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Software development is a collaborative process that involves various interactions among individuals and
teams. TODO comments in source code play a critical role in managing and coordinating diverse tasks during
this process. However, this study finds that a large proportion of open-source project TODO comments are left
unresolved or take a long time to be resolved. About 46.7% of TODO comments in open-source repositories
are of low-quality (e.g., TODOs that are ambiguous, lack information, or are useless to developers). This
highlights the need for better TODO practices. In this study, we investigate four aspects regarding the quality
of TODO comments in open-source projects: (1) the prevalence of low-quality TODO comments; (2) the key
characteristics of high-quality TODO comments; (3) how are TODO comments of different quality managed
in practice; and (4) the feasibility of automatically assessing TODO comment quality. Examining 2,863 TODO
comments from Top100 GitHub Java repositories, we propose criteria to identify high-quality TODO comments
and provide insights into their optimal composition. We discuss the lifecycle of TODO comments with varying
quality. To assist developers, we construct deep learning-based methods that show promising performance in
identifying the quality of TODO comments, potentially enhancing development efficiency and code quality.
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1 INTRODUCTION

Software development involves not only the interaction between activities and software artifacts, but
also the interaction between developers. In addition to source code, natural language annotations
play a vital role in these two aspects [9]. TODO comments are extensively used by software
developers not only to manage their personal pending tasks but also to coordinate with other
developers [40, 55], thereby acting as a key mechanism to synchronize work among team members.
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For example, one of the most common usages of TODO comments is being dropped as a reminder
to add or delete features [12]. Some developers also use TODO comments as a request to check
for a potential problem. Developers might use TODO comments to specify testing requirements
for testers, or a code reviewer might leave TODO comments indicating pending tasks that the
code submitter needs to address. We refer to a TODO comment as “TODO’ and multiple TODO
comments as ‘TODOs’ in the rest of this paper.

TODOs are often introduced with code changes, which carry valuable information about code
changes that can improve the software quality, performance, maintenance, and reliability [40].
Ying et al. [71] identified the high frequency and widespread use of TODOs, and highlighted their
significance in communicating among developers. In modern software development, it is common
for teams to be distributed and composed of individuals from diverse cultural and educational
backgrounds. For example, when the TODO keyword gets flagged, every developer involved in
the software development process, regardless of their cultural or educational differences, knows
which controls need to be reactivated before the next round of updates. By embedding these clear,
actionable items directly in the code, TODOs provide a simple yet effective way to synchronize
work across the development team.

- throw new SecurityException("BCV is awesome, blocking write("

+ //TODO temporarily removed to fix #339
+ // a proper fix is to edit the smali disassembler
+ //throw new SecurityException("BCV is awesome, blocking write

(1) Good TODO comment

+ |* TODO fillme.

+ ¥/ (2) Bad TODO comment
+ package org.apache.ibatis.logging.log4j2;

Fig. 1. Examples of Good and Bad TODO comments

A well-written TODO with sufficient information is vital for code comprehension and
software evolution [40, 57, 71]. It can prompt the developers for incomplete tasks or remind
them to address existing issues effectively. Such an example is shown in Fig. 1 (1). It is natural for
developers to use such TODOs to record tasks that need to be completed in the short term. However,
in practice, there is a large number of TODOs that have existed in software repositories for months
or even years. Storey et al. [57] found in their empirical study that ‘many TODOs remain hidden
in the code for years’. Through tracking and analyzing TODOs in a large number of open-source
software repositories, we found that the average time from introduction to removal of a TODO
is 166.31 days. When developers revisit TODOs after a period of time, the quality of the TODOs
becomes critically important in facilitating a quick understanding of pending tasks.

Meanwhile, low-quality TODOs can severely impact the development and maintenance
of software [40, 54, 55, 57-59]. Such comments can make future changes or improvements to the
code more challenging to implement. When TODOs lack sufficient information, they introduce
ambiguity, hinder the timely completion of pending tasks, and complicate code comprehension and
maintenance. As TODOs persist in the codebase for extended periods, the negative effects of low-
quality TODOs on software development and maintenance become increasingly significant [22, 57].
An example of a “bad" TODO is shown in Fig. 1 (2). This TODO is too vague and lacks specific
details about the required tasks, making it difficult for developers to recall necessary actions and
their reasons. In light of the issues with low-quality TODOs, there is a pressing need for further
investigation and development in this area.
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However, as TODOs are written in natural language it is difficult to test their precision and
correctness. Writing high-quality TODOs and maintaining them is a responsibility mostly left to
developers. In software development, the notation and formatting of TODOs vary greatly. Some
developers opt to use their own personal style, while others choose to adhere to project-specific
conventions when writing TODOs [4, 57, 73]. Different TODOs are often embedded with different
information (e.g., features, time, and conditions) in semi-structured or unstructured form, making
it a complex task for ensuring and assessing TODOs quality in practice.

So far, most research has focused on TODOs with specific purposes, such as trigger-action
TODOs [41] and/or clear goals, such as detecting outdated TODOs [20, 55]). Assessing TODO
quality has seldom or never been investigated and is still an open research problem. First and
foremost, there is no standard definition of “good” or “bad” TODOs when it comes to
assessing TODOs quality. The absence of a clear definition for TODOs quality not only leads
to confusion and miscommunication among developers but also poses significant risks when
using existing techniques. Recent approaches [20, 41, 55, 70] collect various TODOs datasets from
OSS Projects for training and analysis. Unfortunately, these datasets could involve considerable
proportions of poorly written TODOs. This results in most automated tools artificially inflating
the precision of validation experiments and/or drawing invalid conclusions. There is currently
no quality assessment tool available to measure TODOs quality. This further complicates
the process of evaluating and improving the quality of TODOs. Therefore, it is beneficial for
developers as well as researchers to have a definition of what constitutes a “good” TODO and a
tool to automatically identify good TODOs.

To address this gap we first collected Top100 popular Java repositories (ranked by stars) on
GitHub. We then manually examined approximately 2,800 TODOs extracted from these repositories.
We summarized the different types of TODOs and defined and validated a series of criteria as
high-quality TODOs based on their types. The evaluation considers not just writing, but also
their clarity and utility to developers. Our analysis revealed that roughly 46.7% of TODOs in
open-source software projects are of relatively low-quality, underscoring the negative impact that
such comments can have on both software repositories and research efforts. Next, we conducted a
qualitative analysis of 600 high-quality TODOs to better understand the characteristics of well-
crafted annotations. We investigated the introduction and elimination of TODOs of varying qualities,
revealing practical implications and inspiring new perspectives on this research topic. Finally, to
aid developers in proactively recognizing poor quality TODOs, we developed a deep learning-based
tool to automate the recognition of well-written TODOs, which demonstrated strong performance
in our experiments.

This work makes the following key contributions:

o A set of novel criteria is proposed for evaluating the quality of TODOs, customized for task
based TODOs and notice based TODOs. This criteria provides a structured framework for
assessing TODO quality across different contexts;

e Through an in-depth analysis of TODOs of varying quality, we proposed a taxonomy that
links TODOs to nine developer activity types and four purpose categories.

e We manually labeled 2,863 TODOs by our quality criteria and created the first large dataset
regarding TODO quality;

e We developed a high performing deep learning-based classifier to aid developers in proactively
improving TODO quality.

As the first attempt at assessing TODO quality, we hope our research facilitates other researchers
and practitioners to improve our approaches. We have released our dataset and source code [1].
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The rest of this paper is organized as follows. Section 2 reviews key related work. Section 3
describes the details of our research approach. Section 4 presents the results of our study and
Section 5 provides a discussion of implications for research and practice. Section 6 discusses the
threats to the validity of our work, and Finally, Section 7 concludes the paper.

2 RELATED WORK
2.1 TODOs Management in Software Engineering:

Despite the fact that TODOs are widely used by developers, the research works focused on managing
TODOs are still limited. Empirical studies conducted by Storey et al. [57] found that the use of
TODOs varies from individuals to teams, and the incorrect way of managing TODOs can lead to
software maintenance issues. Nie et al. [40] proposed several techniques for comment and program
analysis to support TODOs as software evolves. After that, they presented a framework called
Triglt [41], designed to specify trigger action TODOs in executable format. These actions are then
automatically executed when their corresponding triggers evaluate to true. Sridhara et al. [55]
proposed a rule-based method for identifying outdated TODO comments. Following that, Gao et
al. [20] proposed a neural-network based model, named TDCleaner, to remove obsolete TODOs
by mining histories of software repositories. Mohayeji et al. [39] investigated the impact of the
TODO Bot on software development practice by analyzing 2,280 repositories on GitHub. Yasmin et
al. [70] collected comments tagged with “TODO”, “FIXME”, or “XXX” from five popular Apache
open-source software projects. They investigated the existence and characteristics of duplicate and
near-duplicate SATD comments by mining the commit history of a software project.

In order to facilitate the management of TODOs, a series of tools have also been developed.
Innobuilt Software developed an online tool, named imdone [33], to extract and track TODOs by
creating and updating issues on GiHub or JIRA!. Similarly, todo_or_die [54] is an online tool for
keeping TODOs up-to-date by assigning a date and breaking upon outdated TODOs executions.
TODO Bot [25] is a GitHub application that automates the process of converting TODOs into issues.
These tools indicate the industrial focus on refining TODO management.

Previous studies thus confirm that TODOs play an important role in communication among
developers, but no prior work has investigated what is a good TODO comment and how to craft a
good one.

2.2 Self-admitted Technical Debt in Software Engineering:

Technical debt (TD) occurs when developers opt for suboptimal solutions to achieve short-term
goals, potentially compromising the long-term quality of software [29]. Code comments with
TODO, FIXME or XXX tags are often used to represent instances of Technical debt (TD). Building
on the concept of TD, Self-Admitted Technical Debt (SATD) [45] is a subset where developers
intentionally introduce suboptimal code implementations and document by code comments. Many
scholars have conducted research on the impact of SATD on software development [26, 51, 62] and
SATD practice [4, 16, 65, 73]. For example, Wehaibi et al. [62] observed that although SATD typically
results in more complicated code changes, changes with SATD tend to yield fewer defects in the
future compared to changes without SATD. This finding highlights the significance of identifying
and addressing SATD to reduce the occurrence of code defects. Russo et al. [51] pointed out that
the presence of SATD may affect the security of software. To study where SATD will be introduced,
Fucci et al. [16] analyzed 5 Java open-source projects and found that SATD was mainly introduced
through code changes and code reviews.

Ihttps://www.atlassian.com/software/jira
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In order to identify TD , many prior works have attempted to utilize various data sources. For
example, Zazworka et al. [76] and Nord et al. [42] identify SATD through source code. More studies
are focused on identifying SATD through code comments [24, 26, 37, 48]. For example, Huang et
al. [24] utilized feature selection to select useful features to build classifiers that could identify
SATD comments in target projects. Ren et al. [48] build a CNN-based model to determine whether
a comment indicates a SATD. Yan et al. [68] proposed to utilize the features about code changes to
just-in-time detect SATD.

In addition to these studies, there are also some research dedicated to studying the removal of
SATD [36, 74, 75]. da Silva Maldonado et al. [36] discovered that the original authors often remove
a considerable amount of Self-Admitted Technical Debt (SATD). Following an analysis of how
SATD removal correlates with code changes, Zampetti et al.[74, 75] introduced SARDELE, a deep
learning classifier designed to suggest one of six strategies for SATD elimination.

Existing research has significantly explored the impact, practice, identification and management
of SATD. However, our study specifically focuses on the quality of TODO comments, a prevalent
form of SATD in software development. We also proposed an automatic classifier designed to assess
the quality of TODO comments. This tool could help to prioritize and address TODO comments
effectively, thereby enhancing code maintainability and reducing technical debt over time.

2.3 Comment Quality in Software Engineering:

Comments are considered as one of the important artifacts for understanding software systems.
Previous studies have demonstrated that high-quality comments can support software comprehen-
sion, bug detection and software maintenance tasks [10, 59]. Assessing code comment quality has
gained a lot of attention from researchers recently [27, 56, 80].

Various studies conducted surveys with developers to identify good comment attributes. Chen et
al. [6] surveyed 137 developers and highlighted several important quality attributes (i.e., adequacy,
complete, traceability, consistency, and trustworthiness). Similarly, Plosch et al. [44] interviewed
88 practitioners and identified consistency, clarity, accuracy, readability, organization, and under-
standability as the most important attributes. Several works have further proposed techniques to
automatically assess code comment quality from different aspects. For example, Khamis et al. [27]
assessed the inline comment quality using a heuristic-based approach. Steid et al. [56] used a
machine-learning method to assess the documentation comment quality in terms of four quality
attributes, i.e., consistency, coherence, completeness, and usefulness. Zhou et al. [80] proposed a
heuristic and NLP-based approach to check incomplete and incorrect code comments.

All of the previous studies focus on the quality of explanation comments [22], which describes
the functionalities of the related code. The TODO comment is a different comment type [71] which
describes pending tasks untouched. The quality of TODOs has never been investigated. Different
from assessing the general code comment quality with different quality aspects, our work first
investigates the quality of TODO comments and develops a tool to automatically evaluate the
quality of TODOs.

3 STUDY DESIGN

This study aims to fill the gap of lack of understanding and assessing TODOs quality in practice.
To achieve this, we explore the quality of TODOs from their distribution, characteristics, life
cycle status and automatic assessment. Our study attempts to answer the following key research
questions:
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(1) RQ1: What is the prevalence of different quality TODOs in software artefacts? Despite
the widespread use of TODOs in open-source software repositories, overall quality of TODOs
across repositories remains unknown.

(2) RQ2: What are the characteristics of different quality TODOs? We have summarized a
set of criteria to distinguish TODOs of different quality at a high level. Further, We want to
identify a set of characteristics for high-quality TODOs, and conversely characteristics of
low or insufficient quality TODOs. This will guide developers on the key aspects to focus on
when composing high-quality TODOs across various scenarios, emphasizing the relevant
content for each situation.

(3) RQ3: What disparities arise in the management and maintenance of TODOs with
varying quality in practice? How do TODOs evolve in practice, do higher quality TODOs
get actioned more frequently, when do low-quality TODOs occur, and how could TODOs
quality be improved? The findings of this research question also prompted us to explore the
fourth research question.

(4) RQ4: To what extent is it feasible to automatically detect high-quality TODOs?
Automatic detection of TODOs would assist practitioners in proactively improving the
quality of their TODOs. It would assist researchers in more effectively filtering out low-
quality TODOs and mitigating the introduction of such threats. Meanwhile, high-quality
TODOs would have the potential to make developers more willing to solve them, thereby
reducing technical debt and improving code quality. Those studies related to TODOs can also
utilize our work to mitigate the threats posed by data quality issues.

We employ a combination of qualitative and quantitative research methods to answer these
research questions. We collected and extracted TODOs from a set of open-source software reposi-
tories. An overview of our approach is illustrated in Figure 2, which summarizes the overview of
our study. The selection of software repositories, data extraction, and data processing are described
in Section 3.1. To answer RQ1, we established a set of criteria for defining high-quality TODOs and
analyzed the quality of TODOs in open-source repositories based on these criteria. Our method
for identifying good TODO:s is described in Sections 3.2 and 3.3. To answer RQ2, we developed a
taxonomy to present the characteristics of different types of TODOs, as detailed in Section 3.4. To
answer RQ3, we tracked the introduction and removing of TODOs using a specific method, detailed
in Section 3.5. Finally, to answer RQ4, we developed a deep learning-based model to automatically
classify TODOs, as detailed in Section 3.6.

3.1 Data Preparation

To study the criteria and characteristics of high-quality TODOs, we collected a large number of
TODOs from recognized popular open-source repositories. We assumed that the proportion of high-
quality TODOs in these repositories is higher than in less recognized repositories due to the caution
exercised by their developers when committing code changes. Different programming languages
may result in language specific content within some code comments, and different programming
languages may have different impacts on code quality [2, 47]. To avoid these biases, we limited our
selection to repositories written in the Java programming language. According to the Octoverse
report of GitHub [21], Java language ranks among the top 5 most popular programming languages.
Similar to previous studies [60, 72, 77], we started with the Top100 Java repositories from GitHub
sorted by their number of stars. Repositories like “LeetCodeAnimation”, “advanced-java" are then
removed because their evolution is different from practical software systems. These repositories
are usually open-source projects for tutorials.
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Fig. 2. Overview of our approach

Some open-source projects do not allow code containing TODOs to be submitted to GitHub [4],
and some developers are unwilling to expose TODOs on open-source platforms [57]. Hence, some
open-source repositories do not include TODOs in the source code published to GitHub, and these
repositories also need to be removed. For each repository, we extracted all the commits from the
history up to December 2022. The corresponding code change (generated by the “git diff" command),
commit message, and commit link for each commit are also extracted. Then we iterated through
all diffs and used heuristic methods to match and obtain commits involving TODOs. Once a code
change (represented by diff text) includes the keyword “TODO” within its code comments, we
keep the corresponding commit for that code change. In this way, the commits containing TODOs
can be collected. The duplicated data pairs of code change and TODO are removed. In order to
reduce the influence of noise data, the non-English and merge commits are all removed. Finally,
the repositories with no remaining commits are all excluded. After applying these filters, a total of
53 open-source software repositories were retained for our analysis.

We constructed datasets that introduce TODOs and eliminate TODOs based on heuristic rules.
In our examination of the collected commit diffs from these 53 repositories, if a TODO line starts
with a “+”, we added that commit to the TODO-introduced dataset; conversely, if a TODO line
begins with a “-”, we included that commit in the TODO-eliminated dataset. The TODO-introduced
dataset is the main analysis object for RQ1, RQ2 and RQ4. It is also the dataset used to train the
classifiers. Please note that TODOs in the TODO-introduced dataset are not all TODOs in these
repositories. The TODO-eliminated dataset is used to track the life cycle of TODOs in RQ3. Finally,
we obtain 2,863 <commit, TODO> pairs in TODO-introduced dataset and 3,313 <commit, TODO> pairs
in TODO-eliminated dataset, respectively. It can be seen that the TODO-eliminated dataset is bigger
than the TODO-introduced dataset. The reason is that the TODO-eliminated dataset includes many
TODOs from branches other than the “master” branch. To prevent potential bias, our analysis of
the life cycle of TODOs (See Section 3.5) only focuses on determining whether the TODOs within
the TODO-introduced dataset are subsequently resolved in commit history.

3.2 Criteria for High-quality TODOs

The quality of TODOs in source code varies greatly, and these TODOs can have varying impacts on
repository contributors. However, there is currently no industry or academic standard for defining
high-quality TODOs due to their wide variation in style and content. Therefore, we established a set
of criteria for identifying high-quality TODOs before analyzing their quality, characteristics, and life
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cycle in open-source software repositories. The criteria were developed based on an exploration of
developer forums, a detailed manual analysis of data, and validation by experienced developers. The
first two detailed procedures are outlined in the following paragraphs, and the details of developer
validation are described in section 3.3.

In order to obtain insights into what makes high-quality TODOs, we first reviewed papers related
to TODO comments and task annotations. Firstly, we searched for literature related to “TODO
comments” on Google Scholar and read articles in the field of software engineering related to
TODOs. Due to the lack of research on TODO quality, we further expanded our scope and instead
searched for literature related to technical debt, using a snowball strategy to search for relevant
papers as much as possible. We have reviewed a total of 33 papers. Unfortunately, most papers do
not provide a description of this aspect, but the maintenance of TODOs is a common research topic
in the papers. Therefore we turned to search engines to seek practical perspectives. We utilized
“good TODO comment” and “TODO comment guidelines” as initial queries in Google and Bing
search engines, and manually checked the Top50 results for each query. It is important to note
that our search process extended beyond these queries, encompassing manual filtering of search
results, viewing of the links within the searched web pages, and exploration of additional resources
suggested by search engines. We selected the links that mentioned the quality of TODO comments
(links are included in the replication package). Through qualitative analysis of the content in these
web pages, we observed three most commonly mentioned criteria: 1) Use a fixed format (begin
with “TODQ"); 2) The description is clear enough for developers to understand the context; 3)
Specify an actionable task. In the website records, we manually checked and the probability of these
three criteria being mentioned are 67%, 76%, and 48%, respectively. Although the first standard is
not mentioned the most frequently, it can be said that this standard is a common practice among
programmers. The latter two criteria can be summarized as “has a clear description of an actionable
task".

Many insights on developer forums may reflect an ideal situation. In practice, the behavior of
developers may deviate from these statements. A previous study [40] analyzed hundreds of TODOs
and found that not all of them contain specific tasks. They divided TODOs into three categories:
task comments, trigger-action comments, and question comments. Obviously, not all TODOs in
open-source repositories specify concrete tasks, and there are also some TODOs that are concerned
about potential issues and optional implementation. In order to include these criteria summarized
above, we borrow their insights [40] and classify the form of TODOs into two categories:
“Task TODO" and “Notice TODO". If a task needs to be done is described in the TODO, it is
a Task TODO. Otherwise, the TODO is labeled as Notice TODO. We randomly sampled 200
<commit, TODO> data pairs from the TODO-introduced dataset (described in Section 3.1). The first
two authors of this study carefully read all the samples and summarized the criteria for identifying
high-quality TODOs. Based on our preliminary investigation and the personal understanding, the
first two authors labeled the 200 samples independently, categorizing each into one of the four types
(i.e., “Task Good", “Task Bad", “Notice Good", “Notice Bad"). Then the third author reviewed the
different parts of labels and discussed with the first two authors to reach a consensus. Through this
approach, the scope boundaries among categories can be clarified. Finally, we define two criteria
for identifying high-quality TODOs:

e Among Task TODOs, a high-quality TODO should clearly describe a specific task which is
actionable for stakeholders. The content about “what task” and “how to do” need to be
clear and unambiguous. The task is often written in the form of “verb+object”.
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Table 1. Examples for different quality of TODOs

Category Examples
TODO (cushon): switch to hostJavaToolchain after cl/118829419 makes a blaze release
Task Good
TODO: Explicitly add testing for these versions that validates that starting the node
after upgrade fails.
Task Bad TODO (b/159359614): enable

TODO: do something else with this anyway

TODO: we can only conditionally execute type checks if the cast value is not used
Notice Good later on. if there is a cast then the cast value is going to be used in a method guard.

TODO: this assumes that the CWD of the Maven process is the plugin ${basedir},
which may not be the case

Notice Bad TODO: https://issues.jenkins-ci.org/browse/JENKINS-53788 (JDK11 issue on CI)

TODO: 5390 port size(FIXED_SIZE);

e For Notice TODOs, a high-quality TODO should clearly describe what is happening. Then
it should convey a problem or a potential task that requires additional attention or even
coding from stakeholders.

The stakeholders here could be developers themselves or other developers, testers, reviewers,
or even project managers. For example, some TODOs may be assigned to testers for additional
testing, to some engineers who need to update documentations according to the code changes, or
to reviewers for attention on a particular implementation. In addition to the above two criteria,
some TODOs provide trigger conditions and justifications. These contents are considered as
sufficient conditions rather than necessary conditions in our evaluation.

For a clearer understanding, two forms of TODOs with different qualities are listed in Table 1.
Given a TODO, we first determine whether it explicitly specifies a specific task. The first example
in the table shows a Task TODO with a trigger condition. It indicates that the pending task “switch
to hostJavaToolchain” needs to be completed after “cl/118829419 makes a blaze release”. In some
cases, many Task Bad TODOs explicitly indicate the need to perform a task. However, the task
itself is very vague, often only represented by one verb. For example, consider the third case in
the table. During our manual analysis of 200 samples, 30.8% of the disagreements pertained to this
kind of example. Some TODOs that did not describe a concrete task were initially classified as
Notice TODO. After discussions to resolve these disagreements, we clarified that Notice TODOs do
not specify a task within the content of the TODO. Developers typically point out the issues or
considerations, including descriptions of potential issues, suggestions for performance improve-
ments, or comments during code reviews. Meanwhile, the information it provides is sufficient for
developers to understand the potential task. For example, “TODO: can we avoid CCE here? Can
we make the exception message better? See issue #1551” is a TODO from “mockito/mockito” (13.9k
stars on GitHub). This TODO indicates that the code snippet here is related to the issue #1551
and two questions have been raised to provide possible directions for work. Therefore, the TODO
is considered to not clearly indicate what task and how to do it. Although there is no specific
explanation, developers will quickly understand that the potential task is to fix issue #1551 to avoid
ClassCastException or optimize the exception message. However, the creator of this TODO was
not sure if it was feasible. This example is considered as a Notice Good TODO. Similarly, the fifth
and sixth examples in Table 1 describe some existing problems. Although no task was specified,
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developers are capable of deciding the next step based on their experience. In addition, as shown
in the seventh case, TODOs that only contain an external issue link are considered low-quality.
The use of an external issue tracking system is a good practice in project management, but the
external link cannot be used as a standalone TODO. A high-quality TODO should provide sufficient
information for developers to quickly understand the tasks to be completed. Moreover, during
long-term software maintenance, the content pointed to by external links may be deleted, merged,
or moved. This will make such TODOs unreliable.

3.3 Manual Classification of TODOs

In total, three programmers (the first three authors of this paper) with more than 6 years industrial
experience in Java programming participated in the closed coding procedure. The coders manually
classified the TODO-introduced dataset, which consists of 2,863 <commit, TODO> pairs. The detailed
steps are as follows:

Step 1. Individual classification. The first two authors of this study read the data independently.
Each coder reads the TODOs and related information about commits (i.e., commit message, diff).
Each pair is categorized into one of the four TODO types: “Task Good”, “Task Bad”, “Notice Good”,
“Notice Bad”. On average, the two authors spent 50.2 hours completing the labeling of 2,863 pairs
of data. After labeling the TODOs, Cohen’s kappa coeflicient of agreement [8] between the two
authors was 80.28, which indicates a high degree of consistency.

Step 2. Discuss and merge conflicts. Then we merged conflicts by clarifying the misunder-
standing. After individual classification, the third coder merged the primary results of the first
two coders. Regarding the TODOs labeled differently, the first two coders explained the reasons
for their respective labels. If the two cannot reach an agreement, the third coder proceeded with
arbitration. All the authors participated in all rounds of the discussions and resolved the raised
conflicts on data labeling. The discussion lasted for about two hours. During the labeling process,
we found many demonstrative pronouns in TODOs. If we can easily infer the specific object or
scope referred to from code change, we believe the “object” is also clear enough. Similarly, we
treated some common sense content the same way. Given the high workload and tight deadlines
commonly encountered by developers [28, 38], we believe it is reasonable to adopt the above two
considerations that reflect these practical constraints.

To further validate the labels, we recruited experienced engineers to gain insights into practi-
tioners’ perceptions of TODO quality. We launched a recruitment post on the internal forum of
Zhejiang University. The post provided the approximate task information, its duration, and specific
requirements for participants. Participants are required to have more than 5 years of industrial expe-
rience in Java development and good annotation habits in daily development. Each participant will
be paid 75 Chinese Yuan. The compensation is slightly higher than the average level in the forum,
with the aim of better attracting experienced developers. In the end, we successfully recruited 10
engineers. These participants are employed at various leading technology companies (e.g., Huawei,
Alibaba, and NetEase), bringing diverse industrial perspectives and experiences to the research.
They possess an average of 7.1 years of industrial experience in software development using the
Java programming language. Similar to some previous studies [17, 18, 66, 67], we first randomly
selected 50 samples from our prepared dataset for the participants to evaluate. This sample size was
chosen primarily to avoid participants from impatience. Otherwise, they may blindly answer some
questions and introduce bias into the results. For the participants, we first provided guidance and
examples to help them understand their task. Subsequently, each participant classified each sample
into one of four TODO types. For each commit, participants were able to read the code change,
commit message, and the corresponding TODO. However, they were forbidden from discussing
with each other or making joint decisions. The purpose is to prevent mutual influence among
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participants, thereby ensuring the objectivity of the data collected. The participants consumed
an average of 28.4 minutes, and their results had an average consistency of 75.6% with our labels.
This indicates that developers substantially agree with our labels. Additionally, We further use the
Fleiss Kappa [14] to measure the agreement between the 10 developers. The Fleiss Kappa value of
their labeling results was 64.36%, which indicates substantial agreement.

3.4 TODO Quality Characteristics

After identifying different quality data in different forms of TODOs, we explored the key character-
istics of these and provide insights into their optimal composition. Task TODOs and Notice TODOs
have different emphasis on conveying information. Task TODO focuses on describing the actions of
a task. The focus of Notice TODO is to describe the motivation or expected correct state of the task.
Therefore, we selected TODO samples from these two major categories for further investigation.
We randomly sampled 150 TODOs labeled “Task Good", “Notice Good", “Task Bad”, and “Notice
Bad”, respectively. The classification criteria for these data is based on our two hypotheses described
in Section 3.2, and they have been carefully labeled and manually validated. Similar to a previous
study [60], we attempted to explore the subcategories of TODOs and their characteristics through
thematic analysis. Considering that high-quality TODOs offer more comprehensive information
related to pending tasks, we firstly concentrate on performing thematic analysis on high-quality
TODOs.

For each “Task Good" and “Notice Good" category, we conducted a thematic analysis according
to the following steps: (1) The coders carefully read all sampled TODOs to understand what tasks
these developers want to coordinate within them. Through their initial review of all TODOs, the
coders were able to gain a general overview of the writing manner and a rough distribution of
tasks involved in these TODOs. (2) By induction, the coders generated several initial codes that
reflected the observed patterns and variety of tasks identified in these sampled TODOs. The coders
rechecked every TODO, and if necessary, read the commit that introduced the TODO to obtain
more context. For each TODQO, the coders classified it into an initial code. (3) Then the coders
organized and summarized the existing codes. At this stage, the coders considered how to combine
them to form an overall theme. (4) After obtaining the initial set of themes, the coders reviewed
all the TODOs under each theme again. The boundaries of each theme become clear with similar
themes being merged.

For low-quality TODOs, we attempted to classify them based on the themes derived from
the analysis of high-quality TODOs. When encountering TODOs with ambiguous meanings, we
carefully examined the associated code changes and commit messages to gain a better understanding
of them. For those TODOs that remained unclassified, we proceed to create new themes for them.
Through analysis of low-quality TODOs, we can also gain insights into the development practices
associated with low-quality TODOs.

In our thematic analysis, samples labeled as Task TODO and Notice TODO were assigned to two
authors (author 1&2 for Task TODO, author 1&3 for Notice TODO), respectively. After the two
coders independently completed the above steps, a discussion was held to resolve the conflict. Then
they revisited all the data and adjusted the themes. This process went through a total of two rounds
to determine the final theme. Through thematic analysis of 600 samples, we are able to understand
the approximate task types that developers need to annotate with “TODQ". It also highlights the
key patterns in different types of TODO.

3.5 TODO Lifecycle Analysis

To answer RQ3, we tracked the life cycle of TODOs with different labels. In Section 3.1, we
constructed the TODO-introduced dataset and the TODO-eliminated dataset with data in the
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form of <commit, TODO>. We only investigated the data in the TODO-introduced dataset that were
removed in latter evolution. Given a <commit;, TODO;> pair in the TODO-introduced dataset, we first
matched its corresponding removed pair (referred as <commit,, TODO,>) from the TODO-eliminated
dataset according to the following heuristic rules:

e Rulel: The comment of introducing TODO TODO; and the elimination TODO TODO, should
be the same;

e Rule2: TODO; and TODO, are from the same project;

e Rule3: TODO; and TODO, are from a file with the same name;

e Rule4: commit; is committed earlier than commit,;

The reason for the fourth rule is that some revert commits cause the removal of TODO happening
earlier than the introduction of TODO. We cannot consider such TODOs as being addressed. Please
note that if the file where a TODO is located has been renamed, our algorithm can not determine
whether the TODO in commit; and commit, is the same one.

For every data pair in the TODO-introduced dataset, we searched <commit,, TODO, > from the
TODO-eliminated dataset to see if it can be matched using the above four rules. Once TODO; is
matched with TODO,, it means the TODO; introduced in commit; is removed in the subsequent
reversion commit,. We collected all these removed TODOs for later analysis. Once a TODO is
removed, we consider that it has been resolved in the corresponding commit or has been resolved
before, becoming an obsolete TODO and being cleaned up. However, this assumption is not always
true in practice, a number of TODOs are removed for cleanup purposes without addressing them
properly. In order to further eliminate bias, the first two authors manually checked each removed
TODO to see if it is genuinely addressed or removed for clean-up purposes. The code change and
commit message of each commit,, and the source code of the corresponding version when removing
TODO were inspected by the two authors respectively. Then, further discussion was conducted
regarding the different opinions of the two individuals to reach an agreement. Additionally, when
multiple identical TODOs appear in one file, our matching rules can cause mismatch. If only a
portion of TODOs are removed, incorrect matching will result in errors. Therefore, we also check
for the occurrence of this situation during manual inspection. We found that 10.7% of the commit,
have duplicate TODOs. But all these TODOs were removed simultaneously in the commit history.
For example, “TODO: remove try/catch block when compacting encrypted Realms is supported” is
a TODO from “realm/realm-java" (11.4k stars on GitHub). This TODO appeared twice within
the same file. The developer removed both TODOs in a single commit with a commit message
stating, “Removing the restriction of compacting encrypted Realm files.” After lifting the restriction
on compacting encrypted Realm files, the developer deleted these TODOs altogether. Therefore,
we only record it as one removal when we count the number of removed TODOs. As for the other
statistical data we will soon mention later, this situation has no impact.

Finally, all the removed TODOs are classified into two groups: unresolved TODOs (TODOs that
are removed without addressing them) and resolved TODOs (TODOs that are removed because
being addressed). The life cycle information of the TODOs were parsed, including:

(1) Resolved Proportion. Resolved% = (the number of resolved TODOs / the number of all
TODOs of this type);

(2) Unresolved Proportion. Unresolved’% = (the number of unresolved TODOs /the number
of removed TODOs);

(3) Time-interval between introduction and resolved. Time-Interval = (commitTime, —
commitTime;);
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(4) The number of commits experienced, #Commits = DFS (commitNode,., commitNode;),
where DFS is a Depth-first search algorithm, commitNode, and commitNode; are the commit
node in the commit history (as a tree structure).

3.6 Automatic TODO Classification

A well written TODO can help developers quickly understand the tasks they need to complete
and the points they need to pay attention to. This helps reduce the time it takes for developers to
recall the context when checking legacy TODOs, thus improving development efficiency. Further,
according to the results of RQ3 (Please refer to Section 4.3 for details), the developers are more
willing to first address high-quality TODOs. Therefore, we hope to build a tool to help identify
high-quality TODOs. This will potentially improve the quality of TODOs written by developers
and also save developers’ effort by prioritizing which TODOs to address first. The existence time
and impact of technical debt in software repositories would be reduced, resulting in improved code
quality. In addition, for research related to TODOs, this tool can help mitigate the bias caused by
the quality of TODO:s.

Finally, in order to answer RQ4, we developed a deep learning-based approach to automatically
identify high-quality TODOs. When defining the criteria for identifying high-quality TODOs, we
found that TODOs in our examined open-source software repositories can mainly be divided into
two forms, e.g., Task TODO and Notice TODO. Therefore, we built two classifiers. The first classifier
is to determine whether a TODO is a Task TODO or a Notice TODO. A second classifier is applied
to identify high-quality TODOs of each type.

Experimental Data: In the previous stages, the TODO-introduced dataset has been carefully
labeled and validated by experienced programmers. Therefore, we chose this dataset to train and
test our classifiers. Due to the presence of some noisy tokens in TODOs, such as issue id, creator’s
information, etc. Therefore, we further cleaned TODO comments to avoid the influence from these
noises. We first merged multiple lines of TODOs to form a complete paragraph. Some programmers
may mark their identity or contact information at the beginning of the TODOs, while others record
the TODO related external link there. For example, “TODO(b/20335397): This code was relying on
Bitmap equality which Robolectric removed". Therefore, we replaced the content in parentheses
with “<info_tag>". We also replaced some TODO content with placeholders. Specifically, we
replaced commit id with “<commit_id>", and replaced issue id or pull request id like “#3072” with
“<link_id>". Finally, the processed TODOs are tokenized with white spaces and punctuation.

In order to make the classifier better learn the correlation between TODOs and code imple-
mentations, we use the code changes as one of the corpus for classifier learning. We carefully
followed the cleaning steps for code changes in the study from Gao et al. [20]. The code changes
are characterized by diff, which can be generated by the git diff command in Git. The diff header
was deleted and the commit id was replaced with “<commit_id>". Then we converted the diff into
lowercase and tokenized it with spaces and punctuation. In this way, we obtained the cleaned
TODOs and their corresponding code changes for model training and inference.

TODO Classifiers: At present, many effective methods have been proposed for code document
classification [69]. Our purpose is to explore the possibility of high-quality automatic identification,
so we constructed classifiers based on deep learning algorithms. We selected some machine learning
based methods and deep learning based methods with CodeBERT [13] to construct our classifiers.
Some previous studies [5, 11, 13, 30, 46] have shown the effectiveness of CodeBERT for encoding
code documentation. CodeBERT is a transformer based model which is pre-trained with functions
and corresponding natural language descriptions. It can help capture and represent the semantics
of TODOs in classifiers. In addition, we also utilized the NLTK library [34] to construct a baseline
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Fig. 3. Structure of deep learning-based classifiers

based on part-of-speech analysis. This baseline classifies samples by determining whether there is
a "verb+object" form in TODOs.

For machine learning based classifiers, we first used CodeBERT to embed every TODO into
a fixed length vector. We adopted some widely used methods in machine learning, including
Multinomial Naive Bayes algorithm [53], Logistic Regression [61], Multi-Layer Perceptron [50],
K-Nearest Neighbors [43], Random Forest [3], and Gradient Boosting Machine [15] The vector
representations of TODOs are used as input for training and testing of these machine learning
based algorithms. For each input TODO, these machine learning algorithms output a probability
distribution and decide the classification result.

For deep learning based classifiers, we used two CodeBERT components as the encoder for the
TODOs and diffs, respectively. Due to the possible correlation between source code, code comments
in diffs and TODOs, we also consider diffs as one of the inputs during model construction like some
previous studies [20, 31, 32]. The output matrix of the two encoders then are concatenated as a
separate matrix. This concatenated matrix is input as a joint representation of TODO and source
code into different components to form different classifiers. In specific, we constructed a component
based on double-layer Bi-LSTM [52] and a component based on TextCNN [7, 78], respectively.
Through this component, our models are able to learn the implicit correlation between TODO and
code implementation. Finally, the output of this component is sequentially passed through a Linear
layer and a Softmax layer. The models determine the classification results based on the probability
distribution of the final output. Figure 3 shows the structure of our proposed TODO classifiers.

To ensure fairness in comparison, we use CodeBERT to represent all the input as a vector with a
length of 768. The max length setting of the CodeBERT tokenizer is set to be 512. We perform Grid
Search to ensure reasonable parameter selections as much as possible. For the deep learning based
classifiers, we use AdamW [35] optimizer algorithm to optimize our network. All the experiments
are conducted on a Ubuntu 20.04 server with two Nvidia GeForce RTX 3090 GPU and 24G memory,
and 20 cores 3.7GHz CPU and 32GB memory.

4 RESULTS

We present the results of our study that answer our four research questions. Section 4.1 discusses
the quality distribution of TODOs in the open-source software repositories. Section 4.2 describes
our classification of TODOs. Section 4.3 discusses our analysis of the lifecycle of TODOs. Finally,
Section 4.4 discusses the performance of our constructed machine learning-based classifiers.
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Table 2. Counts of Different Categories in the
TODO-introduced dataset

Category Count Proportion
Task Good 1,024 35.77%
Task Bad 681 23.78%
Notice Good 495 17.29%
Notice Bad 663 23.16%
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Fig. 4. Distribution of different types of TODOs in top-10 projects

4.1 RAQ1: Quality Distribution of TODOs

We manually labeled a TODO-introduced dataset based on the criteria we summarized (Section 3.3).
This TODO-introduced dataset contains 2,863 pairs of data from 53 popular GitHub repositories.

Firstly, we present a category distribution for all 53 projects. The final results of our manual
classification are presented in Table 2. The distribution shows that Task TODO accounts for
59.55% of TODOs. What is not mentioned in opinions from developer forums is that many TODOs
do not specify a task to be completed (40.45% in this dataset). These TODOs may be used for
communication, problem confirmation, or other purposes. More details of these categories can be
found in Section 4.2. In addition, we can see that for Task TODOs, low-quality TODOs account
for 39.9%. In contrast, for Notice TODOs, the low-quality TODOs account for 57.3%. This
means that there are a large number of TODOs that are considered low-quality, and developers
cannot obtain enough information based on TODOs to understand the pending tasks. Especially
when the TODO creator does not state specific tasks, the problem of low-quality TODOs becomes
even more severe. This also indirectly demonstrates the potential threats in current research using
TODOs for data analysis and model construction.

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2023.



111:16 Wang et al.

In order to gain better insights into the quality distribution of TODOs based on project granularity,
we further selected the projects with the top 10 TODO quantities. Figure 4 shows the distribution
of different types of TODOs in the 10 projects. We can see that the distribution of these four types
of TODOs varies among different open-source software repositories. In the ten projects, the ratio
of Task Good TODOs varies from ca. 21% to ca. 65%, while the ratio of Notice Good TODOs
varies from ca. 8% to ca. 25%. In addition, we merged high-quality types of TODOs and recalculated
the proportion. The portion of High-quality TODOs in the ten projects varies from ca. 38%
to ca. 82%. This phenomenon indicates that even in these popular software repositories on GitHub,
the distribution of TODOs quality varies greatly in project granularity. Some project contributors
may have reached a certain consensus on the quality of the code documentations, so they will pay
more attention to the quality of TODOs. For example, the proportion of high-quality TODO in
the ExoPlayer repository (20.7k stars on GitHub) has reached 82%. Some projects may overlook
the importance of TODOs, leading to the existence of a large number of low-quality TODOs. As
shown in Figure 4, the proportion of high-quality TODOs in mockito repository is only 38%. As we
mentioned earlier, many scholars utilize information about TODOs and its corresponding source
code to build and train their tools. However, when the quality of TODO is low, they may learn or
extract incorrect mapping relationship, a major threat.

Summary for RQ1: Low-quality TODOs constitute a notable portion of open-source software
projects. Out of the 2,863 TODOs examined in our study, 46.94% TODOs are of low-quality and
need further improvement.

4.2 RQ2: What makes high-quality TODOs

RQ2 explores the characteristics of different quality TODOs. After labeling TODOs of different
types and qualities, we employed thematic analysis to analyze TODOs across various subcategories.
Specifically, Task TODOs focus on describing specific tasks, and Notice TODOs do not explicitly
state the action but stakeholders can easily understand potential tasks. We identified the types
of task described in Task TODOs and the purpose of Notice TODOs. Table 3 shows the overall
prevalence of TODOs across various subcategories with different quality levels. We then presented
the various types of Task TODOs and Notice TODOs, respectively. The detailed characteristics and
the optimal composition about each category, and its relevant cases are introduced subsequently.

4.2.1 Task TODOs. We identified nine categories of pending task described by Task TODOs. These
task types basically cover the activities that programmers will engage in during the development
and maintenance process. This also demonstrates the widespread use of TODOs in program
development, highlighting their importance.

(1) Feature Request: This subcategory requests the implementation of a new feature, function,
or program logic, and is the most common Task TODOs type. For example, “TODO support
re-consumable for HYBRID FULL resultPartitionType.”. Many low-quality TODOs of this
subcategory only contain one verb. For example, “TODO implement” and “TODO add”.

(2) Remove Workaround: These Task TODOs mean that the relevant code change is a tempo-
rary solution introduced for a certain goal like defect repair and performance improvement.
Therefore, developers need to replace the workaround with a formal solution in the future.
The scope of the workaround and triggering conditions are clearly defined. For example,
“TODO(b/30281236): Remove the flag after deprecation.”. However, the low-quality TODOs
of this task type often do not accurately indicate which relevant code snippets need to be
removed, such as “TODO remove me” and “TODO remove this”.
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Table 3. Subdivision Categories of Different Forms of TODOs

TODO Category Proportion

High-quality Low-quality

Feature Request 30.7% 34.0%

Remove Workaround 20.0% 16.7%

Re-enable Commented Code 12.0% 10.0%

Task TODO Refactoring 11.3% 10.7%

Bug Fix 9.3% 12.7%

Code Hygiene 5.3% 3.3%

Problem Confirmation 5.3% 6.7%

Testing 4.0% 2.7%

Documentation 2.0% 3.3%

Provide suggestion 47.3% 20.0%

Highlight existing issue 25.3% 27.3%

Notice TODO Analyze current situation 16.0% 15.3%

Throw pending question 11.3% 10.7%

Auto-generated TODOs - 8.7%

Indecipherable TODOs - 18.0%

(3) Re-enable Commented Code: Task TODOs of this subcategory are followed by a com-
mented code fragment. This implementation may be temporarily commented due to issues
such as dependency packages, version matching, and feature support. For this subcategory,
the most important thing is the commented code that needs to be restored and the trigger
conditions for restoration. For example, “TODO(fry): enable this check once the default is
changed to NULL_STATS_COUNTER”. Similarly, this subcategory of low-quality TODOs often
fail to convey sufficient information. For example, “TODO uncomment” and “TODO reenable
after the upgrade”.

(4) Refactoring: These Task TODOs request the improvement or optimization of existing code
implementation. These TODOs clearly describe the object and purpose of the refactoring.
Some developers may provide alternative solutions. For example, “TODO: Refactor this func-
tion to reduce its complexity”. The low-quality TODOs of this subcategory often miss the
information about the purpose. For example, “TODO: Do something better with this case”.

(5) Bug Fix: These Task TODOs identify a bug or issue in the code and request its resolution. De-
velopers often indicate what the problem is, analyze the reasons or suggest solutions. If there
are any, issue links or external reference materials are provided. For example, “TODO(simonw):
fix this method to select the oldest del gen if we pick a del file”. Many low-quality TODOs of
this subcategory only write "TODO: fix that" or "TODO fix me" without providing any other
information. So when they are left in the code repository for a period of time, developers
will find it difficult to recall the context again.

(6) Code Hygiene: This subcategory requests programmers to perform clean-up tasks unrelated
to the logic of code, such as removing comments, moving code, and removing obsolete code.
For example, “TODO Seems unused. Delete when confirmed.”. This type of low-quality TODOs
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usually only mention cleaning up. But whether to directly delete the code or move it to
another location is not specified.

(7) Problem Confirmation: This subcategory requests developers to confirm some important
issues, such as security risks, code logic vulnerabilities, or the root cause of the defect. For
example, “TODO confirm safe to assume non-null and use getInstance()”. This type of low-
quality TODOs usually do not specify which aspect of the problem needs to be checked or
confirmed, such as “TODO: look at this one later”.

(8) Testing: This subcategory requests the addition or update of tests for a code block or module.
The TODOs sometimes are with a trigger condition (such as when a function is completed
or a defect is fixed) to request developers to add corresponding test code. For example,
“TODO(anuraaga): Add unit tests after https://github.com/line/armeria/issues/2220”. Similar
to low-quality TODOs in other subcategories, many TODOs simply state “TODO: test me”.
However, the context does not provide clarity on the specific aspects to be tested.

(9) Documentation: This subcategory requests the creation or update of documentation for a
code snippet, a function, or a class. The proportion of tasks in this subcategory is relatively low.
For example, “TODO (thomaswue): Document why this must not be called on floating nodes.”.
Many low-quality TODOs of this type only contain phrases like “TODO fill me” or “TODO
finish this”, which can easily lead to confusion with other subcategories. Typically, a review
of the code is required to understand that these TODOs are prompting for documentary
work.

4.2.2  Notice TODO:s. For the Notice TODOs, we identified four categories of purposes for intro-
ducing these TODOs and two categories that only appear only in low-quality Notice TODOs. Since
these TODOs do not directly state what to do, they are often written in a way that describes what
is happening or raises questions. For the additional two subcategories, since they do not convey
any intent from the code submitter, we do not include them in the categories of purposes. Details
about these categories with examples are as follows:

(1) Provide suggestion: this subcategory provides some suggestions for pending tasks, such
as code implementation ideas, optimization solutions, and defect solutions. This type of
TODOs may provide a possible task, but it requires further evaluation by developers. This
subcategory has the highest frequency of occurrence, 47.3% of Notice TODOs. For example,
“TODO better to use ModelHyperlinkNote.encodeTo(User), or User.getUrl, since it handles URL
escaping”. Many low-quality TODOs related to this purpose only offer a vague comment or a
code snippet, making it challenging to obtain specific and valuable suggestions directly from
the TODOs themselves. For example, “TODO cf-ensureSuccess();”.

(2) Highlight existing issue: this subcategory is mainly for highlighting existing issues. In
addition, this subcategory analyzes the reasons for the issue, and, if possible, reference mate-
rials related to the issue could be attached in the form of links. For example, “TODO(janakr):
this is failing since the test was disabled and someone snuck a regression in. Fix.”. Most of these
low-quality TODOs typically only contain an external link or an issue ID. However, these
TODOs that point to external information may become unreliable due to the movement,
merging, or deletion of linked content.

(3) Analyze current situation: this subcategory raises concerns about potential defects by
analyzing the current code implementation and program operation. These TODOs sometimes
describe the possible consequences of not taking action. The developers of these TODOs
determine the subsequent tasks to be completed based on the information provided by
TODOs. For examples, “TODO: FullyQualifiedName.Factory#create has an overload which
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accepts ‘package’”. Many of these low-quality TODOs express useless or unclear comments
about the current situation. For example, “@TODO This really shouldn’t be happening”.

(4) Throw pending question: this subcategory requests developers to further confirm the
concerns raised by the creator through the form of a question. These Notice TODOs may be
a challenge about the current implementation or a vision for future implementations. For
example, “TODO we would need a .type property on reducers too for this error message?”. The
low-quality TODOs of this subcategory may only raise a brief question without providing
additional information about concerns. Sometimes, it’s merely a line of code followed by a
question mark. For example, “TODO(will): herm... doesn’t look quite righT?”.

(5) Auto-generated TODOs: Auto-generated TODOs refer to TODOs that are automatically
inserted into the code by development tools, frameworks, or during code generation pro-
cesses. Unlike manually added TODOs, which reflect developers’ immediate thoughts or
intentions, auto-generated TODOs often have a standard template or format. The specificity
of Auto-generated TODOs is poor, which may lead to the accumulation of debt as the project
progresses. For example, “TODO Auto-generated catch block” and “TODO Auto-generated
method stub”.

(6) Indecipherable TODOs: this subcategory includes TODOs that are either incomprehensible
or meaningless. These TODOs typically only contain fragments or a few simple symbols,
making it challenging for developers to understand the intended task or the specific issue that
needs to be addressed. These low-quality TODOs pose a challenge in software maintenance,
as they can not effectively convey their purpose or requirements to the stakeholders. For
example, “TODO ...” and “TODO ewwww”.

Summary for RQ2: We identified nine task types and four purpose types for Task TODOs and
Notice TODOs respectively, along with their respective expression preferences. These criteria
could serve as valuable inspiration for developing TODO-related generative tools and assist
developers in writing high-quality TODOs.

4.3 RQ3: Life Cycle of TODOs

TODOs are introduced by developers to denote the pending tasks. However, many TODOs are left in
the code and never get revisited after their introduction. In this research question, we investigated
the life cycle of TODOs regarding their varying qualities. Particularly, we investigated if high-
quality TODOs get resolved more regularly than low-quality TODOs in software development
practice. Since not all removed TODOs are guaranteed to be addressed (some TODOs are
removed for no reasons or just clean-up the codebase), for each removed TODO commit,
we manually label the TODO as genuinely addressed or clean-up purposes by investigating
their associated code change and commit messages. Table 4 shows the lifecycle of Task TODOs
and Notice TODOs, in terms of resolved proportion, unresolved proportion (the ratio of TODOs that
have been removed but not resolved), time interval (the average time cost for addressing TODOs
on the resolved TODOs) and the number of commits (the average number of commits between
TODOs introduction and resolution on the resolved TODOs).

The main focus of our investigation is the differences between high-quality TODOs and low-
quality TODOs. Therefore, we further leveraged Wilcoxon rank-sum test [63] with a Holm-
Bonferroni correction [23] to analyze statistical significance of difference in means of these feature
values between high-quality TODOs and low-quality TODOs respectively. We tested the following
hypotheses:
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Table 4. Lifecycle of Different TODO Categories in the TODO-introduced dataset

Category Resolved% Unresolved% Time-Interval #Commits
Task Good 17.97% 5.15% 119.68 (day) 600.80
Notice Good 10.91% 8.47% 77.43 (day) 447.61
High-quality 15.67% 5.93% 98.56 (day) 524.21
Task Bad 15.57% 19.70% 270.79 (day) 2152.44
Notice Bad 10.70% 39.83% 198.80 (day) 644.72
Low-quality 13.24% 29.20% 234.79 (day) 1398.58
Overall 14.50% 17.50% 166.31 (day) 984.71

o Null Hypothesis (Hy1): There is no significant difference in the proportion of resolved
high-quality TODOs compared to resolved low-quality TODOs.

Alternative Hypothesis (H, ;): The proportion of resolved high-quality TODOs significantly
differs from that of resolved low-quality TODOs.

e Null Hypothesis (H2): There is no significant difference in the proportion of unresolved
TODOs between high-quality removed TODOs and low-quality removed TODOs.
Alternative Hypothesis (H, 2): There is a significant difference in the proportion of unre-
solved TODOs between high-quality removed TODOs and low-quality removed TODOs.

e Null Hypothesis (Hp3): There is no significant difference in the time interval between
the introduction and resolution of high-quality resolved TODOs compared to low-quality
resolved TODOs.

Alternative Hypothesis (Hy4 3): The time interval between the introduction and resolution of
high-quality resolved TODOs significantly differs from that of low-quality resolved TODOs.

e Null Hypothesis (H 4): There is no significant difference in the number of commits experi-
enced by high-quality resolved TODOs compared to low-quality resolved TODOs.
Alternative Hypothesis (H 4): The number of commits experienced by high-quality re-
solved TODOs significantly differs from that of low-quality resolved TODOs.

The independent variables of the tests are different quality of TODOs (i.e., High-quality vs. Low-
quality). The dependent variables are the resolved proportion of different projects, the unresolved
proportion of different projects, the time interval of different resolved TODOs, and the number of
commits of different resolved TODOs.

From Table 4, we can see that (i) the proportion of high-quality TODOs being addressed is only
slightly higher than that of low-quality TODOs. In general, only a small amount (less than 20%) of
TODOs are removed for addressing them. This phenomenon further reflects the current situation
of TODOs in many software repositories, with a large number of TODOs being forgotten in the
source code after being created. (ii) According to the Unresolved ratio, developers tend to clean up
low-quality TODOs in software practice. Even though these TODOs have not been truly resolved.
For example, around 40% of Notice Bad TODOs are removed without addressing them, while the
ratio is much lower (i.e., 8.47%) for Notice Good TODOs. This phenomenon is understandable,
considering that lower-quality TODOs typically exert a diminished impact on software quality and
maintenance. In practice scenarios, when developers come across TODOs, the low quality TODOs
are more likely to be disregarded or removed due to their lack of effective information about the
tasks to be completed. In contrast, high-quality TODOs, characterized by their clarity and provision
of actionable instructions, are often taken more seriously by developers. (iii) Low-quality TODOs
have longer time-interval and larger number of commits than high-quality TODOs - indicating that
low-quality TODOs do not provide clear and actionable information, leading to significant delays
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and/or efforts for addressing them. For instance, developers spend 119 days on average to address a
Task Good TODO, while the time cost for addressing a Task Bad TODO is more than doubled (270
days). Task Good TODOs goes through an average of 600.8 code submissions from being introduced
to being resolved. Task Bad TODOs experiences an average of 2152.44 commits, which is three
times more than Task Good TODOs. The similar situation also goes with Notice Good and Notice
Bad TODOs. These contrasts clearly show how the quality of TODOs significantly affects developer
decisions and directly impacts the efficiency of software maintenance and development.

As stated above, we conducted Wilcoxon rank-sum tests with Holm-Bonferroni corrections
to test our hypotheses. The initial significance levels were preset at 0.05. We compared the p-
values obtained from the Wilcoxon rank-sum test against the adjusted significance levels for each
hypothesis. Our results indicate that the second and third hypotheses were supported by the data,
leading to the acceptance of the alternative hypotheses. While the first and fourth hypotheses did
not show statistical significance, resulting in the acceptance of the null hypotheses. These results
indicate a significant difference in the proportion of unresolved TODOs between high-quality
and low-quality removed TODOs. Additionally, the time interval between the introduction and
resolution of high-quality resolved TODOs significantly differs from that of low-quality resolved
TODOs. However, when examining the overall proportion of TODOs that were resolved, as well as
the number of commits in the life cycle of TODOs, no significant difference was observed between
low-quality and high-quality resolved TODOs.

Summary for RQ3: Developers are more inclined to resolve high-quality TODOs, which cost
significantly less time to address as compared with low-quality TODOs. In addition, low-quality
TODOs are more likely to be cleaned indiscriminately by developers.

4.4 RQ4: Automatically Classifying TODOs

Following on from the answers to RQ1-RQ3, there is a need for developers to be able to write high
quality TODOs and proactively improve low quality TODOs. We explore in RQ4 how well we
might automatically classify TODO quality in practice to support this. As described in Section 3.6,
we constructed one method based on part-of-speech analysis, and 8 methods based on machine
learning algorithms and deep learning algorithms for classifying TODOs. For machine learning
based classifiers, we directly embedded TODOs using the pre-trained model CodeBERT, and then
fed it to the machine learning algorithm. But for deep learning based classifiers, we further used
our training data for fine-tuning. To reduce variance, we performed a 10-fold cross-validation on
labeled TODO-introduced dataset to evaluate the effectiveness of each classifier. Meanwhile, in
order to make a fair comparison, we fine-tuned the model’s hyperparameters (e.g., n_estimators in
Random Forest, batch size, learning rate of deep learning models) and chose the one with the best
performance. We report the average scores of the 10 folds for all the nine methods in Table 5.
The Part-of-Speech baseline did not learn patterns from training dataset like machine learning
based methods. From Table 5, it can be seen that the performance of Part-of-Speech baseline
is similar to some machine learning based methods. This phenomenon indirectly indicates the
consistency between the criteria we have defined and the reality. It can also be clearly observed from
the table that shallow machine learning-based methods lag behind deep learning-based
methods in both classification tasks. Although using CodeBERT for embedding combined with
machine learning algorithms has achieved good performance, fine-tuning CodeBERT can achieve
better performance. Among the two deep learning models we constructed, CodeBERT*2+Bi-LSTM
outperformed CodeBERT*2+TextCNN in overall performance for both classification tasks. In
terms of recall metrics, CodeBERT*2+TextCNN slightly outperforms CodeBERT*2+Bi-LSTM. This

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2023.



111:22 Wang et al.

indicates that this method is better at identifying positive samples than distinguishing negative
samples. In the task of classifying TODO forms, CodeBERT*2+Bi-LSTM achieved scores of
94.55%, 94.18%, 96.91%, and 95.51% in terms of Accuracy, Precision, Recall, and F1, respectively.
For the task of identifying high-quality TODOs, CodeBERT*2+Bi-LSTM can achieve scores of
85.89%, 85.99%, 87.71%, and 86.78% in terms of Accuracy, Precision, Recall, and F1, respectively.
This shows that the CodeBERT*2+Bi-LSTM classifiers have achieved a high performance on this
dataset.

These experimental results confirm the possibility of using deep learning models to classify
TODOs according to form and quality. We developed a tool for identifying high-quality TODOs
based on the CodeBERT*2+Bi-LSTM model at the current stage. With our tools, developers can
discover and improve low-quality TODOs in a timely manner, enabling them to quickly and
accurately understand the context when revisiting code in the future. Moreover, our research on
the characteristics of high-quality TODO (Section 3.4 and Section 4.2) can be utilized to intelligently
provide high-quality templates or guidance for developers based on the types of tasks they need to
annotate in the future.

Table 5. The Performance of Different Models in TODO Classification Tasks

The form of TODOs (Task or Notice) The quality of TODOs (Good or Bad)

Models — —

Accuarcy Precision Recall F1score Accuarcy Precision Recall F1 score
Part-of-Speech 70.38% 67.11% 87.58%  75.92% 67.80% 64.50% 87.24%  74.11%
Multinomial Naive Bayes 66.50% 70.22% 76.88%  70.54% 72.22% 76.22% 69.81%  72.63%
Logistic Regression 86.31% 87.19% 90.32%  88.25% 80.51% 80.58% 83.44%  81.46%
Multi-Layer Perceptron 83.83% 85.03%  88.67%  86.52% 79.88% 79.95%  83.03%  81.32%
K-Nearest Neighbors 76.84% 78.18% 84.82%  80.53% 78.07% 78.39% 81.03%  79.10%
Random Forest 82.78% 83.74% 88.40%  85.27% 81.38% 80.25% 86.06%  82.47%
Gradient Boosting 75.27% 73.38% 9191%  79.51% 76.60% 74.36% 85.43%  78.40%

CodeBERT*2+TextCNN 93.69% 92.76%  97.04% 94.85% 85.48% 82.45%  88.92% 85.56%
CodeBERT*2+Bi-LSTM 94.55% 94.18%  96.91% 95.51% 85.89% 85.99% 87.71% 86.78%

Summary for RQ4: We proposed two deep learning-based classifiers to automatically identify
a TODO’s form (Task or Notice) and quality (Good or Bad). Experimental results show the
effectiveness of both classifiers on our dataset. They can thus be used to proactively mitigate
the introduction low-quality TODOs.

5 IMPLICATIONS

TODO comments are an important method of managing and coordinating pending coding tasks.
The quality of TODOs not only affects code implementation, but also has a certain correlation with
developers’ behavior. We discuss key implications for practice and research of our findings in this
section.

5.1 Implications for Practice

Reducing prevalence of low-quality TODOs: Our study found that 46.7% of TODOs in open-
source software repositories are of low-quality. A large portion of these low-quality TODOs remain
in source files for a long time until resolved or never be formally migrated to change requests. This
finding suggests that TODOs have not fulfilled their intended roles in practice. For TODOs created
by developers, there is a significant need to improve the quality of TODOs and clarify the content
of their target tasks. This will potentially boost the motivation of developers to resolve TODOs
and/or shorten their life cycle.
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Developers need better ways for identifying low-quality TODOs: Our proposed deep learning-
based classifiers can help developers identify unqualified TODOs, enabling them to describe specific
tasks more clearly or provide more detailed descriptions for developers to understand the potential
tasks they need to do next. Our tool is able to aid software development practices to include a
mechanism, which can remind developers and prompt them to revisit TODOs when low-quality
TODOs are identified.

Using high-quality TODOs: Higher-quality TODOs will help developers more quickly regain
context and accurately complete corresponding tasks. They also further prevent the situation
that some TODOs are left in the source code, and eventually become a clean-up or technical
debt after several months due to low quality. Maintaining and increasing quality over time could
assist developers to improve the quality of in-code software documentation. We have established
connections between TODOs and various software development activities in Section 4.2, while
providing a series of key points for creating TODOs. These guidelines can serve to significantly
improve the quality of TODOs.

5.2 Implications for Research

Validating TODO study data quality: There are currently a lot of works [20, 33, 40, 41, 54,
55] analyzing and using information from TODOs for academic research and tool development.
However, the data used in these works has not been rigorously screened, leading to the introduction
of threats. For example, if the training set contains many low-quality TODOs with similar content,
the actual pending tasks associated with these TODOs may vary widely. Utilizing such a dataset to
train a model could cause bias in the output results of the model when inferring. This is because,
throughout the training process, the model extensively learns the intrinsic correlations between
different types of code implementations and similar low-quality TODOs. It is very time-consuming
to manually filter out these low-quality TODOs. Our proposed method can achieve an F1 score
of 86.87% in identifying high-quality TODO tasks, which could help researchers clean data and
build high-quality datasets. However, in some downstream tasks, it may be necessary to ensure
the existence of low-quality TODOs to reflect the reality. For tasks where understanding the full
scope of TODOs is crucial, researchers can opt to retain these low-quality TODOs to ensure their
analysis reflects the authentic state of software development. On the other hand, for tasks focused
on improving code maintenance or identifying high-impact technical debts, filtering out low-quality
TODOs could enhance reliability. However, viewing it from a positive angle, if our classifier indeed
contributes to a decrease in the occurrence of low-quality TODOs within software repositories,
thereby improving their overall quality. This improvement itself represents a form of reality.
Involving low-quality TODOs: The tool we proposed performs well in identifying high-quality
TODOs. Consequently, research focusing on low-quality TODOs can also benefit from our tool. By
efficiently filtering out high-quality TODOs, our tool substantially reduces the effort required to
screen for low-quality entries. Moreover, our in-depth analysis on the characteristics of low-quality
TODOs provides valuable insights, which could help the development of tools specifically designed
to detect such instances. As a type of SATD, the characteristics of TODOs may also offer valuable
perspectives for addressing other forms of SATD. For example, by leveraging predefined SATD
task categories, it is possible to train models to classify TODOs into different subtypes, thereby
enhancing the detection of low-quality comments. This could help improve the management of
some high-priority SATDs. Meanwhile, low-quality cases within these high-priority SATDs are also
more likely to be noticed. So as to reduce the debt accumulation caused by the long-term existence
of these low-quality cases.
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Further investigating the TODO lifecycle: We suggest further exploring the life cycle of TODOs,
which includes the timing of TODOs being revisited, kinds of TODOs, and the code suboptimization
and technical debt issues potentially caused by the presence of abundance legacy TODOs.
Further improving classifiers and recommenders: Although our tool has shown promising
performance in terms of accuracy, precision, recall, and F1 score in our experiments. However,
the direction of improvement for our tools may differ according to specific downstream tasks. For
example, in tasks related to code maintenance and refactoring, high-quality TODOs are important
for guiding the direction and priorities of refactoring efforts. In this case, accuracy will be even
more important. Because we aim to minimize errors in labeling low-quality TODO as high-quality,
in order to prevent developers from wasting time on unnecessary tasks. In project management
contexts, the focus may shift towards maximizing recall to ensure that all significant TODOs are
identified. In this case, the occurrence of false positives may also be acceptable to a certain extent.

Another exciting direction for future work is to build intelligent tools that could automatically
suggest high-quality TODO templates or generate recommendations directly within developers’
Integrated Development Environments (IDEs). This would reduce the workload of developers while
improving quality. In the same time, we will be able to attract more developers to evaluate the
tool and utilize their feedback to further improve the performance of our tool. In this scenario,
comprehensive metrics such as accuracy and F1 score become increasingly important. They play a
crucial role in boosting developers’ trust and ensuring the tool’s usability.

6 THREATS TO VALIDITY

In this work, we follow the guidelines presented in [64] to address potential threats to the validity
of our study.

Internal validity refers to the potential errors in the code implementation. We have rigorously
reviewed the source code for our classifiers as well as for the baselines. The Part-of-Speech baseline
is easy to implement. Regarding the baselines that employ machine learning algorithms, we utilized
the widely recognized open-source software library, scikit-learn [49]. To optimize the performance
of different methods, the parameters in our experiments were carefully fine-tuned. The parameter
settings were thoroughly considered and evaluated. Therefore, the impact of this internal threat is
very limited.

The second threat to internal validity concerns the potential biases in the TODO lifecycle analysis.
According to the matching rules and data processing process mentioned in Section 3.5, there are
the following factors that may lead to bias. Firstly, file renaming can lead to missed matches of
eliminated TODOs that were previously introduced, thereby reducing the overall count of removed
TODOs. Secondly, the presence of multiple identical TODOs within a single commit may induce
mismatches in our matching algorithm. While manual verification has confirmed these mismatches
do not affect our results. But this limitation still needs further improvement. Lastly, we conducted
manual inspection to classify removed TODOs as either resolved or unresolved. This process may
introduce bias due to differences in inspector’s experience. However, collaboration between two
examiners has been employed to mitigate this bias as much as possible. In the future, we plan to
develop a better matching algorithm (e.g., leveraging file history from version control systems) to
enhance the accuracy of TODO lifecycle analysis.

Another threat to internal validity relates to the statistical analysis used in our study. After
defining the criteria for high-quality TODOs, we recruited 10 experienced engineers to further
validate our labels. We not only calculated the average consistency between the engineers’ results
and our labels but also computed the Kappa coefficient. This served as a measure of inter-rater
agreement among the engineers, thus offering a clear insight into the consistency of our coding
process. Participants received detailed task-specific training and were explicitly forbidden from
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discussing or assisting each other during the labeling process, which indicates that their results are
both credible and independent. Therefore, we consider the threat posed by inter-rater variability to
be minimal.

In our analysis of the lifecycle of TODOs, significance tests were conducted to evaluate the
support for our hypotheses. We conducted simultaneous tests on four hypotheses using datasets
with intersections. As a result, the potential for Type I errors, which occur when a true null
hypothesis is incorrectly rejected, could pose a threat to our findings. Specifically, we applied the
Holm-Bonferroni correction to adjust our significance levels. This correction mitigates the risk of
falsely accepting hypotheses due to chance alone. Through this adjustment, our conclusions are
based on statistically sound evidence, thus increasing the reliability of our analysis. Therefore, the
impact of this threat is very limited.

Construct validity refers to whether the measures utilized in a study can accurately represent
the constructs in a real-world context. In our study, the potential threat to this validity is whether
the TODOs were extracted and analyzed correctly. To address this issue, we collected 2,863 TODOs
from the selected 53 popular GitHub projects based on a set of selective criteria. When constructing
our datasets, we did not collect the TODOs from branches except for the master branch. The reason
is that other branches may contain a large amount of test code, experimental features, or code
that is not yet ready to be merged into the main branch. The process of merging and conflict
resolution between different branches may lead to duplicate and incorrect TODO statistics. In
addition, code implementations are only merged into the main branch when they are ready and
thoroughly tested in many projects. Therefore, the TODOs contained in the master branch better
reflect their true lifecycle. Our study either did not consider many other potential data sources, for
example small-sized GitHub projects or other collaborative platforms, such as SourceForge. Despite
this limitation, we anticipate that the ability of our approach to identify and classify TODOs will
enable our results to generalize to other data sources as well. In future work, we will consider
studying the characteristics and lifecycle of TODOs in other branches and look to expand our
approach to additional data sources to provide a more comprehensive perspective.

Another threat to construct validity relates to the machine-generated TODOs in our dataset.
While preparing our dataset, we did not specifically remove any machine-generated TODOs. These
TODOs only indicate they are auto-generated without providing other useful information, thus they
are naturally considered as low-quality TODOs. These TODOs either do not affect our investigation
into the criteria about TODO quality and the prevalence of different quality TODOs across different
projects. Furthermore, the characteristics and lifecycle of machine-generated TODOs can also
reflect the real-world development practices. Therefore, the machine-generated TODOs cannot
be ignored in RQ1, RQ2, and RQ3. However, for RQ4, machine-generated TODOs could indeed
introduce some bias. Due to their repetitive occurrence and distinct features, the classifiers might
easily identify them, potentially leading to an inflated performance. We identified these TODOs
through the keyword “Auto-generated” and quantified their presence. In our TODO-introduced
dataset which is used to train different classifiers, there were only 49 instances identified as machine-
generated TODOs. These TODOs only account for 1.7% of the total dataset. Therefore, the impact
of machine-generated TODOs on our study is considerably minimal.

To ensure high-quality labeling for the automatic classification of TODOs, we established a set
of initial criteria and conducted a manual check to determine the labeling criteria more specifically.
We first randomly sampled 200 pilot TODOs and used the initial criteria to label these samples.
Through this process, the content of the criteria we proposed and their boundaries could be more
clearly defined. It should be noted that the sampling strategy resulted in a 95% confidence level and
a margin of error of 6.68%. Although prior research [79] has reported findings with a confidence
interval similar to ours, it’s noteworthy that their selection was based on a 95% confidence level
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with a margin of error of 10.0%. This factor may still pose a potential threat to the reliability of our
criteria. Nevertheless, our final proposed criteria was derived from an extensive survey of gray
literature, thorough paper reviews, and careful examination of the samples. During the labeling
process, all the authors discussed the discrepancies and reached an agreement on data labeling.
Furthermore, to enhance the reliability of our criteria, we recruited 10 experienced developers
to validate our labels, ensuring our criteria are both robust and grounded in practice. Therefore,
the threat has been mitigated as much as possible. For the formal data labeling, we conducted
two rounds of manual data labeling between the first two authors and discussed the conflicts
with the third author. The validation from developers ensures the quality of data labeling. Finally,
we used all the 2,863 labeled TODO-introduced data to train the classification models. However,
we acknowledge that there might still be some bias on data labeling. In the future, we plan to
incorporate additional data sources and evaluators to further validate the reliability of our criteria
and the accuracy of our labels.

We described the thematic analysis process in Section 3.4 to investigate the characteristics of
TODOs. Should the generated codes fail to accurately represent the targeted concepts, or if the
volume of sampled data is insufficient for a thorough exploration, either situation could potentially
introduce threats to the validity of our study. Our coders have carefully reviewed the collected
TODOs and TODO-related literature, and they possess substantial knowledge in the field of software
engineering. These all help ensure that the codes generated during the thematic analysis process
accurately reflect the expected research concepts. To mitigate the second threat, we sampled a
total of 600 TODOs for investigation, with a margin of error of 4.68% at a 95% confidence level.
Therefore, the potential threats to construct validity posed by this process is limited.

When estimating the classifiers, we used the processed TODO-introduced dataset with 2,863
TODO data pairs. The size of this dataset is not large enough for deep learning-based classifiers.
It may introduce bias and affect the representativeness of the experimental results. Although we
applied 10-fold cross-validation to minimize the impact of this threat, expanding the coverage of
the dataset is still one of the main focuses of our future work.

External validity concerns the generalisation of the study particularly regarding the comprehen-
siveness of our TODO data. To address this threat, we collected the data by examining most popular
Java GitHub projects, which are in different domains. To automate the classification tasks, we
utilized the pre-trained CodeBERT model, which has demonstrated optimal performance in recent
studies [19]. However, it should be noted that our results only apply to the specific programming
language projects (i.e., Java) and deep learning model used in this study and do not provide insight
into the effectiveness of employing other language projects and models with different structures or
advanced features.

Reliability pertains to the consistency of study results when replicated by other researchers. In this
study, potential threats to reliability stem from the collection and analysis processes of the TODO
data. However, we have addressed these concerns by providing a clear and explicit description of
our data collection and analysis procedures.

7 CONCLUSION

In this paper, we presented a multi-method study that investigates the quality of TODOs in open-
source software projects and its impact. Our analysis of a large number of TODOs reveals a
considerable proportion of low-quality TODOs in software repositories, which cause extra efforts
and time for software development and maintenance. We summarized a set of criteria for identifying
high-quality TODOs and described how to use TODOs to support a variety of articulation activities
within software development. Based on our findings, we constructed deep learning models for
classifying TODOs, while serving as the cornerstone for future intelligent tool development. At
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last, we investigated the life cycle of TODOs and found that different quality TODOs have diverse
management and maintenance characteristics. These findings further demonstrate the significance
of our research and the potential value of proposed classifiers. Our research findings can provide
guidance for developers when writing TODOs and inspire researchers in the field of software
documentation.
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