
Deep Domain Adaptation With Max-Margin Principle for
Cross-Project Imbalanced Software Vulnerability Detection
VAN NGUYEN,Monash University, Australia

TRUNG LE,Monash University, Australia

CHAKKRIT TANTITHAMTHAVORN,Monash University, Australia

JOHN GRUNDY,Monash University, Australia

DINH PHUNG,Monash University, Australia

Software vulnerabilities (SVs) have become a common, serious, and crucial concern due to the ubiquity

of computer software. Many AI-based approaches have been proposed to solve the software vulnerability

detection (SVD) problem to ensure the security and integrity of software applications (in both the development

and testing phases). However, there are still two open and significant issues for SVD in terms of i) learning

automatic representations to improve the predictive performance of SVD, and ii) tackling the scarcity of labeled

vulnerability datasets that conventionally need laborious labeling effort by experts. In this paper, we propose

a novel approach to tackle these two crucial issues. We first exploit the automatic representation learning

with deep domain adaptation for SVD. We then propose a novel cross-domain kernel classifier leveraging the

max-margin principle to significantly improve the transfer learning process of SVs from imbalanced labeled

into imbalanced unlabeled projects. Our approach is the first work that leverages solid body theories of the

max-margin principle, kernel methods, and bridging the gap between source and target domains for imbalanced

domain adaptation (DA) applied in cross-project SVD. The experimental results on real-world software datasets

show the superiority of our proposed method over state-of-the-art baselines. In short, our method obtains a

higher performance on F1-measure, one of the most important measures in SVD, from 1.83% to 6.25% compared

to the second highest method in the used datasets.

CCS Concepts: • Computing methodologies→ Artificial intelligence; • Security and privacy;

Additional Key Words and Phrases: Software Security, Automated Cross-Project Vulnerability Detection

ACM Reference Format:
Van Nguyen, Trung Le, Chakkrit Tantithamthavorn, John Grundy, and Dinh Phung. 2024. Deep Domain

Adaptation With Max-Margin Principle for Cross-Project Imbalanced Software Vulnerability Detection. ACM

Trans. Softw. Eng. Methodol. 1, 1 (April 2024), 34 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Software vulnerabilities (SVs), defined as specific flaws or oversights in software programs allowing

attackers to exploit the code base and potentially undertake dangerous activities (e.g., exposing or

altering sensitive information, disrupting, degrading or destroying a system, or taking control of a

program or computer system) [Dowd et al.(2006), Fu et al.(2024b)], are very common and represent

major security risks due to the ubiquity of computer software. Detecting and eliminating software

Authors’ addresses: Van Nguyen, Monash University, Clayton, Australia, van.nguyen1@monash.edu; Trung Le, Monash

University, Clayton, Australia, trunglm@monash.edu; Chakkrit Tantithamthavorn, Monash University, Clayton, Australia,

chakkrit@monash.edu; John Grundy, Monash University, Clayton, Australia, john.grundy@monash.edu; Dinh Phung,

Monash University, Clayton, Australia, dinh.phung@monash.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Association for Computing Machinery.

1049-331X/2024/4-ART $15.00

https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

2 Van Nguyen et al.

vulnerabilities are hard as software development technologies and methodologies vary signifi-

cantly between projects and products [Fu et al.(2022), Liu et al.(2022), Thongtanunam et al.(2022),

Fu et al.(2023a), Fu et al.(2024a)]. The severity of the threat imposed by software vulnerabilities

(SVs) has significantly increased over the years causing significant damages to companies and

individuals. The worsening software vulnerability situation has necessitated the development of

automated advanced approaches and tools that can efficiently and effectively detect SVs with a

minimal level of human intervention.

Software vulnerability detection (SVD) is crucial in software engineering to ensure the secu-

rity and integrity of software applications [Dowd et al.(2006), Lin et al.(2020), Hanif et al.(2021),

Nguyen et al.(2021), Fu and Tantithamthavorn(2022), Liu et al.(2023), Fu et al.(2023b)]. The ability

to identify vulnerable programs or functions is a critical part of the security engineering process

which helps security professionals efficiently allocate their resources and address severe vulnerabil-

ities (in the development and testing phases), ultimately enhancing the security and reliability of

the software application. To respond to this demand, many vulnerability detection systems and

methods, ranging from open source to commercial tools, and from manual to automatic meth-

ods [Neuhaus et al.(2007), Shin et al.(2011), Grieco et al.(2016), Li et al.(2018b), Duan et al.(2019),

Cheng et al.(2019), Wattanakriengkrai et al.(2020), Pornprasit and Tantithamthavorn(2021)] have

been proposed and implemented.

Most previous work in software vulnerability detection (SVD), such as [Yamaguchi et al.(2011),

Shin et al.(2011), Li et al.(2016), Grieco et al.(2016), Kim et al.(2017)], has based primarily on hand-

crafted features which are manually chosen by knowledgeable domain experts with possibly

outdated experience and underlying biases. In many situations, these handcrafted features do not

generalize well. For example, features that work well in a certain software project may not perform

well in other projects [Zimmermann et al.(2009)]. To alleviate the dependency on handcrafted

features, the use of automatic features in SVD, leveraging deep learning (DL) techniques, has been

studied [Li et al.(2018b), Dam et al.(2018), Li et al.(2018a), Pornprasit and Tantithamthavorn(2022),

Nguyen et al.(2022a), Fu et al.(2024c)]. These DL-based approaches show the advantages of em-

ploying automatic features over handcrafted features for addressing the SVD problem.

Another major challenging issue in SVD is the scarcity of labeled software projects that are

needed in order to train the machine learning and deep learning SVDmodels. The process of labeling

vulnerable source code is tedious, time-consuming, error-prone, and can be very challenging even

for domain experts. This has resulted in few labeled projects compared with a vast volume of

unlabeled ones. Some recent approaches [Nguyen et al.(2019), Nguyen et al.(2020), Liu et al.(2020)]

have been proposed to solve this challenging problem with the aim to transfer the learning of

vulnerabilities from labeled source domains to unlabeled target domains. Particularly, the methods

in [Nguyen et al.(2019), Nguyen et al.(2020)] learn domain-invariant features from the source code

data of the source and target domains by using the adversarial learning framework such as generative

adversarial network (GAN) [Goodfellow et al.(2014)] while the method in [Liu et al.(2020)] consists

of many subsequent stages: i) pre-training a deep feature model for learning representation of token

sequences (i.e., source code data), ii) learning cross-domain representations using a transformation

to project token sequence embeddings from (i) to a latent space, and iii) training a classifier from the

representations of the source domain data obtained from (ii). However, none of these methods exploit

the imbalanced nature of source code projects for which the vulnerable data points are significantly

minor compared to non-vulnerable ones. Without a robust capability to learn from small amounts

of data (vulnerable data), SVD models are likely to be more influenced by large amounts of data

(non-vulnerable). This can potentially diminish their ability to effectively detect vulnerabilities in

cross-domain vulnerability classification. The negative effect of this issue can be exhibited via the

F1-measure of the models when applied to the target domain.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

Cross-Project Imbalanced Software Vulnerability Detection 3

On the other hand, kernel methods with the max-margin principle are widely recognized for

their effectiveness in handling imbalanced datasets [Schölkopf et al.(2001), Kotsiantis et al.(2006),

Tsang et al.(2007), Le et al.(2010), Le et al.(2014), Duong et al.(2015)]. In addition, they can help

achieve high generalization performance even with a relatively small number of data points. To

simplify, they create a defined region in the feature space, often represented as a simple geomet-

ric shape such as a half-hyperplane [Schölkopf et al.(2001)] or hypersphere [Tax and Duin(2004),

Tsang et al.(2005), Tsang et al.(2007)], to encapsulate the majority class, which typically corre-

sponds to non-vulnerable data in the context of SVD. The key idea is that a simple domain of

majority in the feature space, when being mapped back to the input space, forms a set of contours

that can distinguish majority data from minority data (i.e., vulnerable data).

In this paper, by leveraging learning domain-invariant features and kernel methods with the

max-margin principle, we propose Domain Adaptation with Max-Margin Principle (DAM2P) to

efficiently transfer the learning of vulnerabilities from imbalanced labeled source domains to

imbalanced unlabeled target domains. Inspired by the max-margin principle proven efficiently and

effectively for learning from imbalanced data, when learning domain-invariant features between

the source and target domains, we propose to learn a max-margin hyperplane (i.e., cross-domain

kernel classifier) on the feature space to separate vulnerable and non-vulnerable data.

More specifically, we combine labeled source domain data and unlabeled target domain data and

then learn a hyperplane to separate labeled source domain non-vulnerable from vulnerable data and

unlabeled target domain data from the origin such that the margin is maximized. In addition, the

margin is defined as the minimization of the source domain and target domain margins in which

the source domain margin is regarded as the minimal distance from vulnerable data points to the

hyperplane, while the target domain margin is regarded as the distance from the origin (i.e., the (0,0)

coordinate in the feature space) to the hyperplane [Schölkopf et al.(2001)]. Furthermore, it is worth

noting that in our proposed cross-domain kernel classifier, the source domain margin is utilized

to leverage information from the labeled source domain in constructing the classifier within the

feature space. Meanwhile, the target domain margin plays a crucial role in harnessing information

from the unlabeled target domain, contributing to the ongoing process of updating and enhancing

the classifier’s capability in vulnerability transfer learning.

Our key contributions in this work include:

• We propose a novel approach named DAM2P for the topical problem of cross-domain imbal-

anced SVD. In particular, in our proposed method, we leverage learning domain-invariant

features and kernel methods with the max-margin principle that can bridge the gap between

the source and target domains on a joint space while being able to tackle efficiently and

effectively the imbalanced nature of the source and target domains to significantly improve

the transfer learning process of SVs from imbalanced labeled projects into imbalanced unla-

beled ones. To the best of our knowledge, our approach is the first work that leverages solid body

theories of the max-margin principle, kernel methods, and bridging the gap between source and

target domains for imbalanced domain adaptation (DA) applied in cross-project SVD.

• We conduct extensive experiments on five real-world software datasets consisting of FFmpeg,

LibTIFF, LibPNG, VLC, and Pidgin software projects. It is worth noting that to demonstrate

and compare the capability of our proposed method and baselines in the transfer learning for

SVD, the datasets (FFmpeg, VLC, and Pidgin) from themultimedia application domain are used

as the source domains whilst the datasets (LibPNG and LibTIFF) from the image application

domain are used as the target domains. The experimental results show that our method

significantly outperforms the baselines by a wide margin, especially for the F1-measure, one

of the most important measures in SVD [Li et al.(2016), Li et al.(2018a), Nguyen et al.(2019)].

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

4 Van Nguyen et al.

2 MOTIVATING EXAMPLE
Figure 1 shows an example of source code functions obtained from the open-source VLC and

LibPNG projects. Both functions from the VLC and LibPNG projects depicted in Figure 1 invoke the

memcpy function which is used to copy the contents of one buffer to another buffer. The misuse

of this function can cause a buffer overflow if there is insufficient memory allocated in the target

buffer for all of the contents to be copied from the source buffer.

Fig. 1. An example of two C/C++ source code functions obtained from the LibPNG project (Left) and VLC

project (Right). These two source code examples highlight the same buffer overflow vulnerability due to the

misuse of the memcpy function.

To demonstrate that transfer learning for software vulnerability detection between source code

data (e.g., functions) from different projects (i.e., domains) is plausible and promising, we observe

that the functions (from different projects) in Figure 1 are written in different ways, but share

similar semantic relationships (i.e., the similar nature types of vulnerabilities). Therefore, a model

that can capture the characteristics of the first function in the first project should ideally be able

to accurately predict the second function in the second project. Thus it makes sense to undertake

transfer learning from the first project to the second project.

We findmany other source code functions across the projects that suffer from similar vulnerability

types. This observation provides us with the motivation and incentive to undertake transfer learning

from a labeled software project to another unlabeled software project. We present our novel

approach – Domain Adaptation with Max-Margin Principle (DAM2P) – proposed for solving cross-

project imbalanced software vulnerability detection. Our DAM2P approach allows us to transfer

a deep vulnerability classifier obtained from an imbalanced labeled software project to another

imbalanced unlabeled software project. Compared to the state-of-the-art baselines, our approach

is one of the very first methods taking into account the imbalanced nature of source code data,

for which the vulnerable data points are significantly minor compared to non-vulnerable ones, in

cross-domain SVD for successfully boosting the vulnerability transfer learning process.

Our goal in tackling cross-domain software vulnerability detection is twofold. Firstly, we aim to

address the scarcity of labeled source code projects required for training machine learning and deep

learning models to identify vulnerabilities in source code data. Secondly, we seek to directly aid

software engineers in identifying vulnerable programs or functions in source code projects from

various domains. This assistance is provided through the application of a vulnerability classifier

learned from a specific domain project.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

Cross-Project Imbalanced Software Vulnerability Detection 5

In the scope of our paper, in our experiments, we consider different software domains are those

that come from different software applications (e.g., multimedia applications and image applications)

written in the same C/C++ programming language. These domains are written in different ways

(e.g., using different structures or variable names); however, they share the same nature (types)

of code vulnerabilities. This property lets our proposed method and the baselines be deployed

realistically for cross-domain software vulnerability detection.

3 RELATEDWORK
Automatic features in SVD have been studied [Li et al.(2018b), Lin et al.(2018), Dam et al.(2018),

Li et al.(2018a), Duan et al.(2019), Cheng et al.(2019), Zhuang et al.(2020)] due to its advantages of

employing automatic features over handcrafted features. In particular, [Dam et al.(2018)] employed

a deep neural network to transform sequences of code tokens to vectorial features that are further fed

to a separate classifier; whereas [Li et al.(2018b)] combined the learning of the vector representation

and the training of the classifier in a deep network. Advanced deep net architectures have been

investigated for the SVD problem. [Russell et al.(2018)] combined both recurrent neural networks

(RNNs) and convolutional neural networks (CNNs) for feature extraction from the embedded source

code representations while [Zhuang et al.(2020)] proposed a model for smart contract vulnerability

detection based on a graph neural network [Kipf and Welling(2016)].

Deep DA-based methods have been recently studied for cross-domain (cross-project) SVD.

Notably, [Nguyen et al.(2019)] proposed a novel architecture and employed the adversarial learning

framework (e.g., GAN) to learn domain-invariant features that can be transferred from labeled

source to unlabeled target code projects. [Nguyen et al.(2020)] enhanced [Nguyen et al.(2019)]

by proposing an elegant workaround to combat the mode collapsing problem possibly faced in

that work due to the use of GAN. Finally, [Liu et al.(2020)] proposed a multi-stage approach with

three sequential stages: i) pre-training a deep model for learning the representation of token

sequences (i.e., source code data), ii) learning cross-domain representations using a transformation

to project token sequence embeddings from (i) to a latent space, iii) training a classifier from the

representations of the source domain data obtained from (ii). The trained classifier is then applied

to the target domain.

In computer vision, DA has been intensively studied and showed appealing performance in vari-

ous transfer learning tasks, notably DDAN [Ganin and Lempitsky(2015)], MMD [Long et al.(2015)],

D2GAN [Nguyen et al.(2017)], DIRT-T [Shu et al.(2018)], HoMM [Chen et al.(2020)], and LAMDA

[Le et al.(2021)]. Most of the introduced methods were claimed, applied, and showed the results

for vision data. There is no evidence that they can straightforwardly be applied to source code

data in cross-project SVD. It is worth noting that cross-project SVD is special because the source

code data are more complicated and different from text and image data due to consisting of com-

plex semantic and syntactic relationships between statements and tokens. In our paper, inspired

by [Nguyen et al.(2019)], we borrowed the principles of some well-known and state-of-the-art

methods, e.g., DDAN, MMD, D2GAN, DIRT-T, HoMM, and LAMDA, and refactored them using the

CDAN architecture introduced in [Nguyen et al.(2019)] for cross-project SVD to compare with our

proposed approach.

We note that our method is different from previous baselines, which also use deep domain adaptation

(DA) for cross-project SVD such as [Nguyen et al.(2019), Nguyen et al.(2020), Liu et al.(2020)], in

proposing a novel cross-domain kernel classifier leveraging max-margin kernel methods for handling

imbalanced nature of the source code data. To the best of our knowledge, none of the previous cross-

project SVD approaches exploit and address the imbalanced nature existing in source code projects for

cross-project SVD.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

6 Van Nguyen et al.

4 RELATED BACKGROUND

4.1 Kernel methods
Kernel methods are a class of machine learning techniques widely recognized for their versa-

tility and effectiveness in various domains. At their core, they transform data into a higher-

dimensional space, allowing for the discovery of complex patterns and relationships that might

not be readily apparent in the original data space. This transformation is achieved using math-

ematical kernel functions (e.g., Linear kernel, Polynomial kernel, or Gaussian kernel taking in-

put vectors in the original space and returning the dot product of the vectors in the feature

space [Hearst et al.(1998), Schölkopf and Smola(2002), Hofmann et al.(2008), Nguyen et al.(2014),

Le et al.(2015), Le et al.(2016)]), which quantify the similarity or dissimilarity between data points.

One of the key strengths of kernel methods is their ability to handle both linear and non-

linear relationships, making them particularly useful in tasks such as classification, regression,

and clustering. They excel in scenarios with imbalanced datasets, enabling the identification

of rare events or minority classes. In addition, they can help achieve high generalization perfor-

mance evenwith a relatively small number of data points [Schölkopf et al.(2001), Hsu and Lin(2002),

Kotsiantis et al.(2006), Tsang et al.(2007), Le et al.(2010)]. Some popular examples of kernel meth-

ods include Support Vector Machines (SVMs) [Hearst et al.(1998)] and Kernel Principal Component

Analysis (Kernel PCA) [Weston et al.(2003)]. These methods find applications in various fields,

including image analysis, natural language processing, and bioinformatics, making them valuable

tools for extracting meaningful insights from complex data.

Support vector machines. The support vector machine (SVM) was first introduced in the early

1960s to create a linear decision boundary in the input space [Vapnik and Lerner(1963)]. However,

between 1992 and 1995, it was extended to establish a linear decision boundary in the feature space

while allowing for non-linear decision boundaries in the input space, as detailed in the works

of [Cortes and Vapnik(1995)]. Since then, SVM has evolved into a leading classifier with various

adaptations [Schölkopf et al.(2000), Lin and Wang(2002)].

SVM has emerged as one of the most frequently utilized methods for addressing pattern recogni-

tion challenges. Its exceptional generalization capabilities, along with its capacity to learn from

any dataset with minimal error, have made it widely applicable in real-world scenarios. The core

concept of SVM involves mapping data from the input space to the feature space and learning an

optimal hyperplane in such a way that the margin, representing the distance between the closest

training set vector and the hyperplane, is maximized. This emphasis on maximizing the margin is

what drives the learning capacity of the hyperplane.

Let the training set be {(𝒙1, 𝑦1), (𝒙2, 𝑦2), ..., (𝒙𝑙 , 𝑦𝑙)} where 𝑦1, 𝑦2, ..., 𝑦𝑙 ∈ {−1, 1} are labels. Let
𝜙 be the transformation from the input space to the feature space. Driven by the structural risk

minimization principle, for minimizing the empirical risk and maximizing the generalization

capacity, the SVM optimization problem was introduced as follows:

min

w,𝑏
(1

2

∥w∥2 +𝐶
𝑙∑︁
𝑖=1

𝜉𝑖)

subject to

𝑦𝑖 (w⊤𝜙 (𝒙𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 , 𝑖 = 1, ..., 𝑙

where ℎ(𝒙) = w⊤𝜙 (𝒙) + 𝑏 is an optimal hyperplane while 𝜉𝑖 ≥ 0 with 𝑖 = 1, ..., 𝑙 are slack

variables, and 𝐶 is a positive constant regarded as a trade-off parameter. With the slack variables,

SVMs can be applicable to the case where the data are linearly inseparable.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

Cross-Project Imbalanced Software Vulnerability Detection 7

5 DOMAIN ADAPTATIONWITH MAX-MARGIN PRINCIPLE (DAM2P)
In the following sections, we elucidate the workings of our proposed DAM2P method and its

approach for addressing the cross-domain imbalanced software vulnerability detection problem.

First, we articulate the problem statement associated with cross-domain imbalanced software

vulnerability detection. We then expound on the utilization of deep domain adaptation, employing

an adversarial learning framework such as GAN, to learn domain-invariant features. Finally, we

illustrate how our proposed cross-domain kernel classifier, leveraging the max-margin principle,

operates. It integrates with the process of learning domain-invariant features to not only bridge the

gap between the source and target domains in a joint space but also to efficiently and effectively

handle the imbalanced nature of both source and target domains to significantly enhance the

transfer learning process of software vulnerabilities from imbalanced labeled projects to imbalanced

unlabeled other projects.

5.1 Problem Statement
Given a labeled source domain dataset 𝑆 =

{(
𝒙𝑆

1
, 𝑦1

)
, . . . ,

(
𝒙𝑆
𝑁𝑆
, 𝑦𝑁𝑆

)}
where 𝑦𝑖 ∈ {−1, 1} (i.e., 1:

vulnerable code and −1: non-vulnerable code), let 𝒙𝑆𝑖 =
[
𝒙𝑆𝑖1, . . . , 𝒙

𝑆
𝑖𝐿

]
be a code function represented

as a sequence of 𝐿 embedding vectors. We note that each embedding vector corresponds to a

statement in the code function. Similarly, the unlabeled target domain dataset 𝑇 =

{
𝒙𝑇

1
, . . . , 𝒙𝑇

𝑁𝑇

}
consists of many code functions where each code function 𝒙𝑇𝑖 =

[
𝒙𝑇𝑖1, . . . , 𝒙

𝑇
𝑖𝐿

]
is a sequence of 𝐿

embedding vectors.

In standard DA approaches, domain-invariant features are learned on a joint space so that a

classifier mainly trained based on labeled source domain data can be transferred to predict well

unlabeled target domain data. The classifiers of interest are usually deep nets conducted on top

of domain-invariant features. In this work, by leveraging the kernel theory and the max-margin

principle, we consider a kernel machine on top of domain-invariant features, which is a hyperplane

on a feature space via a feature map 𝜙 .

Inspired by the max-margin principle proven efficiency and effectiveness for learning from

imbalanced data, when learning domain-invariant features, we propose to learn a max-margin

hyperplane on the feature space to separate vulnerable (small amounts of code) and non-vulnerable

(large amounts of code) data. More specifically, we combine labeled source domain data and

unlabeled target domain data, and then learn a hyperplane to separate source domain non-vulnerable

from vulnerable data and target domain data from the origin such that the margin is maximized.

Here, the margin is defined as the minimization of the source domain and target domain margins

in which the source domain margin is defined as the minimum distance from vulnerable data points

to hyperplane while the target domain margin is defined as the distance from the origin (i.e., the

(0,0) coordinate in the feature space) to the hyperplane [Schölkopf et al.(2001)].

5.2 Our Proposed Approach
We aim to build a model that can effectively be used for cross-domain vulnerability detection

where the vulnerability detection classifier learned from a labeled source domain can be transferred

to classify the data from an unlabeled target domain. That directly aids software engineers in

identifying vulnerable programs or functions in source code projects from various domains.

It is essential to emphasize the presence of a data representation gap between the source and target

domains in cross-domain vulnerability detection [Nguyen et al.(2019), Nguyen et al.(2020)]. Hence,

to ensure the effective application of the classifier trained on the source domain for classifying data

from the target domain, the initial component of our proposed method focuses on bridging the gap

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

8 Van Nguyen et al.

between these domains. To do that, we leverage the power of deep domain adaptation using the

adversarial training principle, an effective and popular approach, for learning domain-invariant

features as presented below.

5.2.1 Deep Domain Adaptation for Learning Domain-Invariant Features. In what follows,

we present the architecture of our generator 𝐺 and how to use an adversarial learning framework,

GAN [Goodfellow et al.(2014)], to learn domain-invariant features in a joint latent space specified

by 𝐺 . To automatically learn the key features of the sequential source code data, inspired by

[Li et al.(2018b), Nguyen et al.(2019), Nguyen et al.(2020)], we apply a bidirectional recurrent neural

network (bidirectional RNN) to both the source and target domains. Given a source code function

𝒙 in the source domain or the target domain, we denote the output of the bidirectional RNN by

B (𝒙). We then use some fully connected layers to connect the output layer of the bidirectional

RNN with the joint feature layer wherein we bridge the gap between the source and target domains.

The generator is consequently the composition of the bidirectional RNN and the fully connected

layers: 𝐺 (𝒙) = 𝑓 (B (𝒙)) where 𝑓 (·) represents the map formed by the fully connected layers.

Fig. 2. A visualization of deep domain adaptation using an adversarial learning framework (i.e., GAN

[Goodfellow et al.(2014)]) for learning domain-invariant features. The generator 𝐺 takes the sequence of

code statements (i.e., each code statement is in the vectorial form obtained from the data processing and

embedding step) and maps this sequence to the joint layer (i.e., the joint space). Inspired by the GAN principle,

the discriminator 𝐷 is invoked to discriminate the source and target domain data while the generator 𝐺 is

trained to fool the discriminator 𝐷 by making the source and target domain data indistinguishable. At the

Nash equilibrium point, the source and target distributions are identical in the joint space.

Subsequently, to bridge the gap between the source and target domains in the latent space,

inspired by GAN [Goodfellow et al.(2014)], we apply an adversarial training process. As demon-

strated in Figure 2, we use a domain discriminator 𝐷 to discriminate the source domain and target

domain data and train the generator 𝐺 to fool the discriminator 𝐷 by making the source domain

and target domain data indistinguishable in the latent space. The objective function is hence as

follows:

H (𝐺,𝐷) :=
1

𝑁𝑆

𝑁𝑆∑︁
𝑖=1

log𝐷

(
𝐺

(
𝒙𝑆𝑖

))
+ 1

𝑁𝑇

𝑁𝑇∑︁
𝑖=1

log

[
1 − 𝐷

(
𝐺

(
𝒙𝑇𝑖

))]
(1)

where we seek the optimal generator 𝐺∗
and the domain discriminator 𝐷∗

by solving:

𝐺∗ = argmin

𝐺

H (𝐺, 𝐷) and𝐷∗ = argmax

𝐷

H (𝐺, 𝐷)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

Cross-Project Imbalanced Software Vulnerability Detection 9

It is crucial to highlight that optimizing Eq. (1) involves training the discriminator 𝐷 to maximize

the probability of correctly assigning domain labels to the representations of both source and

target domain data generated by the generator𝐺 . Considering a single probability scalar output

by the discriminator 𝐷 , updating the discriminator 𝐷 by maximizing Eq. (1) requires aiming for a

value close to 1 for 𝐷
(
𝐺
(
𝒙𝑆𝑖

))
and a value close to 0 for 𝐷

(
𝐺
(
𝒙𝑇𝑖

))
. Conversely, minimizing Eq.

(1) during the generator G updating process aims to achieve a value close to 1 for 𝐷
(
𝐺
(
𝒙𝑇𝑖

))
. In

essence, this adversarial optimization process involves the discriminator D learning to differentiate

between the representations of source and target domain data, while the generator G endeavors to

make the representations of target domain data indistinguishable from those of the source domain

data. Ultimately, by the end of the training process, through the generator 𝐺 , the representations

of source and target domain data are bridged in the latent space.

5.2.2 Cross-domainKernel Classifier. Integratingwith the process of learning domain-invariant

features to bridge the gap between the source and target domains in the latent space, thereby

facilitating the vulnerability transfer learning process, the second part of our proposed model

involves constructing a cross-domain classifier. The classifier is designed not only to efficiently and

effectively handle the imbalanced nature of both source and target domains but also to leverage

the information from the unlabeled target domain to further update and enhance the classifier’s

capability in vulnerability transfer learning. In what follows, we illustrate how our proposed cross-

domain kernel classifier, leveraging the max-margin principle (i.e., effectiveness in handling imbal-

anced datasets [Schölkopf et al.(2001), Hsu and Lin(2002), Kotsiantis et al.(2006), Tsang et al.(2007),

Le et al.(2010)]), operates.

To build up an efficient domain adaptation approach for source code data that can tackle well

the imbalanced nature of source code projects, we leverage learning domain-invariant features

with the max-margin principle in the context of kernel machines to propose a novel cross-domain

kernel classifier named DAM2P. In particular, inspired by the max-margin principle, we construct

a hyperplane on the feature space: w𝑇𝜙 (𝐺 (𝒙)) − 𝜌 = 0 with the feature map 𝜙 and learn this

hyperplane using the max-margin principle. More specifically, we combine labeled source domain

and unlabeled target domain data and then learn a hyperplane to separate source domain non-

vulnerable from source domain vulnerable data and target domain data from the origin in such a way

that the margin is maximized.

Fig. 3. The architecture of our cross-domain kernel classifier in the feature space. By using our DAM2P

method, we can gradually bridge the gap between the imbalanced labeled source and imbalanced unlabeled

target domains in the latent space, while in the feature space, our cross-domain kernel classifier helps to

distinguish the vulnerable and non-vulnerable data. In the end, when the source and target domains are

intermingled, we can transfer our trained cross-domain classifier to classify the data of the target domain.

It is worth noting that in our work, the margin is defined as the minimization of the source

and target margins in which the source margin is the minimal distance from the source domain

vulnerable data points to the hyperplane, while the target margin is the distance from the origin

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

10 Van Nguyen et al.

to the hyperplane [Schölkopf et al.(2001)]. By using the source and target domain margins, our

proposed cross-domain kernel vulnerability classifier can harness the information from both the

source and target domain datasets in forming the optimal decision.

The overall architecture of our proposed cross-domain kernel classifier in the feature space is

depicted in Figure 3 while its optimization problem is presented in Eq. (2).

Given the source domain dataset 𝑆 = {(𝒙𝑆
1
, 𝑦1), . . . , (𝒙𝑆𝑁𝑆

, 𝑦𝑁𝑆
)} where 𝑦𝑖 = 1, 𝑖 = 1, ...,𝑚 and

𝑦𝑖 = −1, 𝑖 = 𝑚 + 1, ..., 𝑁𝑆 and the target domain dataset 𝑇 = {𝒙𝑇
1
, . . . , 𝒙𝑇

𝑁𝑇
}, we formulate the

following optimization problem:

max

w,𝜌
(min{min

𝑦𝑖=1

{
𝑦𝑖 (w⊤𝜙 (𝐺 (𝒙𝑆𝑖)) − 𝜌)

∥w∥ }︸ ︷︷ ︸
source margin

,
𝜌

∥w∥︸︷︷︸
target margin

}) (2)

subject to

𝑦𝑖 (w⊤𝜙 (𝐺 (𝒙𝑆𝑖)) − 𝜌) ≥ 0, 𝑖 = 1, ..., 𝑁𝑆

w⊤𝜙 (𝐺 (𝒙𝑇𝑖)) ≥ 𝜌, 𝑖 = 1, ..., 𝑁𝑇 .

where w and 𝜌 are the normal vector and the bias of the hyperplane and 𝜙 is a transformation

from the joint latent space to the feature space, while𝐺 is the generator used to map the data of

the source and target domains from the input space into the joint latent space.

Noting that in Eq. (2), we combine both labeled source domain and unlabeled target domain

data to learn the hyperplane (w𝑇𝜙 (𝐺 (𝒙)) − 𝜌 = 0). As depicted in Figure 3, this hyperplane aims

to separate (i) source domain non-vulnerable data from source domain vulnerable data and (ii)

target domain data from the origin by maximizing the margin (defined as the minimization of the

source and target margins). By optimizing the objective problem in Eq. (2) with the corresponding

constraints, we obtain the optimal values for the parameters of the hyperplane, including w and 𝜌 .

It occurs that the margin is invariant if we scale w, 𝜌 by a factor 𝑘 > 0. Hence without loosing

of generality, we can assume that min{min

𝑦𝑖=1

{
𝑦𝑖 (w⊤𝜙 (𝐺 (𝒙𝑆𝑖)) − 𝜌

)
}, 𝜌} = 1

1
. The optimization

problem (2) can be rewritten as follows:

min

𝑤,𝜌

1

2

∥w∥2

(3)

subject to
𝑦𝑖 (w⊤𝜙 (𝐺 (𝒙𝑆𝑖)) − 𝜌) ≥ 0, 𝑖 = 1, ...,𝑚

𝑦𝑖 (w⊤𝜙 (𝐺 (𝒙𝑆𝑖)) − 𝜌) ≥ 1, 𝑖 =𝑚 + 1, ..., 𝑁𝑆
w⊤𝜙 (𝐺 (𝒙𝑇𝑖)) ≥ 𝜌, 𝑖 = 1, ..., 𝑁𝑇

We refer to the above model as a hard version of our proposed cross-domain kernel classifier.

To derive the soft version (to let the model be applicable to the case where the data are linearly

inseparable), inspired by [Schölkopf et al.(2001)], we extend the optimization problem in Eq. (3) by

using the slack variables as follows:

min

w,𝜌
(1

2

∥w∥2 + 1

𝑁𝑆 + 𝑁𝑇
(
𝑁𝑆∑︁
𝑖=1

𝜉𝑆𝑖 + 𝜆
𝑁𝑇∑︁
𝑖=1

𝜉𝑇𝑖)) (4)

subject to

1
This assumption is feasible because if (w∗, 𝜌∗) is the optimal solution, (𝑘w∗, 𝑘𝜌∗) with 𝑘 > 0 is also another optimal

solution. Therefore, we can choose 𝑘 to satisfy the assumption.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

Cross-Project Imbalanced Software Vulnerability Detection 11

𝑦𝑖 (w⊤𝜙 (𝐺 (𝒙𝑆𝑖)) − 𝜌) ≥ −𝜉𝑆𝑖 , 𝑖 = 1, ...,𝑚

𝑦𝑖 (w⊤𝜙 (𝐺 (𝒙𝑆𝑖)) − 𝜌) ≥ 1 − 𝜉𝑆𝑖 , 𝑖 =𝑚 + 1, ..., 𝑁𝑆
w⊤𝜙 (𝐺 (𝒙𝑇𝑖)) ≥ 𝜌 − 𝜉𝑇𝑖 , 𝑖 = 1, ..., 𝑁𝑇
𝜉𝑆𝑖 ≥ 0, 𝑖 = 1, ..., 𝑁𝑆 ; 𝜉𝑇𝑖 ≥ 0, 𝑖 = 1, ..., 𝑁𝑇 .

where 𝜆 > 0 is the trade-off hyper-parameter representing the weight of the information from the

target domain contributing to the cross-domain kernel classifier.

We derive the primal form of the soft model optimization problem in Eq. (4) as follows:

min

w,𝜌
L(𝐺,w, 𝜌) (5)

where we have defined

L(𝐺,w, 𝜌) :=
1

2

∥w∥2 + 1

𝑁𝑆 + 𝑁𝑇

𝑚∑︁
𝑖=1

max {0,−𝑧𝑖 }

+ 1

𝑁𝑆 + 𝑁𝑇

𝑁𝑆∑︁
𝑖=𝑚+1

max {0,−𝑧𝑖 + 1}

+ 𝜆

𝑁𝑆 + 𝑁𝑇

𝑁𝑇∑︁
𝑖=1

max

{
0,−w⊤𝜙 (𝐺 (𝒙𝑇𝑖)) + 𝜌

}
with 𝑧𝑖 = 𝑦𝑖

(
w⊤𝜙 (𝐺 (𝒙𝑆𝑖) − 𝜌

)
.

Random feature map. Deriving from the max-margin principle, in Eq. (5), we use the trans-

former 𝜙 to transform data from the latent space into a higher-dimensional space (i.e., the fea-

ture space), allowing for the discovery of complex patterns and relationships that might not be

readily apparent in the original data space. This transformation is achieved using mathematical

kernel functions (e.g., Gaussian kernel taking input vectors in the original space and returning

the dot product of the vectors in the feature space [Hearst et al.(1998), Schölkopf and Smola(2002),

Hofmann et al.(2008)]). However, the use of kernel functions can indeed result in a high-dimensional

feature space, which can substantially increase the computational complexity and time required for

training [Joachims(2006)].

To accelerate the training of the max-margin principle-based optimization problem as mentioned

in Eq. (5), we use a random feature map [Rahimi and Recht(2008)](i.e., helps accelerate the training of

kernel machines by converting the training and evaluation of any kernel machine into the corresponding

operations of a linear machine by mapping data into a relatively low-dimensional randomized feature

space) for the transformation 𝜙 to map the representations (e.g., 𝐺 (𝒙𝑆𝑖) and 𝐺 (𝒙𝑇𝑖)) from the latent

space to a random feature space. The formulation of 𝜙 on a specific 𝐺 (𝒙𝑖) ∈ R𝑑 is as follows:

𝜙 (𝐺 (𝒙𝑖)) = [1

√
𝐾
𝑐𝑜𝑠 (𝜔⊤

𝑘
𝐺 (𝒙𝑖),

1

√
𝐾
𝑠𝑖𝑛(𝜔⊤

𝑘
𝐺 (𝒙𝑖)]𝐾𝑘=1

where𝐾 consists of independent and identically distributed samples𝜔1, ..., 𝜔𝐾 ∈ R𝑑 which are the
Fourier random elements. We note that the use of a random feature map𝜙 [Rahimi and Recht(2008)]

in conjunction with the cost-sensitive kernel machine of our proposed cross-domain kernel classifier

as mentioned in Eq. (5) and a bidirectional recurrent neural network for the generator𝐺 allows us

to conveniently do back-propagation when training our proposed approach.

Combining the optimization problems in Eqs. (1 and 5), we arrive at the final objective function:

I (𝐺, 𝐷,w, 𝜌) := L(𝐺,w, 𝜌) + 𝛼H (𝐺,𝐷) (6)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

12 Van Nguyen et al.

where 𝛼 > 0 is the trade-off hyper-parameter. We seek the optimal generator 𝐺∗
, domain discrimi-

nator 𝐷∗
, the normal vector w∗

and bias 𝜌∗ by solving:

(𝐺∗,w∗, 𝜌∗) = argmin

𝐺,w,𝜌

I (𝐺,𝐷,w, 𝜌)

𝐷∗ = argmax

𝐷

I (𝐺, 𝐷,w, 𝜌)

The training algorithm of our proposed approach is shown in Algorithm 1.

Algorithm 1: The algorithm of our proposed method for cross-domain imbalanced software

vulnerability detection.

Input: A labeled source domain dataset 𝑆 =

{(
𝒙𝑆

1
, 𝑦1

)
, . . . ,

(
𝒙𝑆
𝑁𝑆
, 𝑦𝑁𝑆

)}
where 𝑦𝑖 ∈ {−1, 1}

(i.e., 1: vulnerable code and −1: non-vulnerable code) and an unlabeled target domain

dataset 𝑇 =

{
𝒙𝑇

1
, . . . , 𝒙𝑇

𝑁𝑇

}
. The number of training iterations 𝑛𝑡 ; the minibatch size

𝑚; the trade-off hyper-parameters 𝛼 and 𝜆.

We randomly partition the source domain 𝑆 into the training set 𝑆𝑡𝑟𝑎𝑖𝑛 (used to train

the model) and the validation set 𝑆𝑣𝑎𝑙 (used to save the best-trained model).

We randomly split the target domain 𝑇 into the training set 𝑇𝑡𝑟𝑎𝑖𝑛 (used to train the

model) and the testing set 𝑇𝑡𝑒𝑠𝑡 (used to evaluate the best-trained model).

1 Initialize the generator 𝐺 , the cross-domain kernel classifier C, the discriminator 𝐷

parameters with random weights 𝜃𝐺 , 𝜃𝐶 including (w and bias 𝜌), and 𝜃𝐷 respectively.

2 for 𝑡 = 1 to 𝑛𝑡 do
3 Choose a minibatch of source domain samples

{(
𝒙𝑆𝑖 , 𝑦

𝑆
𝑖

)}𝑚
𝑖=1

and target domain samples{
𝒙𝑇𝑖

}𝑚
𝑖=1

randomly.

4 Update the generator 𝐺 parameter (𝜃𝐺) and the cross-domain kernel classifier 𝐶

parameter (𝜃𝐶) by minimizing the objective function I (𝐺,𝐷,w, 𝜌) mentioned in Eq. (6)

using the Adam optimizer.

5 Update the discriminator 𝐷 parameter (𝜃𝐷) by maximizing the objective function

I (𝐺, 𝐷,w, 𝜌) mentioned in Eq. (6) using the Adam optimizer.

6 end

Output: The optimal 𝜃 ∗
𝐺
, 𝜃 ∗
𝐶
, and 𝜃 ∗

𝐷
parameters. After the training process, when the source

and target domains are intermingled, we can transfer the trained cross-domain

kernel classifier 𝐶 to classify the data of the target domain. We evaluate the trained

model’s performance on the testing set 𝑇𝑡𝑒𝑠𝑡 of the target domain 𝑇 .

6 EXPERIMENTS
6.1 Experimental Design
The key goal of this experiment section is to evaluate the performance of our DAM2P and compare it with

recent state-of-the-art cross-domain software vulnerability detection methods [Nguyen et al.(2019),

Nguyen et al.(2020)] and potential deep-domain adaptation approaches [Ganin and Lempitsky(2015),

Long et al.(2015), Nguyen et al.(2017), Shu et al.(2018), Chen et al.(2020), Le et al.(2021)] for cross-

domain imbalanced software vulnerability detection.

We aim to address the following key Research Questions (RQs) in these experiments:

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

Cross-Project Imbalanced Software Vulnerability Detection 13

(RQ1) Can our DAM2P approach learn automatic features and exploit the imbalanced
nature of source code data via deep domain adaptation and the max-margin principle to
effectively perform transfer learning from imbalanced labeled source software projects
to imbalanced unlabeled target software projects? Recent methods (e.g., [Nguyen et al.(2019),

Nguyen et al.(2020)]) have been obtaining promising performances for cross-project software

vulnerability detection (SVD); However, none of them exploit the imbalanced nature of source code

projects for which the vulnerable data points are significantly minor compared to non-vulnerable

ones. This may limit the capability of these methods in dealing with the cross-project SVD problem.

In particular, without a robust capability to learn from small amounts of data (vulnerable data),

SVD models may be disproportionately influenced by large amounts of data (non-vulnerable),

thus potentially diminishing their ability to detect vulnerabilities in cross-domain vulnerability

classification. The negative effect of this issue can be exhibited via the F1-measure of the models

when applied to the target domain.

In this paper, in addition to exploiting deep domain adaptation with automatic representation

learning for cross-project SVD, we propose a novel cross-domain kernel classifier leveraging

the max-margin principle aiming to improve the capability of the transfer learning of software

vulnerabilities from imbalanced labeled projects into imbalanced unlabeled ones. We investigate

and prove that taking into account the imbalanced nature of source code data via the max-margin

principle will help significantly improve the model performance in cross-project imbalanced SVD.

In real-world source code data, the vulnerable data and corresponding non-vulnerable data

(e.g., functions or programs) can share common vulnerability-irrelevant source code statements

while only a few core code statements cause associated data vulnerable instead of non-vulnerable.

That poses a challenging problem for software vulnerability detection methods, especially in

cross-domain vulnerability detection. This problem again highlights the necessity for vulnerability

detection methods, especially in cross-domain vulnerability classification, to incorporate elegant

mechanisms that effectively consider both vulnerable and non-vulnerable data when constructing

decision boundaries.

(RQ2) Can our DAM2P approach successfully leverage the information from the im-
balanced unlabeled target domain to further improve the model performance for cross-
project imbalanced SVD? Our proposed approach can not only take into account the imbalanced

nature of source code data but also leverage the information from the imbalanced unlabeled projects

to improve the transfer learning capability from imbalanced labeled projects into imbalanced unla-

beled ones. In this research question, we investigate the effectiveness of leveraging the information

from the imbalanced unlabelled target domain in improving the capability of the transfer learning

of software vulnerabilities from imbalanced labeled projects into imbalanced unlabeled projects.

(RQ3) Can techniques commonly used for solving the imbalanced dataset problem help
to improve performance in the context of cross-domain imbalanced software vulnerability
detection? Although achieving promising performances, none of the cross-domain SVD methods

successfully exploit the imbalanced nature of source code projects, for which the vulnerable data

points are significantly minor compared to non-vulnerable ones, to boost the performance on

cross-domain software vulnerability detection. Without a robust capability to learn from minor data

(vulnerable data), SVD models are likely to be overly influenced by major data (non-vulnerable),

which can potentially diminish their ability to detect vulnerabilities. In this research question, we

investigate if some commonly used techniques (e.g., Sampling and weighting [Chawla et al.(2002)],

and Logit adjustment [Menon et al.(2021)]) addressing the imbalanced dataset problem can help to

improve the baseline’s performance to cross-project software vulnerability detection.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

14 Van Nguyen et al.

(RQ4) Can recent state-of-the-art methods in software vulnerability detection (SVD) be
applied to solve the problem of cross-domain SVD?
Our study is for cross-domain software vulnerability detection. In addition to comparing our

proposed method with the state-of-the-art cross-domain SVD approaches, we also want to in-

vestigate if recent effective work in conventional SVD, such as CodeBERT [Feng et al.(2020)] (a

pre-trained model specializes in the programming language) and ReGVD [Nguyen et al.(2022b)]

(an effective Graph neural network-based model for SVD), can produce results that accurately

predict vulnerabilities across domains.

Experimental Datasets. We used the same several real-world source code datasets as studied in

[Nguyen et al.(2019), Nguyen et al.(2020)]. These contain the source code of vulnerable functions

(vul-funcs) and non-vulnerable functions (non-vul-funcs) obtained from five real-world software

project datasets, namely FFmpeg (#vul-funcs: 187 and #non-vul-funcs: 5427), LibTIFF (#vul-funcs:

81 and #non-vul-funcs: 695), LibPNG (#vul-funcs: 43 and #non-vul-funcs: 551), VLC (#vul-funcs: 25

and #non-vul-funcs: 5548), and Pidgin (#vul-funcs: 42 and #non-vul-funcs: 8268).

Note that these real-world project (domain) datasets used in our experiments are extremely

imbalanced. The number of vulnerable data in each project (domain) is only around 0.51% to 11.65%

compared to the number of non-vulnerable data. Via our observation, in cross-domain vulnerability

detection, within the same pair of the source and target domains, the fewer the number of vulnerable

data compared to the number of non-vulnerable data, the more serious this problem may be. In

reality, this problem can also happen across different pairs of the source and target domains.

In our experiments, to demonstrate the capability of our proposed method in transfer learning

for cross-domain imbalanced software vulnerability detection (SVD) (i.e., transferring the learning

of software vulnerabilities (SVs) from labeled projects to unlabelled projects belonging to different

application domains), we used the multimedia application datasets (FFmpeg, VLC, and Pidgin) as

the source domains, whilst the datasets (LibPNG and LibTIFF) from the image application domains

were used as the target domains. It is worth noting that in the training process, we hide the labels

of datasets from the target domains. We only use these labels in the testing phase to evaluate the

models’ performance.

Baselines. The main baselines of our DAM2P method are some state-of-the-art end-to-end deep

domain adaptation (DA) approaches for cross-domain SVD including SCDAN [Nguyen et al.(2019)],

Dual-GD-DDAN, Dual-GD-SDDAN [Nguyen et al.(2020)]. We also compare our method with other

popular state-of-the-art domain adaptation approaches (i.e., most of the DA methods have been

applied for vision data) including DDAN [Ganin and Lempitsky(2015)], MMD [Long et al.(2015)],

D2GAN [Nguyen et al.(2017)], DIRT-T [Shu et al.(2018)], HoMM [Chen et al.(2020)], and LAMDA

[Le et al.(2021)] as well as the state-of-the-art automatic feature learning for SVD, VulDeePecker

[Li et al.(2018b)]. To the method operated via separated stages proposed by [Liu et al.(2020)], at

present, we cannot compare to it due to the lack of the original data and completed reproducing

source code from the authors.

VulDeePecker [Li et al.(2018b)] is an automatic feature learning method for SVD. The model

employed a bidirectional recurrent neural network to take sequential inputs and then concate-

nated hidden units as inputs to a feedforward neural network classifier while the DDAN, MMD,

D2GAN, DIRT-T HoMM, and LAMDA methods are the state-of-the-art deep domain adapta-

tion models for computer vision proposed in [Ganin and Lempitsky(2015)], [Long et al.(2015)],

[Nguyen et al.(2017)], [Shu et al.(2018)], [Chen et al.(2020)], and [Le et al.(2021)] respectively. In-

spired by [Nguyen et al.(2019)], we borrowed the principles of these methods and refactored them

using the CDAN architecture introduced in [Nguyen et al.(2019)] for cross-domain SVD. It is worth

noting that VulDeePecker is one of the state-of-the-art methods for SVD, but was not originally proposed

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

Cross-Project Imbalanced Software Vulnerability Detection 15

for cross-domain SVD. In our paper, it is used to show that simply applying the classifier learned from

labeled projects to classify the data from different unlabeled projects is not a good solution due to the

shifted data distributions.

The SCDAN method [Nguyen et al.(2019)] can be considered as the first method that demon-

strates the feasibility of deep domain adaptation for cross-domain SVD. Based on their proposed

CDAN architecture, leveraging deep domain adaptation with automatic feature learning for SVD,

the authors proposed the SCDAN method to exploit and utilize the information efficiently from

unlabeled target domain data to improve themodel performance. TheDual-GD-DDAN andDual-GD-

SDDAN methods were proposed in [Nguyen et al.(2020)] aiming to deal with the mode collapsing

problem existing in SCDAN and other approaches using GAN as a principle to close the gap between

the source and target domains in the latent space to further improve the transfer learning process

for cross-domain SVD.

Data Processing and Embedding. We preprocess the source code datasets before inputting

them into the deep neural networks (i.e., baselines and our proposed method). As shown in Figure

4, inspired by the baselines, we first standardize the source code by removing comments, blank

lines, and non-ASCII characters. Secondly, we map user-defined variables to symbolic variable

names (e.g., “var1”, “var2”) and user-defined functions to symbolic function names (e.g., “func1”,

“func2”). We also replace integer, real and hexadecimal numbers with a generic number token and

strings with a generic str token. We then embed the source code statements into numeric vectors.

For example, to the following code statement "if(func2(func3(number,number),&var2) !=var10)", we

tokenize it to a sequence of code tokens (e.g., if,(,func2,(,func3,(,number,number,),&,var2,),!=,var10,)),

construct the frequency vector of the statement information, and multiply this frequency vector by

a learnable embedding matrix𝑊 𝑠𝑖
.

Fig. 4. An example of the overall procedure for data processing and embedding. We use a source code function

in the C language programming from the FFmpeg project. After the data preprocessing step, we obtain a

preprocessed function and then use the embedding process (a part of the model) to obtain the embedded

vectors for the code statements of the function.

Note that as the baselines, to our proposed method, for handling the sequential properties of the

data and to learn the automatic features of the source code functions, we also use a bidirectional

recurrent neural network (bidirectional RNN) for both the source and target domains.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

16 Van Nguyen et al.

Model Configuration. For the baseline approaches including VulDeePecker [Li et al.(2018b)],

and DDAN [Ganin and Lempitsky(2015)], MMD [Long et al.(2015)], D2GAN [Nguyen et al.(2017)],

DIRT-T [Shu et al.(2018)], HoMM [Chen et al.(2020)], LAMDA [Le et al.(2021)] using the architec-

ture CDAN proposed in SCDAN [Nguyen et al.(2019)], and Dual-GD-DDAN and Dual-GD-SDDAN

[Nguyen et al.(2020)], and our proposed DAM2P method, we use one bidirectional recurrent neural

network with LSTM [Hochreiter and Schmidhuber(1997)] cells where the size of hidden states is

in {128, 256} for the generator 𝐺 while to the source classifier 𝐶 used in the baselines and the

domain discriminator 𝐷 , we use deep feed-forward neural networks consisting of two hidden layers

where the size of each hidden layer is equal to 300. We embed the statement information in the 150

dimensional embedding space.

To our proposed method, the trade-off hyper-parameters 𝜆 and 𝛼 are in {10
−3, 10

−2, 10
−1} and

{10
−2, 10

−1, 10
0}, respectively, while the hidden size ℎ is in {128, 256}. The dimension of random

feature space 2𝐾 equals 1024. The length 𝐿 of each function is padded or cut to 100 or less than

100 code statements (i.e., we base on the quantile values of the functions’ length of each dataset

to decide the length of each function). In particular, more than 96% of functions contain fewer

than 100 code statements. Of the remaining 4% with over 100 statements, a manual examination

reveals that nearly all of these functions exhibit critical code statements, those contributing to

vulnerability, within their initial 100 code statements.

We employed the Adam optimizer [Kingma and Ba(2014)] with an initial learning rate of 10
−3

while the mini-batch size is set to 100 for our proposed method and baselines. We split the data

of the source domain into two random partitions containing 80% for training and 20% for valida-

tion. We also split the data of the target domain into two random partitions. The first partition

contains 80% for training the models of MMD, D2GAN, DIRT-T, HoMM, LAMDA, DDAN, SCDAN,

Dual-GD-DDAN, Dual-GD-SDDAN, and DAM2P without using any label information while the

second partition contains 20% for testing the models. We additionally applied gradient clipping

regularization to prevent the over-fitting problem in the training process of each model. We ran

the corresponding model 5 times for each method and reported the averaged measures. We imple-

mented all mentioned methods in Python using Tensorflow [Abadi et al.(2016)], an open-source

software library for Machine Intelligence developed by the Google Brain Team, on an Intel E5-2680,

having 12 CPU Cores at 2.5 GHz with 128GB RAM, integrated NVIDIA Tesla K80. Our released

source code samples are publicly available at https://github.com/vannguyennd/dam2p.

6.2 Experimental Results

RQ1: Can our DAM2P approach learn automatic features and exploit the imbalanced
nature of source code data via deep domain adaptation and the max-margin principle to
effectively perform transfer learning from imbalanced labeled source software projects
to imbalanced unlabeled target software projects?

Approach. We investigated the performance of our DAM2P method and compared it to the

baselines. We note that the VulDeePecker method was only trained on the source domain data

and then tested on the target domain data. The DDAN, MMD, D2GAN, DIRT-T, HOMM, LAMDA,

SCDAN, Dual-GD-DDAN, Dual-GD-SDDAN, and DAM2P methods employed the target domain

data without using any label information from this domain for deep domain adaptation.

The results in Table 1 show that our DAM2P method obtains a higher performance for most

measures in the majority of cases of the source and target domains. DAM2P achieves the highest

F1-measure for all pairs of the source and target domains. In general, our method obtains a higher

performance on F1-measure from 1.83% to 6.25% compared to the second highest method in the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

https://github.com/vannguyennd/dam2p

Cross-Project Imbalanced Software Vulnerability Detection 17

used source and target domains. For example, in the case of the source domain (FFmpeg) and the

target domain (LibPNG), DAM2P obtains the F1-measure of 93.33% compared with the F1-measure

of 90.41%, 88.89%, 87.5%, 84.21%, 90.91%, 87.50%, 84.21%, 80%, 77.78% and 75% obtained by Dual-

GD-SDDAN, Dual-GD-DDAN, SCDAN, DDAN, LAMDA, HOMM, DIRT-T, D2GAN, MMD and

VulDeePecker, respectively.

The experimental results in Table 1 confirm the importance of addressing the imbalanced nature

of source code data when developing a cross-domain vulnerability detection method. To improve

the model’s effectiveness in identifying both vulnerable and non-vulnerable data, it must robustly

learn from both major (non-vulnerable) and minor (vulnerable) data. Furthermore, as indicated in

Table 1, some baseline models demonstrate commendable recall results (e.g., over 80%) in certain

scenarios within the source and target domains. However, these models tend to yield lower precision

results in the corresponding cases, negatively affecting the corresponding F1-measure. This once

again underscores the detrimental impact of the imbalanced nature of the source code data on the

model performance where the baselines have not yet successfully addressed this issue.

It is important to highlight that for effective vulnerability detection, a method should exhibit

high performances in both recall and precision, as indicated by the F1-measure, the harmonic

mean of precision and recall. The F1-measure ensures a balanced assessment of a model’s ability

to correctly identify vulnerable instances while minimizing false positives. Ensuring high recall

and high precision in security measures is crucial for thorough vulnerability detection and risk

mitigation. While high recall tends to be prioritized (e.g., [Ami et al.(2024)]) to ensure the detection

of the majority of vulnerabilities, thus reducing the risk of security breaches, maintaining a balance

with high precision is also essential. This balance helps minimize false positives and optimize

resource utilization, thereby preventing alert fatigue and avoiding disruption to legitimate data

and activities. Therefore, a highly qualified vulnerability detection method needs to strike a high

performance in both recall and precision. If a method exhibits high recall but low precision, it

suggests a significant number of false positives where non-vulnerable data are incorrectly identified

as vulnerable. This is likely to compromise the reliability of the vulnerability detection method.

The experimental results in Table 1 further reveal that the model performance (of our proposed

DAM2P method and baselines) in cross-domain vulnerability detection is influenced not only by

the ratio of vulnerable to non-vulnerable data in the source domain but also by the correlations

(e.g., writing style) between source and target domain data. This explains why, in some pairs of

source and target domains (e.g., Pidgin→ LibTIFF and FFmpeg → LibTIFF) where the number of

vulnerable data samples in a source domain is lower (e.g., Pidgin compared to FFmpeg), that may

put more challenges on a model to distinguish between vulnerable and non-vulnerable data, the

performance of the used models still vary, exhibiting lower, higher, or relatively consistent (e.g.,

on the pair Pidgin→ LibTIFF compared to the pair FFmpeg→ LibTIFF), across the used metrics

including F1-measure, recall, and precision. Notably, our DAM2P method consistently achieves the

highest F1-measure across all pairs of the source and target domains.

Visualization. We further demonstrate the efficiency of our proposed method in closing the

gap between the source and target domains. We visualize the feature distributions of the source

and target domains in the joint space using a 2D t-SNE [Maaten and Hinton(2008)] projection

with perplexity equal to 30. In particular, we project the source domain and target domain data

in the joint space (i.e., 𝐺 (𝒙)) into a 2D space without undertaking domain adaptation (using the

VulDeePecker method) and with undertaking domain adaptation (using our DAM2P method).

In Figure 5, we present the results when performing domain adaptation from one software

project (FFmpeg) to another (LibPNG). For the purpose of visualization, we select a random subset

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

18 Van Nguyen et al.

Table 1. Performance results in terms of false negative rate (FNR), false positive rate (FPR), Recall, Precision,

and F1-measure (F1) of VulDeePecker (VULD),MMD,D2GAN, DIRT-T, HOMM, LAMDA, DDAN, SCDAN, Dual-

GD-DDAN (Dual-DDAN), Dual-GD-SDDAN (Dual-SDDAN) and DAM2P methods for predicting vulnerable

and non-vulnerable functions on the testing set of the target domain (Best performance in bold).

Source→ Target Methods FNR FPR Recall Precision F1

VULD 42.86% 1.08% 57.14% 80% 66.67%

MMD 37.50% 0% 62.50% 100% 76.92%

D2GAN 33.33% 1.06% 66.67% 80% 72.73%

DIRT-T 33.33% 1.06% 66.67% 80% 72.73%

Pidgin→ HOMM 14.29% 4.30% 85.71% 60.00% 70.59%

LibPNG LAMDA 12.50% 4.35% 87.50% 63.64% 73.68%

DDAN 37.50% 0% 62.50% 100% 76.92%

SCDAN 33.33% 0% 66.67% 100% 80%

Dual-DDAN 33.33% 0% 66.67% 100% 80%

Dual-SDDAN 22.22% 1.09% 77.78% 87.50% 82.35%

DAM2P (ours) 12.50% 1.08% 87.50% 87.50% 87.50%
VULD 43.75% 6.72% 56.25% 50% 52.94%

MMD 28.57% 12.79% 71.43% 47.62% 57.14%

D2GAN 30.77% 6.97% 69.23% 64.29% 66.67%

DIRT-T 25% 9.09% 75% 52.94% 62.07%

FFmpeg→ HOMM 37.50% 2.17% 62.50% 71.43% 66.67%

LibTIFF LAMDA 37.50% 1.09% 62.50% 88.33% 71.42%

DDAN 35.71% 6.98% 64.29% 60% 62.07%

SCDAN 14.29% 5.38% 85.71% 57.14% 68.57%

Dual-DDAN 12.5% 8.2% 87.5% 56% 68.29%

Dual-SDDAN 35.29% 3.01% 64.71% 73.33% 68.75%

DAM2P (ours) 14.29% 8.14% 85.71% 63.16% 72.73%
VULD 25% 2.17% 75% 75% 75%

MMD 12.5% 3.26% 87.5% 70% 77.78%

D2GAN 14.29% 2.17% 85.71% 75% 80%

DIRT-T 15.11% 2.2% 84.89% 80% 84.21%

FFmpeg→ HOMM 0% 2.15% 100% 77.78% 87.50%

LibPNG LAMDA 16.67% 0.% 83.33% 100% 90.91%

DDAN 0% 3.26% 100% 72.73% 84.21%

SCDAN 12.5% 1.08% 87.5% 87.5% 87.5%

Dual-DDAN 0% 2.17% 100% 80% 88.89%

Dual-SDDAN 17.5% 0% 82.5% 100% 90.41%

DAM2P (ours) 0% 1.07% 100% 87.50% 93.33%
VULD 57.14% 1.08% 42.86% 75% 54.55%

MMD 45% 4.35% 55% 60% 66.67%

D2GAN 28.57% 4.3% 71.43% 55.56% 62.5%

DIRT-T 50% 1.09% 50% 80% 61.54%

VLC→ HOMM 42.86% 0% 57.14% 100% 72.73%

LibPNG LAMDA 28.57% 1.08% 71.43% 83.33% 76.92%

DDAN 33.33% 2.20% 66.67% 75% 70.59%

SCDAN 33.33% 1.06% 66.67% 80% 72.73%

Dual-DDAN 28.57% 2.15% 71.43% 71.43% 71.43%

Dual-SDDAN 11.11% 4.39% 88.89% 66.67% 76.19%

DAM2P (ours) 33.33% 0% 66.67% 100% 80%
VULD 35.29% 8.27% 64.71% 50% 56.41%

MMD 30.18% 12.35% 69.82% 50% 58.27%

D2GAN 40% 7.95% 60% 60% 60%

DIRT-T 38.46% 8.05% 61.54% 53.33% 57.14%

Pidgin→ HOMM 20% 9.41% 80% 60% 68.57%

LibTIFF LAMDA 30% 4.44% 70% 63.64% 66.67%

DDAN 27.27% 8.99% 72.73% 50% 59.26%

SCDAN 30% 5.56% 70% 58.33% 63.64%

Dual-DDAN 29.41% 6.76% 70.59% 57.14% 63.16%

Dual-SDDAN 37.5% 2.98% 62.5% 71.43% 66.67%

DAM2P (ours) 7.69% 9.20% 92.31% 60% 72.73%

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

Cross-Project Imbalanced Software Vulnerability Detection 19

*

*
*

*

*

**

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*
*

*

*

*
*

*

*

*

*
*

**

*
**

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

**
*

*

*

**

*
**

*

**

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *
*

*

*

*

*

*

*

*

*

*

* *

**

* *

*
*

*

*

*

*
*

* *

*
*

*
*

*

*

*

*

*

*

*
* *

*

*
*

* *

*

*

** *
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

* *
*

*

* *
**

*
*

**
*

*

*

*

*
*

*

* *

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

**

* *

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*
*

*

*

*

*

**

*

*
*

*

*

*

*
*
*

*

*

*

*

*

*

*

*

** *

*
*** **
** *

*

*

*

*

**
*

*
*

** *

* *

** *

* *

*

Fig. 5. A 2D t-SNE projection for the case of the FFmpeg→ LibPNG without undertaking domain adaptation

(the left-hand figure, using VulDeePecker) and undertaking domain adaptation (the right-hand figure, using

our proposed DAM2P method). The blue points and the red points (with a special token ∗ on top of each

point) represent the source and target domains in the joint space respectively. Data points labeled 0 stand for

non-vulnerable samples and data points labeled 1 stand for vulnerable samples. It is noted that our method
can not only successfully bridge the gap between the source and target domains but also be able to distinguish the
non-vulnerable and vulnerable data effectively .

of the source project against the entire target project. As shown in Figure 5, without undertaking

domain adaptation (VulDeePecker) the blue points (the source domain data) and the red points

(the target domain data) are almost separate while with undertaking domain adaptation the blue

and red points intermingled as expected. Furthermore, we observe that the mixing-up level
of the source domain and target domain data using our DAM2P method is significantly
high. In particular, the source and target domains are mixed while the vulnerable and
non-vulnerable data from both domains are separated.
With the use of the max-margin principle to find the hyperplane that maximizes the margin

between classes in the feature space, the decision boundary is placed as far away from the nearest

data points of each class as possible. In real-world scenarios, especially in complex datasets, it is

common to have a mixture of samples from different classes on or near the margin. This occurs

because the margin is determined by the most challenging instances to classify, which are often

the ones closest to the decision boundary. These instances can represent ambiguous or overlapping

regions between classes, where the model is uncertain about the correct classification. Therefore, it

can be usual to observe a mixture of benign and vulnerable samples near the margin. Our qualitative

results, illustrated in Figure 5, also reveal a mixture of benign and vulnerable footpaths, with

some vulnerable and non-vulnerable data points appearing close to each other. The visualizations

show that our method successfully bridges the gap between the source and target domains while

effectively distinguishing between non-vulnerable and vulnerable data.

Answers to RQ1: The quantitative experimental results in Table 1 on five main measures

(i.e., false negative rate (FNR), false positive rate (FPR), Recall, Precision, and F1-measure

(F1)) and the qualitative results in Figure 5 show the superiority of our DAM2P method

in achieving high performances for cross-project imbalanced SVD on the used real-world

datasets over the baselines.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

20 Van Nguyen et al.

RQ2: Can our DAM2P approach successfully leverage the information from the im-
balanced unlabeled target domain to further improve the model performance for cross-
project imbalanced SVD?

Approach. We aim to further demonstrate the efficiency of our DAM2Pmethod in transferring the

learning of vulnerabilities from imbalanced labeled source domains to other imbalanced unlabeled

target domains as well as the superiority of our novel cross-domain kernel classifier in our DAM2P

method for learning and separating vulnerable and non-vulnerable data. In particular, in this study,

we not only prove the effectiveness of leveraging the information from the imbalanced unlabelled

target domain in improving the capability of the transfer learning but also demonstrate that bridging

the discrepancy gap in the latent space and using the max-margin cross-domain kernel classifier

are complementary to boost the DA performance with imbalanced nature.

Table 2. Performance results in terms of false negative rate (FNR), false positive rate (FPR), Recall, Precision,

and F1-measure (F1) of five cases including (i, VulDeePecker), (ii, DDAN), (iii, Kernel-Source denoted by

Kernel-S), (iv, Kernel-Source-Target denoted by Kernel-ST), and (v, DAM2P) for predicting vulnerable and

non-vulnerable code functions on the testing set of the target domain (Best performance in bold).

Source → Target Methods FNR FPR Recall Precision F1

VulDeePecker 43.75% 6.72% 56.25% 50% 52.94%

FFmpeg → DDAN 35.71% 6.98% 64.29% 60% 62.07%

LibTIFF Kernel-S 30% 5.56% 70% 58.33% 63.63%

Kernel-ST 25% 5.68% 75% 64.29% 69.23%

DAM2P (ours) 14.29% 8.14% 85.71% 63.16% 72.73%
VulDeePecker 25% 2.17% 75% 75% 75%

FFmpeg → DDAN 0% 3.26% 100% 72.73% 84.21%

LibPNG Kernel-S 0% 4.39% 100% 69.23% 81.81%

Kernel-ST 0% 3.26% 100% 72.72% 84.21%

DAM2P (ours) 0% 1.07% 100% 87.50% 93.33%

We conduct experiments on two pairs of the source and target domains including FFmpeg→
LibTIFF and FFmpeg → LibPNG. We consider five cases in which we start from the blank case

(i, VulDeePecker) without bridging the gap and cross-domain kernel classifier. We then only add

the GAN term to bridge the discrepancy gap in the second case (ii, DDAN). In the third case (iii,

Kernel-Source), we only apply the max-margin principle for the source domain, while applying the

max-margin principle for the source and target domains in the fourth case (iv, Kernel-Source-Target).

Finally, in the last case (v, DAM2P), we simultaneously apply the bridging term and the max-margin

terms for the source and target domains.

The results in Table 2 shows that the max-margin and bridging terms help to boost the domain

adaptation performance. Moreover, applying the max-margin term to both the source and target

domains improves the performance compared to applying it to only the source domain. Last but

not least, bridging the discrepancy gap term in cooperation with the max-margin term significantly

improves the domain adaptation performance.

Answers to RQ2: The experimental results (in Table 2) show a considerable increase in

the model performance when simultaneously applying the bridging term and the max-

margin terms for the source and target domains compared to cases without combining

these terms. The results also show an improvement when harnessing the information

from the imbalanced unlabelled target domain for learning the cross-domain classifier to

enhance the capability of transfer learning.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

Cross-Project Imbalanced Software Vulnerability Detection 21

RQ3: Can techniques commonly used for solving the imbalanced dataset problem help
to improve performance in the context of cross-domain imbalanced software vulnerability
detection?

Sampling and weighting, and Logit adjustment. Sampling and weighting are well-known as simple

and heuristic methods to deal with imbalanced datasets. However, as mentioned by [Lin et al.(2017),

Cui et al.(2019)], these methods may have some limitations, for example, i) Sampling may either

introduce large amounts of duplicated samples, which slows down the training and makes the

model susceptible to overfitting when oversampling, or discarding valuable examples that are

important for feature learning when undersampling, and ii) To the highly imbalanced datasets,

directly training the model or weighting (e.g., inverse class frequency or the inverse square root of

class frequency) cannot yield satisfactory performance.

[Menon et al.(2021)] recently proposed a novel statistical framework for solving the imbalanced

(long-tailed) label distribution problem. Specifically, the framework, revisiting the idea of logit

adjustment based on the label frequencies, encourages a large relative margin between logits of the

rare positive labels versus the dominant negative labels.

To investigate the efficiency of these methods (i.e., sampling and weighting, and logit adjustment)

when applying to the baselines in the context of cross-domain imbalanced software vulnerability

detection (SVD), we conduct an experiment on two pairs of the source and target domains (i.e.,

FFmpeg → LibTIFF and FFmpeg → LibPNG) for four main baselines including the DDAN, SCDAN,

Dual-GD-DDAN, and Dual-GD-SDDAN methods using (i) the oversampling technique based on

SMOTE [Chawla et al.(2002)] (i.e., used to create balanced datasets), and (ii) logit adjustment (LA)

used in [Menon et al.(2021)].

Table 3. Performance results in terms of false negative rate (FNR), false positive rate (FPR), Recall, Precision,

and F1-measure (F1) of DDAN, SCDAN, Dual-GD-DDAN (Dual-DDAN), and Dual-GD-SDDAN (Dual-SDDAN)

methods in three cases of with using oversampling (w/ OS), using LA (w/ LA) and without using (oversampling

or LA) (w/o (OS or LA)) for predicting vulnerable and non-vulnerable code functions on the testing set of the

target domain. We denote Source→ Target by S→ T.

S → T Methods FNR FPR Recall Precision F1

DDAN w/ OS 21% 12.79% 78.57% 50% 61.11%

DDAN w/ LA 14.29% 15.11% 85.71% 48% 61.53%

DDAN w/o (OS or LA) 35.71% 6.98% 64.29% 60% 62.07%
SCDAN w/ OS 25% 5.43% 75% 54.55% 63.16%

SCDAN w/ LA 11.11% 8.8% 88.89% 50% 64%

FFmpeg→ SCDAN w/o (OS or LA) 14.29% 5.38% 85.71% 57.14% 68.57%
LibTIFF Dual-DDAN w/ OS 25% 6.72% 75% 57.14% 64.87%

Dual-DDAN w/ LA 35.29% 4.50% 64.71% 64.71% 64.71%

Dual-DDAN w/o (OS or LA) 12.5% 8.2% 87.5% 56% 68.29%
Dual-SDDAN w/ OS 16.67% 9.1% 83.33% 56% 67%

Dual-SDDAN w/ LA 43.75% 1.70% 56.25% 90% 69%
Dual-SDDAN w/o (OS or LA) 35.29% 3.01% 64.71% 73.33% 68.75%

DDAN w/ OS 28.57% 0% 71.43% 100% 83.33%

DDAN w/ LA 25% 0% 75% 100% 85.71%
DDAN w/o (OS or LA) 0% 3.26% 100% 72.73% 84.21%

SCDAN w/ OS 25% 0% 75% 100% 85.71%

SCDAN w/ LA 0% 2.17% 100% 80% 88.89%
FFmpeg→ SCDAN w/o (OS or LA) 12.5% 1.08% 87.5% 87.5% 87.5%

LibPNG Dual-DDAN w/ OS 14.29% 1.08% 85.71% 85.71% 85.71%

Dual-DDAN w/ LA 0% 2.15% 100% 77.78% 87.5%

Dual-DDAN w/o (OS or LA) 0% 2.17% 100% 80% 88.89%
Dual-SDDAN w/ OS 12.5% 2.17% 87.5% 77.78% 82.35%

Dual-SDDAN w/ LA 11.11% 1.1% 88.89% 88.89% 88.89%

Dual-SDDAN w/o (OS or LA) 17.5% 0% 82.5% 100% 90.41%

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

22 Van Nguyen et al.

The results in Table 3 show that using the oversampling technique cannot help to improve these

baseline models’ performance. In particular, the performance of these baselines without using

oversampling is always higher than using oversampling on the used datasets in F1-measure (F1), the

most important measure used in SVD. This experiment supports our conjecture that in the context

of imbalanced domain adaptation when moving target representations to source representations in

the latent space to bridge the gap, oversampling the minority class (i.e., vulnerable class) might

increase the chance of wrongly mixing up vulnerable representations of the target domain and

non-vulnerable representations of the source domain, hence leading to a reduction in performance.

In our approach, with the support of the max-margin principle, we keep the vulnerable and non-

vulnerable representations distant as much as possible when bridging the gap between these

representations in the latent space.

Furthermore, the results in Table 3 indicate that using LA can help slightly improve the model’s

performance on some cases of the baselines. In particular, LA increases the performance of Dual-

SDDAN on FFmpeg → LibTIFF as well as DDAN and SCDAN on FFmpeg → LibPNG compared

to these methods without using LA. However, to DDAN, SCDAN and Dual-DDAN on FFmpeg →
LibTIFF as well as Dual-DDAN and Dual-SDDAN on FFmpeg → LibPNG, LA cannot help improve

these models’ performance. In conclusion, using LA can help increase the baseline’s performance

in some cases of the used datasets in F1-measure compared to these cases without using LA or

using the oversampling technique. However, similar to the oversampling technique, in most cases

mentioned in Table 3, LA cannot help improve the baselines’ performance. Furthermore, in the cases

where LA helps increase the baseline models’ performance, our proposed method’s performance

(mentioned in Table 1) is still significantly higher.

Answers to RQ3: In general, the experimental results (in Table 3) show that commonly

used techniques (e.g., oversampling (SMOTE) and LA) for solving the imbalanced dataset

problem cannot help to improve the baselines’ performance in the context of imbalanced

cross-domain software vulnerability detection in most cases of the source and target

domains. In the cases where LA helps increase the baseline’s performance, our method’s

performance (mentioned in Table 1) is still significantly higher.

RQ4: Can recent state-of-the-art methods in software vulnerability detection (SVD) be
applied to solve the problem of cross-domain SVD?

Approach. We investigated the capability of recent state-of-the-art methods in software vulnera-

bility detection (SVD) including CodeBERT [Feng et al.(2020)] (a pre-trained model specializes in

the programming language) andReGVD [Nguyen et al.(2022b)] (an effective Graph neural network-

based model for SVD) on the problem of cross-domain SVD. Like the VuldeePecker [Li et al.(2018b)]

approach, these methods are well-known as effective and state-of-the-art solutions for SVD but

were not originally designed for cross-domain SVD. In this experiment, we further demonstrate

the limitation of simply applying the classifier learned from labeled projects to classify the data

from different unlabeled projects due to the shifted data distributions. It indicates the need for

cross-domain software vulnerability detection approaches. We used the recommendation settings

and implemented the CodeBERT and ReGVD methods following the source code samples pub-

lished by the authors. Note that the ReGVD and CodeBERT methods were trained and fine-tuned,

respectively, on the source domains and then tested on the target domains.

We conduct the experiment on two pairs of the source and target domains (i.e., FFmpeg→ LibTIFF

and FFmpeg→ LibPNG). The experimental results in Table 4 show that these methods cannot work

well for the cross-domain imbalanced SVD. They achieve much lower performances for all the used

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

Cross-Project Imbalanced Software Vulnerability Detection 23

measures, especially CodeBERT, compared to the state-of-the-art methods in cross-domain SVD

and our proposed method (mentioned in Table 1).

Table 4. Performance results in terms of false negative rate (FNR), false positive rate (FPR), Recall, Precision,

and F1-measure (F1) of the CodeBERT and ReGVD methods for predicting vulnerable and non-vulnerable

code functions on the testing set of the target domain.

Source→ Target Methods FNR FPR Recall Precision F1

CodeBERT 86.56% 12.01% 13.44% 23.21% 17.03%

FFmpeg → LibTIFF ReGVD 77.83% 10.08% 22.17% 37.26% 27.80%

CodeBERT 98.59% 1.76% 1.40% 15.04% 2.57%

FFmpeg → LibPNG ReGVD 33.61% 17.37% 66.39% 45.83% 54.23%

Answers to RQ4: The results in Table 4 again show the limitation of the state-of-the-art

SVD when being applied to solve the problem of cross-domain SVD. Simply applying

the classifier learned from labeled projects to classify the data from different unlabeled

projects is not a good solution because of the shifted data distributions. That shows the

need for cross-domain software vulnerability detection approaches.

Additional ablation studies for RQ4 and RQ1.

Would CodeBERT and ReGVD exhibit improved performances if tuned on domain-

invariant features extracted through domain adaptation? To assess this, we conducted an

additional experiment on two pairs of source and target domains (FFmpeg to LibPNG and FFmpeg

to LibTIFF) in two consecutive steps. The first step focused solely on domain-invariant feature

learning, while the second step involved fine-tuning CodeBERT and training ReGVD using the

features obtained from the first step.

Table 5. Performance results in terms of false negative rate (FNR), false positive rate (FPR), Recall, Precision,

and F1-measure (F1) of the CodeBERT and ReGVD methods for predicting vulnerable and non-vulnerable

code functions on the testing set of the target domain when they are tuned on the domain invariant features

extracted from domain adaptation.

Source→ Target Methods FNR FPR Recall Precision F1

CodeBERT 40% 8.63% 60% 20% 30%

FFmpeg→ LibTIFF ReGVD 74.67% 11.87% 25.33% 36.55% 29.92%

CodeBERT 0.0% 13.51% 100% 6.25% 11.76%

FFmpeg → LibPNG ReGVD 30.86% 15.47% 69.14% 49.77% 57.88%

The results in Table 5 indicate that this approach helps to improve the performance of CodeBERT

and ReGVD; however, it is still ineffective in assisting both CodeBERT and ReGVD in addressing

the cross-domain imbalanced SVD, as these methods still exhibit low performances in terms of the

F1-measure, especially when compared to the cross-domain SVD methods where the process of

learning invariant features and the classifier are operated in the designed united framework to

support each other to obtain the best performance for cross-domain SVD.

Would the initial representations be derived from pre-trained models (e.g., CodeBERT and

UnixCoder), with the addition of aMax-Margin Classifier on top to assist the DAM2Pmethod

in addressing cross-domain imbalanced SVD?. To assess this experiment, we replace the bidirec-

tional recurrent neural network (bidirectional RNN) used in the generator 𝐺 with the pre-trained

CodeBert and UnixCoder before applying the GAN principle in the latent space for bridging the gap

between the source and target domains. We conduct a corresponding experiment on two pairs of

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

24 Van Nguyen et al.

the source and target domains (including FFmpeg to LibPNG and FFmepg to LibTIFF) to investigate

if this approach is an effective solution for cross-domain SVD. The results in Table 6 imply that

this approach is not an effective way to assist the DAM2P method in addressing cross-domain

imbalanced SVD, as the corresponding model performs poorly in terms of F1-measure.

Table 6. Performance results in terms of false negative rate (FNR), false positive rate (FPR), Recall, Precision,

and F1-measure (F1) of the the DAM2P methods for predicting vulnerable and non-vulnerable code functions

on the testing set of the target domain when the initial representations and the representation learning part

are taken from pre-trained models such as CodeBERT and UnixCoder.

Source→ Target Pre-trained models FNR FPR Recall Precision F1

CodeBERT 0.0% 100% 100% 11.33% 20.36%

FFmpeg → LibTIFF UnixCoder 29.41% 41.30% 70.59% 17.39% 27.91%

CodeBERT 0.0% 100% 100% 10% 18.18%

FFmpeg→ LibPNG UnixCoder 30.77% 34.31% 69.23% 20.45% 31.58%

Via our observations, there may be some potential reasons why the initial representations and

the representation learning part taken from pre-trained large language models (LLMs) do not work

well on downstream tasks (e.g., cross-domain imbalanced SVD) such as (i) Domain shift: significant

differences between the domain of the pre-training data and the domain of the downstream task

can hinder transferability. The model may struggle to adapt if the task involves a different context

or domain, (ii) Task complexity: some downstream tasks may be inherently more complex or have

different patterns compared to the pre-training objectives. The model may not be able to adapt

well to tasks with distinct complexities, and (iii) Lack of task-specific knowledge: LLMs are trained

on a vast range of data, but they may not have specific knowledge about the nuances of particular

tasks. Fine-tuning helps, but it might not be enough for highly specialized tasks.

6.3 Hyper-parameter Sensitivity
We discuss the correlation between important hyper-parameters (including the 𝜆, 𝛼 , and ℎ (the size

of hidden states in the bidirectional neural network)) and the F1-measure of our proposed DAM2P

method. Our experiments found that the trade-off hyper-parameters 𝜆 and𝛼 are in {10
−3, 10

−2, 10
−1}

and {10
−2, 10

−1, 10
0}, respectively, while the hidden size ℎ is in {128, 256}. It is worth noting that

we use the commonly used values for the trade-off hyper-parameters (𝜆 and 𝛼) representing

for the weights of different terms mentioned in Eq. (6) and the hidden size ℎ. In order to study

the impact of the hyper-parameters on the performance of the DAM2P method, we use a wider

range of values for 𝜆, 𝛼 , and ℎ. In this ablation study, the trade-off parameters 𝜆 and 𝛼 are in

{10
−4, 10

−3, 10
−2, 10

−1, 10
0, 10

1} while the hidden size ℎ is in {32, 64, 128, 256, 512, 1024}.
We investigate the impact of 𝜆, 𝛼 , and ℎ hyper-parameters on the performance of the DAM2P

method on five pairs of the source and target domains including FFmpeg to LibPNG, FFmpeg to

LibTIFF, Pidgin to LibPNG, Pidgin to LibTIFF, and VLC to LibPNG. As shown in Figures (6, 7, and

8), we observe that the appropriate values to the hyper-parameters used in the DAM2P model, in

order to obtain the best model’s performance, should be in from 10
−4

to 10
−2
, from 10

−3
to 10

−1
,

and from 64 to 256 for 𝜆, 𝛼 , and ℎ respectively. In particular, for the hidden size ℎ, if we use too

small values (e.g., ≤ 32) or too high values (e.g., ≥ 1024), the model might encounter underfitting or

overfitting problems respectively. The model’s performance on 𝜆 (i.e., representing the weight of

the information from the target domain contributing to the cross-domain kernel classifier during

the training process) shows that we should not set the value of 𝜆 equal or higher than 1.0 (i.e., used

for the weight of the information from the source domain), and the value of 𝜆 should be higher than

10
−4

to make sure that we use enough information of the target domain in the training process to

improve the cross-domain kernel classifier.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

Cross-Project Imbalanced Software Vulnerability Detection 25

Fig. 6. The correlation between ℎ and F1-measure of our proposed DAM2P method.

Fig. 7. The correlation between 𝜆 and F1-measure of our proposed DAM2P method.

6.4 Threats to Validity
Construct Validity: Key construct validity threats are if our assessments of the methods demonstrate

the ability for cross-project software vulnerability detection (SVD). The main purpose of our

DAM2P method is for cross-project SVD solving two crucial issues in SVD including i) learning

automatic representations to improve the predictive performance of SVD, and ii) coping with the

scarcity of labeled vulnerabilities in projects that require the laborious labeling of code by experts.

To evaluate the performance of our DAM2P method and baselines, we use five main measures,

including false negative rate (FNR), false positive rate (FPR), Recall, Precision, and F1-measure (F1),

widely used in SVD [Li et al.(2016), Li et al.(2018a), Nguyen et al.(2019)].

Internal Validity: Key internal validity threats are relevant to the choice of hyper-parameter

settings (i.e., optimizer, learning rate, number of layers in deep neural networks, etc.). It is worth

noting that finding a set of optimal hyperparameter settings of deep neural networks is expensive

due to a large number of trainable parameters. To train our method, we only use the common and

default values of hyper-parameters such as using Adam optimizer and the learning rate equals 10
−3
.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

26 Van Nguyen et al.

Fig. 8. The correlation between 𝛼 and F1-measure of our proposed DAM2P method.

We also report the hyperparameter settings in the released reproducible source code to support

future replication studies.

In our study, as the baselines, we use a bi-directional long short-term memory (LSTM) for the

feature extraction network (i.e., the generator G). A bi-directional LSTM is designed to capture

long-term dependencies in sequential data, which often requires processing a large number of time

steps. This can lead to increased training time, especially when dealing with long sequences in

huge datasets. In our proposed method, the embedding, feature extraction (generator G), domain

discriminator D, and the cross-domain kernel classifier C are operated in a united framework.

These parts link and support each other in obtaining the optimal solution to solving the problem.

Our cross-domain kernel classifier based on the max-margin principle (which is well-known for

achieving high generalization performance even with a relatively small number of data points) can

help our model faster to coverage to the optimal decision boundary reducing the training time.

External Validity: Key external validity threats include whether our proposed method will

generalize to other vulnerabilities (i.e., vulnerabilities can be of various types and natures presenting

in both source domains and target domains although written in different ways, e.g., using different

structures or variable names) and whether they will work on other source code datasets. We

mitigated this problem by using five real-world source code datasets, namely FFmpeg, LibTIFF,

LibPNG, VLC, and Pidgin.

6.5 Future study
As mentioned, in the scope of our paper, different software domains are those that come from

different software applications (e.g., multimedia applications and image applications) written

in the same C/C++ programming language. These domains are written in different ways (e.g.,

using different structures or variable names); however, they share the same nature (types) of code

vulnerabilities. This property lets our proposed method and the baselines be deployed realistically

for cross-domain software vulnerability detection.

Based on our observations, we have noted that source code data from various domains may be

composed in different programming languages, such as C/C++ and Java. However, what is crucial

is that they share common characteristics in terms of code vulnerabilities, such as similar semantic

relationships. We plan to delve deeper into this aspect in our future studies.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

Cross-Project Imbalanced Software Vulnerability Detection 27

In addition, to both conventional software vulnerability detection (training and testing phrases

for data from the same project) and cross-domain vulnerability detection methods (the practical

problem studied in our paper), the vulnerabilities from the same project testing sets (for conventional

SVD) or from the target domain testing sets (for cross-domain SVD) are assumed to be similar or

the same from the training sets (of the source domain), respectively.

The research for dealing with new vulnerabilities emerging in the target domains could be a

focus of our future research. To the best of our knowledge, in domain adaptation, there are no

effective methods that can deal with the case of new labels (e.g., vulnerabilities) appearing from

the target domains in the context of unsupervised domain adaptation (during the training process,

we do not use any label information from the target domains for deep domain adaptation). In our

view, tackling new labels in the target domains, as opposed to the labels from the source domains,

requires research that utilizes both data and labels from the target domains.

7 ADDITIONAL RELATED BACKGROUND
7.1 One-class support vector machine
Schölkopf and colleagues [Schölkopf et al.(2001)] proposed an approach to customize Support

Vector Machines (SVM) for one-class classification. Their method involves first applying a kernel

transformation to the features. Next, they designate the origin as the sole representative of the

second class. By introducing "relaxation parameters" they create a margin to separate the one

class’s representation from the origin. Subsequently, they apply standard two-class SVM techniques

to the problem.

Fig. 9. One-Class SVM Classifier. The origin is the only original member of the second class.

Assuming that there is a dataset sampled from an underlying probability distribution represented

by 𝑃 , one needs to estimate a "simple" subset 𝑆 of the input space such that the probability that

a test point from 𝑃 lies outside of 𝑆 is bounded by a prior specified 𝑣 ∈ (0, 1). The solution for

this problem is achieved by estimating a function 𝑓 which is positive on 𝑆 and negative on the

complement 𝑆 . In other words, Schölkopf and colleagues introduced an algorithm that returns

a function 𝑓 taking the value +1 in a "small" region capturing most of the data vectors, and −1

elsewhere. The algorithm can be summarized as mapping the data into a feature space 𝐻 using an

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

28 Van Nguyen et al.

appropriate kernel function, and then trying to separate the mapped vectors from the origin with a

maximum margin where 𝑓 (𝒙) = +1 if 𝒙 ∈ 𝑆 and 𝑓 (𝒙) = −1 if 𝒙 ∈ 𝑆 .
Let 𝒙1, 𝒙2, ..., 𝒙𝑙 be training examples belonging to one class 𝑋 , a compact subset of 𝑅𝑁 . Let

𝜙 : 𝑋 → 𝐻 be a kernel map that transforms the training examples to another space (e.g., the feature

space). Then, to separate the data set from the origin, one needs to solve the following quadratic

programming problem:

min

w,𝜌
(1

2

∥w∥2 + 1

𝑣𝑙

𝑙∑︁
𝑖=1

𝜉𝑖 − 𝜌) (7)

subject to

w⊤𝜙 (𝒙𝑖) ≥ 𝜌 − 𝜉𝑖 , 𝑖 = 1, ..., 𝑙 𝜉𝑖 ≥ 0

If w and 𝜌 solve this problem, then the decision function 𝑓 (𝒙) = 𝑠𝑖𝑔𝑛(w⊤𝜙 (𝒙) − 𝜌) will be
positive for most examples 𝒙𝑖 contained in the training set. A visualization of the one-class support

vector machine is depicted in Figure 9.

7.2 Recurrent neural networks
Recurrent neural networks (RNNs) [Rumelhart et al.(1986)], a class of deep neural networks (DNNs),

are specialized for sequential data (e.g., time series, sentences, documents, or audio samples). RNNs

are extremely useful for natural language processing (NLP) systems [Sutskever et al.(2014)] such

as automatic translation, speech-to-text, and sentiment analysis. Leveraging the idea of sharing

parameters across different parts of a model, an RNN can extend and apply to data of different

forms and generalize across them. An RNN is similar to a DNN, except it has backward connections.

A visualization of an RNN’s architecture is depicted in Figure 10 (the left-hand figure). At each time

step 𝑡 , the state of a recurrent neuron (i.e., a hidden state 𝒉𝑡) will receive the input vector 𝒙𝑡 as
well as the state vector from the previous step 𝑡 − 1 (i.e., 𝒉𝑡−1) to obtain the state vector 𝒉𝑡 .

𝒙!"#

𝒚!"#

𝒙!"$

𝒚!"$

𝒙!"%

𝒚!"%

𝒙!

𝒚!

𝒙!&%

𝒚!&%

𝒉

𝒙

𝒚

Time

𝒉!"# 𝒉!"$ 𝒉!"% 𝒉! 𝒉!&%

𝑾!" 𝑾!" 𝑾!" 𝑾!" 𝑾!"

𝑾#! 𝑾#! 𝑾#! 𝑾#! 𝑾#!

𝑾!! 𝑾!! 𝑾!! 𝑾!! 𝑾!! 𝑾!!

𝑾#!

𝑾!"

𝑾!!

Fig. 10. An architecture of a recurrent neural network (RNN) with the outputs 𝒚 and the hidden states 𝒉 of

recurrent neurons.

In particular, we have:

𝒉𝑡 = 𝑓 (𝒉𝑡−1, 𝒙𝑡)
We can unroll the RNN network through time to gain a new visualization as depicted in Figure

10 (the right-hand figure). Each recurrent neuron has two relevant input weights. One is for the

input vector 𝒙𝑡 , and the other is for the state vector 𝒉𝑡−1 of the previous time step 𝑡 − 1. At the

time step 𝑡 , if we denote the weight from the input vector 𝒙𝑡 to the state 𝒉𝑡 of the current recurrent
neuron by W𝑥ℎ and the weight from the state 𝒉𝑡−1 of the previous recurrent neuron to the state 𝒉𝑡

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

Cross-Project Imbalanced Software Vulnerability Detection 29

of the current recurrent neuron by Wℎℎ , the state 𝒉𝑡 of the current recurrent neuron is computed

as follows:

𝒉𝑡 = 𝜙 (W⊤
𝑥ℎ
𝒙𝑡 +W⊤

ℎℎ
𝒉𝑡−1 + 𝒃)

where 𝒃 is the bias vector and 𝜙 (.) is the activation function (e.g., the ReLU or Tanh functions).

At the time step 𝑡 , if we denote Wℎ𝑦 as the weight from the state 𝒉𝑡 of the current recurrent
neuron to the corresponding output denoted by 𝒚𝑡 , the output 𝒚𝑡 is computed as follows:

𝒚𝑡 = 𝜙 (W⊤
ℎ𝑦
𝒉𝑡 + 𝒄)

where 𝒄 is the bias vector and 𝜙 (.) is the activation function (e.g., the softmax function).

7.3 Long short-term memory networks
Long short-term memory (LSTM) networks are a type of RNNs capable of learning long-term

dependencies, first proposed by Hochreiter and Schmidhuber [Hochreiter and Schmidhuber(1997)]

and gradually improved over the years by other works [Sak et al.(2014), Zaremba et al.(2014)]. An

LSTM network was introduced to address the exploding and vanishing gradients problems as well

as the short-term memory problem (i.e., the lost information from some of the first elements from

the corresponding input in the memory cell of a long RNN) in training RNNs.

Forget gate

Input gate

Output gate

𝒄!"#

𝒉!"#

𝒄!

𝒉!

𝒚!

𝒇! 𝒈! 𝒊! 𝒐!

LSTM

Element-wise
multiplication

Addition

Logistic

Tanh

𝒙!

*
* **

Fig. 11. An architecture of a long short-term memory (LSTM) network.

The key idea of an LSTM network is about storing long-term memory. An LSTM network can

learn to figure out what information from the inputs should be read and stored in the long-term

state denoted by 𝒄𝑡 as well as what information should be thrown out from 𝒄𝑡 . A visualization of

an LSTM network is shown in Figure 11. As depicted, there are four layers in an LSTM network

including the main layer and three additional layers (i.e., gate controllers), namely, the forget gate,

the input gate, and the output gate.

• The main layer at the time step 𝑡 aims to analyse the current input vector 𝒙𝑡 and the previous
(short-term) state 𝒉𝑡−1 to gain the output g𝑡 (i.e., 𝒉𝑡 in a basic cell RNN). In an LSTM cell,

the layer’s output g𝑡 does not go straight out, but instead goes through a gate controller to

decide what parts are stored in the long-term state (i.e., 𝒄𝑡).

• Using the logistic activation function, the forget gate f𝑡 aims to learn which parts of the

long-term state 𝒄𝑡 should be erased. The input gate i𝑡 aims to control which parts of g𝑡 should
be added to the long-term state 𝒄𝑡 while the output gate 𝒐𝑡 aims to learn which parts of the

long-term state 𝒄𝑡 should be outputted for both 𝒉𝑡 and 𝒚𝑡 .

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

30 Van Nguyen et al.

The following equation (i.e., Eq. (8)) summarises the computing process of the four layers of an

LSTM network at the time step 𝑡 :

i𝑡 = 𝜎
(
W⊤
𝑥𝑖𝒙𝑡 +W⊤

ℎ𝑖
𝒉𝑡−1 + 𝒃𝑖

)
f𝑡 = 𝜎

(
W⊤
𝑥 𝑓
𝒙𝑡 +W⊤

ℎ𝑓
𝒉𝑡−1 + 𝒃 𝑓

)
𝒐𝑡 = 𝜎

(
W⊤
𝑥𝑜𝒙𝑡 +W⊤

ℎ𝑜
𝒉𝑡−1 + 𝒃𝑜

)
g𝑡 = tanh

(
W⊤
𝑥𝑔𝒙𝑡 +W⊤

ℎ𝑔
𝒉𝑡−1 + 𝒃𝑔

)
𝒄𝑡 = f𝑡 ⊗ 𝒄𝑡−1 + i𝑡 ⊗ g𝑡
𝒚𝑡 = 𝒉𝑡 = 𝒐𝑡 ⊗ tanh(𝒄𝑡−1) (8)

where W𝑥𝑖 , W𝑥 𝑓 , W𝑥𝑜 and W𝑥𝑔 are the weight matrices from the input vector 𝒙𝑡 to each of the

four layers whileWℎ𝑖 ,Wℎ𝑓 ,Wℎ𝑜 andWℎ𝑔 are the weight matrices from the previous short-term

state 𝒉𝑡−1 to each of the four layers, and 𝒃𝑖 , 𝒃 𝑓 , 𝒃𝑜 and 𝒃𝑔 are the bias vectors to each of the four

layers, respectively. In general, the output 𝒚𝑡 can be different from the short-term state 𝒉𝑡 (i.e.,
𝒚𝑡 = 𝜙 (W⊤

ℎ𝑦
𝒉𝑡 + 𝒃𝑦)) where 𝒃𝑦 is the bias vector whileWℎ𝑦 is the weight from 𝒉𝑡 to 𝒚𝑡 , and 𝜙 (.) is

the activation function (e.g., the softmax function).

8 CONCLUSION
In this paper, in addition to exploiting deep domain adaptation with automatic representation

learning for SVD, we have successfully proposed a novel cross-domain kernel classifier leveraging

the max-margin principle to significantly improve the capability of the transfer learning of software

vulnerabilities from imbalanced labeled projects into imbalanced unlabeled ones in order to deal

with two crucial issues in SVD including i) learning automatic representations to improve the

predictive performance of SVD, and ii) coping with the scarcity of labeled vulnerabilities in projects

that require the laborious labeling of code by experts. Our proposed cross-domain kernel classifier

can not only effectively deal with the imbalanced datasets but also leverage the information of the

unlabeled projects to further improve the classifier’s performance. The experimental results show

the superiority of our proposed method compared with other state-of-the-art baselines in terms of

the representation learning and transfer learning processes.

ACKNOWLEDGEMENTS
Grundy is supported by ARC Laureate Fellowship FL190100035.

REFERENCES
[Abadi et al.(2016)] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,

Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine learning.

In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). 265–283.

[Ami et al.(2024)] Amit Seal Ami, Kevin Moran, Denys Poshyvanyk, and Adwait Nadkarni. 2024. "False negative – that one

is going to kill you": Understanding Industry Perspectives of Static Analysis based Security Testing. IEEE Symposium

on Security and Privacy (2024).

[Chawla et al.(2002)] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. 2002. SMOTE:

synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16 (2002), 321–357.

[Chen et al.(2020)] Chao Chen, Zhihang Fu, Zhihong Chen, Sheng Jin, Zhaowei Cheng, Xinyu Jin, and Xian-Sheng Hua.

2020. HoMM: Higher-order Moment Matching for Unsupervised Domain Adaptation. Thirty-Fourth AAAI Conference

on Artificial Intelligence (2020).

[Cheng et al.(2019)] Xiao Cheng, Haoyu Wang, Jiayi Hua, Miao Zhang, Guoai Xu, Li Yi, and Yulei Sui. 2019. Static Detection

of Control-Flow-Related Vulnerabilities Using Graph Embedding. In 2019 24th International Conference on Engineering

of Complex Computer Systems (ICECCS).

[Cortes and Vapnik(1995)] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine Learning.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

Cross-Project Imbalanced Software Vulnerability Detection 31

[Cui et al.(2019)] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge J. Belongie. 2019. Class-Balanced Loss Based on

Effective Number of Samples. CoRR abs/1901.05555 (2019).

[Dam et al.(2018)] Hoa K. Dam, Truyen Tran, Trang Pham, Shien W. Ng, John Grundy, and Aditya Ghose. 2018. Automatic

feature learning for predicting vulnerable software components. IEEE Transactions on Software Engineering (2018).

[Dowd et al.(2006)] Mark Dowd, John McDonald, and Justin Schuh. 2006. The Art of Software Security Assessment: Identifying

and Preventing Software Vulnerabilities. Addison-Wesley Professional.

[Duan et al.(2019)] Xu Duan, Jingzheng Wu, Shouling Ji, Zhiqing Rui, Tianyue Luo, Mutian Yang, and Yanjun Wu. 2019.

VulSniper: Focus Your Attention to Shoot Fine-Grained Vulnerabilities. In Proceedings of the Twenty-Eighth International

Joint Conference on Artificial Intelligence, IJCAI-19.

[Duong et al.(2015)] Phuong Duong, Van Nguyen, Mi Dinh, Trung Le, Dat Tran, and Wanli Ma. 2015. Graph-based semi-

supervised support vector data description for novelty detection. International Joint Conference on Neural Networks

(IJCNN) (2015).

[Feng et al.(2020)] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing

Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT: A Pre-Trained Model for Programming and Natural

Languages. CoRR abs/2002.08155 (2020).

[Fu et al.(2024a)] Michael Fu, Van Nguyen, Chakkrit Tantithamthavorn, Dinh Phung, and Trung Le. 2024a. Vision trans-

former inspired automated vulnerability repair. ACM Transactions on Software Engineering and Methodology 33, 3

(2024), 1–29.

[Fu et al.(2023a)] Michael Fu, Van Nguyen, Chakkrit Kla Tantithamthavorn, Trung Le, and Dinh Phung. 2023a. VulExplainer:

A Transformer-based Hierarchical Distillation for Explaining Vulnerability Types. IEEE Transactions on Software

Engineering (2023).

[Fu et al.(2024b)] Michael Fu, Jirat Pasuksmit, and Chakkrit Tantithamthavorn. 2024b. AI for DevSecOps: A Landscape and

Future Opportunities. arXiv preprint arXiv:2404.04839 (2024).

[Fu and Tantithamthavorn(2022)] Michael Fu and Chakkrit Tantithamthavorn. 2022. Linevul: A transformer-based line-

level vulnerability prediction. In Proceedings of the 19th International Conference on Mining Software Repositories.

608–620.

[Fu et al.(2024c)] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Yuki Kume, Van Nguyen, Dinh Phung, and John

Grundy. 2024c. AIBugHunter: A Practical tool for predicting, classifying and repairing software vulnerabilities.

Empirical Software Engineering 29, 1 (2024), 4.

[Fu et al.(2022)] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh Phung. 2022. VulRepair: a

T5-based automated software vulnerability repair. In Proceedings of the 30th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering. 935–947.

[Fu et al.(2023b)] Michael Fu, Chakkrit Kla Tantithamthavorn, Van Nguyen, and Trung Le. 2023b. Chatgpt for vulnerability

detection, classification, and repair: How far are we?. In 2023 30th Asia-Pacific Software Engineering Conference (APSEC).

IEEE, 632–636.

[Ganin and Lempitsky(2015)] Yaroslav Ganin and Victor Lempitsky. 2015. Unsupervised Domain Adaptation by Backprop-

agation. In Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume

37 (Lille, France) (ICML’15). 1180–1189.

[Goodfellow et al.(2014)] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,

Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In Advances in neural information processing

systems. 2672–2680.

[Grieco et al.(2016)] Gustavo Grieco, Guillermo Luis Grinblat, Lucas Uzal, Sanjay Rawat, Josselin Feist, and Laurent Mounier.

2016. Toward Large-Scale Vulnerability Discovery Using Machine Learning. In Proceedings of the Sixth ACM Conference

on Data and Application Security and Privacy (New Orleans, Louisiana, USA) (CODASPY ’16). 85–96.

[Hanif et al.(2021)] Hazim Hanif, Mohd H. Nizam, Mohd Faizal, Ahmad Firdaus, and Nor B. Anuar. 2021. The rise of software

vulnerability: Taxonomy of software vulnerabilities detection and machine learning approaches. Journal of Network

and Computer Applications 179 (2021), 103009. https://doi.org/10.1016/j.jnca.2021.103009

[Hearst et al.(1998)] Marti A. Hearst, Susan T. Dumais, Edgar Osuna, John Platt, and Bernhard Schölkopf. 1998. Support

vector machines. IEEE Intelligent Systems and their Applications 13, 4 (1998), 18–28. https://doi.org/10.1109/5254.708428

[Hochreiter and Schmidhuber(1997)] Sepp Hochreiter and Jűrgen Schmidhuber. 1997. Long Short-Term Memory. Neural

Computation 9, 8 (1997), 1735–1780.

[Hofmann et al.(2008)] Thomas Hofmann, Bernhard Schölkopf, and Alexander J. Smola. 2008. Kernel methods in machine

learning. The Annals of Statistics, (2008).

[Hsu and Lin(2002)] Chih-Wei Hsu and Chih-Jen Lin. 2002. A comparison of methods for multiclass support vector machines.

IEEE Transactions on Neural Networks 13, 2 (2002), 415–425.

[Joachims(2006)] Thorsten Joachims. 2006. Training linear SVMs in linear time. Proceedings of the 12th ACM SIGKDD

international conference on Knowledge discovery and data mining (2006), 217–226.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

https://doi.org/10.1016/j.jnca.2021.103009
https://doi.org/10.1109/5254.708428

32 Van Nguyen et al.

[Kim et al.(2017)] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. 2017. VUDDY: A Scalable Approach for

Vulnerable Code Clone Discovery. In IEEE Symposium on Security and Privacy. IEEE Computer Society, 595–614.

[Kingma and Ba(2014)] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. CoRR

abs/1412.6980 (2014).

[Kipf and Welling(2016)] Thomas N. Kipf and MaxWelling. 2016. Semi-Supervised Classification with Graph Convolutional

Networks. CoRR abs/1609.02907 (2016).

[Kotsiantis et al.(2006)] Sotiris B. Kotsiantis, Ioannis D. Zaharakis, and Panayiotis E. Pintelas. 2006. Machine learning:

a review of classification and combining techniques. Artificial Intelligence Review 26 (2006), 159–190. https://api.

semanticscholar.org/CorpusID:1721126

[Le et al.(2016)] Anh Le, Trung Le, Khanh Nguyen, Van Nguyen, Thai Hoang Le, and Dat Tran. 2016. Fast kernel-based

method for anomaly detection. International Joint Conference on Neural Networks (IJCNN) (2016).

[Le et al.(2021)] Trung Le, Tuan Nguyen, Nhat Ho, Hung Bui, and Dinh Phung. 2021. LAMDA: Label Matching Deep

Domain Adaptation. In Proceedings of the 38th International Conference on Machine Learning. 6043–6054.

[Le et al.(2015)] Trung Le, Van Nguyen, Anh Nguyen, and Khanh Nguyen. 2015. Adaptable linear support vector machine.

National Foundation for Science and Technology Development Conference on Information and Computer Science (NICS)

(2015).

[Le et al.(2014)] Trung Le, Van Nguyen, Thien Pham, Mi Dinh, and Thai Hoang Le. 2014. Fuzzy semi-supervised large

margin one-class support vector machine. The National Foundation for Science and Technology Development (NAFOSTED)

Conference on Information and Computer Science (2014).

[Le et al.(2010)] Trung Le, Dat Tran, Wanli Ma, and Dharmendra Sharma. 2010. An optimal sphere and two large margins

approach for novelty detection. In Neural Networks (IJCNN), The 2010 International Joint Conference on. 1–6.

[Li et al.(2016)] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie Hu. 2016. VulPecker: An Automated

Vulnerability Detection System Based on Code Similarity Analysis. In Proceedings of the 32Nd Annual Conference on

Computer Security Applications (Los Angeles, California, USA) (ACSAC ’16). 201–213.

[Li et al.(2018a)] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, Zhaoxuan Chen, Sujuan Wang, and Jialai Wang.

2018a. SySeVR: A Framework for Using Deep Learning to Detect Software Vulnerabilities. CoRR abs/1807.06756 (2018).

[Li et al.(2018b)] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng, and Yuyi Zhong. 2018b.

VulDeePecker: A Deep Learning-Based System for Vulnerability Detection. CoRR abs/1801.01681 (2018).

[Lin and Wang(2002)] Chun-Fu Lin and Sheng-De Wang. 2002. Fuzzy support vector machines. IEEE Transactions on Neural

Networks.

[Lin et al.(2020)] Guanjun Lin, Sheng Wen, Qing-Long Han, Jun Zhang, and Yang Xiang. 2020. Software Vulnerability

Detection Using Deep Neural Networks: A Survey. Proc. IEEE 108, 10 (2020), 1825–1848. https://doi.org/10.1109/JPROC.

2020.2993293

[Lin et al.(2018)] Guanjun Lin, Jun Zhang, Wei Luo, Lei Pan, Yang Xiang, Olivier De Vel, and Paul Montague. 2018. Cross-

Project Transfer Representation Learning for Vulnerable Function Discovery. In IEEE Transactions on Industrial

Informatics, Vol. 14.

[Lin et al.(2017)] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. 2017. Focal Loss for Dense

Object Detection. CoRR abs/1708.02002 (2017).

[Liu et al.(2020)] Shigang Liu, Guanjun Lin, Lizhen Qu, Jun Zhang, Olivier De Vel, Paul Montague, and Yang Xiang. 2020.

CD-VulD: Cross-Domain Vulnerability Discovery based on Deep Domain Adaptation. IEEE Transactions on Dependable

and Secure Computing (2020). https://doi.org/10.1109/TDSC.2020.2984505

[Liu et al.(2023)] Yue Liu, Thanh Le-Cong, Ratnadira Widyasari, Chakkrit Tantithamthavorn, Li Li, Xuan-Bach D Le, and

David Lo. 2023. Refining ChatGPT-generated code: Characterizing and mitigating code quality issues. ACM Transactions

on Software Engineering and Methodology (2023).

[Liu et al.(2022)] Yue Liu, Chakkrit Tantithamthavorn, Yonghui Liu, Patanamon Thongtanunam, and Li Li. 2022. Autoupdate:

Automatically recommend code updates for android apps. arXiv preprint arXiv:2209.07048 (2022).

[Long et al.(2015)] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I. Jordan. 2015. Learning Transferable Features

with Deep Adaptation Networks. In Proceedings of the 32nd International Conference on Machine Learning. 97–105.

[Maaten and Hinton(2008)] Laurens V. D. Maaten and Geoffrey Hinton. 2008. Visualizing Data using t-SNE. Journal of

Machine Learning Research (2008).

[Menon et al.(2021)] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and

Sanjiv Kumar. 2021. Long-tail learning via logit adjustment. International Conference on Learning Representations (2021).

[Neuhaus et al.(2007)] Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas Zeller. 2007. Predicting

Vulnerable Software Components. In Proceedings of the 14th ACM Conference on Computer and Communications Security

(CCS ’07). 529–540.

[Nguyen et al.(2017)] Tu D. Nguyen, Trung Le, Hung Vu, and Dinh Phung. 2017. Dual Discriminator Generative Adversarial

Nets. CoRR abs/1709.03831 (2017).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

https://api.semanticscholar.org/CorpusID:1721126
https://api.semanticscholar.org/CorpusID:1721126
https://doi.org/10.1109/JPROC.2020.2993293
https://doi.org/10.1109/JPROC.2020.2993293
https://doi.org/10.1109/TDSC.2020.2984505

Cross-Project Imbalanced Software Vulnerability Detection 33

[Nguyen et al.(2020)] Van Nguyen, Trung Le, Olivier De Vel, Paul Montague, John Grundy, and Dinh Phung. 2020. Dual-

Component Deep Domain Adaptation: A NewApproach for Cross Project Software Vulnerability Detection. Pacific-Asia

Conference on Knowledge Discovery and Data Mining (2020).

[Nguyen et al.(2019)] Van Nguyen, Trung Le, Tue Le, Khanh Nguyen, Olivier DeVel, Paul Montague, Lizhen Qu, and

Dinh Phung. 2019. Deep Domain Adaptation for Vulnerable Code Function Identification. In The International Joint

Conference on Neural Networks (IJCNN).

[Nguyen et al.(2014)] Van Nguyen, Trung Le, Thien Pham, Mi Dinh, and Thai Hoang Le. 2014. Kernel-based semi-supervised

learning for novelty detection. International Joint Conference on Neural Networks (IJCNN) (2014).

[Nguyen et al.(2022a)] Van Nguyen, Trung Le, Chakkrit Tantithamthavorn, John Grundy, Hung Nguyen, Seyit Camtepe,

Paul Quirk, andDinh Phung. 2022a. An Information-Theoretic and Contrastive Learning-based Approach for Identifying

Code Statements Causing Software Vulnerability. CoRR abs/2209.10414 (2022).

[Nguyen et al.(2021)] Van Nguyen, Trung Le, Olivier De Vel, Paul Montague, John Grundy, and Dinh Phung. 2021.

Information-theoretic source code vulnerability highlighting. International Joint Conference on Neural Networks

(IJCNN) (2021).

[Nguyen et al.(2022b)] Van-Anh Nguyen, Dai Quoc Nguyen, Van Nguyen, Trung Le, Quan Hung Tran, and Dinh Q. Phung.

2022b. ReGVD: Revisiting Graph Neural Networks for Vulnerability Detection. International Conference on Software

Engineering (ICSE) (2022).

[Pornprasit and Tantithamthavorn(2021)] Chanathip Pornprasit and Chakkrit Kla Tantithamthavorn. 2021. JITLine: A

simpler, better, faster, finer-grained just-in-time defect prediction. In 2021 IEEE/ACM 18th International Conference on

Mining Software Repositories (MSR). IEEE, 369–379.

[Pornprasit and Tantithamthavorn(2022)] Chanathip Pornprasit and Chakkrit Kla Tantithamthavorn. 2022. Deeplinedp:

Towards a deep learning approach for line-level defect prediction. IEEE Transactions on Software Engineering 49, 1

(2022), 84–98.

[Rahimi and Recht(2008)] Ali Rahimi and Benjamin Recht. 2008. Random Features for Large-Scale Kernel Machines. In

Advances in Neural Information Processing Systems.

[Rumelhart et al.(1986)] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1986. Learning Internal Represen-

tations By Error Backpropagation. In Parallel Distributed Processing, Vol. 1.

[Russell et al.(2018)] Rebecca L. Russell, Louis Y. Kim, Lei H. Hamilton, Tomo Lazovich, Jacob A. Harer, Onur Ozdemir,

Paul M. Ellingwood, and Marc W. McConley. 2018. Automated Vulnerability Detection in Source Code Using Deep

Representation Learning. CoRR abs/1807.04320 (2018).

[Sak et al.(2014)] Hasim Sak, Andrew W. Senior, and Françoise Beaufays. 2014. Long Short-Term Memory Based Recurrent

Neural Network Architectures for Large Vocabulary Speech Recognition. CoRR abs/1402.1128 (2014).

[Schölkopf et al.(2001)] Bernhard Schölkopf, John C. Plattz, John Shawe-Taylor, Alex J. Smola, and Robert C. Williamson.

2001. Estimating the Support of a High-Dimensional Distribution. Neural Comput. 13, 7 (July 2001), 1443–1471.

[Schölkopf and Smola(2002)] Bernhard Schölkopf and Alexander J. Smola. 2002. Learning with Kernels. The MIT Press

(2002).

[Schölkopf et al.(2000)] Bernhard Schölkopf, Alex J. Smola, Robert C. Williamson, and Peter L. Bartlett. 2000. Neural

Computation. Machine Learning.

[Shin et al.(2011)] Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A. Osborne. 2011. Evaluating complexity,

code churn, and developer activity metrics as indicators of software vulnerabilities. IEEE Transactions on Software

Engineering 37, 6 (2011), 772–787.

[Shu et al.(2018)] Rui Shu, Hung H. Bui, Hirokazu Narui, and Stefano Ermon. 2018. A DIRT-T Approach to Unsupervised

Domain Adaptation. In International Conference on Learning Representations.

[Sutskever et al.(2014)] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural

networks. In Advances in neural information processing systems. 3104–3112.

[Tax and Duin(2004)] David M.J. Tax and Robert P.W. Duin. 2004. Support Vector Data Description. Journal of Machine

Learning Research 54, 1 (2004), 45–66.

[Thongtanunam et al.(2022)] Patanamon Thongtanunam, Chanathip Pornprasit, and Chakkrit Tantithamthavorn. 2022.

Autotransform: Automated code transformation to support modern code review process. In Proceedings of the 44th

international conference on software engineering. 237–248.

[Tsang et al.(2007)] Ivor W. Tsang, Andras Kocsor, and James T. Kwok. 2007. Simpler Core Vector Machines with Enclosing

Balls. In Proceedings of the 24th International Conference on Machine Learning (ICML ’07). 911–918.

[Tsang et al.(2005)] Ivor W. Tsang, James T. Kwok, Pak-Ming Cheung, and Nello Cristianini. 2005. Core vector machines:

Fast SVM training on very large data sets. Journal of Machine Learning Research 6 (2005), 363–392.

[Vapnik and Lerner(1963)] Vladimir N. Vapnik and Alexander Y. Lerner. 1963. Pattern recognition using generalized portrait

method. Automation and Remote Control 24.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

34 Van Nguyen et al.

[Wattanakriengkrai et al.(2020)] Supatsara Wattanakriengkrai, Patanamon Thongtanunam, Chakkrit Tantithamthavorn,

Hideaki Hata, and Kenichi Matsumoto. 2020. Predicting defective lines using a model-agnostic technique. IEEE

Transactions on Software Engineering 48, 5 (2020), 1480–1496.

[Weston et al.(2003)] Jason Weston, Bernhard Schölkopf, and Gökhan Bakir. 2003. Learning to Find Pre-Images. Advances

in Neural Information Processing Systems 16.

[Yamaguchi et al.(2011)] Fabian Yamaguchi, Felix Lindner, and Konrad Rieck. 2011. Vulnerability extrapolation: assisted

discovery of vulnerabilities using machine learning. In Proceedings of the 5th USENIX conference on Offensive technologies.

13–23.

[Zaremba et al.(2014)] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. 2014. Recurrent Neural Network Regularization.

CoRR abs/1409.2329 (2014).

[Zhuang et al.(2020)] Yuan Zhuang, Zhenguang Liu, Peng Qian, Qi Liu, XiangWang, and Qinming He. 2020. Smart Contract

Vulnerability Detection using Graph Neural Network. In Proceedings of the Twenty-Ninth International Joint Conference

on Artificial Intelligence, IJCAI-20.

[Zimmermann et al.(2009)] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger, and Brendan

Murphy. 2009. Cross-project Defect Prediction: A Large Scale Experiment on Data vs. Domain vs. Process. In Proceedings

of the the 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on The

Foundations of Software Engineering (Amsterdam, The Netherlands) (ESEC/FSE ’09). 91–100.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2024.

	Abstract
	1 Introduction
	2 Motivating Example
	3 Related Work
	4 Related Background
	4.1 Kernel methods

	5 Domain Adaptation with Max-Margin Principle (DAM2P)
	5.1 Problem Statement
	5.2 Our Proposed Approach

	6 Experiments
	6.1 Experimental Design
	6.2 Experimental Results
	6.3 Hyper-parameter Sensitivity
	6.4 Threats to Validity
	6.5 Future study

	7 Additional Related Background
	7.1 One-class support vector machine
	7.2 Recurrent neural networks
	7.3 Long short-term memory networks

	8 Conclusion

