

function within software ecosystems.

We define human-centered systems as software systems designed and operated based on human values and needs.

These systems, often highly automated and AI-driven, aim to balance automation with the preservation of human control.

They strive to deliver ethical, efficient, and inclusive outcomes, maximizing the benefit to humanity. As illustrated

in Figure 6, McLuhan’s Tetrad (introduced in Section 1) offers a framework to analyze the disruptive impact of these

systems on software engineering by examining what they enhance, retrieve, reverse, and obsolesce.

Manuscript submitted to ACM



22 Abrahão et al.

Human-centric systems enhance diversification, customization, evolution and adaptation, and obsolesce rigid and

static operations. They enhance human diversity, heterogeneity, evolutionary, self-adaptive and autonomic software

engineering activities, field testing, autonomous bots and data productization. They obsolesce rigid and recurrent

engineering activities, like structural and regression testing, the MAPE cycle, and component-based architectures.

Human-centric systems reverse human-computer interactions and retrieve requirement engineering and dynamic

analysis. They reverse natural language, image and video processing, generative AI, and extended reality, which become

the cornerstones of the new role of humans in the system. They retrieve run-time simulation and digital twins to reason

about seamlessly evolving behavior that emerge from evolving human interactions. At the same time they retrieve

models at runtime, dynamic and incremental analysis, to reason about evolving behavior that derive from unconstrained

interactions, and domain specific languages, requirement engineering and enterprise architectures to drive Generative

AI towards acceptable solutions.

The four diamonds of Figure 6 outline what smart- human centric ecosystems enhance, retrieve, reverse and obsolesce.

The enhances diamond indicates what smart ecosystems largely amplify: Diversity and customization, self adaptation

and evolution, field testing and autonomous bots, autonomic verification, human models, and data productization.

Customized services and systems have been studies in the last decades. Software product lines [31] and APIs [98]

are two opposite ways of customizing software systems by tailoring general frameworks to specific needs (product

lines) and opening systems interactions towards extensible frameworks (APIs). Generative AI and extended reality

lead to ecosystems that autonomously emerge, evolve and adapt over time towards ultra large, smart, human centric

ecosystems. Self-adaptive and evolving systems have been widely studied since the beginning of the century [59] to cope

with the lack of central control and specifications of Ultra-Large Software Systems. The intrinsically evolving nature of

smart systems and ecosystems emphasizes the need of self-adaptive approaches to cope with emergent behaviors and

sometimes unavoidable failures. Field testing [19], self-adaptive systems [33], autonomic verification, and more recently

infrastructure testing and test bots [46] move testing and verification from testbed to productization environments, and

pave the way to a completely new way of verifying adaptive and evolving smart human-centric ecosystems.

The retrieves diamond highlights technologies that have been widely studied and used in the past and that will

find a new role in smart, human-centric ecosystems. Simulation [13] and digital twins [145] are commonly used to train

humans with safety-critical systems and test complex cyberphysical systems. Testing the evolving and adaptive behavior

Fig. 6. The disruptive effects of human-centric systems

Manuscript submitted to ACM



Software Engineering by and for Humans in an AI Era 23

of smart, human-centric systems requires complete and consistent digital twins to capture the all and only aspect of the

real system that are necessary to observe the behavior of the real system. Formal models, static and dynamic analysis

have been studied for many decades with many successful applications in safety critical systems. Smart, human-centric

ecosystems will retrieve dynamic and incremental analysis to cope with their evolving and adaptive behavior. Smart,

human, centric ecosystems will retrieve domain-specific languages [112] and enterprise architectures [140] to cope

with the dynamic complexity of the systems.

The reverses diamond indicates the technologies that smart, human-centric ecosystems will flip into when pushed

to the extremes: natural language, voice, image and video processing, and more generally generative AI and extended

reality, all of which are the fuel of the future smart ecosystems.

The obsolesces diamond summarizes some popular engineering approaches that cannot cope with the new charac-

teristics of smart systems and ecosystems: structural, regression and GUI testing, the MAPE, Monitoring, Analysis,

Planning and Execution autonomic cycle, and in general self-adaptive cycles. Structural, regression, and in generate

common testing approaches, including GUI testing, assume both the repeatability of the executions of the target systems

executed on testbed platforms and the availability of some specifications in the form of test oracles to validate the

results. GUI testing assumes that users interact with the system only through the GUI. Smart, human-centric ecosystems

evolve over time, adapt to emerging scenarios, and depend on unconstrained human behaviors that cannot be fully

reproduced on the testbed.

The subsequent sections examine the impact of emerging technologies on human-system interactions. These

technologies, which drive the development of human-centric systems, enable continuously adaptive software that

challenges traditional user interface design, fosters the spontaneous emergence of large ecosystems from the implicit

interactions of independently managed systems, and reshapes development and operational practices. In particular,

Section 3.1 explores the evolution from traditional GUIs to intelligent AUI (Adaptive User Interfaces), Section 3.2

addresses the challenges of designing and verifying large, emergent ecosystems, and Section 3.3 examines the shift from

NoOps to AIOps in development and operational activities. Together, these discussions highlight how new technologies

are driving the creation of continuously adaptive, human-centric systems that redefine the interaction between humans

and software systems.

3.1 From GUI to Intelligent AUI

3.1.1 Trends. The demand for efficient and user-friendly software systems is rapidly increasing. Modern software

systems must continuously adapt to the unique characteristics of diverse users, platforms, and environments. This

shift forces developers to embrace change as an integral part of the development process. The notion of software

adaptation, which currently focuses primarily on system-level changes, is evolving towards intelligent adaptation, where

AI, software systems, and humans collaborate to continuously adapt and evolve human-centric ecosystems in real-time,

enhancing their quality and user experience. In this context, we envision humans and AI-enabled systems collaborating

to achieve common adaptation goals over time, evolve together, learn from each other, and collectively improve.

Since diverse humans are involved, we need intelligent adaptations, where human-centric smart ecosystems can learn

to adapt themselves to different users based on the characteristics of the context of use. This includes characteristics

of the human being, such as emotion, technical proficiency, gender, personality, physical and mental impairments,

the platform, such as Web, desktop, tablet, phone, mobile applications, and the environment, such as location, mobile

conditions, light, noise level, physical configuration, organisational and psycho-social constraints, as well as available

Manuscript submitted to ACM



24 Abrahão et al.

interaction data. Self-adaptive systems, model-driven engineering, and AI are key enabling technologies to support

such intelligent adaptations, although significant challenges remain.

3.1.2 Open challenges. Humans come from diverse backgrounds with varying expertise, cognitive, and physical

traits. Their needs and preferences may change over time, requiring software systems to identify new scenarios and

adapt appropriately without costly re-engineering. Adaptive User Interfaces (AUIs) can address diverse user needs by

customizing the user interface to meet individual needs, goals, and context of use [144] [121]. While the concept of

UAI is not new, advancements in AI techniques bring new perspectives on its realization. Here, we analyse the current

status of this concept and highlight the main open challenges.

UI adaptation in HCI and SE: An effective AUI must apply the right adaptation at the right time in the right place to

maximize its value for humans. UI adaptation typically involves a three-stage process: perception (recognizing and

interpreting the current context), decision (determining whether an adaptation is needed and what action to take),

and action (implementing the adaptation). This process can radically change when a third party, such as an AI agent,

supports the adaptation process (i.e., to recommend or perform UI changes during user interactions with the system).

Over the last three decades, the Software Engineering (SE) [7] [8] [174] [6] [173] [167] and the Human-Computer

Interaction (HCI) [158] [99] [64] [163] [113] [176][63] communities have made substantial progress in AUIs’ design and

evolution, particularly leveraging AI techniques. However, emerging technologies, especially Generative AI, introduce

new challenges and opportunities. The HCI community has proposed numerous methods for UI adaptation, but most

focus on the adaptation of individual user interface elements (e.g., menus) [66] [163] [158]. There is a pressing need

for holistic approaches that address the adaptation of the entire user interface in the context of human-centric smart

ecosystems. The emerging field of Intelligent User Interfaces (IUIs) explores the interplay between AI and HCI. While

many IUI techniques focus on improving communication between users and systems through advanced interaction

methods —such as natural language processing, gaze tracking, and facial recognition— not all IUIs have true learning or

problem-solving capabilities. The SE community has introduced principles and technologies to support UI adaptation at

the system-side (e.g., MAPE-K adaptation loop, models at runtime), but often relegates the perception, decision and

action stages of adaptation on the end-user side, typically addressed in HCI, to a secondary role.

Limitations of current AUI approaches: Despite some promising empirical studies [160] [39] [56] [176], current AUI

approaches remain unpredictable (users do not knowwhen and how adaptations will take place) [57], choose detrimental

adaptations with unacceptable frequency, incorrectly capture user needs, cause cognitive disruption (users are disrupted

by the adaptation) [101], lack user involvement (users cannot actively participate in the adaptation process), and lack

explanation (users are not informed of the reasons for adaptation).

Adaptive strategies for AUIs open many challenges to effectively leverage learning capabilities: how to select an

adaptation strategy; how to model human factors; how to model AUIs at runtime; how to coordinate human and

technical aspects; how to handle heterogeneous input data; how to predict user experience with AUIs; how to support

decision making; how to support AUIs in specific environments such as extended reality.

Selecting adaptations: A key technical challenge of AUIs is how to select adaptations, and design an effective adaptive

user interface in the presence of a huge design space of adaptive user interfaces [163]. A system must decide what

to adapt, and when or when not to change. An important issue is to determine the sequence of UI adaptations to be

Manuscript submitted to ACM



Software Engineering by and for Humans in an AI Era 25

carried out to maximize the user benefits and reduce the costs, for instance, improve the system quality, improve the

user performance or experience, reduce the workload.

Several studies have applied different approaches: heuristics, rules and Machine Learning (ML) methods (supervised

learning, reinforcement learning) to support the adaptation process. Heuristic-based approaches adapt specific UI

elements [38], and work well when the sensed input is highly predictive of the most appropriate adaptation, for example,

in the context of menu-based interaction, heuristics that exploit click frequency, visit duration or other metrics obtained

from interaction data are frequently used. Rule-based approaches modify the UI behaviour based on pre-defined rules,

like, event-condition-action rules [8]. They transparently monitor the executed adaptation actions, and thus facilitate

the modification of the adaptation process, however, they do not support emerging behaviours, and require experts to

specify the user goals. Predictive ML-based approaches learn how to adapt AUIs. Supervised learning approaches work

well when the user state is highly predictive of the appropriate adaptation, for instance, a mapping is learned between

user data and suitable adaptations, but require deep training with high-quality datasets that describes the consequences

of possible adaptations on potential users. Reinforcement Learning approaches formulate the UI adaptation process as a

stochastic sequential decision problem, and train agents based on some rewards received from the environment for

certain actions. They require an extensive amount of poor attempts to learn a good policy, and this is a strong limitation

for large state-action spaces, such as those needed to design AUIs for human-centric ecosystems. Model-based and

multi-agent reinforcement learning are promising approaches to address these limitations. Todi et al.’s model-based

reinforcement learning approach uses HCI models to predict rewards for each state during simulations [158]. An

HCI model is a computational model that explain how users interact with interfaces at the level of individual human

cognition [131]. Langerak et al.’s multi-agent reinforcement learning approach pairs a user agent that mimics a real

user, and learns how to interact with a UI [99] with an interface agent that learns UI adaptations to maximize the user

agent’s performance. Model-based and multi-agent reinforcement learning indicate interesting research directions that

need to address their limited scalability and an effective way to determine the rewards [61].

Designing intelligent AUIs: The design of intelligent AUIs raises several key challenges about how to structure software

and AI components to support intelligent UI adaptation, incorporate human feedback when training AI models to

support UI adaptation, and support the human-centric adaptation. Abrahão et al. [2] recently proposed a conceptual

reference framework to support model-based intelligent user interface adaptation, but we sill need to experiment with

different AI techniques in different contexts of use, to structure software and AI components to support intelligent UI

adaptation. The current approaches based on predictive HCI models to incorporate human feedback when training

AI models do not take into account changes in human behavior that may occur during user interaction with the

system [158] .

Modeling human factors: Many approaches rely on some user models to support the adaptation of human-centric

ecosystems. However, structure and usage of the current user models are not sufficiently explicit to help developers

model human factors and implement UI adaptations. There is a distinguished body of work looking at how best to

take users’ existing practices into account when designing software. These include consideration of the social and

organisational context, designing software where there is a cognitive fit between users’ mental models and software

representations, acknowledging that users have cognitive biases that will affect system adoption. Participatory Design

and Co-design [142] have tackled these challenges head-on by including users and other stakeholders as equal partners

from the very beginning of the design process. However, the research on fully and descriptively modelling the users

Manuscript submitted to ACM



26 Abrahão et al.

has not produced fully satisfactory results so far. It is also unclear how models representing human factors can be used

to drive UI adaptations. Therefore, modeling and design of human factors are essential steps toward designing and

adapting human-centric ecosystems.

Runtime models of AUIs: Models at runtime [21] have been successfully used to automatically reflect changes from a

system into changes in models, and vice versa, in several domains. The availability of configurable run-time models

makes it possible to use them as interfaces for monitoring and adapting AUIs, and to test adaptations at the level of

models before actually adapting the running system [33]. However, the traditional adaptation in which the variability

is fully pre-defined does not adequately address human diversity. We need smart UIs that can learn how to adapt to

different users based on a user model that captures the user preferences, behaviour, style of interaction, expertise,

emotions, etc.

Diversity in input user data: We can decide how to adapt UIs based on a variety of sources including empirical data, end

user feedback, and biometric sensors that provide essential data to recognize users’ physiological states during the

interaction in various scenarios. For example, we can detect emotions by processing data from electroencephalography

(EEG) sensors [65] [62]; We can measure stress and arousal with data from the skin conductivity monitored with galvanic

skin response (GSR) sensors [124]; We can measure stress levels and muscle-arousing activities with electromyographic

(EMG) sensors [71]. We see many different physical signals that we can use to support UI adaptation more effectively.

However, how can AI agents learn from this data to recommend more meaningful UI adaptations is a largely open issue.

Predicting user experience with AUIs: We can measure some aspects of User eXperience (UX) by analysing physiological

measures that represent different human affective states (for instance pleasure, stress, relaxation) when performing a

particular task. These kinds of measures have received increasing attention from the SE community in the last few

years. A recent systematic literature review on the use of physiological measures in SE [169] revealed several empirical

studies on measuring the cognitive load in SE activities, such as code comprehension, code inspection, programming,

and bug fixing. However, there are only few experiments on understanding end user’s emotions and feelings when

interacting with user interfaces and human-centric ecosystems [62]. We can measure and monitor end user emotions

and feelings during user interaction to improve the user experience.

Trade-offs in decision making: There is a lack of decision-making processes that support trade-offs between system quality

attributes, user characteristics and adaptation rules. We need guidelines to define and operationalize decision-making

methodologies, and to guide decisions on the use of AI inferences (for instance, exploring different ML algorithms)

instead of simply waiting for user input.

AUIs in extended reality environments: EXtended reality (XR) is a disruptive computing platform that merges virtual

(VR), augmented (AR), and mixed reality (MR) towards computing environments where end users seamlessly interact

with both the real and virtual world, with great potential to a variety of sectors, for instance, entertainment, education,

medicine, manufacturing industry. However, we still have little experience on designing AUIs that present interactive

content to end users in XR immersive environments. XR requires a user interface that overlays virtual content onto or

embeds it within the real, physical environment without costs to end users’ attention, effort, and safety [159].

3.1.3 2030 Roadmap.

Manuscript submitted to ACM



Software Engineering by and for Humans in an AI Era 27

• How can human diversity and different human needs drive UI adaptation? Humans are very diverse

in needs, preferences, values, gender, age, ethnicity, culture, language, educational attainment, socio-economic

status, living and work conditions, personality, motivation, emotions, behavior, cognitive challenges, physical

challenges, and so on. Each human is unique and has unique needs, preferences and ways of interacting. The

human differences dramatically impact on the design and adaption of AUIs: how do we model an infinitely

large space of diverse characteristics, and use them to drive UI adaptations? What are the best abstractions to

effectively represent the human characteristics? What is the most suitable theory to capture them? Digital twins

and domain specific languages offer great potential to represent and simulate human characteristics and their

interaction, but we still need to formalize these diverse human characteristics and their impact on AUIs, by

leveraging and/or adapting existing theories in fields such as social sciences, behavioural sciences, cognitive

psychology, etc. The area of individual differences in psychology has a long track record of validated measures

of stable individual traits over time (see for instance [132]). From a more practical viewpoint, a theory for human

diversity in AUIs can give us input for decision-making regarding choices of UI adaptations and their impact on

user characteristics and system quality.

• How will AI-powered systems (AI Agents) interact effectively with humans? We need precise design

guidelines for human-AI interactions. Recently, 18 generally applicable design guidelines for human-AI interaction

have been proposed [9] [103]. Examples of such guidelines include: Make clear what the system can do; Show

contextually relevant information; Learn from user behaviour and update and adapt cautiously. While these

guidelines provide a starting point for understanding human-AI interactions, it is not clear how they can be

operationalized and used to design intelligent AUIs. How can the system learn from user interactions with the

system and AI agents to recommend meaningful adaptations? AUIs should integrate adaptation capabilities and

computational learning. Adaptation could be accomplished by using the knowledge stored in a User Model and

inferring new knowledge using the current user interaction data. Computational learning and models at runtime

can be used when knowledge stored in the User Model is changed to reflect new situations or runtime data.

However, how do we represent a User Model, use it at runtime, and evolve this model to reflect the changes in

the user needs and preferences?

• How can we design Explainable AUIs? A large body of work exists and continues to grow on how to

increase transparency or explain the behaviors of AI systems (for instance, [93] [135] [10]). However we need

techniques and mechanisms to explain the underlying rationale of an intelligent AUI to the end user in a logical

and understandable way. The main challenges in explaining UI adaptations made by AI agents are: Shall we

explain the individual decision or the whole policy? How can we actively measure users’ understanding of the

agent’s decision process? How to present the explanations to end users (for instance, white box vs. black box

explanations)? How to get users’ feedback to continuously improve the explanation process? How to provide

users with easy controls over the output of the intelligent AUI/ML algorithms?

• Howcanwe create an accuratementalmodel of theML algorithmsunderlyingAUIs?Weneed transparent

AUIs with respect to the user’s actions that can contribute to the output of the adaptation algorithm. We need to

understand how people form mental models of the way the AI agent works, given different types of eXplainable

Artificial Intelligence (XAI) explanations, and the cognitive loads they incur in forming these mental models.

Few recent studies started investigating this problem [10], however, we still do not understand how to gather

empirical evidence for designing explainable AUIs?

Manuscript submitted to ACM



28 Abrahão et al.

• How can we design AUIs that adhere to fair-by-design principles? Users may experience unexpected

or confusing information that violates the expectations and hints at algorithmic bias, while interacting with

the system [48]. How can we handle bias in the UI adaptation process? How can we detect bias in the datasets

or decision-making process supported by AI agents, for example, wrong decisions to adapt the UI taking into

account the user’s gender or membership of marginalized social groups (race, health, disadvantaged socio-

economic background)? UI designers need specific training and techniques to recognize social norms and biases.

GenderMag [24], a method for identifying gender biases in user interfaces, only scratches the surface of a

huge problem that need further investigation. We need tools for assess and repair fairness; We need controlled

experimentation environments to promote awareness of fairness during the AUI design, and effectively test and

improve bias-related issues before releasing an intelligent adaptation strategy for AUIs. The AI Act, a proposal

for a European regulation on AI released in April 2021, defines the concept of sandboxes: controlled environments

that facilitate the development, testing, and validation of innovative AI systems for a limited time before their

placement on the market, a first step in this direction.

3.2 From Systems-of-Systems to Human-Centric Smart EcoSystems

3.2.1 Trends. The key role of humans in software-based systems has been acknowledged and studied since the early

2000. Common software engineering systems constrain human-system interactions within well defined interfaces that

restrict the human actions that software engineers consider in the software development process. The software process

models assume the existence of requirements to elicit and analyse, and indicate how to model and implement the system

architecture, and how to verify and validate the system with respect to its requirements. Common approaches to design

and validate software systems consider humans as mere users of the system, and rely primarily on system models, thus

largely ignoring the impact on human attitude on the ecosystem. Northtop et al. recognized the new role of humans in

Ultra Large Systems, ULS, already at the beginning of the century ("People will not just be users of a ULS system; they

will be elements of the system" [122]). More recently, John Grundy has emphasized the role of humans in human-centric

systems that heavily rely on the use of Internet of Things-type sensors, interactors, controllers, .... capture and use diverse

types and amounts of data, ... and ... increasingly require some hybrid form of cloud- and edge-computing, and stresses the

impact of human-centric issues [73].

The technological revolution of the last two decades and the recent advances in Generative AI, augmented reality, and

the internet of things have a disruptive impact on human-centric systems. El Noussa et al. characterize human-centric

systems that heavily rely on Generative AI as Smart EcoSystems (SES), multifaceted systems that emerge from the

composition of independently-operated and autonomous systems with smart functionalities, and that evolve over time, as in

the case of next-generation smart cities, smart buildings, smart grids, and more generally a future smart planet. [42]. Smart,

human-centric ecosystems, like smart cities and smart grids, evolve and adapt over time to match to the infinitely

many human activities and needs that heavily impact on the ecosystem. New types of independently-operated smart

systems, like autonomous vehicles and mobile devices, constantly enter and exit the ecosystem. GAI-centered systems

learn from the ecosystem, and adapt their behavior accordingly. The human behavior changes and evolves within a

smart, human-centric ecosystem, and determines new quality attributes. While classic systems operate according to

well understood requirements that determine the correctness of the system, smart systems, like bots and autonomous

vehicles, challenge design and verification with adaptive behaviors that emerge and evolve over time to adapt to

different human behaviors. Smart, human-centric ecosystems, like smart grids and smart cities, are not owned, specified

and maintained by a single owner. The city authority regulates the behavior of the different systems within the city,

Manuscript submitted to ACM



Software Engineering by and for Humans in an AI Era 29

however, the city authority does not own the many systems that coexist in the city and that evolve according to specific

and sometime intrinsically contradicting requirements [41].

3.2.2 Open Challenges. Many open challenges emerge when trying to engineer future smart, human-centric ecosystems.

Traditional ideas of correctness need to be revisited. Humans are diverse and interactions may be unpredictable,

unconstrained and behaviours unanticipated, especially as systems become more self-adaptive. Traditional software

engineering methods, including testing, analysis, and monitoring, all struggle with aspects of smart ecosystems

engineering. Self-adaptive systems are likely to grow significantly. It is unclear how humans impact such self-adaptation

and how various AI-powered solutions will support diverse self-adaptive smart ecosystems.

Correctness of a smart, human-centric ecosystem: The concept of correctness – defined as compliance with a specifica-

tion – does not sufficiently capture the quality aspects of a smart, human-centric ecosystem. The behavior of a smart city

can obey the regulations and can well suit the needs of the humans in the city, however, it is not simply correct or wrong.

We may witness a major degradation of a smart city, but we do not have the elements to define a failure as a deviation

from the specifications, in the absence of complete and agreed specifications of the ecosystem and in the presence of

emerging and sometime contradicting behaviors of the systems in the ecosystem. For example, we can observe a major

degradation of the smart city due to unexpected and implicit interactions among the traffic control system that reduces

the access to the highway to avoid traffic jam, the pollution control system that reduces the speed limits to lower the

pollution, and the heterogeneous and unpredictable behavior of the autonomous and non-autonomous vehicles. Noura

et al. propose a new concept of healthiness to capture the acceptable behavior of a smart ecosystem that capture the

strength of the ecosystem, the ability to exhibit a stable behavior, and the capability to react to unavoidable crises [42],

a preliminary step towards a new concept of quality of smart human-centric ecosystems.

Unconstrained human-ecosystem interactions: Unconstrained human-system interactions within smart, human-centric

ecosystems upset the software engineering landscape. Software engineers cannot engineer smart ecosystems by

limiting their attention to the system interfaces while ignoring the human attitude. Autonomous vehicles cannot simply

return the control to the drivers in the case of unexpected scenarios. Software engineering shall take into account

the infinitely many possible responses and reaction time of drivers with different attitude, personality and expertise.

When engineering smart ecosystems, software engineers cannot simply rely on an expected uniform human behavior

according to regulations. They must consider the different behavior of diverse humans with different motivations,

personalities, emotions, languages, and more.

The greedy crash scenario presented in [42] is a good example of how human motivations and personality may lead

to a smart ecosystem failure also when the systems that comprise the ecosystem behave correctly: An unexpected

event, like a fire alarm in a busy underground station, may cause a high peak of requests of both taxi and Uber rides

in the smart city ecosystem. Uber raises the fares in the presence of unbalanced requests and available drivers, and

the tests can verify that the ecosystem restores the usual request-availability balance with common pricing after a

relatively short perturbation, when humans behave as expected. However, some drivers, the greedy drivers as called

in [42], may decline the requests, by expecting further increases of fares. A few greedy drivers may not impact the

ecosystem, however a test suite that takes into account also the human behavior, and in particular possible greedy

behavior, can reveal that an unpredictably large percentage of greedy drivers can lead to an explosion of fares and a

consequent failure of the ecosystem, even if all systems that comprise the ecosystem behave correctly [42]. A greedy

behavior can depend on motivations and personality. Conscientious drivers, who rely on Uber as their main income,

Manuscript submitted to ACM



30 Abrahão et al.

hardly decline requests, while overconfident drivers, who rely on uber for some extra income, may exhibit a completely

different behavior.

In general, approaches to assess the quality of smart cities must take into account the attitude and personality

of humans and social groups that may lead to different behaviors and change over time due to unexpected implicit

interactions of smart systems with the smart city. Human behavior has been widely studied for centuries, and there

are many modes of different aspects of human behavior. The Big Five personality traits, also known as the OCEAN

model [125, 126], that behavioral psychologists have developed over the last decades well captures the human personality,

and can greatly help software engineers understand the complex intertwining among human actions that stem from

different personality and characteristics, to define suitable models for engineering smart, human centric ecosystems.

Self-adaptive smart ecosystems: Smart systems, like self driving cars, rely on deep learning engines, the behavior of

which depends on the training data and non-deterministically evolves over time. As such, smart ecosystems cannot

be either completely specified in advance or deployed on a testbed platform, and their behavior is seldom repeatable.

Human are active elements of smart ecosystems and their interactions cannot be framed with user interfaces. The classic

MAPE, Monitoring, Analysis, Planning and Execution autonomic cycle, and in general traditional self adaptive cycles,

monitor the autonomic system and execute corrective actions. The main approaches defined in the last decades follow

the closed-loop approach postulated by Müller et al. "Architectures based on closed-loop feedback control offer appropriate

capabilities to address this challenge" [117], and focuses on the cyberphysical system. Smart ecosystems include humans

as key elements that escape monitoring and executions in the forms required for MAPE self-adaptive cycles. The next

generation of self adaptive approaches cannot ignore humans. We need new self adaptive approaches that include

models of both the systems and the humans, who comprise the ecosystem. Smart human-centric ecosystems enhance

self adaptive and evolving systems with models of the interdependence of human actions due the human characteristics.

New models of human behavior will complement autonomic verification to verify the complex intertwining between

the smart systems and ecosystems and the humans.

AI-powered testing: Most testing approaches execute tests cases on testbeds, before deployment. Static analysis

approaches check code and artifacts. Dynamic program analysis work on execution traces. Smart, human-centric

ecosystems emerge and evolve over time with continuously updating training of AI-powered systems, and systems as

well as humans continuously entering and leaving the smart, human-centric ecosystem. The intrinsic evolving and

adaptive nature of smart ecosystems makes it impossible to fully test the ecosystem on testbed. Field testing [19] and

more recently test bots [46] have been studied since the beginning of the century to cope with failures in production.

Both the in-vivo and in-vitro approaches developed so far aim to test software systems with data from the production

environment, and target mostly unit testing. Smart, human-centric ecosystems enhance field testing as the primary

way to both assess the quality of evolving behavior, and capture emerging failure conditions before major impacts on

the ecosystem. Autonomic verification, that is, verification of the smart system and ecosystem behavior while emerging

and evolving over time, will enhance the early approaches of field testing and test bots, by merging field testing and

dynamic analysis approaches with models of human and social behavior to verify the evolving behavior of the systems.

3.2.3 Roadmap.

• What is correctness for a smart, human-centric ecosystem? We need to work out new ways to charac-

terize and formalize the quality of a smart, human-centric ecosystems, in the absence of complete and agreed

Manuscript submitted to ACM



Software Engineering by and for Humans in an AI Era 31

specifications of the ecosystem. We also need to do this in the presence of emerging, adaptive, and sometimes

contradicting behaviors of the systems in the ecosystem.

• How do we handle unconstrained and implicit interactions among humans and systems that comprise
a smart, human-centric ecosystem? We need to develop new ways to predict, analyze, and test implicit

interactions that emerge and evolve over time. We need studies that investigate better ways to prevent major

smart ecosystem failures due to implicit interactions among systems that behave according to their requirements

and humans and social groups.

• How do we model the behavior of human and social groups in the presence of evolving and adaptive
behavior of smart AI components of human-centric ecosystems? This requires new studies investigating

how to capture behaviors that depend on human personality, gender, emotions, engagement, culture, ethic, age,

and more. We need to develop ways to scale from models of humans to models of social groups to assess the

quality of large smart, human-centric ecosystems.

• How dowe define self adaptive strategies?We need to carry out studies on how to better handle independently

owned, developed and maintained systems within a self adaptive ecosystem. We also need to work our ways to

harmonize ecosystem self adaptive strategies with the evolving and adaptive behavior of evolving AI-powered

systems within the ecosystem.

• How do we define self adaptive strategies for smart, human-centric ecosystems? We need ways to

better combine system and human models to include human and social behavior into ecosystem self adaptation

strategies. We need to carry out studies on leveraging AI to help to handle independently owned, developed and

maintained systems within a self adaptive ecosystem. We also need to combine self adaptive strategies with the

evolving and non-deterministic behavior of AI-powered systems within the ecosystem. Ways to combine system

and human models to include human and social behavior into ecosystem self adaptation strategies need to be

developed and trialled.

• How do we predict and mitigate smart ecosystems failures that arise from implicit interactions of
systems that behave correctly, according to their specifications? We need to identify and harmonize

corrective actions among independently-owned and managed systems that behave according to sometimes

contradicting requirements.

3.3 From NoOps to AIOps

3.3.1 Trends. Jabbari et al.’s systematic study [80] spotlights the key recent trends in DevOps: highly technical studies,

like Sven’s study that focus on the qualities of Infrastructure-as-Code [82], organisational studies that reflects the

collaborative dynamics behind DevOps [108], and studies on testing, like Basiris et al.’s drill-like exercises contiguous

to Chaos Engineering [16].

The focus on human-centric ecosystems introduces key challenges and complexity of the intrinsically socio-technical

relation between the machines and the humans involved as well as the emergent ecology in between. Extreme

organisational forms, such as Gualtieri et al.’s No-Operations NoOps [74] and operations managed by individual

developers who carry out both Dev and Ops tasks together reduce the organisational space to the bare minimum.

NoOps refers to the objective of developers investing effort only in development activities, with operational activities

limited to automatic synchronization, such as AIOps, and AI-driven operations [123]. At the time of writing, NoOps

Manuscript submitted to ACM



32 Abrahão et al.

First number in the brackets: number of paragraphs in the analyzed literature that reflect the dimension.

Second number in the brackets: number of sources reflecting the dimension.

Fig. 7. A Mind map diagram that highlights the main dimensions of the NoOps definition

Fig. 8. A comparison of major DevOps and NoOps practices together; synergies and breaking-points are evident

is still a vague concept with some operational definitions that can be drawn from the literature [123], like the visual

layout in Figure 7, tailored from [177]
6
.

6
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://research.tue.nl/files/199495365/Serban_D.pdf&ved=

2ahUKEwi46rD11f2FAxWt_rsIHbArCgEQFnoECBEQAQ&usg=AOvVaw3EV6SyNqJq4BEwxlRTL2Om

Manuscript submitted to ACM

https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://research.tue.nl/files/199495365/Serban_D.pdf&ved=2ahUKEwi46rD11f2FAxWt_rsIHbArCgEQFnoECBEQAQ&usg=AOvVaw3EV6SyNqJq4BEwxlRTL2Om
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://research.tue.nl/files/199495365/Serban_D.pdf&ved=2ahUKEwi46rD11f2FAxWt_rsIHbArCgEQFnoECBEQAQ&usg=AOvVaw3EV6SyNqJq4BEwxlRTL2Om


Software Engineering by and for Humans in an AI Era 33

Straight arrows indicate data-flows.

Dotted arrows indicate responsibility allocation.

The Artificial Product Manager (APM) stands as the concentrator of infrastructure intelligence and automated operations management.

Fig. 9. AIOps in action, an overview of industrial solutions today

Figure 8, inspired from an exercise originally carried out by Correa
7
, illustrates the consequences of highly-

individualistic organisational structures on the human-centric ecosystems, by comparing NoOps to classical DevOps

structures. We can grasp two striking differences: (i) automation that inevitably reduces the role of human-driven

operations and changes the relation to operations by developers, and (ii) AI elements that simplify the tasks of developers.

Reducing human-driven operations forces the process to rely on automation for establishing and maintaining service

continuity, while the complexity of human-centric ecosystems requires larger-scale and hybrid computing infrastruc-

tures [114], with main challenges related to (i) the synergy that federated AI infrastructure governance mechanisms

shall establish and maintain, and (ii) the interactions among humans and AI.

Artificial Intelligence for Operations, AIOps [123], leverages a blend of artificial intelligence, machine learning, and

data analytics to automate and enhance the software operational processes. AIOps aims to simplify and accelerate

the collection, analysis, and management of data across the various IT strata, to (i) improve operational efficiency, (ii)

predict and prevent potential issues, and (iii) quickly deliver accurate services, with a complex intertwining of phases

and steps. Figure 9—tailored from Jerry Lee
8
— well exemplifies the layers of complexity of even regular configurations

of the AIOps phases and steps.

7
https://medium.com/@vinuscorrea/noops-the-next-evolution-in-it-operations-or-just-another-stop-on-the-devops-journey-44dab6fb273d

8
https://tfir.io/aiops-a-long-way-to-get-there/

Manuscript submitted to ACM

https://medium.com/@vinuscorrea/noops-the-next-evolution-in-it-operations-or-just-another-stop-on-the-devops-journey-44dab6fb273d
https://tfir.io/aiops-a-long-way-to-get-there/


34 Abrahão et al.

3.3.2 Open Challenges. Contextualizing the complexities of the regular configurations of the AIOps phases and

steps in large human-centric ecosystems raises new questions: (a) How can we tackle the emerging synergies among

organisations, humans and software ecosystems? (b) How can AI strengthen and cater to those synergies? (c) How can

we handle the impact of increasing dynamic machines and infrastructures, like the cloud continuum on operations in

human-centric ecosystems? (d) How will humans relate to dynamically evolving ecosystems: Will a PsyOps discipline

emerge in the software life-cycles, to track the psychological well-being and fatigue-tracking of software developers

and operators involved in complex and AI-synergistic software operations?

The forthcoming opportunistic blend of AIOps configurations into human-centric ecosystems, in their highly-

individualistic forms, raises several challenges:

• How can humans handle the increasing data complexity and volume? We need new ways to manage and

analyze vast amounts of data, as well as ensure the quality and consistency of data across multiple sources in

complex IT environments.

• How can we integrate humans into new AIOps Systems? We need to seamlessly integrate AIOps and

humans with the software solutions and IT management tools and processes.

• How do we maintain accurate AI Models?We need to develop and maintain accurate AI models that can

adapt to changing IT environments. We need continuous learning and model tuning to keep up with new patterns

and anomalies.

• How canwe enforce security and privacy by design?We need to ensure data security and privacy compliance

of AIOps platforms that access and process large volumes of sensitive data, while including humans in the loop.

• How can we close the human–AI Skill gap?We need to reduce the large skill gap in the workforce when

it comes to deploying and managing AIOps solutions as well as understanding and catering to the human-AI

synergies [49].

Hybrid human ecosystems shall focus on how humans co-exist and co-create value across the multi-diversity of the

cyber-physical infrastructures underlying complex ecosystems. For example a smart city that is constituted by smart

homes whose technical infrastructure runs on super-connected cyber-physical cloud continua [115] requires synergy

between the various layers of the involved infrastructures as well as decentralised artificial and human intelligence

operators. The maintenance and evolution of large organizational structure requires new metrics to account for the

emerging functional and non-functional properties emerging, for instance, measuring the mutuality of information and

knowledge-sharing among human and AI operators, and measuring the mutual observability of operations for both

human and AI operators.

The infrastructure marshalling and management responsibilities previously allocated to so-called orchestrators [82]

shall now be delegated to constellations of orchestrators, with the increasing necessity of collaborating, harnessing the

power of AI to interact, share knowledge, status updates and operational procedures. In the scope of next-genenration

human-centric ecosystems, the classical dilemma of “orchestration vs. choreography"
9
waves the so-called meta-

orchestrators, that is, machines capable of harnessing multiple software-defined infrastructure languages, technologies

and hardware seamlessly while maintaining 100% operational control and observability.

A key question emerges in this complex scenario: “What face would a meta-orchestrator of the future exhibit?" Would

established coding mechanisms such as reflexiveness [75] be part of the infrastructure programming models of the

future? Would polyglot infrastructure programming encourage maintenance and evolution for infrastructures of the

9
https://temporal.io/blog/to-choreograph-or-orchestrate-your-saga-that-is-the-question

Manuscript submitted to ACM

https://temporal.io/blog/to-choreograph-or-orchestrate-your-saga-that-is-the-question


Software Engineering by and for Humans in an AI Era 35

future? What are the coping mechanisms required for humans to blend their existence within the emergent scenarios of

large ecosystems? Is there a risk of AI fatigue both for systems and human strata? In summary, three grand challenges

for the future arise:

PsyOps: the need for instrumented psychology software operations to fit humans into a complex human-centric

ecosystems’ architecture. Hybrid AI-human interactions within the software lifecycle require new coordination

models and psychological studies, beyond current metrics (like socio-technical congruence [109]) and smells

(like community smells [129]). We need models and studies to understand both human-AI congruence, that is, the

extent of continuity between human operations and AI assistance, and AI fatigue, That is, the excessive use of

AI and the consequences that this might have onto the stability of the organisational structure as well as the

turmoil around the individual humans within it.

Meta-Orchestration: Software engineering related to high-quality software systems’ operations shall concentrate on

two key ingredients: interchange/integration and AI-continuity. The challenge then becomes providing efficient,

effective, and non-invasive engineering techniques to aid the construction and evaluation of meta-orchestrators—

machines capable of blending multiple operations perspectives and languages together while maintaining

operational awareness and capability over all such perspectives—augmented with artificial intelligence which is

rigged by-design to operate in full continuity with such meta-orchestrators, perhaps able to continuously learn

from orchestration footprints striving to achieve provocative characteristics such as explainable orchestration.

Superconnectedness: From an operational perspective, software architectures and the underlying infrastructures are

more and more reflecting software-defined infrastructure strata which seem to strive towards fully-connected

meshes of both data and services to a point in which there is little to no distinction between data products

and software services [134]. This characteristic reflects an extent of superconnectedness in the underlying

infrastructure, namely the architecture opportunity that emerges by linking together directly all source and sink

architecture elements thereby allowing an external—human or AI—operator to enter or govern the emerging

ecosystem with novel interfaces beyond conventional CRUD-like operations. Emerging compute options such as

data meshes [67] are already going in this direction. Software engineering might play a more active role in the

process of specifying and evaluating such systems in the future.

3.3.3 Roadmap. Although the main challenges that we discussed above seem rather self-contained, they are interrelated.

For example, superconnectedness properties of a large-scale human-centric ecosystem reflect explicit and implicit

requirements for meta-orchestration. While the challenges reflect complexities which we cannot fathom yet, software

engineering principles and practices offer a richness of starting points. The following research questions emerge:

• Can anthropometrics support psychological operations in software engineering? Anthropometrics

measures the human body and its cognitive instances, and provides categorised data that can be used by

(software) designers. We need to study the psychological strains in the software process, especially in relation to

the continued use of AI and its interplay with software lifecycles.

• How can AI fatigue be operationalised during AI-driven software engineering?We need to study the

consequences of the interplay that AI reflects upon the software lifecycle and developers’ turnover, software

process, product, and humans.

• Are the principles of cloud and edge engineering valuable starting points to approachmeta-orchestration
research?We need to define new principles of cloud and edge engineering to instrument future software designs

Manuscript submitted to ACM



36 Abrahão et al.

and their operation in the context of an extreme interplay between humans, (software-defined) infrastructures,

AI, and cyber-physical systems strata.

• Can explainable AI approaches be combined into explainable orchestration?We need explainable AI

approaches within explainable orchestration to expose both the traces of execution of software within the

software lifecycle and the involvement of the AI components in the decisions.

• How do we characterize human layers of meta-orchestration?We need to define approaches to support

human-centric governance schema behind integrated systems with human government.

• How can we support the superconnectedness exerted in data meshes? Data mesh engineering is itself an

emerging discipline. We need to define rigorous and explainable approaches to instrument and maintain the

superconnectedness, and promote data lineage and other data-* issues as center-stage software design issues.

• How can we measure the cost of disconnectedness? The negative instances of connectedness implies hidden

costs well beyond our current understanding of technical debt. We need to define metrics of disconnectedness

and approaches to models and management disconnectedness.

Each of the above open questions offers hints as to which related disciplines might be able to aid the scientific discourse

by means of multi-disciplinarity. For example, cognitive psychology and/or cognitive ergonomics research would play

very well within the scope of PsyOps research. Following these premises, at least two possible courses of action are

conceivable. First, an endogenous perspective over research in the topics above may start looking for the aforementioned

baselines, proceeding in finding a way to blend together such baselines synergistically, for example, blending together

cloud continuum research with tiny-scale distributed or federated AIOps to achieve a higher understanding over

superconnectedness. Second, an exogenous perspective over research in the topics above may look for opportunities in

closely and no so closely related disciplines to understand whether any of the aforementioned challenges were ever

encountered elsewhere.

4 2030 RESEARCH HORIZON

Below we outline the 2030 research horizon as a combination of the main open issues that we have discussed in this

paper, and that comprise a general roadmap for engineering software systems in the era of emerging AI-powered

systems and tools. Software is engineered by humans, for humans, and with humans. AI dramatically upsets the role

of humans as software developers, as members of engineering teams, and as users, who become active elements of

the human-centric software ecosystems and citizen software engineers. It challenges research and practice with new

critical questions and important crosscutting concerns.

4.1 Key ResearchQuestions

1. What will software development and the software engineering profession look like in 2030 and
beyond?
AI-powered development of software systems spotlights a new research program of highly evolving development

practices, tools and profession. Core research direction include:

1.1. Productivity How do we measure developers’ and teams’ productivity and experience in hybrid human –

AI-powered-agent teams across the entire lifecycle? (see Section 2.1)

1.2. ToolsHow do we better leverage software knowledge, domain knowledge, and development history to improve

both engineering tools and AI for SE in general? (see Section 2.2)

Manuscript submitted to ACM



Software Engineering by and for Humans in an AI Era 37

1.3. Profession How will we interact and work effectively with increasingly powerful AI-powered development

agents for engineering useful software systems? (see Section 2.3)

1.4. EducationWhat will be the future software body of knowledge and curricula to attract and train excellent

software engineers in 2030 and beyond? (see Section 2.5)

2. What will future software engineering teams look like?
AI-powered agents dramatically impact human-to-human, human-to-agent and agent-to-agent communication,

trust and ethic, and redefine development teams:

2.1. human-human collaboration How will AI-powered agents impact human-human collaboration and com-

munication? (see Section 2.3)

2.2. human-agent collaborationHowwill AI-powered agents impact human-agent and agent-agent collaboration

and communication? (see Section 2.3)

2.3. developer-stakeholder communication How will AI-powered agents change developer-stakeholder and

developer-developer empathy and barriers? (see Section 2.3)

2.4. Creativity, trust and Distributed cognition What theories of human and AI-powered distributed cognition

will we need to use to continue to boost creativity and trust? (see Section 2.3)

3. What future software engineering processes will we see in 2030 and beyond?
AI dramatically redefines the software engineering process:

3.1. Psychological operations in software engineering How will we support psychological operations and

manage AI fatigue in software engineering? (see Section 3.3)

3.2. Orchestration How will we merge explainable AI approaches with cloud and edge principles into explainable

meta orchestration with human-layers? (see Section 3.3)

3.3. Superconnectedness How will we measure and manage superconnectedness and disconnectedness in data

meshes? (see Section 3.3)

4. What will human-centric AI-powered software systems look like by 2030 and beyond?
AI, extended reality, and the internet of things dramatically change the interactions between humans and

AI-powered-systems. They also upset assumptions about both systems that seamlessly adapt to each individual,

and systems-of-systems that must quickly evolve into human-centric smart ecosystems, where humans are an

integral part and not mere users of the ecosystem:

4.1. Intelligent AUI What is the nature of future explainable AI-powered systems for effective and fair-by-design

interactions with humans? (see Section 3.1)

4.2. Smart human-centric ecosystems How will we engineer and verify future smart human-centric ecosystem?

(see Section 3.2)

4.3. Self-adaptive and evolving behavior How will we define and verify self-adaptive and evolving AI-powered

ecosystems? (see Section 3.2)

4.4. Citizen software engineers How will we suitably educate citizen software engineers, and what are the kinds

of AI-powered tools for citizen software engineers that will be needed? (see Section 2.4)

4.2 Crosscutting Concerns

The many emergent AI system challenges share some important crosscutting concerns about theory, transparency,

ethics and inclusiveness with an interdisciplinary approach:

Manuscript submitted to ACM



38 Abrahão et al.

1. Theory What theories and metrics will we need to revisit? What can we borrow from other disciplines to

capture the disruptive impact of AI on software engineering at all levels: development, productivity, experience,

creativity, trust, autonomy and evolution, with both humans and AI-powered agents in the process and the

ecosystem?

2. Transparency How will we suitably explain AI decisions for transparent interfaces, systems, processes, behavior

and evolution?

3. Ethics Who is responsible for failures in future AI-heavy systems and processes? What are the key ethical

software engineering issues introduced by AI-powered software engineering bots? How will we anticipate and

prepare for bad actors as AI is adopted in software tools? How to protect human privacy and creativity?

4. InclusivenessHowwill we enforce fairness-by-design and respect human diversity and needs within AI-powered

processes and products?

The new challenges of AI-powered engineering, AI-augmented socio-technical systems, and multifaceted ethical

concerns such as fairness, human aspects and technical dilemmas call for an escalation of inter-disciplinary collaborations

with management sciences, HCI, behavioural psychology, social sciences social sciences, behavioural sciences, and

cognitive psychology.

ACKNOWLEDGMENTS

Grundy is supported by ARC Laureate Fellowship FL190100035.

REFERENCES
[1] Ahmad Abdellatif, Khaled Badran, and Emad Shihab. 2020. MSRBot: Using bots to answer questions from software repositories. Empirical Software

Engineering 25 (2020), 1834–1863.

[2] Silvia Abrahão, Emilio Insfran, Arthur Sluÿters, and Jean Vanderdonckt. 2021. Model-based intelligent user interface adaptation: challenges and

future directions. Software and Systems Modeling 20, 5 (2021), 1335–1349. https://doi.org/10.1007/s10270-021-00909-7

[3] Bram Adams and Foutse Khomh. 2020. The diversity crisis of software engineering for artificial intelligence. IEEE Software 37, 5 (2020), 104–108.
[4] Aakash Ahmad, Muhammad Waseem, Peng Liang, Mahdi Fahmideh, Mst Shamima Aktar, and Tommi Mikkonen. 2023. Towards human-bot

collaborative software architecting with chatgpt. In Proceedings of the 27th International Conference on Evaluation and Assessment in Software
Engineering. 279–285.

[5] Deniz Akdur. 2022. Analysis of software engineering skills gap in the industry. ACM Transactions on Computing Education 23, 1 (2022), 1–28.

[6] Pierre A. Akiki. 2018. CHAIN: Developing model-driven contextual help for adaptive user interfaces. Journal of Systems and Software 135 (2018),
165–190. https://doi.org/10.1016/J.JSS.2017.10.017

[7] Pierre A. Akiki, Arosha K. Bandara, and Yijun Yu. 2014. Adaptive Model-Driven User Interface Development Systems. ACM Computing Survey 47,

1 (2014), 9:1–9:33. https://doi.org/10.1145/2597999

[8] Pierre A. Akiki, Arosha K. Bandara, and Yijun Yu. 2016. Engineering Adaptive Model-Driven User Interfaces. IEEE Transactions on Software
Engineering 42, 12 (2016), 1118–1147. https://doi.org/10.1109/TSE.2016.2553035

[9] Saleema Amershi, Daniel S. Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira Nushi, Penny Collisson, Jina Suh, Shamsi T. Iqbal, Paul N. Bennett,

Kori Inkpen, Jaime Teevan, Ruth Kikin-Gil, and Eric Horvitz. 2019. Guidelines for Human-AI Interaction. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems, Glasgow, Scotland, UK, May 04-09, 2019, Stephen A. Brewster, Geraldine Fitzpatrick, Anna L. Cox, and

Vassilis Kostakos (Eds.). ACM, 3. https://doi.org/10.1145/3290605.3300233

[10] Andrew Anderson, Jonathan Dodge, Amrita Sadarangani, Zoe Juozapaitis, Evan Newman, Jed Irvine, Souti Chattopadhyay, Matthew L. Olson, Alan

Fern, and Margaret Burnett. 2020. Mental Models of Mere Mortals with Explanations of Reinforcement Learning. ACM Transactions Interactive
Intelligent Systems 10, 2 (2020), 15:1–15:37. https://doi.org/10.1145/3366485

[11] Sumit Asthana, Hitesh Sajnani, Elena Voyloshnikova, Birendra Acharya, and Kim Herzig. 2023. A Case Study of Developer Bots: Motivations,

Perceptions, and Challenges. In Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 1268–1280.

[12] Assaf Avishahar-Zeira and David H Lorenz. 2023. Could No-Code Be Code? Toward a No-Code Programming Language for Citizen Developers.

In Proceedings of the 2023 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software.
103–119.

Manuscript submitted to ACM

https://doi.org/10.1007/s10270-021-00909-7
https://doi.org/10.1016/J.JSS.2017.10.017
https://doi.org/10.1145/2597999
https://doi.org/10.1109/TSE.2016.2553035
https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1145/3366485


Software Engineering by and for Humans in an AI Era 39

[13] Max Baarspul. 1990. A review of flight simulation techniques. Progress in aerospace Sciences 27, 1 (1990), 1–120.
[14] Gagan Bansal, Besmira Nushi, Ece Kamar, Daniel S Weld, Walter S Lasecki, and Eric Horvitz. 2019. Updates in human-ai teams: Understanding and

addressing the performance/compatibility tradeoff. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 2429–2437.
[15] Victor R. Basili and Barry T. Perricone. 1984. The influence of organizational factors on software quality and productivity. Proceedings of the 1st

International Conference on Software Engineering (1984), 154–162.

[16] Ali Basiri, Niosha Behnam, Ruud de Rooij, Lorin Hochstein, Luke Kosewski, Justin Reynolds, and Casey Rosenthal. 2016. Chaos Engineering. IEEE
Software 33, 3 (2016), 35–41. http://dblp.uni-trier.de/db/journals/software/software33.html#BasiriBRHKRR16

[17] Kent Beck. 1999. Extreme Programming Explained: Embrace Change. Addison-Wesley Professional, Reading, MA.

[18] Sarah Beecham, Helen Sharp, Tracy Hall, Nathan Baddoo, and Hugh Robinson. 2008. What Do We Know about Developer Motivation? IEEE
Software (2008). https://doi.org/10.1109/MS.2008.105

[19] Antonia Bertolino, Pietro Braione, Guglielmo De Angelis, Luca Gazzola, Fitsum Meshesha Kifetew, Leonardo Mariani, Matteo Orrú, Mauro Pezzè,

Roberto Pietrantuono, Stefano Russo, and Paolo Tonella. 2022. A Survey of Field-based Testing Techniques. Comput. Surveys 54, 5 (2022), 92:1–92:39.
https://doi.org/10.1145/3447240

[20] Björn Binzer and Till J Winkler. 2022. Democratizing software development: a systematic multivocal literature review and research agenda on

citizen development. In International Conference on Software Business. Springer, 244–259.
[21] Gordon S. Blair, Nelly Bencomo, and Robert B. France. 2009. Models@ run.time. Computer 42, 10 (2009), 22–27. https://doi.org/10.1109/MC.2009.326

[22] Pierre Bourque, Richard E. Fairley, and IEEE Computer Society. 2014. Guide to the Software Engineering Body of Knowledge (SWEBOK(R)): Version
3.0 (3rd ed.). IEEE Computer Society Press, Washington, DC, USA.

[23] Frederick P. Brooks. 1995. The Mythical Man-Month: Essays on Software Engineering (anniversary ed.). Addison-Wesley Professional.

[24] Margaret M. Burnett, Simone Stumpf, Jamie Macbeth, Stephann Makri, Laura Beckwith, Irwin Kwan, Anicia Peters, and Will Jernigan. 2016.

GenderMag: A Method for Evaluating Software’s Gender Inclusiveness. Interactive Computing 28, 6 (2016), 760–787. https://doi.org/10.1093/IWC/

IWV046

[25] Jordi Cabot and Robert Clarisó. 2022. Low code for smart software development. IEEE Software 40, 1 (2022), 89–93.
[26] Luiz Fernando Capretz, Pradeep Waychal, Jingdong Jia, Daniel Varona, and Yadira Lizama. 2021. International comparative studies on the software

testing profession. IT Professional 23, 5 (2021), 56–61.
[27] Edgar Ceh-Varela, Carlos Canto-Bonilla, and Dhimitraq Duni. 2023. Application of Project-Based Learning to a Software Engineering course in a

hybrid class environment. Information and Software Technology 158 (2023), 107189.

[28] Alexander Chatzigeorgiou, Iftekar Ahmed, Haipeng Cai, Mauro Pezzè, and Denys Poshyvanyk. 2024. Artificial Intelligence for Software Engineering:

The Journey so far and the Road ahead. ACM Transactions on Software Engineering and Methodology 34, 9 (2024).

[29] Rudrajit Choudhuri, Dylan Liu, Igor Steinmacher, Marco Gerosa, and Anita Sarma. 2024. How Far Are We? The Triumphs and Trials of Generative

AI in Learning Software Engineering. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. 1–13.
[30] Orges Cico, Letizia Jaccheri, Anh Nguyen-Duc, and He Zhang. 2021. Exploring the intersection between software industry and Software Engineering

education-A systematic mapping of Software Engineering Trends. Journal of Systems and Software 172 (2021), 110736.
[31] Paul Clements and Linda Northrop. 2002. Software product lines. Addison-Wesley Boston.

[32] Hoa Khanh Dam, Truyen Tran, John Grundy, Aditya Ghose, and Yasutaka Kamei. 2019. Towards effective AI-powered agile project management.

In 2019 IEEE/ACM 41st international conference on software engineering: new ideas and emerging results (ICSE-NIER). IEEE, 41–44.
[33] Rogério de Lemos, Holger Giese, Hausi A. Müller, Mary Shaw, Jesper Andersson, Marin Litoiu, Bradley R. Schmerl, Gabriel Tamura, Norha M.

Villegas, Thomas Vogel, Danny Weyns, Luciano Baresi, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Ronald J. Desmarais, Schahram

Dustdar, Gregor Engels, Kurt Geihs, Karl M. Göschka, Alessandra Gorla, Vincenzo Grassi, Paola Inverardi, Gabor Karsai, Jeff Kramer, Antónia

Lopes, Jeff Magee, Sam Malek, Serge Mankovski, Raffaela Mirandola, John Mylopoulos, Oscar Nierstrasz, Mauro Pezzè, Christian Prehofer, Wilhelm

Schäfer, Richard D. Schlichting, Dennis B. Smith, João Pedro Sousa, Ladan Tahvildari, Kenny Wong, and Jochen Wuttke. 2010. Software Engineering

for Self-Adaptive Systems: A Second Research Roadmap. In Software Engineering for Self-Adaptive Systems II - International Seminar, Dagstuhl
Castle, Germany, October 24-29, 2010 Revised Selected and Invited Papers (Lecture Notes in Computer Science, Vol. 7475), Rogério de Lemos, Holger

Giese, Hausi A. Müller, and Mary Shaw (Eds.). Springer, 1–32. https://doi.org/10.1007/978-3-642-35813-5_1

[34] Ronnie de Souza Santos, William Das Neves Grillo, Djafran Cabral, Catarina De Castro, Nicole Albuquerque, and Cesar França. 2024. Post-Pandemic

Hybrid Work in Software Companies: Findings from an Industrial Case Study. In Proceedings of the 2024 IEEE/ACM 17th International Conference on
Cooperative and Human Aspects of Software Engineering. 68–78.

[35] Ronnie E de Souza Santos and Paul Ralph. 2022. A grounded theory of coordination in remote-first and hybrid software teams. In Proceedings of the
44th International Conference on Software Engineering. 25–35.

[36] Tom DeMarco and Timothy Lister. 1999. Peopleware: Productive Projects and Teams (2nd ed.). Dorset House Publishing Co., New York.

[37] Paul Denny, Viraj Kumar, and Nasser Giacaman. 2023. Conversing with copilot: Exploring prompt engineering for solving cs1 problems using

natural language. In Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1. 1136–1142.
[38] Peter Totterdell Dermot Browne and Mike Norman. 1990. "Adaptive User Interfaces: Principles". Elsevier, United States.

[39] Tilman Deuschel and Ted Scully. 2016. On the Importance of Spatial Perception for the Design of Adaptive User Interfaces. In 10th IEEE International
Conference on Self-Adaptive and Self-Organizing Systems, SASO 2016, Augsburg, Germany, September 12-16, 2016, Giacomo Cabri, Gauthier Picard,

and Niranjan Suri (Eds.). IEEE Computer Society, 70–79. https://doi.org/10.1109/SASO.2016.13

Manuscript submitted to ACM

http://dblp.uni-trier.de/db/journals/software/software33.html#BasiriBRHKRR16
https://doi.org/10.1109/MS.2008.105
https://doi.org/10.1145/3447240
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1093/IWC/IWV046
https://doi.org/10.1093/IWC/IWV046
https://doi.org/10.1007/978-3-642-35813-5_1
https://doi.org/10.1109/SASO.2016.13


40 Abrahão et al.

[40] Mateusz Dolata and Kevin Crowston. 2023. Making sense of AI systems development. IEEE Transactions on Software Engineering (2023).

[41] Schahram Dustdar, Stefan Nastic, and Ognjen Scekic. 2018. Smart Cities: The Internet of Things, People and Systems (1st ed.). Springer Publishing
Company, Incorporated.

[42] Noura El Moussa, Davide Molinelli, Mauro Pezzè, and Martin Tappler. 2021. Health of smart ecosystems. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021).
Association for Computing Machinery, New York, NY, USA, 1491–1494. https://doi.org/10.1145/3468264.3473137

[43] Omar Elazhary, Margaret-Anne Storey, Neil A. Ernst, and Elise Paradis. 2021. ADEPT: a socio-technical theory of continuous integration. In

Proceedings of the 43rd International Conference on Software Engineering: New Ideas and Emerging Results (Virtual Event, Spain) (ICSE-NIER ’21).
IEEE Press, 26–30. https://doi.org/10.1109/ICSE-NIER52604.2021.00014

[44] Anthony Elliott, Brian Peiris, and Chris Parnin. 2015. Virtual reality in software engineering: Affordances, applications, and challenges. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 2. IEEE, 547–550.

[45] Linda Erlenhov, Francisco Gomes de Oliveira Neto, Riccardo Scandariato, and Philipp Leitner. 2019. Current and future bots in software development.

In 2019 IEEE/ACM 1st International Workshop on Bots in Software Engineering (BotSE). IEEE, 7–11.
[46] Linda Erlenhov, Francisco Gomes de Oliveira Neto, Riccardo Scandariato, and Philipp Leitner. 2019. Current and Future Bots in Software

Development. In 2019 IEEE/ACM 1st International Workshop on Bots in Software Engineering (BotSE). 7–11. https://doi.org/10.1109/BotSE.2019.00009

[47] Farjam Eshraghian, Najmeh Hafezieh, Farveh Farivar, and Sergio de Cesare. 2024. AI in software programming: understanding emotional responses

to GitHub Copilot. Information Technology & People (2024).
[48] Motahhare Eslami, Kristen Vaccaro, Min Kyung Lee, Amit Elazari Bar On, Eric Gilbert, and Karrie Karahalios. 2019. User Attitudes towards

Algorithmic Opacity and Transparency in Online Reviewing Platforms. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems, CHI 2019, Glasgow, Scotland, UK, May 04-09, 2019, Stephen A. Brewster, Geraldine Fitzpatrick, Anna L. Cox, and Vassilis Kostakos (Eds.).

ACM, 494. https://doi.org/10.1145/3290605.3300724

[49] Tobias Benjamin Fahse and Anuschka Schmitt. 2023. Exploring the Synergies in Human-AI Hybrids: A Longitudinal Analysis in Sales Forecasting.

In American Conference on Information Systems, Paul A. Pavlou, Vishal Midha, Animesh Animesh, Traci A. Carte, Alexandre R. Graeml, and Alanah

Mitchell (Eds.). Association for Information Systems. http://dblp.uni-trier.de/db/conf/amcis/amcis2023.html#FahseS23

[50] Robert Feldt, Francisco G de Oliveira Neto, and Richard Torkar. 2018. Ways of applying artificial intelligence in software engineering. In Proceedings
of the 6th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering. 35–41.

[51] Nicole Forsgren, Jez Humble, and Gene Kim. 2018. Accelerate: The Science of Lean Software and DevOps: Building and Scaling High Performing
Technology Organizations. IT Revolution Press, Portland, OR.

[52] Nicole Forsgren, Margaret-Anne Storey, Chandra Maddila, Tom Zimmermann, Brian Houck, and Jenna Butler. 2021. The SPACE of Developer

Productivity: There’s more to it than you think. Commun. ACM 64, 6 (2021), 20–48. https://doi.org/10.1145/3454122.3454124

[53] Eduard Frankford, Clemens Sauerwein, Patrick Bassner, Stephan Krusche, and Ruth Breu. 2024. AI-Tutoring in Software Engineering Education. In

Proceedings of the 46th International Conference on Software Engineering: Software Engineering Education and Training. 309–319.
[54] Thordur Vikingur Fridgeirsson, Helgi Thor Ingason, Haukur Ingi Jonasson, and Hildur Jonsdottir. 2021. An authoritative study on the near future

effect of artificial intelligence on project management knowledge areas. Sustainability 13, 4 (2021), 2345.

[55] Ruti Gafni, Itzhak Aviv, Boris Kantsepolsky, Sofia Sherman, Havana Rika, Yariv Itzkovich, and Artem Barger. 2024. Objectivity by design: The

impact of AI-driven approach on employees’ soft skills evaluation. Information and Software Technology 170 (2024), 107430.

[56] Krzysztof Z. Gajos and Krysta Chauncey. 2017. The Influence of Personality Traits and Cognitive Load on the Use of Adaptive User Interfaces. In

Proceedings of the 22nd International Conference on Intelligent User Interfaces, IUI 2017, Limassol, Cyprus, March 13-16, 2017, George A. Papadopoulos,
Tsvi Kuflik, Fang Chen, Carlos Duarte, and Wai-Tat Fu (Eds.). ACM, 301–306. https://doi.org/10.1145/3025171.3025192

[57] Krzysztof Z. Gajos, Katherine Everitt, Desney S. Tan, Mary Czerwinski, and Daniel S. Weld. 2008. Predictability and accuracy in adaptive user

interfaces. In Proceedings of the 2008 Conference on Human Factors in Computing Systems, CHI, Florence, Italy, April 5-10, 2008, Mary Czerwinski,

Arnold M. Lund, and Desney S. Tan (Eds.). ACM, 1271–1274. https://doi.org/10.1145/1357054.1357252

[58] Emily Arteaga Garcia, João Felipe Pimentel, Zixuan Feng, Marco Gerosa, Igor Steinmacher, and Anita Sarma. 2024. How to support ml end-user

programmers through a conversational agent. In 2024 IEEE/ACM 46th International Conference on Software Engineering (ICSE). IEEE, 629–640.
[59] David Garlan, Shang-Wen Cheng, and Bradley Schmerl. 2003. Increasing System Dependability through Architecture-Based Self-Repair. In

Architecting Dependable Systems, Rogério de Lemos, Cristina Gacek, and Alexander Romanovsky (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 61–89.

[60] Vahid Garousi, Gorkem Giray, and Eray Tuzun. 2019. Understanding the knowledge gaps of software engineers: An empirical analysis based on

SWEBOK. ACM Transactions on Computing Education (TOCE) 20, 1 (2019), 1–33.
[61] Daniel Gaspar-Figueiredo, Silvia Abrahão, Marta Fernández-Diego, and Emilio Insfrán. 2023. A Comparative Study on Reward Models for UI

Adaptation with Reinforcement Learning. CoRR abs/2308.13937 (2023). https://doi.org/10.48550/ARXIV.2308.13937 arXiv:2308.13937

[62] Daniel Gaspar-Figueiredo, Silvia Abrahão, Emilio Insfrán, and Jean Vanderdonckt. 2023. Measuring User Experience of Adaptive User Interfaces

using EEG: A Replication Study. In Proceedings of the 27th International Conference on Evaluation and Assessment in Software Engineering, EASE
2023, Oulu, Finland, June 14-16, 2023. ACM, 52–61. https://doi.org/10.1145/3593434.3593452

[63] Daniel Gaspar-Figueiredo, Marta Fernández-Diego, Ruben Nuredini, Silvia Abrahão, and Emilio Insfrán. 2024. Reinforcement Learning-Based

Framework for the Intelligent Adaptation of User Interfaces. In Proceedings of the 16th ACM SIGCHI Symposium on Engineering Interactive Computing

Manuscript submitted to ACM

https://doi.org/10.1145/3468264.3473137
https://doi.org/10.1109/ICSE-NIER52604.2021.00014
https://doi.org/10.1109/BotSE.2019.00009
https://doi.org/10.1145/3290605.3300724
http://dblp.uni-trier.de/db/conf/amcis/amcis2023.html#FahseS23
https://doi.org/10.1145/3454122.3454124
https://doi.org/10.1145/3025171.3025192
https://doi.org/10.1145/1357054.1357252
https://doi.org/10.48550/ARXIV.2308.13937
https://arxiv.org/abs/2308.13937
https://doi.org/10.1145/3593434.3593452


Software Engineering by and for Humans in an AI Era 41

Systems, EICS Companion 2024, Cagliari, Italy, June 24-28, 2024, Michael Nebeling, Lucio Davide Spano, and José Creissac Campos (Eds.). ACM,

40–48. https://doi.org/10.1145/3660515.3661329

[64] Christoph Gebhardt, Brian Hecox, Bas van Opheusden, Daniel Wigdor, James Hillis, Otmar Hilliges, and Hrvoje Benko. 2019. Learning Cooperative

Personalized Policies from Gaze Data. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, UIST
2019, New Orleans, LA, USA, October 20-23, 2019, François Guimbretière, Michael S. Bernstein, and Katharina Reinecke (Eds.). ACM, 197–208.

https://doi.org/10.1145/3332165.3347933

[65] Audrey Girouard, Erin Treacy Solovey, Leanne M. Hirshfield, Evan M. Peck, Krysta Chauncey, Angelo Sassaroli, Sergio Fantini, and Robert J. K.

Jacob. 2010. From Brain Signals to Adaptive Interfaces: Using fNIRS in HCI. In Brain-Computer Interfaces - Applying our Minds to Human-Computer
Interaction, Desney S. Tan and Anton Nijholt (Eds.). Springer, 221–237. https://doi.org/10.1007/978-1-84996-272-8_13

[66] Camille Gobert, Kashyap Todi, Gilles Bailly, and Antti Oulasvirta. 2019. SAM: a modular framework for self-adapting web menus. In Proceedings of
the 24th International Conference on Intelligent User Interfaces, IUI 2019, Marina del Ray, CA, USA, March 17-20, 2019, Wai-Tat Fu, Shimei Pan, Oliver

Brdiczka, Polo Chau, and Gaelle Calvary (Eds.). ACM, 481–484. https://doi.org/10.1145/3301275.3302314

[67] Abel Goedegebuure, Indika Kumara, Stefan Driessen, Dario Di Nucci, Geert Monsieur, Willem jan van den Heuvel, and Damian Andrew Tamburri.

2024. Data Mesh: a Systematic Gray Literature Review. arXiv:2304.01062

[68] Valentina Golendukhina, Valentina Lenarduzzi, and Michael Felderer. 2022. What is software quality for AI engineers? Towards a thinning of the

fog. In Proceedings of the 1st International Conference on AI Engineering: Software Engineering for AI. 1–9.
[69] Don Gotterbarn, Keith Miller, and Simon Rogerson. 1997. Software engineering code of ethics. Commun. ACM 40, 11 (1997), 110–118.

[70] Daniel Graziotin, Fabian Fagerholm, Xiaofeng Wang, and Pekka Abrahamsson. 2018. What happens when software developers are (un)happy.

Journal of Systems and Software 140 (2018), 32–47. https://doi.org/10.1016/j.jss.2018.02.041

[71] Shalom Greene, Himanshu Thapliyal, and Allison Caban-Holt. 2016. A Survey of Affective Computing for Stress Detection: Evaluating technologies

in stress detection for better health. IEEE Consumer Electronics Magazine 5, 4 (2016), 44–56. https://doi.org/10.1109/MCE.2016.2590178

[72] Michaela Greiler, Margaret-Anne Storey, and Abi Noda. 2023. An Actionable Framework for Understanding and Improving Developer Experience.

IEEE Transactions on Software Engineering 49, 4 (2023), 1411–1425. https://doi.org/10.1109/TSE.2023.1234567

[73] John C. Grundy. 2020. Human-centric Software Engineering for Next Generation Cloud- and Edge-based Smart Living Applications. In 20th
IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing, CCGRID 2020, Melbourne, Australia, May 11-14, 2020. IEEE, 1–10.
https://doi.org/10.1109/CCGRID49817.2020.00-93

[74] Mike Gualtieri, Sandy Carielli, and Cheryl McKinnon. 2011. I Don’t Want DevOps. I Want NoOps. https://go.forrester.com/blogs/11-02-07-

i_dont_want_devops_i_want_noops/.

[75] Kris Gybels, Roel Wuyts, Stéphane Ducasse, and Maja D’Hondt. 2006. Inter-language reflection: A conceptual model and its implementation.

Computer Languages, Systems & Structures 32, 2-3 (2006), 109 – 124. https://doi.org/10.1016/j.cl.2005.10.003

[76] Khadija Hanifi, Orcun Cetin, and Cemal Yilmaz. 2023. On ChatGPT: perspectives from software engineering students. In 2023 IEEE 23rd International
Conference on Software Quality, Reliability, and Security (QRS). IEEE, 196–205.

[77] Catherine Hicks, Carol Lee, and Kristen Foster-Marks. 2024. The New Developer: AI Skill Threat, Identity Change; Developer Thriving in the

Transition to AI-Assisted Software Development. https://doi.org/10.31234/osf.io/2gej5

[78] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John Grundy, and Haoyu Wang. 2024. Large Language

Models for Software Engineering: A Systematic Literature Review. arXiv:2308.10620 [cs.SE] https://arxiv.org/abs/2308.10620

[79] Andrew Hunt and David Thomas. 1999. The Pragmatic Programmer: From Journeyman to Master. Addison-Wesley Professional, Boston, MA.

[80] Ramtin Jabbari, Nauman bin Ali, Kai Petersen, and Binish Tanveer. 2016. What is DevOps? A Systematic Mapping Study on Definitions and

Practices. In Proceedings of the Scientific Workshop Proceedings of XP2016 (Edinburgh, Scotland, UK) (XP ’16 Workshops). Association for Computing

Machinery, New York, NY, USA, Article 12. https://doi.org/10.1145/2962695.2962707

[81] Victoria Jackson, Bogdan Vasilescu, Daniel Russo, Paul Ralph, Rafael Prikladnicki, Maliheh Izadi, Sarah D’Angelo, Sarah Inman, Anielle Lisboa, and

André van der Hoek. 2025. The Impact of Generative AI on Creativity in Software Development: A Research Agenda. ACM Transaction on Software
Engineering and Methodology 34, 4 (April 2025).

[82] Sven Johann. 2017. Kief Morris on Infrastructure as Code. IEEE Software 34, 1 (2017), 117–120. http://dblp.uni-trier.de/db/journals/software/

software34.html#Johann17

[83] Capers Jones. 1986. Measuring programmer productivity. IBM Systems Journal 22, 1 (1986), 36–48.
[84] Eirini Kalliamvakou, Christian Bird, Thomas Zimmermann, Andrew Begel, Robert DeLine, and Daniel M German. 2017. What makes a great

manager of software engineers? IEEE Transactions on Software Engineering 45, 1 (2017), 87–106.

[85] Eirini Kalliamvakou, Sida Peng, Peter Cihon, and Mert Demirer. 2023. The Impact of AI on Developer Productivity: Evidence from GitHub Copilot.

Commun. ACM 66, 6 (2023), 28–37. https://doi.org/10.1145/3454122.3454124

[86] Christian Kästner and Eunsuk Kang. 2020. Teaching software engineering for AI-enabled systems. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Software Engineering Education and Training (Seoul, South Korea) (ICSE-SEET ’20). Association for Computing

Machinery, New York, NY, USA, 45–48. https://doi.org/10.1145/3377814.3381714

[87] Brian W. Kernighan and Dennis M. Ritchie. 1988. The C Programming Language (2nd ed.). Prentice Hall, Englewood Cliffs, NJ.

[88] Dron Khanna, Emily Laue Christensen, Saagarika Gosu, Xiaofeng Wang, and Maria Paasivaara. 2024. Hybrid Work meets Agile Software

Development: A Systematic Mapping Study. In Proceedings of the 2024 IEEE/ACM 17th International Conference on Cooperative and Human Aspects

Manuscript submitted to ACM

https://doi.org/10.1145/3660515.3661329
https://doi.org/10.1145/3332165.3347933
https://doi.org/10.1007/978-1-84996-272-8_13
https://doi.org/10.1145/3301275.3302314
https://arxiv.org/abs/2304.01062
https://doi.org/10.1016/j.jss.2018.02.041
https://doi.org/10.1109/MCE.2016.2590178
https://doi.org/10.1109/TSE.2023.1234567
https://doi.org/10.1109/CCGRID49817.2020.00-93
https://go.forrester.com/blogs/11-02-07-i_dont_want_devops_i_want_noops/
https://go.forrester.com/blogs/11-02-07-i_dont_want_devops_i_want_noops/
https://doi.org/10.1016/j.cl.2005.10.003
https://doi.org/10.31234/osf.io/2gej5
https://arxiv.org/abs/2308.10620
https://arxiv.org/abs/2308.10620
https://doi.org/10.1145/2962695.2962707
http://dblp.uni-trier.de/db/journals/software/software34.html#Johann17
http://dblp.uni-trier.de/db/journals/software/software34.html#Johann17
https://doi.org/10.1145/3454122.3454124
https://doi.org/10.1145/3377814.3381714


42 Abrahão et al.

of Software Engineering. 57–67.
[89] Vassilka D Kirova, Cyril S Ku, Joseph R Laracy, and Thomas J Marlowe. 2024. Software engineering education must adapt and evolve for an llm

environment. In Proceedings of the 55th ACM Technical Symposium on Computer Science Education V. 1. 666–672.
[90] Antti Knutas, Victoria Palacin, Giovanni Maccani, and Markus Helfert. 2019. Software engineering in civic tech a case study about code for ireland.

In 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS). IEEE, 41–50.
[91] Kathrin Komp-Leukkunen. 2024. How ChatGPT shapes the future labour market situation of software engineers: A Finnish Delphi study. Futures

160 (2024), 103382.

[92] Mohammad Amin Kuhail, Sujith Samuel Mathew, Ashraf Khalil, Jose Berengueres, and Syed Jawad Hussain Shah. 2024. “Will I be replaced?”

Assessing ChatGPT’s effect on software development and programmer perceptions of AI tools. Science of Computer Programming 235 (2024),

103111.

[93] Todd Kulesza, Margaret M. Burnett, Weng-Keen Wong, and Simone Stumpf. 2015. Principles of Explanatory Debugging to Personalize Interactive

Machine Learning. In Proceedings of the 20th International Conference on Intelligent User Interfaces, IUI 2015, Atlanta, GA, USA, March 29 - April 01, 2015,
Oliver Brdiczka, Polo Chau, Giuseppe Carenini, Shimei Pan, and Per Ola Kristensson (Eds.). ACM, 126–137. https://doi.org/10.1145/2678025.2701399

[94] Kati Kuusinen, Helen Petrie, Fabian Fagerholm, and Tommi Mikkonen. 2016. Flow, Intrinsic Motivation, and Developer Experience in Software

Engineering. In Agile Processes, in Software Engineering, and Extreme Programming, Helen Sharp and Tracy Hall (Eds.). Springer International

Publishing, Cham, 104–117.

[95] Samuli Laato, Matti Mäntymäki, AKM Najmul Islam, Sami Hyrynsalmi, and Teemu Birkstedt. 2023. Trends and Trajectories in the Software

Industry: implications for the future of work. Information Systems Frontiers 25, 2 (2023), 929–944.
[96] Samuli Laato, Miika Tiainen, AKM Najmul Islam, and Matti Mäntymäki. 2022. How to explain AI systems to end users: a systematic literature

review and research agenda. Internet Research 32, 7 (2022), 1–31.

[97] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N Nguyen. 2017. Bug localization with combination of deep learning and

information retrieval. In 2017 IEEE/ACM 25th International Conference on Program Comprehension (ICPC). IEEE, 218–229.
[98] Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang. 2021. A systematic review of API evolution literature. ACM Computing Surveys (CSUR)

54, 8 (2021), 1–36.

[99] Thomas Langerak, Sammy Joe Christen, Mert Albaba, Christoph Gebhardt, and Otmar Hilliges. 2022. MARLUI: Multi-Agent Reinforcement

Learning for Goal-Agnostic Adaptive UIs. CoRR abs/2209.12660 (2022). https://doi.org/10.48550/ARXIV.2209.12660 arXiv:2209.12660

[100] Filippo Lanubile, Christof Ebert, Rafael Prikladnicki, and Aurora Vizcaíno. 2010. Collaboration tools for global software engineering. IEEE software
27, 2 (2010), 52.

[101] Talia Lavie and Joachim Meyer. 2010. Benefits and costs of adaptive user interfaces. International Journal of Human-Computer Studies 68, 8 (2010),
508 – 524. https://doi.org/10.1016/j.ijhcs.2010.01.004

[102] Paul Luo Li, Amy J Ko, and Jiamin Zhu. 2015. What makes a great software engineer?. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 1. IEEE, 700–710.

[103] Tianyi Li, Mihaela Vorvoreanu, Derek DeBellis, and Saleema Amershi. 2023. Assessing Human-AI Interaction Early through Factorial Surveys: A

Study on the Guidelines for Human-AI Interaction. ACM Transactions Computer Human Interactions 30, 5 (2023), 69:1–69:45. https://doi.org/10.

1145/3511605

[104] David Lo. 2023. Trustworthy and Synergistic Artificial Intelligence for Software Engineering: Vision and Roadmaps. In International Conference on
Software Engineering: Future of Software Engineering. IEEE.

[105] Qinghua Lu, Liming Zhu, Xiwei Xu, Jon Whittle, David Douglas, and Conrad Sanderson. 2022. Software engineering for responsible AI: An

empirical study and operationalised patterns. In Proceedings of the 44th International Conference on Software Engineering: Software Engineering in
Practice. 241–242.

[106] Qinghua Lu, Liming Zhu, Xiwei Xu, Jon Whittle, Didar Zowghi, and Aurelie Jacquet. 2023. Responsible ai pattern catalogue: A collection of best

practices for ai governance and engineering. Comput. Surveys (2023).
[107] Silverio Martínez-Fernández, Justus Bogner, Xavier Franch, Marc Oriol, Julien Siebert, Adam Trendowicz, Anna Maria Vollmer, and Stefan Wagner.

2022. Software engineering for AI-based systems: a survey. ACM Transactions on Software Engineering and Methodology (TOSEM) 31, 2 (2022), 1–59.
[108] T. Masombuka and Ernest Mnkandla. 2018. A DevOps collaboration culture acceptance model.. In SAICSIT, Sue Petratos, Johan Van Niekerk, and

Bertram Haskins (Eds.). ACM, 279–285. http://dblp.uni-trier.de/db/conf/saicsit/saicsit2018.html#MasombukaM18

[109] WolfgangMauerer, Mitchell Joblin, Damian A. Tamburri, Carlos Paradis, Rick Kazman, and Sven Apel. 2022. In Search of Socio-Technical Congruence:

A Large-Scale Longitudinal Study. IEEE Transactions on Software Engineering 48, 8 (2022), 3159–3184. https://doi.org/10.1109/TSE.2021.3082074

[110] Marshall McLuhan. 1977. LAWS OF THE MEDIA. ETC: A Review of General Semantics 34, 2 (1977), 173–179. http://www.jstor.org/stable/42575246

[111] Leonel Merino, Mircea Lungu, and Christoph Seidl. 2020. Unleashing the potentials of immersive augmented reality for software engineering. In

2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 517–521.
[112] Marjan Mernik, Jan Heering, and Anthony M Sloane. 2005. When and how to develop domain-specific languages. ACM computing surveys (CSUR)

37, 4 (2005), 316–344.

[113] Nesrine Mezhoudi and Jean Vanderdonckt. 2021. Toward a Task-driven Intelligent GUI Adaptation by Mixed-initiative. International Journal on
Human Computer Interactions 37, 5 (2021), 445–458. https://doi.org/10.1080/10447318.2020.1824742

Manuscript submitted to ACM

https://doi.org/10.1145/2678025.2701399
https://doi.org/10.48550/ARXIV.2209.12660
https://arxiv.org/abs/2209.12660
https://doi.org/10.1016/j.ijhcs.2010.01.004
https://doi.org/10.1145/3511605
https://doi.org/10.1145/3511605
http://dblp.uni-trier.de/db/conf/saicsit/saicsit2018.html#MasombukaM18
https://doi.org/10.1109/TSE.2021.3082074
http://www.jstor.org/stable/42575246
https://doi.org/10.1080/10447318.2020.1824742


Software Engineering by and for Humans in an AI Era 43

[114] Aleksandar Milenkoski, Alexandru Iosup, Samuel Kounev, Kai Sachs, Piotr Rygielski, Jason Ding, Walfredo Cirne, and Florian Rosenberg. 2013.

Cloud Usage Patterns: A Formalism for Description of Cloud Usage Scenarios. Technical Report SPEC-RG-2013-001 v.1.0.1. SPEC Research Group -

Cloud Working Group, Standard Performance Evaluation Corporation (SPEC), 7001 Heritage Village Plaza Suite 225, Gainesville, VA 20155, USA.

http://research.spec.org/fileadmin/user_upload/documents/rg_cloud/endorsed_publications/SPEC-RG-2013-001_CloudUsagePatterns.pdf

[115] Dejan S. Milojicic. 2020. The Edge-to-Cloud Continuum. IEEE Computer 53, 11 (2020), 16–25. http://dblp.uni-trier.de/db/journals/computer/

computer53.html#Milojicic20a

[116] Ivan Mistrík, John Grundy, Andre Van der Hoek, and Jim Whitehead. 2010. Collaborative software engineering: challenges and prospects. Springer.
[117] Hausi A. Müller, Mauro Pezzè, and Mary Shaw. 2008. Visibility of control in adaptive systems. In Proceedings of the 2nd international workshop on

Ultra-large-scale software-intensive systems, ULSSIS@ICSE 2008, Leipzig, Germany, May 10-11, 2008, Kevin J. Sullivan and Rick Kazman (Eds.). ACM,

23–26. https://doi.org/10.1145/1370700.1370707

[118] Alex Murphy, Ben Kelly, Kai Bergmann, Kyrylo Khaletskyy, Rory V O’Connor, and Paul M Clarke. 2019. Examining unequal gender distribution in

software engineering. In Systems, Software and Services Process Improvement: 26th European Conference, EuroSPI 2019, Edinburgh, UK, September
18–20, 2019, Proceedings 26. Springer, 659–671.

[119] Peter Naur. 1986. Programming as Theory Building. Microprocessing and Microprogramming 15, 5 (1986), 253–261.

[120] Peter Naur and Brian Randell. 1969. Software Engineering: Report on a Conference Sponsored by the NATO Science Committees. Technical Report.
Scientific Affairs Division, NATO.

[121] A.F. Norcio and J. Stanley. 1989. Adaptive human-computer interfaces: a literature survey and perspective. IEEE Transactions on Systems, Man, and
Cybernetics 19, 2 (1989), 399–408. https://doi.org/10.1109/21.31042

[122] L. Northrop, Peter Feiler, R.P. Gabriel, John Goodenough, Rick Linger, Thomas Longstaff, Rick Kazman, M. Klein, Douglas Schmidt, Kevin Sullivan,

and Kurt Wallnau. 2006. Ultra-Large-Scale Systems - The Software Challenge of the Future. Technical Report. Software Engineering Institute –

Carnegie Mellon.

[123] Paolo Notaro, Jorge Cardoso, and Michael Gerndt. 2020. A Systematic Mapping Study in AIOps. In ICSOC Workshops (Lecture Notes in Computer
Science, Vol. 12632), Hakim Hacid, Fatma Outay, Hye young Paik, Amira Alloum, Marinella Petrocchi, Mohamed Reda Bouadjenek, Amin Beheshti,

Xumin Liu, and Abderrahmane Maaradji (Eds.). Springer, 110–123. http://dblp.uni-trier.de/db/conf/icsoc/icsoc2020w.html#NotaroCG20

[124] Nargess Nourbakhsh, Fang Chen, Yang Wang, and Rafael A. Calvo. 2017. Detecting Users’ Cognitive Load by Galvanic Skin Response with Affective

Interference. ACM Transactions Interactions on Intelligent Systems 7, 3 (2017), 12:1–12:20. https://doi.org/10.1145/2960413

[125] John P. Oliver and Srivastava Sanjay. 1999. The Big Five Trait taxonomy: History, measurement, and theoretical perspectives. In Handbook of
personality: Theory and research, L. A. Pervin and O. P. John (Eds.). Guilford Pres., 102–138.

[126] John P. Oliver and Srivastava Sanjay. 2008. Perspectives on personality (6th edition). Pearson.
[127] Marten Oltrogge, Erik Derr, Christian Stransky, Yasemin Acar, Sascha Fahl, Christian Rossow, Giancarlo Pellegrino, Sven Bugiel, and Michael

Backes. 2018. The rise of the citizen developer: Assessing the security impact of online app generators. In 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 634–647.

[128] Ipek Ozkaya. 2022. A paradigm shift in automating software engineering tasks: Bots. IEEE Software 39, 5 (2022), 4–8.
[129] Fabio Palomba, Damian Andrew Tamburri, Francesca Arcelli Fontana, Rocco Oliveto, Andy Zaidman, and Alexander Serebrenik. 2021. Beyond

Technical Aspects: How Do Community Smells Influence the Intensity of Code Smells? IEEE Transactions on Software Engineering 47, 1 (2021),

108–129. https://doi.org/10.1109/TSE.2018.2883603

[130] Aastha Pant, Rashina Hoda, Chakkrit Tantithamthavorn, and Burak Turhan. 2024. Ethics in AI through the practitioner’s view: a grounded theory

literature review. Empirical Software Engineering 29, 3 (2024), 67.

[131] Chris Paton, Andre W Kushniruk, Elizabeth M Borycki, Mike English, and Jim Warren. 2021. Improving the Usability and Safety of Digital Health

Systems: The Role of Predictive Human-Computer Interaction Modeling. Journal of Medical Internet Research 23, 5 (May 2021), e25281.

[132] Sampo V. Paunonen. 2003. Big Five factors of personality and replicated predictions of behavior. Journal of Personality and Social Psychology 84, 2

(2003), 411–424. https://doi.org/10.1037/0022-3514.84.2.411

[133] Olga Petrovska, Lee Clift, Faron Moller, and Rebecca Pearsall. 2024. Incorporating Generative AI into Software Development Education. In

Proceedings of the 8th Conference on Computing Education Practice. 37–40.
[134] Giovanni Quattrocchi, Willem-Jan van den Heuvel, and Damian Andrew Tamburri. 2024. The Data Product-service Composition Frontier: A

Hybrid Learning Approach. ACM Transactions Manage. Inf. Syst. 15, 1, Article 6 (mar 2024), 22 pages. https://doi.org/10.1145/3649319

[135] Emilee J. Rader, Kelley Cotter, and Janghee Cho. 2018. Explanations as Mechanisms for Supporting Algorithmic Transparency. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems, CHI 2018, Montreal, QC, Canada, April 21-26, 2018, Regan L. Mandryk, Mark Hancock,

Mark Perry, and Anna L. Cox (Eds.). ACM, 103. https://doi.org/10.1145/3173574.3173677

[136] Charles Rich and Richard Waters. 1988. The Programmer’s Apprentice Project: A Research Overview. Computer 21 (12 1988), 10 – 25. https:

//doi.org/10.1109/2.86782

[137] Tim Rietz. 2019. Designing a conversational requirements elicitation system for end-users. In 2019 IEEE 27th International Requirements Engineering
Conference (RE). IEEE, 452–457.

[138] Pierre N Robillard and Martin P Robillard. 2000. Types of collaborative work in software engineering. Journal of Systems and Software 53, 3 (2000),
219–224.

Manuscript submitted to ACM

http://research.spec.org/fileadmin/user_upload/documents/rg_cloud/endorsed_publications/SPEC-RG-2013-001_CloudUsagePatterns.pdf
http://dblp.uni-trier.de/db/journals/computer/computer53.html#Milojicic20a
http://dblp.uni-trier.de/db/journals/computer/computer53.html#Milojicic20a
https://doi.org/10.1145/1370700.1370707
https://doi.org/10.1109/21.31042
http://dblp.uni-trier.de/db/conf/icsoc/icsoc2020w.html#NotaroCG20
https://doi.org/10.1145/2960413
https://doi.org/10.1109/TSE.2018.2883603
https://doi.org/10.1037/0022-3514.84.2.411
https://doi.org/10.1145/3649319
https://doi.org/10.1145/3173574.3173677
https://doi.org/10.1109/2.86782
https://doi.org/10.1109/2.86782


44 Abrahão et al.

[139] Gema Rodríguez-Pérez, Reza Nadri, and Meiyappan Nagappan. 2021. Perceived diversity in software engineering: a systematic literature review.

Empirical Software Engineering 26 (2021), 1–38.

[140] Babak Darvish Rouhani, Mohd Naz’ri Mahrin, Fatemeh Nikpay, Rodina Binti Ahmad, and Pourya Nikfard. 2015. A systematic literature review on

Enterprise Architecture Implementation Methodologies. information and Software Technology 62 (2015), 1–20.

[141] Daniel Russo. 2024. Navigating the complexity of generative ai adoption in software engineering. ACM Transactions on Software Engineering and
Methodology (2024).

[142] Elizabeth B.-N. Sanders and Pieter Jan Stappers. 2008. Co-creation and the new landscapes of design. CoDesign 4, 1 (2008), 5–18. https:

//doi.org/10.1080/15710880701875068 arXiv:http://dx.doi.org/10.1080/15710880701875068

[143] Jaakko Sauvola, Sasu Tarkoma, Mika Klemettinen, Jukka Riekki, and David Doermann. 2024. Future of software development with generative AI.

Automated Software Engineering 31, 1 (2024), 26.

[144] J. Schneider-Hufschmidt, T. Kühme, and Malinowski U. 1993. "Adaptive User Interfaces: Principles and Practice". North Holland, London.

[145] Concetta Semeraro, Mario Lezoche, Hervé Panetto, and Michele Dassisti. 2021. Digital twin paradigm: A systematic literature review. Computers in
Industry 130 (2021), 103469.

[146] Rifat Ara Shams, Didar Zowghi, and Muneera Bano. 2023. AI and the quest for diversity and inclusion: a systematic literature review. AI and Ethics
(2023), 1–28.

[147] Ben Shneiderman. 2020. Bridging the gap between ethics and practice: guidelines for reliable, safe, and trustworthy human-centered AI systems.

ACM Transactions on Interactive Intelligent Systems (TiiS) 10, 4 (2020), 1–31.
[148] James Shore and Shane Warden. 2007. The Art of Agile Development. O’Reilly Media, Sebastopol, CA.

[149] Martin Stancek, Ivan Polasek, Tibor Zalabai, Juraj Vincur, Rodi Jolak, and Michel Chaudron. 2024. Collaborative software design and modeling in

virtual reality. Information and Software Technology 166 (2024), 107369.

[150] Vladimir Stantchev, Olaf Radant, and Ricardo Colomo-Palacios. 2016. Assessment of continuing educational measures in software engineering: A

view from the industry. International Journal of Engineering Education 32, 2B (2016), 905–914.

[151] Åsne Stige, Efpraxia D Zamani, Patrick Mikalef, and Yuzhen Zhu. 2023. Artificial intelligence (AI) for user experience (UX) design: a systematic

literature review and future research agenda. Information Technology & People (2023).
[152] Margaret-Anne Storey, Daniel Russo, Nicole Novielli, Takashi Kobayashi, and Dong Wang. 2024. A Disruptive Research Playbook for Studying

Disruptive Innovations. ArXiv e-prints (2024).
[153] Margaret-Anne Storey, Christoph Treude, Arie Van Deursen, and Li-Te Cheng. 2010. The impact of social media on software engineering practices

and tools. In Proceedings of the FSE/SDP workshop on Future of software engineering research. 359–364.
[154] Margaret-Anne Storey, Thomas Zimmermann, Christian Bird, Jacek Czerwonka, Brendan Murphy, and Eirini Kalliamvakou. 2021. Towards a

Theory of Software Developer Job Satisfaction and Perceived Productivity. IEEE Transactions on Software Engineering 47, 10 (2021), 2125–2142.

https://doi.org/10.1109/TSE.2019.2944354

[155] R. Subramanyam and M. S. Krishnan. 2003. Understanding and improving software productivity: an empirical study. Commun. ACM 46, 2 (2003),

73–77.

[156] Thomas Süße, Maria Kobert, Simon Grapenthin, and Bernd-Friedrich Voigt. 2023. AI-Powered Chatbots and the Transformation of Work: Findings

from a Case Study in Software Development and Software Engineering. In Working Conference on Virtual Enterprises. Springer, 689–705.
[157] Stephanie D Teasley, Lisa A Covi, Mayuram S. Krishnan, and Judith S Olson. 2002. Rapid software development through team collocation. IEEE

Transactions on software engineering 28, 7 (2002), 671–683.

[158] Kashyap Todi, Gilles Bailly, Luis Leiva, and Antti Oulasvirta. 2021. Adapting User Interfaces with Model-Based Reinforcement Learning. In

Proceedings of the 2021 Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing Machinery,

New York, NY, USA, Article 573, 13 pages. https://doi.org/10.1145/3411764.3445497

[159] Kashyap Todi and Tanya R. Jonker. 2023. A Framework for Computational Design and Adaptation of Extended Reality User Interfaces. CoRR
abs/2309.04025 (2023). https://doi.org/10.48550/ARXIV.2309.04025 arXiv:2309.04025

[160] James E. Trumbly, Kirk P. Arnett, and Peter C. Johnson. 1994. Productivity gains via an adaptive user interface: an empirical analysis. International
Journal of Human-Computer Studies 40, 1 (1994), 63–81. https://doi.org/10.1006/ijhc.1994.1004

[161] Michele Tufano, Anisha Agarwal, Jinu Jang, Roshanak Zilouchian Moghaddam, and Neel Sundaresan. 2024. AutoDev: Automated AI-Driven

Development. arXiv:2403.08299 [cs.SE] https://arxiv.org/abs/2403.08299

[162] Marcel Valovỳ and Alena Buchalcevova. 2023. The Psychological Effects of AI-Assisted Programming on Students and Professionals. In 2023 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE, 385–390.

[163] Jean Vanderdonckt, Sara Bouzit, Gaëlle Calvary, and Denis Chêne. 2020. Exploring a Design Space of Graphical Adaptive Menus: Normal vs. Small

Screens. ACM Transactions Interactive Intelligent Systems 10, 1 (2020), 2:1–2:40. https://doi.org/10.1145/3237190

[164] Stefan Wagner and Melanie Ruhe. 2019. A Systematic Review of Productivity Factors in Software Development. arXiv preprint arXiv:1801.06475
(2019).

[165] Zhiyuanl Xia Wan, David Lo, and David Lo. [n. d.]. How does machine learning change software development practices?.(2019). IEEE Transactions
on Software Engineering ([n. d.]), 1–14.

[166] Junjie Wang, Ye Yang, Song Wang, Jun Hu, and Qing Wang. 2022. Context-and fairness-aware in-process crowdworker recommendation. ACM
Transactions on Software Engineering and Methodology (TOSEM) 31, 3 (2022), 1–31.

Manuscript submitted to ACM

https://doi.org/10.1080/15710880701875068
https://doi.org/10.1080/15710880701875068
https://arxiv.org/abs/http://dx.doi.org/10.1080/15710880701875068
https://doi.org/10.1109/TSE.2019.2944354
https://doi.org/10.1145/3411764.3445497
https://doi.org/10.48550/ARXIV.2309.04025
https://arxiv.org/abs/2309.04025
https://doi.org/10.1006/ijhc.1994.1004
https://arxiv.org/abs/2403.08299
https://arxiv.org/abs/2403.08299
https://doi.org/10.1145/3237190


Software Engineering by and for Humans in an AI Era 45

[167] Wei Wang, Hourieh Khalajzadeh, John C. Grundy, Anuradha Madugalla, and Humphrey O. Obie. 2024. Adaptive User Interfaces for Software

Supporting Chronic Disease. In Proceedings of the 46th International Conference on Software Engineering: Software Engineering in Society, ICSE-
SEIS2024, Lisbon, Portugal, April 14-20, 2024. ACM, 118–129. https://doi.org/10.1145/3639475.3640104

[168] Yi Wang and David Redmiles. 2019. Implicit gender biases in professional software development: An empirical study. In 2019 IEEE/ACM 41st
international conference on software engineering: Software engineering in society (ICSE-SEIS). IEEE, 1–10.

[169] Barbara Weber, Thomas Fischer, and René Riedl. 2021. Brain and autonomic nervous system activity measurement in software engineering: A

systematic literature review. Journal of Systems and Software 178 (2021), 110946. https://doi.org/10.1016/j.jss.2021.110946

[170] Gerald M. Weinberg. 1971. The Psychology of Computer Programming. Van Nostrand Reinhold, New York.

[171] Justin D Weisz, Michael Muller, Stephanie Houde, John Richards, Steven I Ross, Fernando Martinez, Mayank Agarwal, and Kartik Talamadupula.

2021. Perfection not required? Human-AI partnerships in code translation. In 26th International Conference on Intelligent User Interfaces. 402–412.
[172] Jim Whitehead. 2007. Collaboration in software engineering: A roadmap. In Future of Software Engineering (FOSE’07). IEEE, 214–225.
[173] Enes Yigitbas, Ivan Jovanovikj, Kai Biermeier, Stefan Sauer, and Gregor Engels. 2020. Integrated model-driven development of self-adaptive user

interfaces. Softw. Syst. Model. 19, 5 (2020), 1057–1081. https://doi.org/10.1007/S10270-020-00777-7

[174] Enes Yigitbas, Hagen Stahl, Stefan Sauer, and Gregor Engels. 2017. Self-adaptive UIs: Integrated Model-Driven Development of UIs and Their

Adaptations. In Modelling Foundations and Applications - 13th European Conference, ECMFA@STAF 2017, Marburg, Germany, July 19-20, 2017,
Proceedings (Lecture Notes in Computer Science, Vol. 10376), Anthony Anjorin and Huáscar Espinoza (Eds.). Springer, 126–141. https://doi.org/10.

1007/978-3-319-61482-3_8

[175] Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. 2024. AutoCodeRover: Autonomous Program Improvement.

arXiv:2404.05427 [cs.SE] https://arxiv.org/abs/2404.05427

[176] Lamia Zouhaier, Yosra Ben Dali Hlaoui, and Leila Ben Ayed. 2023. Adaptive user interface based on accessibility context. Multim. Tools Appl. 82, 23
(2023), 35621–35650. https://doi.org/10.1007/S11042-023-14390-5

[177] Dragos Mihai Şerban. 2021. Demystifying NoOps: operational model, challenges and insights from the trenches. Master’s thesis. Eindhoven University

of Technology.

Manuscript submitted to ACM

https://doi.org/10.1145/3639475.3640104
https://doi.org/10.1016/j.jss.2021.110946
https://doi.org/10.1007/S10270-020-00777-7
https://doi.org/10.1007/978-3-319-61482-3_8
https://doi.org/10.1007/978-3-319-61482-3_8
https://arxiv.org/abs/2404.05427
https://arxiv.org/abs/2404.05427
https://doi.org/10.1007/S11042-023-14390-5

	Abstract
	1 Introduction
	2 Software Development in the era of AI
	2.1 The Impact of AI on the Developer Productivity and Experience
	2.2 The Impact of AI on Software Development Tools
	2.3 The Impact of AI on Collaboration Practices in Software Development
	2.4 Impact of AI on the Future Software Engineering Profession
	2.5 Impact on Software Engineering Education

	3 Human-centric Software systems in the era of AI
	3.1 From GUI to Intelligent AUI
	3.2 From Systems-of-Systems to Human-Centric Smart EcoSystems
	3.3 From NoOps to AIOps

	4 2030 Research Horizon
	4.1 Key Research Questions
	4.2 Crosscutting Concerns

	Acknowledgments
	References

