
Neural Network Based Classification of Self-admitted
Technical Debt: From Performance to Explainability and
Deployability

XIAOXUE REN, Zhejiang University, China
ZHENCHANG XING, Australian National University, Australia
XIN XIA,Monash University, Australia
DAVID LO, Singapore Management University, Singapore
XINYU WANG, Zhejiang University, China
JOHN GRUNDY,Monash University, Australia

Technical debt is a metaphor to reflect the tradeoff software engineers make between short term benefits
and long term stability. Self-admitted technical debt (SATD), a variant of technical debt, has been proposed
to identify debt that is intentionally introduced during software development, e.g., temporary fixes and
workarounds. Previous studies have leveraged human-summarized patterns (which represent n-gram phrases
that can be used to identify SATD) or text mining techniques to detect SATD in source code comments.
However, several characteristics of SATD features in code comments, such as vocabulary diversity, project
uniqueness, length and semantic variations, pose a big challenge to the accuracy of pattern or traditional
text-mining based SATD detection, especially for cross-project deployment. Furthermore, although traditional
text-mining based method outperforms pattern-based method in prediction accuracy, the text features it uses
are less intuitive than human-summarized patterns, which makes the prediction results hard to explain. To
improve the accuracy of SATD prediction, especially for cross-project prediction, we propose a Convolutional
Neural Network (CNN)-based approach for classifying code comments as SATD or non-SATD. To improve the
explainability of our model’s prediction results, we exploit the computational structure of CNNs to identify key
phrases and patterns in code comments that are most relevant to SATD. We have conducted an extensive set of
experiments with 62,566 code comments from 10 open-source projects and a user study with 150 comments of
another three projects. Our evaluation confirms the effectiveness of different aspects of our approach and its
superior performance, generalizability, adaptability and explainability over current state-of-the-art traditional
text-mining based methods for SATD classification.

Additional Key Words and Phrases: Self-admitted technical debt, Convolutional Neural Network, Cross project
prediction, Model explainability, Model generalizability, Model adaptability

Authors’ addresses: Xiaoxue Ren, Zhejiang University, College of Computer Science and Technology, Hangzhou, Zhejiang,
31000, China, xxren@zju.edu.cn; Zhenchang Xing, Australian National University, College of Engineering and Computer
Science, Canberra, Australia, Zhenchang.Xing@anu.edu.au; Xin Xia, Monash University, Faculty of Information Technology,
Melbourne, VIC, Australia, xin.xia@monash.edu; David Lo, Singapore Management University, School of Information
Systems, Singapore, Singapore, davidlo@smu.edu.sg; Xinyu Wang, Zhejiang University, College of Computer Science and
Technology, Hangzhou, Zhejiang, China, wangxinyu@zju.edu.cn; John Grundy, Monash University, Faculty of Information
Technology, Melbourne, VIC, Australia, john.grundy@monash.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
1049-331X/2019/4-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Xiaoxue Ren, Zhenchang Xing, Xin Xia, David Lo, Xinyu Wang, and John Grundy. 2019. Neural Network
Based Classification of Self-admitted Technical Debt: From Performance to Explainability and Deployability.
ACM Trans. Softw. Eng. Methodol. 1, 1 (April 2019), 45 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Technical debt, proposed by Cunningham [1], is used to describe a debt which is accumulated when
developers make wrong or unhelpful technical decisions – either intentionally or unintentionally
– during software development. Zazworka et al. stressed that if these debts are not repaid, they
can do great harm to the overall quality of software and cause cascading future defects in the long
term [2]. A number of prior works have aimed to analyze technical debt in software engineering,
to better support software maintenance and ensure high software quality, c.f., [3–5].

In recent years, Potdar and Shihab proposed the concept of self-admitted technical debt (SATD) [6],
which considers debt that is intentionally introduced. For example, the comment “Temporary -
until we figure a better API " in the Apache Ant project indicates that the corresponding code is a
temporary solution that needs to be changed in future for better result. Further work of Wehaibi et
al. [7] confirms that although the percentage of SATD in a project is not high, it can have a negative
impact on software complexity. More concretely, they found that source code files that contain
SATD have more bug-fixing changes, while files without SATD have more defects [7].
Many studies have utilized natural language processing (NLP) to analyze such comments from

source code in order to detect possible defects [8, 9]. NLP methods have also been used to identify
SATD. Potdar and Shihab [6] manually summarised 62 patterns that can be used to recognize
SATD from comments in Java project source code. Recently, Huang et al. [10] proposed a text
mining-based approach to identify SATD. Compared with the 62 patterns, Huang et al.’s text mining
approach achieves a substantial improvement on F1-score. However, unlike the 62 intuitive patterns
summarized by Potdar and Shihab [6], Huang et al.’s text-mining approach cannot provide the
rationale for the prediction results. Furthermore, Huang et al.’s experiments show that using a
text-mining approach has limited generalizability and adaptability for cross-project settings.

In this paper, we first identify five characteristics of SATD comments that affect the performance,
generalizability and adaptability of pattern-based SATD detection [6] and traditional text-mining
based SATD classification [10]. In order to improve the accuracy of SATD prediction, especially
for cross-project prediction, and also to improve the interpretability of machine-learning based
prediction results, we propose a Convolution Neural Network (CNN)-based approach to identify
SATDs from source code comments. Our approach learns to extract the informative text features
for the SATD prediction tasks from the comment data. This learning capability is crucial for
achieving not only superior performance for the SATD prediction, but also better generalizability
and adaptability of the model for cross-project defect prediction. To understand the text features
that our CNN learns, we developed a backtracking method to highlight the prominent key phrases
in an input comment that contribute most to the decision whether the comment is a SATD or not.
The highlighted key phrases provide an intuitive explanation of the CNN’s prediction. They also
reveal many less obvious, less frequent commenting patterns for SATD which are hard to identify
just by human observation.

We then conducted an extensive set of experiments to evaluate the performance, generalizability,
adaptability and explainability of our approach. We used a dataset of source code comments from
10 open source projects containing a total of 259,229 comments, which is manually classified
as SATD or non-SATD by [11]. Our experiments show that: 1) On average for within-project
prediction, our approach achieves F1-score of 0.752, which improves Huang et al.’s text mining
approach [10] by 19.5%; 2) Our CNN model is more generalizable than the text mining approach for

2

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Table 1. Examples of SATD Comments from Four Projects

Project SATD Comments

JEdit
// wtf?
// Nasty hardcoded values
// implement the recursion for getClassImpl()

Hibernate
// this perhaps not really necessary...
// this is kinda the best we can do...
// not absolutely necessary, but does help with aggressive release

EMF
// REVISIT: Remove this code.
// Motif kludge: we would get something random instead of null.
// EATM Demand create metadata; needs to depend on processing mode...

JRuby
// we might need to perform a DST correction
// using IOChannel may not be the most performant way, but it’s easy.
// don’t bother to check if final method, it won’t be there (not generated, can’t be!)

cross-project prediction, especially in a limited training data setting; 3) Our CNN model requires
much less training data to adapt to a new unseen project, and the target model obtained through
fine-tuning the source model can even outperform the model specifically trained with the target
project comments, especially when the target project has limited training data; 4) The majority of
our CNN-learned key phrases are relevant to SATD classification and align well with the human-
annotated key phrases for SATD prediction; 5) Based on the CNN-learned key phrases, we can
derive much more comprehensive SATD patterns than the 62 patterns identified in [6]. These
SATD patterns reveal the SATD characteristics of software projects and can qualitatively help us
understand the performance, generalizability and adaptability of our CNN-based approach. With
the knowledge of the model’s generalizability and adaptability, users would be able to deploy our
approach more effectively depending on the SATD characteristics of software projects.

The main contributions of this paper are:

(1) We present a novel CNN-based approach to identify SATDs from source code comments,
which is an imbalanced dataset. Our approach achieves a substantial improvement over text
mining approaches in both within- and cross-project settings;

(2) We have designed a backtracking method to extract and highlight key phrases and SATD
patterns in the code comments, which can then be used to explain the SATD classification
results by the CNN model;

(3) We have conducted extensive experiments to evaluate not only the performance of our
approach, but also its generalizability and adaptability, as well as the intuitiveness and
explainability of the CNN-learned SATD features and patterns.

The rest of the paper is organized as follows. In Section 2 we illustrate the challenges in SATD
prediction by examples. We then describe the overall framework and technical details of our
approach in Section 3. We present our experimental setup in Section 4 and report and analyse our
experimental results in Section 5. We discuss the implications of our work as well as key threats to
validity in Section 6. We review the related work in Section 7, and finally we conclude this paper
and discuss key directions for future work in Section 8.

3ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2019.

2 MOTIVATION
Developers frequently remind themselves in source code via comments to make later changes,
note unsatisfactory design decisions, question other developer’s design decisions, and record work-
in-progress to address major re-engineering or new engineering progress. Table 1 shows a range
of examples from some representative, selected large-scale open source projects. These examples
indicate different kinds of self-admitted technical debt (SATD). Recent research about SATD [7] has
highlighted the need to analyse source code comments, locate instances of SATD, better understand
their context, and address short- and long-term defect correction necessitated by the SATDs.
To classify a source code comments as SATD or non-SATD, an algorithm needs to determine

the SATD-indicating features in the comments. However, as our examples in Table 1 show,
SATD comments exhibit four characteristics: variant term frequency, project uniqueness, variable
length, and semantic variation. These four characteristics pose a big threat to pattern-based SATD
detection [6] or traditional text-mining based SATD classification [10]. In addition, imbalanced
data also requires special attention, i.e. the number of SATD comments is relatively low compared
to other comments.

Key issues in SATD classification include:

(1) Variant term frequency. Developers often use terms like “todo”, “hack”, “fixme”, “temporary
solution” to indicate SATDs. In addition to these frequently-used SATD terms, there are many
less evident SATD terms, such as “perhaps”, “not necessary”, “REVISIT”, “remove”, “might
need to”. Pattern-based SATD detection cannot enumerate all such less evident features,
and feature selection process of text-mining method will very likely filter out such less
frequently-used features.

(2) Project uniqueness. Developers of different projects often have different conventions when
describing SATDs. For example, SATD comments in JEdit tend to contain negative sentiment
words (The so-called sentiment words are detected by a sentiment package of NLTK1) like
“wtf”, “nasty”, while developers of other projects may not have this tendency.

(3) Variable length. The length of SATD-indicating phrases in a source code comment can vary
greatly, ranging from one word like “wtf”, “REVISIT”, to short phrases like “nasty hardcoded”,
“kinds the best”, “not absolutely necessary”, “don’t bother to check”, and to sentences like
“may not be the most performant way, but it’s easy”. Traditional text-mining based SATD
classification cannot effectively model such variable-length text features.

(4) Semantic variation. Some semantically similar SATD comments may be expressed in different
ways, such as “perhaps not really necessary” versus “not absolutely necessary”, “kinda the
best we can do” versus “may not be the most performant way”. On the other hand, the same
words or phrases may or may not indicate SATDs, depending on the overall comment context.
For example, “implement” in “implement the recursion for” is considered as an SATD feature,
while “implement” in “we add an implement and implement_all methods to the class” is
not. Depending on matching or modeling keywords lexically, pattern-based or traditional
text-mining based methods may miss semantically-similar-but-expressed-differently SATD
comments, or misclassify non-SATD comments as SATD comments.

(5) Imbalanced data. The ratio of SATD comments in a project is rather low, compared with
non-SATD comments in the project [7] (see also Table 3). This creates a classic imbalanced
data issue for SATD classification. Huang et al.’s text mining method [10] relies on feature
selection to deal with imbalanced data, but it suffers the risk of filtering out many useful text
features for SATD classification.

1http://www.nltk.org/api/nltk.sentiment.html

4

...
...

input convolution

pooling
output

Training data

Code comments
corpus

Lookup Comment
matrix

Code
comment

Weighted loss
function

Label of code
comment

Word2vec

w1 w2 w3 wv

d ...

Convolutional neural network

Word embedding
dictionary

Learning domain-specific word embedding

Code
comment Lookup Comment

matrix Trained CNN model SATD or nonSATD
prediction

Code
comment Trained CNN model

Concatenate overlapping
key h-grams

Key
phrases

 De-convolution Key h-grams Sum up key h-
gram probability

SATD patterns

Rank

3: Key Phrase Extraction 3:SATD Pattern Identification

1: Model Training

2: SATD Prediction

Fig. 1. The Framework of Our Approach (filter size h =2, 3, or 4)

To address the above challenges, we propose a CNN-based approach for SATD classification. Our
approach automatically learns diverse SATD features from input comments, thus removing the need
of manual feature engineering in pattern-based or traditional text-mining based methods (Challenge
1 and Challenge 2). It extracts and aggregates variable-length text features for SATD prediction
(Challenge 3), and deals with semantic variations depending on the input word embeddings and
the sentence-level feature embedding (Challenge 4). To overcome the imbalanced data issue, our
approach implements a weighted cross-entropy loss (Challenge 5), rather than sacrificing the
feature learning capability through downsampling or feature selection.

These features of our approach increases its generalizability and adaptability of the trained model
for cross-project SATD prediction. Furthermore, our approach exploits the computational structure
of CNN through backtracking to explain the CNN’s prediction through the SATD features and
patterns learned by our approach.

3 APPROACH
As shown in Figure 1, our approach includes four main phases: Model Training, SATD Prediction,
Key Phrase Extraction, and SATD Pattern Identification. Predicting whether a source code comment
is a SATD comment or not can be formulated as a binary text classification problem. The core
of our approach is a CNN model for SATD classification. In the model training phase, the input
is a set of source code comments and their corresponding SATD/non-SATD labels. This data is
used to train the CNN model to learn to classify source code comments as SATDs or non-SATDs.
The trained model will then be used in two modes. First, the trained model is used to predict
the SATD/non-SATD label given an unseen source code comment (prediction phase). Second,

5ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2019.

Convolution layer Pooling layer

Fully connected
layer

Comment Matrix

perhaps

not

really

necessary

Check SATD

bXW
non-SATD

SATD
//This perhaps
not really
necessary

this

Fig. 2. Convolutional Neural Network Architecture (4 filters for each filter size (h =2, 3, or 4))

the trained model is de-convolutioned to extract SATD-indicating key phrases in the input code
comments that contribute most to the model’s classification decisions (key phrase extraction phase),
which in turn are summarized into a set of intuitive SATD patterns (the SATD pattern identification
phase).

3.1 SATD Classification by Convolutional Neural Network
We solve the problem of SATD classification using a CNN, which takes an input source code
comment and predicts as output whether the comment is a SATD comment or not. In this subsection,
we introduce the architecture of our CNN, the weighted loss function we designed in order to deal
with the imbalanced data issue, the model training method, and the SATD prediction by the trained
model.

3.1.1 The Architecture of CNN. Our CNN is inspired by the CNN architecture for sentence
classification proposed by Kim [12], which is the a seminal work that applies CNN in sentence
classification task and demonstrates the potentials of deep learning model in NLP. As shown in
Fig. 2, our CNN transforms an input code comment into a SATD or non-SATD classification through
a stack of processing layers, including an input layer, a convolutional layer, a pooling layer, a fully
connected layer, and finally an output layer.
Input layer: The raw input to the CNN is a source code comment in the form of a sequence of
words. As words are discrete symbols, they need to be represented as vectors. In this work, we use
word embeddings [13–15] as word representations, because word embeddings have been shown to
be effective in capturing rich semantic and syntactic features of words and be robust in inferring
semantic similarities of words. We learn domain-specific word embeddings using the continuous
skip-gram model of word2vec [15] from the source code comments of some software projects.
The output of word2vec is a dictionary of word embeddings for each word in the vocabulary V ,
denoted asW ∈ Rd×|V | , where d is the dimension of word embeddings and |V | is the vocabulary
size. d is a hyperparameter to be specified by users. A comment of n words is represented as
c = v1

⊕
v2

⊕
...
⊕

vn , which is used as the input (zero-padding at the beginning and the end to
the maximum comment length) to the convolutional layer. vi can be obtained by looking up the
i-th word’s embedding inW and

⊕
is vector concatenation. That is, a comment is represented as

a n × d matrix.

6

As an illustrative example, in Fig. 2 the comment “this perhaps not really necessary” has five
words (n = 5) and the dimension of word embeddings is four (d = 4).
Convolution layer: The convolutional layer treats the input comment matrix as an “image” and
convests it into feature maps through convolution operations. A convolution operation applies a
filterw ∈ Rh×d and a bias term b ∈ Rh to h words in the input comment, followed by non-linear
activation: ReLU (wT · vi :i+h−1 + b). The filterw and the bias term b are parameters to be learned
during model training. ReLU (x) =max(0,x) is an non-linear activation function. The filterw is a
matrix of h × d dimensions. As a row in the input comment matrix represents a word, it cannot
be broken. So the width of the filter is equal to the dimension of word embeddings. To capture
features of variable length, we vary the window size h of the filter, i.e., the number of adjacent
words considered jointly. In Fig. 2, we illustrate filters with three window sizes h=2, 3 and 4, which
can capture features of 2-, 3- and 4-grams respectively. With different size of filters, we can extract
different h-gram features, so as to get variable length terms in the SATD comments. vi :i+h−1 is the
h-gram matrix, i.e., vi

⊕
vi+1...

⊕
vi+h−1 where i = 1..n − h + 1. · is the dot product between the

filter matrix and the h-gram matrix. The filter is applied repeatedly to each possible h-gram in the
input comment (i.e.,. v1:h ,v2:h+1, ...,vn−h+1:n), which produces a (n − h + 1)-dimensional feature
map f ∈ Rn−h+1. In Fig. 2, we obtain a 4-, 3- and 2-dimensional feature map for a filter with the
window size h = 2, 3 and 4, respectively. To learn complementary features from the same word
windows, we use multiple filters of the same window size. In Fig. 2, we use four filters for each
filter window size. As such, we obtain four feature maps for each filter window size.
Pooling layer: As seen in Fig. 2, the dimensions of the feature maps generated by the filters with
different window sizes are different. A pooling operation should be applied to each feature map to
induce a fixed-length vector. Pooling also helps reduce the number of features and decrease the
phenomenon of overfitting. Max pooling is the most common pooling function in CNN architecture,
which aims at extracting the most important n-gram feature compared with other n-gram features
learned by a filter. In our work, we use 1-max pooling function which selects the maximum value of
the feature map for each filter, and then concatenate the selected values for the same filter window
size into a feature vector. In Fig. 2, 1-max pooling produces three 4-dimensional feature vectors,
one for each filter window size.
Fully connected layer: Fully connected layer aggregates all features extracted by the convolutional
and pooling layer. It essentially applies a convolution operation to all feature vectors produced by
the pooling layer. In this work, we use a simple fully connected layer without learnable parameters
which simply concatenates all feature vectors produced by the pooling layer. The output vector of
this layer captures the sentence-level features of a SATD comment.
Output layer: The output layer makes classification based on the fully-connected feature vector
X ∈ Rm×1, where m is the dimension of X . That is, the classification decision is based on all
variable-length features in the overall context of the input comment. We use a linear classifier and
the Softmax function to score each class. The line classifier performs a linear transformation of
the feature vector X by Y =W · X + B, whereW ∈ Rk×m and B ∈ Rk are learnable parameters
for the classifier, and k is the number of classes. In this work, we have two classes: SATD or
non-SATD, i.e., k = 2. Then, the softmax function is applied to normalize the values in Y so that
each value represents the probability pj of the input comment belonging to a class j . pj is computed
as pj = exp(yj)/

∑
j=1..k exp(yj).

3.1.2 Weighted Loss Function. Assume an input comment belongs to the i-th class. The ground
truth label of this comment is denoted as a vector T ∈ Rk , in which the i-th element value is 1
and all other element values are 0. We can use cross-entropy loss Loss(Y ,T) = −

∑
i Tiloд(yi) to

compute the loss between a model’s classification result Y and the ground truth label T . However,

7ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2019.

this cross-entropy loss does not work well in our SATD classification task, because SATD and
non-SATD comments have a very imbalanced distribution [16]. As SATD comments are much
fewer than non-SATD comments (e.g. the highest percentage of SATD comments in Table 3 is
5.57% in our experiment data), this cross-entropy loss may produce a model that is very likely to
misclassify a SATD comment as non-SATD.
In our work, to deal with the class imbalance issue in code comments, we propose a weighted

cross-entropy loss as the loss function of our CNN. Note that our weighted loss function is not
used in the sentence classification model by Kim [12], as it does not explicitly deal with imbalanced
data. In our weighted loss function, we set a weight for each class. The weight is estimated by
the proportion of a class’s data in the training data. For example, assuming there are n SATD
comments andm non-SATD comments in the training data. Then, we obtain the weighs n/(n +m)

for SATD andm/(n +m) for non-SATD. We add these weights to the cross-entropy loss function:
Loss(Y ,T) = −(1 − weiдhti)

∑
i Tiloд(yi). Our weighted loss function penalizes more the wrong

classification of the small-class instances (e.g., SATD in our work) than large-class instances.

3.1.3 Model Training. The training process of a CNN is an optimization task that proceeds in
multiple iterations. In each iteration, the CNN predicts the labels of comments in the training data,
andmeasures the loss between the predicted label and the ground truth label of each comment. Then,
the CNN uses back-propagation to adjust the convolutional layer and linear classifier parameters.
In the subsequent iterations, it tries to lower the average loss on the training data. We solve the
optimization problem using the Adam update algorithm [17].

3.1.4 SATD Prediction. Once we learn the CNN parameters, the trained CNN model can be used
to predict the SATD or non-SATD class of an unseen comment. Given an input comment, it first
converts it into an input comment matrix by looking up the word embedding dictionary, and then
feeds the matrix through the convolutional layer, pooling layer, fully connected layer. The output
layer finally gives the SATD and non-SATD probability for the input comment. The class with the
higher probability is assigned as the label of the input comment.

3.2 SATD Key Phrase Extraction by De-convolution
In this work, we do not want to blindly trust the classification results of the CNN model. Instead,
we want to understand and explain the basis of the CNN model’s decisions. This explainability
is a novel contribution of our work, compared with Kim [12]. As seen in Fig. 2, our CNN model
performs convolution and 1-max pooling operations to extract a feature vector from the input
comment, based on which it classifies the comment. During the convolutional and max pooling, the
CNN reserves the spatial structure of the input comment matrix. As illustrated in Fig. 3, a feature
value in the the feature vector in the fully connected layer can be traced back to the window of
words from which the feature value is derived.

We explore this input↔output traceability to extract the key phrases in the input comment
that contribute most to the SATD classification. In order to extract such key phrases, we perform
the following steps to answer the two questions: where - the location of key phrases in the input
comment, and what - the predicted label of each key phrase (SATD or non-SATD):

(1) We feed a comment into a trained CNN model to obtain the feature vector X ∈ Rm×1 of this
comment in the fully connected layer. According to our CNN architecture, each feature xi
(1 ≤ i ≤ m) in the feature vector X corresponds to a filter.

(2) For each feature xi (1 ≤ i ≤ m) in the feature vector X , we use the softmax
function to determine the probability of the feature xi belonging to a class j: p(j |xi) =
exp(w jixi)/

∑
l=1..k exp(wl ixi), where k is the number of the classes to predict (k = 2 in this

8

Convolution layer Max-pooling
layer

Fully connected
layer

Comment Matrix

1x

0x

1x

2x

3x

4x

6x

7x

5x

8x

9x

10x

11x

7x

7x

Check SATD

bXW
non-SATD

SATD

1x

this

perhaps

not

really

necessary

Fig. 3. De-convolution to Identify Key h-grams (filter size h =2, 3, or 4)

work) and wl i is the parameter of theW matrix of the liner classifier. If the p(SATD |xi) is
above 0.5, the feature xi is regarded as a prominent feature for the SATD class. In Fig. 3,
assume that two feature x1 and x7 are prominent features for the SATD class.

(3) For each prominent feature xi , its corresponding filter extracts a key h-gram for the SATD
class. We use backtracking to locate the key h-gram in the input comment. The probability
p(SATD |xi) of the feature xi is assigned to this h-gram as its probability of the SATD class.
For example, the feature x1 is traced back to the 2-gram “perhaps not”, and the feature x7
is traced back to the 3-gram “not really necessary”. Note that different prominent features
may be traced back to the same key h-gram. This is because different filters may all “feel”
that this h-gram is important for the SATD class. In such cases, we average the probability
p(SATD |xi) of these prominent features as the probability of the key h-gram.

(4) We merge the overlapping key h-grams into a key phrase based on which the CNN make a
SATD classification. In Fig. 3, the 2-gram “perhaps not” and the 3-gram “not really necessary”
is merged as a key phrase “perhaps not really necessary” for the SATD class.

3.3 SATD Pattern Identification
Different comments within and across projects may share the same or similar key h-grams when
developers describe SATDs. Such key h-grams can be summarized as SATD patterns which can help
identify and understand the prominent SATD indicators in source code comments that developers
use to describe SATDs in different software projects. Previous work [6] manually summarizes 62
such SATD patterns. In our work, we developed an automated method to summarize SATD patterns
based on the SATD-probability and occurrence frequency of the key h-grams that the CNN extracts
from the SATD comments. Note that we identify SATD patterns based on key h-grams rather than
key phrases, because key h-grams are more elementary SATD indicators in the comments, while
key phrases are mainly for human understanding of a specific classification result by the CNN.
To take into account both the SATD probability and occurrence frequency of the key h-grams,

we add the SATD probability of all occurrences of a key h-gram in the training data and sort them
according to their sum of SATD probabilities. The higher the SATD probability of a key h-gram,

9ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2019.

the more frequently this h-gram appears in the comments, the more likely it is a SATD pattern that
developers commonly use. As we have filters with different window sizes, we are able to identify
SATD patterns of variable lengths. In our experiments, we observe that a SATD pattern is usually
meaningful as a whole phrase, but parts of a SATD pattern may not always be meaningful SATD
indicators. For example, “perhaps not” is a 2-gram SATD pattern and “not really necessary” is a
3-gram SATD pattern. However, the unigrams “perhaps” and “really” are not meaningful SATD
indicators. “not” and “ necessary” may or may not be meaningful SATD indicator depending on the
surrounding context. For example, “not” in “do nothing if item is not visible” does not describe a
SATD. In many NLP tasks, such unigrams are removed as stop words. However, we cannot remove
them in our work, because they may constitute a SATD pattern e.g. “perhaps not”, “ not really
necessary”. Instead, we rely on our CNN model’s sentence-level feature embedding to distinguish
h-gram semantics in the input comments and the relations of these h-grams with SATDs. As such
our approach can deal with the challenge of semantic variation. Additionally, due to the architecture
of CNN, we can make full use of all features that are extracted by the model to identify SATD
comments. We can also backtrack the CNN features to key phrases in the input comments to extract
diverse vocabulary, and even project unique terms in SATD comments. As such, our approach can
identify SATD patterns similar to those identified by human [6], which are much more intuitive
and meaningful than those identified by the traditional text-mining approach [10].

In this study, we use Python package TensorFlow to implement our CNN-based approach.

4 EXPERIMENT DESIGN
In this section, we describe the research questions we investigate in our experiments, the
two baseline methods, the experimental dataset, the evaluation metrics, and the experimental
environment.

4.1 ResearchQuestions
First, we developed three research questions (RQ1, RQ2, RQ3 and RQ4) to investigate different
aspects of our approach. They help establish the confidence in our approach and the quality of the
following performance experiments. Furthermore, the observed SATD patterns also help explain
the results of performance comparative studies.

• RQ1 Effectiveness of weighted loss for model training: How effective is our weighted
loss for imbalanced comment data, compared with normal cross-entropy loss?

• RQ2 Effectiveness
of hyperparameters optimization: How do different hyperparameters perform in our
approach?

• RQ3 Feature learning capability by CNN: How effective is our CNN model in learning
comment features for SATD classification?

• RQ4 SATD patterns and their explanability: How do our CNN-based SATD patterns
compare with human-summarized SATD patterns [6]? Can CNN-based SATD patterns reveal
the SATD characteristics of different projects?

Second, we have three research questions (RQ5, RQ6 and RQ7) to investigate the performance
of our approach within and across projects, compared with traditional text-mining based SATD
classification [10]. These comparative studies help identify the advantages of our approach over
traditional text-mining based methods in performance, generalizability and adaptability.

• RQ5 Within-project classification performance: How effective is our approach for
classifying SATDs in different projects that may contain different SATD characteristics?

10

• RQ6 Cross-project model generalizability: How generalizable is our CNN-based SATD
classification model when trained using data taken from one or many other projects?

• RQ7 Cross-project model adaptability: Can transfer learning help address the training
challenge of our CNN-based model in limited training data setting? How adaptable is our
CNN-based SATD classification model with limited fine-tuning data?

Finally, we conduct a user study to further confirm the prediction performance and explainability
of our approach for SATD classification.

• RQ8 User study of model performance and explainability: How well do our model’s
SATD classification results align with human classification? How well do CNN-extracted key
phrases align with the human-identified key phrases for SATD classification?

4.2 Baseline Methods
We have three baseline methods that are used in the comparative study of different RQs: our
approach with normal cross-entropy loss function in RQ1, Kim’s simple CNN text classification
method [12] in RQ2, pattern-based SATD extraction [6] in RQ4, and traditional text-mining based
SATD classification [10] in RQ5, RQ6 and RQ7, as well as natural language processing based SATD
classification [11] in RQ5 and RQ6.

4.2.1 Our Approach with Normal Loss Function. As SATD comments are imbalanced data, we
design a weighted cross-entropy loss function to deal with the imbalanced data. In the RQ1, we use
our approach with normal cross-entropy loss function as the baseline to evaluate the effectiveness
of this proposed weighted loss function.

4.2.2 Kim’s simple CNN for sentence classification. Kim [12]proposes a simple CNN (i,e., a simple
CNN with one layer of convolution performs) trained on top of Mikolov’s word embeddings [18],
and then apply the CNN to sentence classification. Compared with our work, Kim’s work does not
consider the imbalance of dataset and can not do hyperparameter optimization. In the RQ2, we
optimize hyperparameters of CNN model and compared results with Kim’s approach.

4.2.3 Pattern-Based SATD Extraction. After reading many comments relating to technical debt,
Potdar and Shihabmanually summarized 62 patterns for identifying SATD [6]. If a comment contains
at least one of the 62 patterns by string matching, it will be regarded as an SATD, otherwise as
non-SATD. In the RQ4, we use these 62 human-summarized patterns as the baseline to understand
the characteristics and intuitiveness of the SATD patterns learned by our CNN model.

4.2.4 Traditional Text-Mining Based SATD Classification. Huang et al. [10] proposed a text
mining approach to identify SATD comments. Their approach utilizes feature selection technique,
namely Information Gain (IG) [19] to select useful features for SATD classification. Then, they use
the selected features to train a sub-classifier for each source project, and use a majority-voting
strategy to combine the prediction of multiple classifiers. In the RQ5, RQ6 and RQ7, we use the
text mining approach by [10] as the baseline to compare to the performance, generalizability and
adaptability of our approach. Through a series of experiments, Huang et al. [10] demonstrated
that their text-mining approach outperforms several baseline methods including Naive Bayes
Multinomial [20], Support Vector Machine [21], and k-Nearest Neighbor [22]. Therefore, we do
not include these baseline methods. Additionally, we do not consider the approach proposed by
Maldonado et al. [11] as a baseline, because Huang et al. [10] has been already compared against
this work and the approach of Huang et al. [10] outperforms that of Maldonado et al. [11].

11ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2019.

Table 2. Summary of the 10 Projects in Our Dataset

Project Description Release Contributors

Apache Ant Java library and Command-line Tool 1.7.0 74
ArgoUML UML Modeling Tool 0.34 87
Columba E-mail Client 1.4 9
EMF Eclipse Model Driven Architecture 2.4.1 30
Hibernate ORM Framework 3.3.2 226
JEdit Text Editor 4.2 57
JFreeChart Char library 1.0.19 19
JMeter Performance Tester 2.10 33
JRuby Ruby Interpreter 1.4.0 328
SQuirrel SQL Client 3.0.3 46

Table 3. Statistics of the Comments in the 10 Projects

Project Comments # of comments SATD % of SATDafter filtering
Apache Ant 21,587 4,137 131 0.60
ArgoUML 67,716 9,548 1,413 2.08
Columba 33,895 6,478 204 0.60
EMF 25,229 4,401 104 0.41
Hibernate 11,630 2,968 472 4.05
JEdit 16,991 10,322 256 1.50
JFreeChart 23,474 4,423 209 0.89
JMeter 20,084 8,162 374 1.86
JRuby 11,149 4,897 662 5.57
SQuirrel 27,474 7,230 285 1.04
Average 25,923 6,257 411 1.86
Total 259,229 62,566 4,110 -

4.3 Data Collection
To perform our experiments, we use the dataset provided by [11]. This dataset has the classified
comments from ten open source Java projects, incuding Apache Ant, ArgoUML, Columba, EMF,
Hibernate, JEdit, JFreeChart, JMeter, JRuby and SQuirrel. Table 2 summarizes the basic information
of these 10 projects. These 10 projects belong to different application domains and vary in the number
of contributors and in size and complexity. We directly use the labelled code comment data from
the dataset provided by Maldonado et al. [11]. The data processing process by Maldonado et al. [11]
is as follows: after getting source codes of the 10 projects, Maldonado et al. use JDeodorant [23],
which is an Eclipse plug-in that identifies design problems in software, to parse the source code
and extract the comments and the related information, including the line that each comment starts,
finishes and the type of comment (i.e., Javadoc, Line, or Block).

Table 3 lists the statistics of the comments in these 10 projects. We can see that these projects also
vary in the number of comments. As only a small ratio of the source code comments describe SATDs,
it will be time-consuming to label all comments manually. Thus, Maldonado and Shihab develop
five filtering heuristics to eliminate comments that are unlikely to be classified as SATDs [24]. By

12

applying these filtering heuristics and also removing duplicate comments (i.e., if the text contents
of multiple comments are the same, only one comment is kept), the number of comments that
require manual annotation is largely reduced from 259,229 to 62,566.
Then, Maldonado and Shihab manually examine each comment and classify it as SATD or

non-SATD. To mitigate personal bias, they took a stratified sample of the full dataset, which is
a sample that achieves a confidence level of 99% and a confidence interval of 5%. They invited
another independent person to classify the stratified sample of the comments and measured the
level of agreement between the two manual classification results. They reported a high level of
agreement (Cohen’s Kappa coefficient [25] of 0.81), which gives us a high confidence in the SATD
classification results of the provided dataset.
As seen in Table 3, the percentage of SATD comments in each project is quite low (i.e., the

percentage ranges between 0.41% and 5.57%, with an average of 1.86%). That is, we have a class
imbalance problem [26] for SATD classification.

4.4 Evaluation Metrics
We define four statistics: FP (false positive) represents the number of non-SATD comments that are
classified as SATD; FN (false negative) represents the number of SATD comments that are classified
as non-SATD; TP (true positive) represents the number of SATD comment that are classified as
SATD; TN (true negative) represents the number of non-SATD comments that are classified as
non-SATD. Using these four statistics, we compute Precision, Recall, and F1-score to evaluate the
performance of a SATD classification method.

Precision. Precision represents the proportion of comments that are correctly classified as SATD
comments among all comments classified as SATD.

precision = T P
T P+F P

Recall. Recall represents the proportion of all SATD comments that are correctly classified as
SATD.

recall = T P
T P+FN

F1-score. F1-score is the harmonic mean of precision and recall, which can combine both of the
two metrics above. It evaluates if an increase in precision (or recall) outweighs a reduction in recall
(or precision) respectively

F1 = 2×precision×r ecall
precision+r ecall

The higher an evaluation metric, the better a method performs. Note that there is a trade-off
between precision and recall. F1-score provides a balanced view of precision and recall. In this
study, we focus more on identifying SATD comments, hence we use precision, recall and F1-score
for SATD comments as our evaluation metrics.

In our experiments, we randomly shuffle the experimental data set into ten parts: 9 of them are
taken as training data in turns and the rest one is used as testing data. The evaluation metrics are
obtained in each test. And then, we compute values of the evaluation metrics across the ten runs to
estimate the performance of a SATD classification method.

4.5 Model Configuration
Training and deploying a CNN model requires the proper setting of its hyperparameters, including
word embedding dimension, the number of filters, and the window size of filters. Previous studies
(e.g. [15], [27]) have shown that hyperparameter optimization is important for a prediction model
to achieve better performance. In this work, we follow the guideline and the procedure proposed
by Zhang and Wallace [28] to set or optimize the hyperparameters of our CNN model.

13ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2019.

To determine appropriate model hyperparameters, we randomly sampled 10% of the after-filtering
comments (whose statistics are given in the third column of Table 3) as the training data to train
our model. We use 10% data because it approximates the average number of comments in the
10 projects. We use the same learning rate as that in Kim’s CNN model training (i.e. 10−4). We
use another 1% of randomly-sampled after-filtering comments as the validation data to optimize
model hyperparameters, including word embedding dimensions, the window size of filters, and the
number of filters. In our optimization experiments, we randomly shuffle the validation dataset into
ten parts: 9 of them are taken as training data in turns and the rest 1 part is used as testing data.
We repeat the cross-validation for ten time and then compute the mean values of the evaluation
metrics across the ten experiments to estimate the performance of the model.
In practice, it is impossible to enumerate the full search space of the combination of all

hyperparameters. Therefore, when tuning hyperparameters, we first search and select the values
of the first two hyperparameters in a greedy way. Specifically, we first configure the dimension
of word embedding at 100, 200 and 300. We cap the experimental word embedding dimension at
300 because Zhang and Wallace [28] uses 300-dimensional word vectors in their experiment and
300-dimension is also the default setting of pre-trained Google word2vec and GloVe word vectors.
We collect all comments of the 10 projects in a text corpus. We learn word embeddings using the
continuous skip-gram model of word2vec[15]. We then train a CNN with the pre-trained word
vectors for each candidate word embedding dimension. Note that during the test process, all the
other hyperparameters are set to their default values (i.e., the same values as those appearing in
the published source code of Kim’s CNN implementation based on TensorFlow2). Among all the
candidate word embedding dimensions, we choose the one whose corresponding CNN achieves
the minimum average loss on the training dataset.

Similarly, we then configure the number of filters from 64 to 256 with a step of 64, and also choose
the one whose corresponding CNN achieves the minimum average loss. We choose the range 64 to
256 for the number of filters because Zhang and Wallace [28] show that the model with 50 or below
filters yields poor performance and the model with 300 or above filters has much more parameters to
learn but yields only very marginal performance improvement. Note that capping word embedding
dimensions and the number of filters below 300 also makes our experiments practical for the GPU
resources we have. In addition, we consider ten combinations of filter window sizes, including
(1,2,3), (2,3,4), (3,4,5), (4,5,6), (1,2,3,4), (2,3,4,5), (3,4,5,6), (1,2,3,4,5), (2,3,4,5,6) and (1,2,3,4,5,6).We
consider these six window size because the length of human observed SATD patterns [6] falls into
the range of 1 to 6. Furthermore, Zhang and Wallace’s experiments suggest that the window size
above 7 may lead to performance degradation in sentence classification tasks. After hyperparameter
tuning (see the experiment results reported in Section 5.2), we set word embedding dimension at
300, use filters of six different window sizes (1, 2, 3, 4, 5, 6) (i.e, 1- to 6-grams), and use 128 filters
for each window size. This setting achieves the best F1-score on the validation data. We use this
setting for all the experiments in the eight RQs.

4.6 Experimental Environment
The experimental environment is a desktop computer equipped with Nvidia GTX 1080 GPU, Intel(R)
Core(TM) i7-6700 CPU and 16GB RAM, running Ubuntu 16.04 LTS.

5 EXPERIMENTAL RESULTS
In this section, we report and analyze our experiment results in the seven RQs.

2https://github.com/dennybritz/cnn-text-classification-t

14

Table 4. Precision, Recall and F1-score of Our Approach with Weighted Loss (WL) Versus Normal Loss (NL).
The best F1-scores of each method are in bold and the worst ones are underlined.

Projects Precision Recall F1-score
NL WL Improv. NL WL Improv. NL WL Improv.

Apache Ant 0.475 0.584 22.95% 0.692 0.758 9.54% 0.563 0.660 17.16%
ArgoUML 0.813 0.816 0.37% 0.913 0.950 4.05% 0.860 0.878 2.08%
Columba 0.793 0.830 4.67% 0.793 0.875 10.34% 0.793 0.852 7.44%

EMF 0.718 0.793 10.45% 0.534 0.594 11.24% 0.612 0.679 10.86%
Hibernate 0.899 0.930 3.45% 0.726 0.743 2.34% 0.803 0.826 2.83%

JEdit 0.766 0.773 0.91% 0.457 0.489 7.00% 0.572 0.599 4.64%
JFreeChart 0.652 0.686 5.21% 0.734 0.802 9.26% 0.691 0.739 7.01%
JMeter 0.801 0.873 8.99% 0.786 0.787 0.13% 0.793 0.828 4.36%
JRuby 0.783 0.805 2.81% 0.884 0.930 5.20% 0.830 0.863 3.92%

SQuirrel 0.770 0.794 3.12% 0.685 0.692 1.02% 0.725 0.739 1.93%
Average 0.747 0.788 6.29% 0.720 0.762 6.01% 0.724 0.766 6.22%

5.1 RQ1: Effectiveness of Weighted Loss for Model Training
5.1.1 Motivation. To train a CNN model, an appropriate loss function needs to be used. To

deal with the imbalanced SATD/non-SATD comments for SATD classification, we extend normal
cross-entropy loss into weighted cross-entropy loss (see Section 3.1.2). We would like to compare
the effectiveness of normal loss versus weighted loss for model training.

5.1.2 Approach. We train two CNN models for SATD classification: one with normal loss and
the other with weighted loss. Other than the use of different loss functions, the two models use the
same model configuration (see Section 4.5). We use nine projects’ comments as the training data
and the other one project comments as the testing data. Therefore, we have 10 experiments for
the model trained with normal loss and with weighted loss respectively. For each experiment, we
compute precision, recall and F1-score.

5.1.3 Results. Table 4 show the the results of the 20 experiments. We can see that the models
trained with weighted loss always outperforms the models trained with normal loss. On average,
the weighted loss achieves 6.29%, 6.01% and 6.22% improvement in precision, recall and F1-score
than the normal loss, respectively. The F1-score improvement is relatively bigger for the four
projects (i.e., Apache Ant, Columba, EMF and JFreeChart), compared with the other six projects.
Among the 10 projects, Apache Ant, Columba, EMF and JFreeChart have the least numbers of
SATD comments (around 200 or less) and the percentage of SATD comments in these four projects
is very low (less than 0.9%).

Our weighted loss function produces a better CNNmodel than normal loss when dealing
with imbalanced SATD/non-SATD comments. The more the data is imbalanced, the more
effective our weighted loss function is for model training.

5.2 RQ2: Effectiveness of hyperparameters optimization
5.2.1 Motivation. Kim [12] proposed a simple one-layer CNN that achieved state-of-the-art

results for sentence classification across We utilize Kim’s approach to make SATD classification as
well. In Table 5, we can find that Kim’s approach obtains worse results in some projects compared
with Huang et al.’s [10] text mining approach. In order to take advantage of the CNN method,

15ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2019.

Table 5. Cross-Project Precision, Recall and F1-score of Traditional Text Mining Approach (TM) and Simple
CNN Approach (Sim.). The best results of each method are in bold and the worst ones are underlined.

Projects Precision Recall F1-score
TM Sim. Improv. TM Sim. Improv. TM Sim. Improv.

Apache Ant 0.565 0.433 -23.36% 0.471 0.508 7.86% 0.513 0.468 -8.87%
ArgoUML 0.815 0.805 -1.23% 0.856 0.905 5.72% 0.835 0.852 2.05%
Columba 0.817 0.789 -3.43% 0.805 0.775 -3.37% 0.811 0.782 -3.58%

EMF 0.636 0.694 9.12% 0.473 0.428 -9.51% 0.543 0.529 -2.49%
Hibernate 0.879 0.907 3.19% 0.729 0.747 2.47% 0.796 0.819 2.92%

JEdit 0.772 0.720 -6.74% 0.364 0.323 -11.26% 0.495 0.446 -9.91%
JFreeChart 0.627 0.617 -1.59% 0.733 0.725 -1.09% 0.676 0.667 -1.38%
JMeter 0.858 0.811 -5.48% 0.770 0.754 -2.08% 0.881 0.781 -3.64%
JRuby 0.855 0.803 -6.08% 0.752 0.885 17.69% 0.800 0.842 5.25%

SQuirrel 0.784 0.750 -4.34% 0.597 0.688 15.24% 0.678 0.718 5.85%
Average 0.761 0.733 -3.67% 0.655 0.674 2.87% 0.696 0.690 -0.78%

Table 6. Average Results and Standard Deviation (σ) of Different Word Vector Dim. The best result of F1-score
is in bold.

Dimensionality Ave_precision (σ) Ave_recall (σ) Ave_F1-score (σ)
100-dim 0.533 (0.057) 0.771 (0.066) 0.630 (0.055)
200-dim 0.676 (0.046) 0.716 (0.081) 0.696 (0.069)
300-dim 0.705 (0.053) 0.734 (0.058) 0.719 (0.054)

we refer to the work of Zhang and Wallace [28] to optimize the model configuration. In that
work, they conducted a sensitivity analysis of (and wrote a practitioners’ guide to) CNN for
sentence classification. They found that the dimension size of word embedding, the number of
filters, and the combination of filter size are the most important hyperparameters that affect the
model performance, and thus should be optimized for new tasks. Therefore, we need to conduct
hyperparameter optimization experiments in order to find the most appropriate combination of
hyperparameters for our SATD classification task.

5.2.2 Approach. As the hyperparameters of a CNNmodel can affect the model performance [28],
this section evaluates the model performance when it uses different word embedding dimensions,
filter window sizes, or number of filters. When experimenting one of these three hyperparameters,
we take a method called Control Variable, which refers to making other variables constant when
evaluating one of the variables. In particular, we use as default hyperparameters in Kim’s CNN
architecture for sentence classification [12].

5.2.3 Results. The rest of this section will make analyses of experiments results with different
hyperparameters. For word embedding dimensions, we chose three appropriate dimension sizes:
100, 200, 300. With each dimension size, we first use code comments from nine different JAVA
project to train a CNN model. And then, we predict comments in the rest project with the pre-
trained model, so as to calculate precision, recall and F1-score, as well as σ for each average result.
Table 6 shows the results. It can be seen that the larger the word embedding dimension is, the better
performance the model achieves. Additionally, from the values of σ , we can see that results of all

16

Table 7. Average Results and Standard Deviation (σ) with Different Combinations of Filter Window Sizes.
The best result of F1-score is in bold.

Combination of filter window sizes Ave-precision (σ) Ave-recall (σ) Ave-F1-score (σ)
(1,2,3) 0.696 (0.023) 0.648 (0.019) 0.671 (0.022)
(2,3,4) 0.713 (0.037) 0.687 (0.042) 0.700 (0.035)
(3,4,5) 0.758 (0.029) 0.711 (0.021) 0.734 (0.022)
(4,5,6) 0.744 (0.033) 0.672 (0.023) 0.706 (0.026)
(1,2,3,4) 0.734 (0.030) 0.701 (0.027) 0.717 (0.025)
(2,3,4,5) 0.776 (0.048) 0.742 (0.036) 0.758 (0.039)
(3,4,5,6) 0.740 (0.041) 0.767 (0.038) 0.753 (0.040)
(1,2,3,4,5) 0.732 (0.045) 0.756 (0.053) 0.744 (0.047)
(2,3,4,5,6) 0.765 (0.038) 0.732 (0.032) 0.748 (0.037)
(1,2,3,4,5,6) 0.778 (0.059) 0.759 (0.043) 0.768 (0.044)

Table 8. Average Results and Standard Deviation (σ) with Different Number of Filters. The best result of
F1-score is in bold.

The number of filters Ave-precision (σ) Ave-recall (σ) Ave-F1-score (σ)
64 0.723 (0.056) 0.687 (0.047) 0.705 (0.052)
128 0.715 (0.034) 0.764 (0.020) 0.739 (0.028)
192 0.727 (0.043) 0.759 (0.038) 0.743 (0.039)
256 0.730 (0.046) 0.762 (0.051) 0.745 (0.049)

dimension sizes are not very volatile. In this work, we choose 300 as word embedding dimension
which is also widely used setting in literature [15, 29].

For the combination of filter window size, we considered ten combinations, including (1,2,3),
(2,3,4), (3,4,5), (4,5,6), (1,2,3,4), (2,3,4,5), (3,4,5,6), (1,2,3,4,5), (2,3,4,5,6) and (1,2,3,4,5,6). These
combinations are produced by an enumeration from 1-gram to 6-gram with at least three different
window sizes for one combination. Although there are still other combinations, it is impractical to
enumerate all the combinations. Table 7 shows the average results of each combination. From the
values of σ , the results of all combinations are not volatile and it is obvious that the combination
(1,2,3,4,5,6) performs the best. Some other combinations also have good results, such as (2,3,4,5)
and (3,4,5,6) (which is similar to the results reported in Zhang and Wallace [28]). In our SATD
classification task, filter window size refers to the size of potential SATD key phrases. In order to
obtain a complete range of of SATD patterns, we choose (1,2,3,4,5,6) as the combination of filter
window size in this work. For the number of filters, we chose four numbers (namely 64, 128, 192
and 256) to do experiments. According to Table 8, it can be seen that the more filters the model uses,
the higher precision, recall and F1-score it can achieve and the values of σ are quite small. Since
each filter learns complementary features from the same windows in the input text, more filters
means more features can be learnt. However, increasing the number of filters above 128 results in
only a slight performance improvement. As the more filters a model uses, the more parameters it
has. To balance the model performance and its complexity, we set 128 filters of each filter window
size.

After hyperparameter tuning, the CNN model with the optimized hyperparameters (with normal
loss function) can achieve better results that the model using the hyperparameter settings in
Kim [12], which is shown in Table 9. It can be seen that hyperparameter tuning can improve the

17ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2019.

Table 9. Cross-Project Precision, Recall and F1-score of Our Approach with Normal Loss Function (Our-
NL) and Simple CNN Approach(Sim.). The best results of each method are in bold and the worst ones are
underlined.

Projects Precision Recall F1-score
Sim. Our-NL Improv. Sim. Our-NL Improv. Sim. Our-NL Improv.

Apache Ant 0.433 0.475 9.70% 0.508 0.692 36.22% 0.468 0.563 20.42%
ArgoUML 0.805 0.813 0.99% 0.905 0.913 0.88% 0.852 0.860 0.93%
Columba 0.789 0.793 0.51% 0.775 0.793 2.32% 0.782 0.793 1.41%

EMF 0.694 0.718 3.46% 0.428 0.534 24.77% 0.529 0.612 15.59%
Hibernate 0.907 0.899 -0.88% 0.747 0.726 -2.81% 0.819 0.803 -1.98%

JEdit 0.720 0.766 6.39% 0.323 0.457 41.49% 0.446 0.572 28.27%
JFreeChart 0.617 0.652 5.67% 0.725 0.734 1.24% 0.667 0.691 3.65%
JMeter 0.811 0.801 -1.23% 0.754 0.786 4.24% 0.781 0.793 1.48%
JRuby 0.803 0.783 -2.49% 0.885 0.884 -0.11% 0.842 0.830 -1.43%

SQuirrel 0.750 0.770 2.67% 0.688 0.685 0-0.44% 0.718 0.725 1.02%
Average 0.733 0.747 1.92% 0.674 0.720 6.92% 0.690 0.724 4.90%

average F1-score by 4.9%. Only the F1-scores of Hibernate and JRuby achieved by the optimized
model are slightly lower than those of the default model.

Our hyperparameter tuning approach can obtained better performance than simple CNN approach.
Additionally, the dimension size of word embedding, the number of filters, and the combination of
filter window size are the most important hyperparameters.

5.3 RQ3: Feature Learning Capability by CNN
5.3.1 Motivation. In contrast to manual enumeration of SATD patterns [6] or a separate feature

selection step in the text-mining approach [10], our CNN model automatically learns variable-
length filters to extract features in the input comments that are most relevant to SATD classification
(see Section 3.1.1). We would like to investigate the feature learning capability of our CNN model
by analyzing key phrases extracted by backtracking, in particular, whether our CNN can extract
meaningful key phrases from code comments.

5.3.2 Approach. We train our model with the 10 projects’ comments. Then, we randomly sample
20 SATD comments for each project from the manually-labeled SATD comments of these 10 projects.
Through the key phrase extraction mechanism (see Section 3.2), we can backtrack the CNN features
to key phrases in the input comments. We visualize the extracted key phrases and analyze their
properties (e.g., length, SATD probability). Furthermore, two of the authors independently labeled
the extracted key phrases as relevant or irrelevant to the SATD classification of the corresponding
comments. We use Cohen’s Kappa [25] to assess the inter-rater agreement.

5.3.3 Results. Fig. 4, Fig. 5 and Fig. 6 shows the statistics of the sampled comments and the
extracted key phrases. We can see that the length of sampled comments vary: 73.49% has less than
10 words, 21.69% has 10-30 words, 2.74% has 30-50 words and 2.08% has more than 50 words. Our
CNN model extracts in total 3540 key phrases from the sampled comments. Most of the comments
contain 4, 5 or 6 key phrases, but some contain less than 4 key phrases or more than 6 key phrases.
The length of the extracted key phrases also vary: 29.60% has one word, 22.71% has 2 words, 19.58%
has 3 words, 14.83% has 4 words, and 8.89% and 4.32% has 5 and 6 words. Table 10, Table 11, Table 12
and Table 13 show four examples of the comments we examine, including the sampled comment,

18

Fig. 4. Distribution of Comment Length

Fig. 5. Distribution of Number of Key Phrases Per Comment

Fig. 6. Distribution of Length of Key Phrases.

19ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2019.

Table 10. Example-1 of CNN-extracted Key h-grams. The words in orange are key phrases highlighted by
our approach.

Comment-1: // todo temporary hack to avoid unnecessary bug reports for subclasses
Key h-grams non-SATD probalility SATD probability
todo 0.02136926 0.97863074
hack 0.06526527 0.93473473
todo temporary 0.00606645 0.99393355
todo temporary hack 0.00205301 0.99794699
hack to avoid 0.08711279 0.91288721
unnecessary bug 0.41933313 0.58066687

Table 11. Example-2 of CNN-extracted Key h-grams. The words in orange are key phrases highlighted by
our approach.

Comment-2: FIXME: this is probably not very efficient, since it loads all methods for each call
Key h-grams non-SATD probalility SATD probability
fixme 0.00653387 0.99346613
probably not very efficient 0.20815406 0.79184594

Table 12. Example-3 of CNN-extracted Key h-grams. The words in orange are key phrases highlighted by
our approach.

Comment-3: Todo: not read, yet in a public setter
Key h-grams non-SATD probalility SATD probability
todo 0.00587633 0.9941237
in a public setter 0.31935509 0.68064491

Table 13. Example-4 of CNN-extracted Key h-grams. The words in orange are key phrases highlighted by
our approach.

Comment-4: //we clone dynamic scope because this will be a new instance of a block any
previously captured instances of this block may still be around and we do not want to start
overwriting those values when we create a new one enebo once we make self , lastclass , and
lastmethod immutable we can remove duplicate
Key h-grams non-SATD probalility SATD probability
clone 0.39748379 0.60251621
around 0.23387226 0.76612774
be around 0.28207757 0.71792243
overwriting those values 0.32154414 0.67845586
be around and 0.37671376 0.62328624
be around and we do 0.34089262 0.65910738
overwriting those values when we create 0.23327953 0.76672047
this will be a new instance 0.37289290 0.62710710
because this will be a new 0.27444737 0.72555263
and we do not want to 0.38323630 0.61676370

20

the key h-grams and their corresponding SATD and non-SATD probability, and the key phrases.
The overlapping key h-grams are concatenated into key phrases which are highlighted in orange.

Two of the authors examined such highlighted key phrases and determined their relevance
to SATD classification. The Cohen’s Kappa coefficient of the two authors’ labels is 0.637, which
indicates substantial inter-rater agreement. The two authors agreed that 2703 (76.36%) extracted key
phrases are relevant to SATD classification, for example, “todo temporary hack to avoid unnecessary
bug” in the Comment-1 in Table 10 , and “FIXME” and “probably not very efficient” in the Comment-
2 in Table 11. Our model also gives high SATD probability to such key phrases. The two authors
agree that 268 (7.57%) extracted key phrases are irrelevant to SATD classification, for example, “in
a public setter” in Table 12. The authors consider these 268 key phrases as irrelevant for SATD
classification because they cannot use them to determine whether a comment is SATD or not. The
two authors disagree on the relevance of 569 (16.07%) extracted key phrases for SATD classification,
for example, “clone”, “be around and we do not want to” in the Comment-4 in Table 13. These
569 key phrases usually have relative lower SATD probability by our model, compared with the
SATD probability of other more evident SATD-indicating key phrases. However, our model can still
learn to extract them and use them as the basis for SATD classification. We will further compare
our CNN-extracted key phrases with human-identified key phrases in the user study in RQ8 (see
Section 5.8).

Our CNN model can effectively learn different numbers of variable-length text features
from variable-length code comments for SATD classification. Most of the extracted features
are relevant and effective for SATD classification.

5.4 RQ4: SATD Patterns and Their Explainability
5.4.1 Motivation. Previous work of [6] manually summarizes 62 most frequent SATD patterns

for detecting SATD comments. Due to time and human limitations, it is very likely that they
missed some less evident SATD patterns. In addition, although the text mining approach [10]
can achieve better performance in SATD identification than pattern-based SATD detection, it
cannot explain the basis of its classification decisions. Our CNN-based approach can automatically
extract SATD-indicating features from the training comments, and based on the backtracking
mechanism, we can map these CNN-extracted features backtrack to key h-grams and summarize
key h-grams into SATD patterns (see Section 3.3). That is, our approach can potentially incorporate
the performance advantage of a machine-learning based approach and the explainability advantage
of pattern-based approach. Based on the extracted key phrases, we further summarize a list of
SATD patterns for helping developers identify and understand the prominent SATD indicators
in source code comments. In this RQ, we would like to evaluate the quality of these summarized
SATD patterns. To answer this research question, we compared our CNN-based SATD patterns
with the human-summarized patterns. We also wanted to investigate the SATD characteristics of
the 10 projects listed in Table 3. Understanding these characteristics is important to explain the
results of model performance, generalizability and adaptability experiments.

5.4.2 Approach. We trained our model with the 10 projects’ comments. We obtained a set of
SATD patterns from the key h-grams that our CNN model extracts from all the manually-labeled
SATD comments of the 10 projects. We then compared the length distribution and the vocabulary
of our CNN-based SATD patterns and the 62 human-summarized patterns. We also investigated the
overlapping and distinction between our CNN-based SATD patterns and the 62 human-summarized
patterns in [6]. Finally, using the set of CNN-based SATD patterns, we collected statistics about the

21ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2019.

Fig. 7. Distribution of Length of Patterns

Fig. 8. Distribution of Number of SATD Patterns in the 10 Projects

Fig. 9. Distribution of Number of Projects in which a Pattern Appears

distribution of these SATD patterns in different projects, in terms of what patterns a project has
and what project(s) a pattern appears in.

22

Table 14. Top SATD Patterns Extracted by Our Approach

1-gram pattern 2-gram pattern 3-gram pattern
todo really ugly not very efficient
hack this needs not very nice
xxx remove this would be better
sss not sure this could be
workaround how to we really need
temporary should probably kind of hacky
fixme not used how to handle
implement temporary solution would be nice
4-gram pattern 5-gram pattern 6-gram pattern
should check for strict this is the temporary solution offenders need to be more strongly
element should be created we may be screwed here a better way to handle this
forget to add ownership need some format checking here this will also inefficiently handle arrays
do we need this is this really necessary if this code ever gets hit
not appear to be this can be a mess stupid recreation of whole menu model
currently only works for not appear to be used complicated by the use of parameters
this is a temporary simplified these settings a little move it to a good home
needs to be moved not actually make any difference a little bit of overkill here

5.4.3 Results. We identified in total 700 SATD patterns. Fig. 7 shows the distribution of SATD
patterns (ours and those in [6]) of different lengths. We can see that both sets of patterns are of
variable length, ranging from one word to six words. For all different lengths, our CNN-based
patterns are much more than human-summarized patterns. For example, our patterns include 175
1-word patterns, 168 2-words patterns and 236 3-words patterns, while human only summarized
14 1-word, 9 2-words and 18 3-words patterns. However, the distribution of patterns extracted by
the two methods is similar. The 62 human-summarized patterns contain very few project-unique
words, while our CNN-based SATD patterns contain approximately 50 project-unique words that
are used in only one or two projects. For example, our method identifies “revisit” as a SATD pattern,
but the human analysis did not identify it because it appears only in EMF. That is, our CNN-based
SATD patterns covers a much more diverse vocabulary (including not only commonly-used words
but also less-frequently-used words) related to SATDs than human-summarized patterns.

Table 14 shows the top eight SATD patterns of different lengths identified by our method, and the
patterns that match or contain the 62 human-summarized patterns are highlighted in bold. We can
observe that our CNN-based SATD patterns are intuitive phrases, similar to human-summarized
patterns. Our CNN-based SATD patterns cover 58 (93.6%) of the 62 human-summarized patterns.
The four human-summarized patterns that are not in our SATD patterns are: “this is bs”, “kaboom”,
“barf” and “toss it”. We search the 62,566 after-filtering comments in our dataset but do not find
these four phrases. That is, these four phrases are used in the original 259,229 comments but are
not included in the dataset that our method analyzes. Our method identifies many more SATD
patterns that are not included in the 62 previously manually-identified patterns. As shown in Table
14, many of these patterns do not involve commonly used SATD indicators (e.g., “todo”, “hack”,
“fixme”, “temporary solution”). Such patterns are hard to identify by just human observation.

Fig. 8 shows the number of patterns that each of the 10 projects has. We can see that all projects
use many different SATD patterns to describe SATDs. SQuirrel uses the most number of patterns
(104, 14.86% of all our SATD patterns). ArgoUML and JMeter also use many patterns, which are 95
(13.57%) and 92 (13.14%). Apache Ant and EMF use relatively less numbers of patterns compared
with other projects, which are 36 (5.14%) and 43 (6.14%). Considering the small number of SATD

23ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2019.

Table 15. Top SATD Patterns in Each Project Extracted by Our Approach. Common SATD patterns are
underlined, project-unique patterns are in bold and sentiment ones are in italic.

Apache Ant ArgoUML Columba EMF Hibernate
xxx todo todo todo todo
todo temporary fixme remove remove
hack hack implement revisit yuck
error fixme workaround hack ugly
not sure remove better workaround fix
ugly would be better hack why hack
this is too hacky remove this fix fix should this
quick fix do we need this xxx I don’t know if better to
remove this can be a mess stupid kind of hacky fixme
why not more is required is not thread-safe this would be wrong temporary
JEdit JFreeChart JMeter JRuby SQuirrel
hack todo todo todo todo
fix fixme hack fixme hack
todo implement this should this need to delete
xxx not used not used check kludge
stupid unused later xxx not yet
remove hack fixme hack fix
temporary ugly empty block probably not not used
better way negative problems occur missing remove
review complete this not yet handled temporary evil
misleading handle is it the best way kludge vertify this

comments in many projects (e.g., Apache Ant, EMF, SQuirrel), we can see that even developers in
the same project use very diverse SATD patterns when describing SATDs.

Fig. 9 shows the distribution of the number of projects in which a SATD pattern appears. We can
see that many patterns are commonly used in many projects. For example, 377 (53.86%) patterns
appear in at least seven projects. At the same time, there are also a non-negligible number of
SATD patterns appearing in only a few projects. For example, 114 (13.43%) patterns appear in
three or less projects. Table 15 shows the top 10 SATD patterns in each of the 10 projects. We
can also observe that many projects share some common SATD patterns (underlined), such as
“todo”, “xxx”, “fixme” and “hack”. At the same time, some SATD patterns appear in only one or two
projects. For example, “revisit” is only used in EMF to describe SATDs. An interesting observation
is that negative sentiment words are often used to describe SATDs, such as “ugly”, “yuck”, “stupid”,
“negative” and “evil”. But the use of specific negative sentiment words differs from one project to
another.

Our CNN-based method can extract intuitive SATD patterns, similar to human-
summarized patterns, and it extracts more comprehensive SATD patterns with more
diverse vocabulary, compared with human-summarized patterns. Our CNN-based SATD
patterns capture not only common SATD features, but also less evident or project-unique features,
as well as sentiment features. They help explain the common and distinct SATD characteristics of
different projects.

24

Table 16. Within-Project Precision, Recall and F1-score of Our Approach and Traditional TextMining Approach.
The best results of each method are in bold and the worst ones are underlined.

Project Precision Recall F1-score
TM Our Improv. TM Our Improv. TM Our Improv.

Apache Ant 0.450 0.323 -28.32% 0.818 0.719 -12.08% 0.581 0.445 -23.36%
ArgoUML 0.497 0.905 82.06% 0.828 0.962 16.19% 0.621 0.932 50.09%
Columba 0.458 0.611 33.33% 0.917 0.942 2.76% 0.611 0.741 21.25%
EMF 0.438 0.423 -3.41% 0.778 0.719 -7.51% 0.560 0.532 -5.00%
Hibernate 0.692 0.860 24.29% 0.878 0.916 4.28% 0.774 0.887 14.57%
JEdit 0.480 0.468 -2.60% 0.667 0.929 39.31% 0.558 0.622 11.44%
JFreeChart 0.688 0.679 -1.24% 0.917 0.958 4.49% 0.786 0.795 1.18%
JMeter 0.525 0.821 56.46% 0.808 0.918 13.68% 0.636 0.867 36.24%
JRuby 0.646 0.847 31.16% 0.756 0.918 21.38% 0.697 0.881 26.47%
SQuirrel 0.370 0.750 102.50% 0.625 0.888 42.04% 0.465 0.813 74.80%
Average 0.524 0.669 25.02% 0.799 0.887 12.45% 0.629 0.752 19.50%

5.5 RQ5: Within-Project Classification Performance
5.5.1 Motivation. Our approach uses a CNN to extract SATD features from the comment data.

We would like to compare the effectiveness of our CNN-based features and the traditional text-
mining based features for predicting STADs and understand the applicability of our approach in
projects with different SATD characteristics.

5.5.2 Approach. We set up 10 within-project classification experiments with the 10 projects
listed in Table 3. that extract SATD patterns from we projects, For each project, we randomly select
90% comments to train a SATD classification model and use the the rest 10% comments as the
testing data to test the performance of the trained model. We compare the performance of our
approach with that of the traditional text-mining based SATD classification [10]). We compute the
improvement ratio of our approach over the text-mining method and natural processing language
approach for the precision, recall and F1-score. In addition, we use the Wilcoxon signed-rank
test [30] to test whether the differences of precision, recall and F1-score in the 10 experiments is
statistically significant at the p-value < 0.05. We also use the Cliff’s delta (δ) to quantify the amount
of difference between the three approaches. The amount of difference is considered negligiable
(|δ | < 0.147), small (0.147 ≤ |δ | < 0.33), medium (0.33 ≤ |δ | < 0.474), or large (|δ | ≥ 0.474).

5.5.3 Result. Table 16 lists the precision, recall and F1-score metrics in the 10 within-project
classification experiments. Overall, our approach has a much better precision and a moderate
improvement in recall, compared with the text-mining method. On average, our approach achieves
the 25.02%, 12.45% and 19.50% improvement in precision, recall and F1-score than the text-mining
method, respectively. The Wilcoxon signed-ranked tests show that the improvements in precision,
recall and F1-score are all statistically significant at the p-value < 0.05. The Cliff’s delta of F1-score
is 0.5 (larger than 0.474), which indicates that our approach significantly improves F1-score over
the text mining approach by a large margin.
Our approach achieves the best F1-score (0.932) on ArgoUML among all the 20 experiments,

while it achieves the worst F1-score (0.445) on Apache Ant and the third worst F1-score (0.532) on
EMF among all the 20 experiments. For ArgoUML, the F1-score of our approach is 50.09% higher
than that of the text-mining method, while for Apache Ant and EMF, the F1-score of our approach
is 23.06% and 5.00% lower than that of the text-mining method, respectively.

25ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2019.

Table 17. Examples of Comparison Between Our Approach and Text Mining Approach.

Type Comment

Comments with project uniqueness // wtf?
// REVISIT: Remove this code.

Comments with semantic variation // not absolutely necessary, but does help with aggressive release
// this is kinda the best we can do...

These two extreme performance results coincide with the fact that ArgoUML has the largest
set of SATD comments (1413), while Apache Ant and EMF have the two smallest sets of SATD
comments (131 and 104 respectively).
Although our approach performs worse than the text-mining method when the dataset is very

small, it consistently outperforms (statistically significant at p-value < 0.05 by the Wilcoson signed-
rank test) than the text-mining method on all the other seven datasets that have more than 200
SATD comments. Furthermore, for SQuirrel that the text-mining method performs the worst (0.465
F1-score), our approach performs significantly better (0.813 F1-score). However, for Apache Ant and
EMF where our approach performs the worst (0.445 and 0.532 F1-score), the text-mining method is
itself only moderately or marginally better (0.581 and 0.56 F1-score).
Among the 10 projects, our approach achieves more than 50% improvement in precision on

SQuirrel (102.50%), ArgoUML (82.06%) and JMeter (56.46%), and achieve about 40% improvement in
recall on SQuirrel (42.05%) and JEdit (39.21%). Comparing our CNN-based SATD patterns and the
top 10 features selected by the text-mining method in SQuirrel, ArgoUML, JMeter and JEdit, we find
that our approach can extract much more meaningful SATD patterns while the text-mining method
select many meaningless features such as “us”, “and”, “thi”. As a result, our approach achieves much
better precision and recall than the text-mining method in these four projects.
Among the 10 projects, there is only one project (JFreeChart) on which our approach and the

text-mining method achieve almost the same performance, and both methods achieve the better
recall on JFreeChart than eight out of the 10 other projects. The text-mining approach actually
achieves the best F1-score on JFreeChart, but this performance is only the 6th ranked by our
approach. We find that there are almost 70% overlaps between our CNN-based SATD patterns and
the top 10 features selected by the text-mining method in JFreeChart. This explains why the two
methods have a very close performance for this project.
In order to further understand the improvement of our approach over traditional text mining

approach, we further compare examples of code comments that are correctly classified by our
approach but misclassified by the text mining approach. We find that there are two kinds of
comments that are frequently misclassified by the text mining approach. Some examples are shown
in Table 17:

• Comments with project uniqueness which refer to the comments with SATD patterns that
only appear in one or two projects. This kind of comments often contains some rare but
important features (e.g., “wtf” and “REVISIT”), which are highly related to SATD comments.
However, text mining approach actually removes them during the feature selection phase,
thus misclassifying this kind of comments as non-SATD. In contrast, our approach can extract
such project-unique SATD patterns and make more accurate classification.

• Comments with semantic variation which refer to the comments containing context-sensitive
semantic patterns. As shown in Table 17, comments with semantic variation is difficult to
classify without considering the overall sentence context, such as “not absolutely necessary”
and “kinda the best”. For traditional text mining approach, it often considers the meaning

26

of words or phrases independent of the sentence context. In such cases, text mining
approach often misclassifies the comments as SATDs. On the contrary, our approach can
capture sentence-level embeddings in the model and fully use the context to make accurate
classification.

Our CNN-based approach can statistically significantly improve the SATD classification
performance over the traditional text-mining based methods. This can be attributed to the
superior capability of CNN to learn to extract more meaningful and more comprehensive SATD-
indicating features that the traditional feature selection process of the text-mining method. However,
we should be cautious that the CNN may not be well trained when the training data is too small.

5.6 RQ6: Cross-Project Model Generalizability
5.6.1 Motivation. As discussed in RQ4, different projects have different SATD characteristics,

and these characteristics may affect the performance of SATD classification methods. Ideally, we
want to deploy a model trained using some projects to a new project without much performance
degradation. The more generalizable a model’s SATD features are, the less a model degrades across
projects, and thus the easier it is to deploy the model in practice. Therefore, we would like to
investigate the generalizability of SATD features learned by our approach across projects, and
compare our model’s generalizability with that of traditional text-mining based method [10].

5.6.2 Approach. We set up two experimental settings: a rich training data setting and a limited
training data setting. In the rich training data setting, we use nine projects’ comments as the training
data and the other one project’s comments as the testing data. We refer to this setting as 9 → 1, and
we have 10 experiments for each method in this setting. In the limited training data setting, we use
one project’s comments as the training data and the other project’s comments as the testing data.
We refer to this setting as 1 → 1, and we have 90 experiments for each method in this setting. We
use 1 →? to represent the nine experiments of the same training project, and ? → 1 to represent
the nine experiments of the same testing project. For each experiment, we compute precision, recall
and F1-score.We show all three metrics for the 9 → 1 setting, and show only F1-score for the
1 → 1 setting due to space limitations3. We use the Wilcoxon signed-rank test [30] to test whether
the differences of F1-score in the experiments is statistically significant at the p-value < 0.05. We
also use the Cliff’s delta (δ) to quantify the amount of difference between two approaches. The
amount of difference is considered negligiable (|δ | < 0.147), small (0.147 ≤ |δ | < 0.33), medium
(0.33 ≤ |δ | < 0.474), or large (|δ | ≥ 0.474).

5.6.3 Result. We first review the results of the ten 9 → 1 experiments (see Table 18). Our
approach performs better than the text-mining method in all of the experiments, and the
improvement in F1-score is statistically significant by Wilcoxon signed-rank test at p-value < 0.05.
The Cliff’s delta (δ) of F1-score is 0.38 (in the medium level), which means that our approach
improves F1-score over the text mining approach by a medium margin. However, we can see
that a rich training data setting is more beneficial to text mining approach than to our approach.
Comparing the average F1-score of the ten 9 → 1 experiments with that of the 10 within-project
experiments, the text-mining method’s average F1-score improves 10.6% (0.696 versus 0.629), while
our approach’s average F1-score improves 1.86% (0.766 versus 0.752). The F1-score improvement
ratio narrows for six of the 10 projects (ArgoUML, Columba, Hibernate, JMeter, JRuby and SQuirrel)

3https://github.com/goodchar/CNN-based_SATD/blob/master/othermetrics.pdf

27ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2019.

Table 18. Precision, Recall and F1-score of Our Approach and Traditional Text Mining Approach in 9 → 1
Setting. The best results of each method are in bold and the worst ones are underlined.

Project Precision Recall F1-score
TM Our Improv. TM Our Improv. TM Our Improv.

Apache Ant 0.565 0.584 3.36% 0.471 0.758 60.93% 0.513 0.660 28.65%
ArgoUML 0.815 0.816 1.23% 0.856 0.950 10.98% 0.835 0.878 5.15%
Columba 0.817 0.830 1.59% 0.805 0.875 8.70% 0.811 0.852 5.06%
EMF 0.636 0.793 24.69% 0.473 0.594 23.47% 0.543 0.679 25.05%
Hibernate 0.876 0.930 6.16% 0.729 0.743 1.92% 0.796 0.826 3.77%
JEdit 0.772 0.773 0.13% 0.364 0.489 34.35% 0.495 0.599 21.01%
JFreeChart 0.627 0.686 9.41% 0.733 0.802 9.41% 0.676 0.739 9.32%
JMeter 0.858 0.873 1.75% 0.770 0.787 2.21% 0.811 0.828 2.09%
JRuby 0.855 0.805 -5.85% 0.752 0.930 23.67% 0.800 0.863 7.88%
SQuirrel 0.784 0.794 1.26% 0.597 0.692 15.91% 0.678 0.739 9.00%
Average 0.761 0.788 3.55% 0.655 0.762 16.34% 0.696 0.766 10.06%

from 14.57% − 74.80% in the within-project experiments down to 3.77% − 9.00% in the 9 → 1
experiments. Observing the SATD patterns in these six projects suggests that they share many
prominent SATD patterns, such as “todo”, “hack” and “fixme”. As such, the text-mining model
trained with some other projects can work well on one of these projects.
However, rich training data from many other projects may not always boost the classification

performance for an individual testing project. In fact, the average F1-score of the text-mining
method degrades 10.4% in the 9 → 1 experiments for the four projects (Apache Ant, EMF, JEdit
and JFreeChart), compared with the average F1-score of the text-mining method for these four
projects in the within-project experiments. This is because these four projects have small numbers
of SATD comments (104−256) whose SATD patterns are often not the most prominent ones in other
projects. For example, JEdit and JFreeChart have some unique SATD features (e.g., “nasty”, “wtf”
and “fudge”) that are not commonly used in other projects. As a result, training the text-mining
model with other projects actually leads to the model’s bias to the prominent SATD patterns in
other projects, but overlooking the testing-project-unique features, which degrades the model’s
generalizability across projects.

In contrast, our approach can learn more comprehensive SATD features so that it can keep a more
balanced view between the most prominent features and those project-unique ones. This makes
our model more generalizable across projects. This generalizability leads to small performance
degradation (which is of 5.29% average decline in F1-score) in seven projects compared with the
corresponding within-project experiments, but the extent is not as bad as the text-mining method
(e.g., the performance degradation on JEdit and JFreeChart). However, the generalizability of our
approach leads to significant improvements in F1-score for the three projects with the lowest
F1-scores in the within-project experiments: Apache Ant (0.446 to 0.660), EMF (0.532 to 0.679), and
Columba (0.741 to 0.852). Note that these three projects have the least numbers of SATD comments
which are not sufficient for training a good CNN-based model. However, the CNN-based model
can learn useful SATD features from other projects for predicting SATD comments in these three
projects.
This generalizability advantage of our approach becomes even more evident in the limited

training data setting. Table 19 and Table 20 show the results of 1 → 1 experiments for the text-
mining and our approach, respectively. Rows represent ? → 1 experiments, while columns represent
1 →? experiments. For the ? → 1 experiments, the average F1-score (Ave-? → 1) of our approach

28

A
pa

ch
e
A
nt

A
rg
oU

M
L

C
ol
um

ba
EM

F
H
ib
er
na

te
JE
di
t

JF
re
eC

ha
rt

JM
et
er

JR
ub

y
SQ

ui
rr
el

A
ve

-?
→

1

A
pa

ch
e
A
nt

-
0.
17
6

0.
30
2

0.
27
4

0.
26
7

0.
26
8

0.
27
0

0.
24
4

0.
30
2

0.
22
0

0.
25
8

A
rg
oU

M
L

0.
64
0

-
0.
69
5

0.
80
5

0.
69
6

0.
73
6

0.
75
6

0.
73
6

0.
68
1

0.
74
4

0.
72

1

C
ol
um

ba
0.
58
9

0.
38
2

-
0.
59
1

0.
56
7

0.
50
0

0.
46
5

0.
64
9

0.
49
6

0.
54
3

0.
53
1

EM
F

0.
43
1

0.
21
3

0.
24
8

-
0.
20
1

0.
22
5

0.
30
0

0.
27
2

0.
30
9

0.
25
2

0.
27
2

H
ib
er
na

te
0.
68
3

0.
50
5

0.
63
9

0.
74
5

-
0.
66
2

0.
66
8

0.
69
3

0.
63
3

0.
67
4

0.
65
6

JE
di
t

0.
35
8

0.
34
7

0.
35
7

0.
28
8

0.
37
7

-
0.
39
4

0.
33
8

0.
45
9

0.
43
5

0.
37
3

JF
re
eC

ha
rt

0.
32
7

0.
32
8

0.
46
6

0.
53
5

0.
49
7

0.
38
4

-
0.
52
4

0.
52
2

0.
34
0

0.
43
6

JM
et
er

0.
67
7

0.
41
3

0.
54
1

0.
59
3

0.
57
6

0.
61
7

0.
59
2

-
0.
56
8

0.
58
5

0.
57
4

JR
ub

y
0.
55
2

0.
54
3

0.
69
6

0.
54
8

0.
72
4

0.
57
0

0.
58
4

0.
71
4

-
0.
52
7

0.
60
6

SQ
ui
rr
el

0.
49
6

0.
31
0

0.
38
3

0.
55
6

0.
45
8

0.
43
2

0.
51
5

0.
49
1

0.
46
2

-
0.
45
6

A
ve

-1
→

?
0.
52
8

0.
35
7

0.
48
1

0.
54

8
0.
48
5

0.
48
8

0.
50
5

0.
51
8

0.
49
2

0.
48
0

-

Ta
bl
e
19
.
Tr
ad

it
io
na

lT
ex
t
M
in
in
g:
F1
-s
co
re

in
1
→

1
Se
tt
in
g
(r
ow

?
→

1
re
fe
rs

to
ot
he

r
pr
oj
ec
ts
ar
e
us
ed

to
pr
ed
ic
t
th
is
on

e
pr
oj
ec
t
an

d
co
lu
m
n
1
→

?
m
ea
ns

th
is
on

e
pr
oj
ec
t
is
us
ed

to
pr
ed
ic
t
ot
he

rs
.T

he
be
st
F1
-s
co
re
s
of

ea
ch

m
et
ho

d
ar
e
in

bo
ld

an
d
th
e
w
or
st
on

es
ar
e
un

de
rl
in
ed
.)

29ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2019.

A
pa

ch
e
A
nt

A
rg
oU

M
L

C
ol
um

ba
EM

F
H
ib
er
na

te
JE
di
t

JF
re
eC

ha
rt

JM
et
er

JR
ub

y
SQ

ui
rr
el

A
ve

-?
→

1
A
ve

-?
→

1
of

T
M

Im
p.
-2

A
pa

ch
e
A
nt

-
0.
60
8

0.
46
8

0.
25
7

0.
45
0

0.
32
8

0.
30
6

0.
36
7

0.
56
4

0.
58
7

0.
43
7

0.
25
8

69
.3
8%

A
rg
oU

M
L

0.
42
7

-
0.
81
7

0.
45
9

0.
80
8

0.
38
1

0.
60
3

0.
82
1

0.
62
0

0.
73
9

0.
63
1

0.
72
1

-1
2.
48
%

C
ol
um

ba
0.
40
9

0.
77
3

-
0.
39
8

0.
65
5

0.
44
3

0.
48
3

0.
60
3

0.
60
4

0.
46
3

0.
53
7

0.
53
1

1.
13
%

EM
F

0.
39
8

0.
65
2

0.
59
1

-
0.
65
3

0.
34
1

0.
49
6

0.
69
8

0.
47
6

0.
50
1

0.
53
4

0.
27
2

96
.3
2%

H
ib
er
na

te
0.
38
8

0.
86
8

0.
81
9

0.
45
0

-
0.
41
1

0.
58
2

0.
75
6

0.
62
1

0.
69
9

0.
62
2

0.
65
6

-0
.6
1%

JE
di
t

0.
32
6

0.
56
9

0.
35
7

0.
43
4

0.
50
4

-
0.
35
0

0.
38
0

0.
47
3

0.
33
0

0.
41
4

0.
37
3

10
.9
9%

JF
re
eC

ha
rt

0.
35
9

0.
66
1

0.
55
0

0.
43
2

0.
63
8

0.
35
5

-
0.
46
0

0.
49
8

0.
42
8

0.
48
7

0.
43
6

11
.7
0%

JM
et
er

0.
40
2

0.
87
3

0.
79
8

0.
45
9

0.
81
6

0.
35
6

0.
63
3

-
0.
70
4

0.
70
8

0.
63
9

0.
57
4

11
.3
2%

JR
ub

y
0.
39
7

0.
85
0

0.
79
5

0.
68
8

0.
80
6

0.
35
5

0.
60
3

0.
78
8

-
0.
72
3

0.
66

7
0.
60
6

10
.0
7%

SQ
ui
rr
el

0.
39
7

0.
87
5

0.
78
6

0.
65
5

0.
80
7

0.
24
6

0.
65
4

0.
82
3

0.
73
4

-
0.
66
4

0.
45
6

45
.6
1%

A
ve

-1
→

?
0.
38
9

0.
74

8
0.
66
5

0.
47
0

0.
68
2

0.
35
7

0.
52
3

0.
63
3

0.
58
8

0.
57
5

-
-

-

A
ve

-1
→

?
of

T
M

0.
52
8

0.
35
7

0.
48
1

0.
54
8

0.
48
5

0.
48
8

0.
50
5

0.
51
8

0.
49
2

0.
48
0

-
-

-

Im
p.
-1

-2
6.
28

%
10
9.
43
%

38
.1
6%

-1
4.
19

%
40
.6
0%

-2
6.
78

%
3.
63
%

22
.1
8%

19
.5
6%

19
.8
6%

-
-

-

Ta
bl
e
20
.
O
ur

A
pp

ro
ac
h:

F1
-s
co
re

in
1
→

1
Se
tt
in
g
(r
ow

?
→

1
re
fe
rs

to
ot
he

r
pr
oj
ec
ts
ar
e
us
ed

to
pr
ed
ic
t
th
is
on

e
pr
oj
ec
t
an

d
co
lu
m
n
1
→

?
m
ea
ns

th
is
on

e
pr
oj
ec
t
is
us
ed

to
pr
ed
ic
t
ot
he

rs
.T

he
be
st
F1
-s
co
re
s
of

ea
ch

m
et
ho

d
ar
e
in

bo
ld

an
d
th
e
w
or
st
on

es
ar
e
un

de
rl
in
ed
.)

30

is higher than that of the text-mining method on eight of the 10 testing projects, especially on
Apache Ant (69.38% higher), EMF (96.32% higher) and SQuirrel (45.61% higher). This suggests that
our approach has good generalizability even for projects with small numbers of SATD comments
and less prominent SATD features. This is largely consistent with the results of 9 → 1 experiments
in Table 18. For the 1 →? experiments, the average F1-score (Ave-1 →?) of our approach is higher
than that of the text-mining method on seven of the 10 training projects, especially on ArgoUML
(109.43%), Columba (38.16%) and Hibernate (40.60%). Note that ArgoUML and Hibernate have the
largest (1413) and the third largest (472) set of SATD comments respectively. This suggests that
our approach can learn more generalizable features from projects with large numbers of SATD
comments than the text-mining method.

However, the 1 → 1 experiments reveal again the challenge in training a good CNN-based SATD
classification model with limited numbers of SATD comments. We can see that the Ave-? → 1
F1-score of our approach is actually worse than the text-mining approach on the testing projects
ArgoUML (12.48% lower) and Hibernate (2.43% lower) that have larger numbers of SATD comments
than the training projects. Furthermore, the Ave-1 →? F1-score of our approach is actually worse
than the text-mining approach on the training projects Apache Ant (26.28% lower), EMF (14.19%
lower) and JEdit (26.78% lower) that have smaller numbers of SATD comments than the testing
projects. As we will show in the RQ5, this challenge can be well addressed with transfer learning
mechanism, because our approach has superior adaptability.

Our CNN-based approach has better generalizability across projects than the traditional
text-mining based method. When the projects’ SATDs do not use the prominent SATD patterns
commonly seen in other projects, our approach is statistically significantly better. But when the
training projects have limited numbers of SATD comments or the testing projects have much larger
numbers of SATD comments than the training projects, the generalizability of our approach may be
limited.

5.7 RQ7: Cross-Project Model Adaptability
5.7.1 Motivation. In RQ5 and RQ6, we see the superior performance and generalizability of our

approach over the text-mining approach. However, we also identify the challenge in effectively
training our CNN-based model with limited training data. Increasing the size of training data
requires significant efforts, or even is impossible when the raw dataset itself is small. Transfer
learning is a proven-effective mechanism to address this limited training data challenge. Transfer
learning essentially adapts the knowledge gained while solving one task to a different but related
task. It is beneficial for narrowing down the scope of possible model parameters on a task by
reusing and adjusting the parameters of a trained model on a different but related task [31]. As
such, it can reduce the amount of training data required for the target task. We would like to apply
transfer learning to address the training challenge of our CNN-based model, and also to investigate
the adaptability of our model across projects.

5.7.2 Approach. We use the traditional text-mining based method [10] as the baseline. As we are
interested in the model adaptability, we use the limited training data setting, i.e., 1 → 1 setting, in
which the model trained with the data of a source project will be transferred to the date of a target
project. When it comes to the transfer learning strategy, we choose fine-tuning the Convolutional
Neural Network to not only retrain the classifier on top of the CNN on the target project dataset, but
to also fine-tune the weights of the pre-trained network by continuing the backtracking through
network layers. That is, we fine-tune all the layers of the CNN in this work. This fine-tuning
strategy is motivated by the observation that the lower-layer features of a CNN contain more

31ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2019.

Fig. 10. Average of F1-score in the Nine n/10 (1 ≤ n ≤ 9) Fine-Tuning Settings

generic features (e.g. “TODO”, “Fixme”, etc.) that should be useful to many projects, but higher-
layers of the CNN becomes progressively more specific to a project. We first train a model using a
source project’s comments. Then, we fine-tune the trained model with a target project’s comments.
We randomly split the target project’s comments into 10 subsets. For each fine-tuning experiment,
we use n (1 ≤ n ≤ 9) subsets as the fine-tuning data and the rest 10 − n subsets as the testing data.

Therefore, we have 810 (90*9) experiments for each method. We compute the precision, recall
and F1-score for each fine-tuning experiment. We compute the average F1-score of a method for
each n setting, and also compute the average F1-score of a method in the ? → 1 experiments and
the 1 →? experiments.

5.7.3 Result. Fig. 10 shows the average F1-score of the fine-tuning experiments with 10% to
90% target project’s comments as fine-tuning data. We can see that our approach always perform
better than the text-mining method. Although the two methods achieve similar F1-score (about
0.55) at 10% fine-tuning data, the F1-score of our approach jumps to 0.79 at 20% fine tuning data.
Furthermore, the F1-score of our approach at > 20% fine-tuning data remains very stable and
has about 0.05 further improvement at 90% fine-tuning data. In contrast, the best F1-score of the
text-mining method is only about 0.6 at 50% fine-tuning data and at 90% fine-tuning data. That is,
even with much more fine-tuning data, the text-mining method does not even come close to the
performance of our approach with much less fine-tuning data.
The F1-score 0.79 at 20% fine-tuning data by our approach is 39.82% higher than that of the

90 1 → 1 experiments without fine-tuning (0.565), and is even higher than the average F1-score
(0.752) of the within-project experiments. That is, with only 20% of a target project’s comments for
fine-tuning, a CNN-based model trained with a source project can be effectively adapted to the
target project. The resulting target CNN model significantly improves the original source CNN
model for predicting the target project’s SATDs.
Table 21 and Table 22 present the F1-score of the 90 1 → 1 experiments with 20% fine-tuning

data by the text-mining method and our approach, respectively. We can see that the F1-scores of
our approach with fine-tuning are significantly higher than those of the text mining method with
fine-tuning in all 90 1 → 1 experiments. The improvement ratios for the average F1-score of the

32

Ta
rg
et

A
pa

ch
e
A
nt

A
rg
oU

M
L

C
ol
um

ba
EM

F
H
ib
er
na

te
JE
di
t

JF
re
eC

ha
rt

JM
et
er

JR
ub

y
SQ

ui
rr
el

A
ve

-?
→

1
A
ve

-?
→

1
(w

/o
ft)

Im
p.
-2

A
pa

ch
e
A
nt

-
0.
24
3

0.
43
3

0.
38
2

0.
43
8

0.
35
4

0.
40
0

0.
42
2

0.
38
3

0.
38
8

0.
38
3

0.
25
8

48
.4
5%

A
rg
oU

M
L

0.
62
0

-
0.
63
1

0.
66
8

0.
69
4

0.
66
4

0.
67
5

0.
67
1

0.
66
5

0.
68
1

0.
66
3

0.
72
1

-8
.0
4%

C
ol
um

ba
0.
43
0

0.
26
8

-
0.
42
2

0.
35
4

0.
37
3

0.
43
6

0.
48
0

0.
35
8

0.
43
4

0.
39
5

0.
53
1

-2
5.
61
%

EM
F

0.
60
2

0.
45
8

0.
63
2

-
0.
63
4

0.
60
4

0.
57
6

0.
60
5

0.
64
9

0.
58
9

0.
59
4

0.
27
2

11
8.
38
%

H
ib
er
na

te
0.
66
3

0.
55
4

0.
72
5

0.
64
5

-
0.
68
6

0.
71
2

0.
70
3

0.
67
9

0.
72
3

0.
67
7

0.
65
6

3.
20
%

JE
di
t

0.
36
9

0.
38
1

0.
43
5

0.
41
7

0.
40
8

-
0.
45
1

0.
36
1

0.
48
5

0.
42
0

0.
41
4

0.
37
3

10
.9
9%

JF
re
eC

ha
rt

0.
46
3

0.
36
3

0.
52
8

0.
47
8

0.
46
5

0.
44
8

-
0.
50
6

0.
55
8

0.
50
0

0.
47
9

0.
43
6

9.
86
%

JM
et
er

0.
70
5

0.
47
7

0.
66
8

0.
62
5

0.
60
9

0.
60
1

0.
65
9

-
0.
64
7

0.
68
6

0.
63
1

0.
57
4

9.
93
%

JR
ub

y
0.
70
2

0.
57
7

0.
68
8

0.
60
5

0.
71
1

0.
73
1

0.
64
6

0.
69
8

-
0.
71
9

0.
67
5

0.
60
6

11
.3
9%

SQ
ui
rr
el

0.
51
3

0.
35
0

0.
51
4

0.
48
5

0.
44
8

0.
54
7

0.
48
9

0.
53
1

0.
47
0

-
0.
48
3

0.
45
6

5.
92
%

A
ve

-1
→

?
0.
56
3

0.
40
8

0.
58
4

0.
52
5

0.
52
9

0.
55
6

0.
56
0

0.
55
3

0.
54
4

0.
57
1

-
-

-

A
ve

-1
→

?
(w

/o
ft
)

0.
52
8

0.
35
7

0.
48
1

0.
54
8

0.
48
5

0.
48
8

0.
50
5

0.
51
8

0.
49
2

0.
48
0

-
-

-

Im
p.
-1

6.
63
%

14
.2
9%

21
.4
1%

-4
.2
0%

9.
07
%

13
.9
3%

10
.8
9%

6.
76
%

10
.5
7%

18
.9
6%

-
-

-

Ta
bl
e
21
.
Tr
ad

it
io
na

lT
ex
tM

in
in
g:
F1
-s
co
re

in
1
→

1
Se
tt
in
g
w
it
h
20
%
Fi
ne
-T
un

in
g
D
at
a
(r
ow

?
→

1
re
fe
rs
to

ot
he

r
pr
oj
ec
ts
ar
e
us
ed

to
pr
ed
ic
tt
hi
s
on

e
pr
oj
ec
t
an

d
co
lu
m
n
1
→

?
m
ea
ns

th
is
on

e
pr
oj
ec
t
is
us
ed

to
pr
ed
ic
t
ot
he

rs
.)

33ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2019.

Ta
rg
et

A
pa

ch
e
A
nt

A
rg
oU

M
L

C
ol
um

ba
EM

F
H
ib
er
na

te
JE
di
t

JF
re
eC

ha
rt

JM
et
er

JR
ub

y
SQ

ui
rr
el

A
ve

-?
→

1
A
ve

-?
→

1
of

T
M

Im
p.
-4

A
ve

-?
→

1
(w

/o
ft
)

Im
p.
-2

A
pa

ch
e
A
nt

-
0.
83
4

0.
75
9

0.
58
3

0.
77
4

0.
72
3

0.
72
8

0.
80
2

0.
72
7

0.
81
6

0.
75
0

0.
38
3

95
.8
2%

0.
43
7

71
.6
2%

A
rg
oU

M
L

0.
79
5

-
0.
82
1

0.
79
0

0.
82
5

0.
51
4

0.
60
3

0.
87
8

0.
79
2

0.
87
2

0.
76
6

0.
66
3

15
.5
4%

0.
63
1

21
.3
9%

C
ol
um

ba
0.
82
8

0.
83
6

-
0.
76
3

0.
79
0

0.
62
3

0.
71
9

0.
89
1

0.
78
5

0.
85
3

0.
78
8

0.
39
5

99
.4
9%

0.
53
7

46
.7
4%

EM
F

0.
75
9

0.
73
6

0.
73
8

-
0.
75
6

0.
68
2

0.
72
1

0.
73
0

0.
67
3

0.
75
2

0.
72
7

0.
59
4

22
.3
9%

0.
53
4

36
.1
4%

H
ib
er
na

te
0.
80
3

0.
89
8

0.
89
7

0.
75
2

-
0.
44
2

0.
61
5

0.
80
1

0.
65
4

0.
72
0

0.
73
1

0.
67
7

7.
98
%

0.
62
2

17
.5
2%

JE
di
t

0.
55
2

0.
64
2

0.
57
9

0.
74
9

0.
79
3

-
0.
55
4

0.
58
6

0.
60
1

0.
54
5

0.
62
2

0.
41
4

50
.2
4%

0.
41
4

50
.2
4%

JF
re
eC

ha
rt

0.
80
4

0.
87
9

0.
76
8

0.
83
2

0.
89
7

0.
56
4

-
0.
72
3

0.
69
9

0.
70
2

0.
76
3

0.
47
9

59
.2
9%

0.
48
7

56
.6
7%

JM
et
er

0.
89
0

0.
91
3

0.
89
4

0.
84
7

0.
90
3

0.
65
8

0.
86
9

-
0.
89
8

0.
90
4

0.
86
4

0.
63
1

36
.9
3%

0.
63
9

35
.2
1%

JR
ub

y
0.
87
1

0.
89
9

0.
92
3

0.
81
6

0.
91
8

0.
64
7

0.
85
8

0.
91
6

-
0.
90
7

0.
86
2

0.
67
5

27
.7
0%

0.
66
4

29
.2
4%

SQ
ui
rr
el

0.
89
9

0.
92
0

0.
92
5

0.
87

0.
92
8

0.
45
7

0.
87
5

0.
92
9

0.
90
3

-
0.
85
6

0.
48
3

77
.2
3%

0.
66
7

28
.9
2%

A
ve

-1
→

?
0.
80
0

0.
84
0

0.
81
2

0.
77
8

0.
84

3
0.
59

0
0.
72
7

0.
80
6

0.
74
8

0.
78
6

-
-

-
-

-

A
ve

-1
→

?
of

T
M

0.
56
3

0.
40
8

0.
58
4

0.
52
5

0.
52
9

0.
55
6

0.
56
0

0.
55
3

0.
54
4

0.
57
1

-
-

-
-

-

Im
p.
-3

42
.1
2%

10
5.
80
%

38
.9
6%

48
.1
9%

59
.2
9%

6.
12
%

29
.8
0%

45
.7
9%

37
.5
0%

37
.5
9%

-
-

-
-

-

A
ve

-1
→

?
(w

/o
ft
)

0.
38
9

0.
74
8

0.
66
5

0.
47
0

0.
68
2

0.
35
7

0.
52
3

0.
63
3

0.
58
8

0.
57
5

-
-

-
-

-

Im
p.
-1

10
5.
68

%
12
.2
5%

22
.0
4%

65
.5
3%

23
.5
6%

65
.1
1%

38
.9
2%

27
.3
5%

27
.1
6%

35
.5
7%

-
-

-
-

-

Ta
bl
e
22
.
O
ur

A
pp

ro
ac
h:

F1
-s
co
re

in
1
→

1
Se
tt
in
g
w
it
h
20
%
Fi
ne
-T
un

in
g
D
at
a
(r
ow

?
→

1
re
fe
rs

to
ot
he

r
pr
oj
ec
ts
ar
e
us
ed

to
pr
ed
ic
t
th
is
on

e
pr
oj
ec
t

an
d
co
lu
m
n
1
→

?
m
ea
ns

th
is
on

e
pr
oj
ec
t
is
us
ed

to
pr
ed
ic
t
ot
he

rs
.)

34

? → 1 experiments and the 1 →? experiments can be found in the Imp.− 4 column and the Imp.− 3
row, respectively.

Table 21 shows that fine-tuning the text-mining model in the ? → 1 setting is effective only for
the test projects with small numbers of SATD comments, such as Apache Ant and EMF. Note that the
improvement ratio is very high because the average F1-score without fine-tuning is extremely low
(0.258 for Apache Ant and 0.272 for EMF). For the other eight testing projects in the ? → 1 setting,
fine-tuning leads to only small improvements (less than 11.39%) in F1-score. For the two testing
projects ArgoUML and Columba, fine-tuning results in a worse target model. In the 1 →? setting,
similar observation can be made. For the source project EMF whose model is not of high-quality
due to the limited training data, fine-tuning also results in a worse target model.
In contrast, Table 22 shows that fine-tuning is very effective in boosting the F1-score of our

CNN-based model. First, fine-tuning never results in a worse target model. Even for the testing
project like ArgoUML that have much larger set of SATDs than the training project, fine-tuning
with 20% of its comments still improves the target model’s F1-score by 21.39% (0.631 to 0.766). On
the other hand, even for the source model obtained from the large training data like ArgoUML and
Hibernate, fine-tuning it with some testing-project’s comments can still improve the target model’s
performance. Second, comparing the F1-score improvement ratios with and without fine-tuning by
our approach and those by the text-mining method, we can see that the improvement ratios by
our approach is much higher in both ? → 1 (Imp. − 2) and 1 →? (Imp. − 1) settings. Note that this
higher improvement ratio is on the basis that our approach without fine-tuning already perform
better than the text-mining approach without fine-tuning in seven of the 10 projects.
Furthermore, we can see that fine-tuning can effectively address the limited training data

challenge for our approach, even when the source model is not of high-quality due to the limited
training data. Look at the column of Apache Ant and EMF in Table 22. Using one of these projects
as the training data, the F1-score of our approach without fine-tuning in the 1 →? setting is
very poor (F1-score is 0.389 and 0.470 respectively). They are even worse than that of the text
mining method without fine-tuning (see Table 20). However, with 20% fine-tuning data, the target
model performance improve significantly. That is, starting with a project with only a small number
of SATD comments like Apache Ant or EMF and only 20% of the training data from the other
projects, we can obtain very high quality SATD classification models (the average F1-score for
ApacheAnt →? is 0.800 and the average F1-score for EMF →? is 0.778).

Our approach has superior adaptability than the traditional text-mining based method.
This adaptability allows a source model to be adapted into a high-quality model for a target project
with 20% of the target project fine-tuning data. This will help reduce the amount of training data
needed to deploy a high-quality SATD classification model for multiple projects.

5.8 RQ8: User Study of Model Performance and Explainability
5.8.1 Motivation. The RQ1 to RQ6 evaluate the explainability, performance, generalizability

and adaptability of our approach using a public dataset by [11]. Last but not least, we would like
to further confirm the performance of our approach for cross-project SATD prediction and the
intuitiveness and explainability of the SATD features that our CNN model learns, using a separate
dataset and by a user study.

5.8.2 Approach. We train our model with the 10 projects’ comments. We collect the comments
from the source code of three other three Java projects (Commons-lang, Guava and RxJava). We
randomly select the comments from each project and use the trained model to predict whether

35ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2019.

Table 23. Three Java Projects for User-Study

Project Number of Comments
Guava 6944
RxJava 2802
Commons-lang 3844

Table 24. Statistics of User-Study Comments

Guava RxJava Commons-lang
Number of Comments 50 50 50
Number of SATDs Predicted by Our approach 9 (18%) 15 (30%) 11 (22%)
Number of SATDs by Majority Strategy 11 (22%) 18 (36%) 14 (28%)
Number of SATDs by All-agree Strategy 5 (10%) 7 (14%) 7 (14%)

a selected comment is SATD or not. As we are interested in SATDs, we would like to ensure a
reasonable number of SATDs in the selected comments. Thus, we randomly drop the selected
comments that are predicted as non-SATDs. The selection stops when we obtain 50 comments for
each project. Table 23 and Table 24 list the information about the three subject projects and the
selected comments. For the comments predicted as SATDs by our model, we also retrieve the key
phrases in the comments using our key phrase extraction approach.
We invited five graduate students from our school to participate in our study. These students

have at least 3 years software development experience. We gave each participant background
information about SATD and non-SATD comments. We then gave each participant a sheet of
the 150 selected comments and asked them to label each comment as SATD or non-SATD. If the
participants identify a comment as SATD, they are asked to highlight the phrases in the comment
they used as the basis for their judgment.
After collecting the participants’ labeling results, we used Fleiss Kappa [32] to assess the inter-

rater agreement on SATD/non-SATD decisions among the five participants. We also considered our
model’s SATD/non-SATD classification as an additional rater and use Fleiss Kappa to evaluate the
inter-rater agreement among our model and the five participants. Then, we used two strategies to
develop the ground-truth SATD/non-SATD labels for the 150 comments. First, the majority strategy
labels a comment with the majority vote (i.e., 3 or above) by the five participants. Second, the
all-agree strategy labels a comment as SATD if all five participants label it as SATD, otherwise as
non-SATD. We used the obtained ground-truth SATDs to evaluate the precision, recall and F1-score
of our model’s SATD prediction.

Finally, we analyzed the overlap between the set of key phrases in a comment extracted by our
CNN model and the set of key phrases in the comment identified by each participant. We consider
the two set of key phrases as two bags of words and compute the Jaccard coefficient to measure
their similarity. This helps us understand the similarity of our CNN-extracted key phrases and
the human-identified key phrases for SATD classification. The higher the similarity is, the more
intuitive and explainable our CNN-extracted key phrases are.

5.8.3 Result. The Fleiss Kappa coefficient of the five participants’ SATD/non-SATD labels is
0.652, which indicates a substantial agreement between the participants’ labels. The Fleiss Kappa
coefficient of our model and the five participants’ SATD/non-SATD labels is 0.683, which is also a
substantial agreement. Table 25 and Table 26 show the precision, recall and F1-score of our model’s

36

Table 25. Precision, Recall and F1-score of User-Study with Majority Strategy

Target Precision Recall F1-score
Guava 0.900 0.818 0.857
RxJava 0.933 0.875 0.903
Commons-lang 0.786 0.846 0.815
Average 0.873 0.846 0.860

Table 26. Precision, Recall and F1-score of User-Study with All-agree Strategy

Target Precision Recall F1-score
Guava 0.600 0.857 0.706
RxJava 0.533 0.800 0.640
Commons-lang 0.556 0.833 0.667
Average 0.563 0.830 0.671

Table 27. Key Phrases Jaccard Coefficient

Guava RxJava Commons-lang Average
Participant-A 57.64% 63.91% 65.16% 62.24%
Participant-B 68.92% 70.33% 71.33% 70.19%
Participant-C 66.35% 68.52% 72.20% 69.02%
Participant-D 71.36% 69.80% 70.65% 70.60%
Participant-E 65.48% 68.79% 69.49% 67.92%
Average 65.95% 68.27% 69.77% 68.00%

SATD prediction against the ground-truth obtained with the majority and all-agree strategy,
respectively. The results show that for the SATD comments that at least three human annotators
agree, our model achieves very high precision and recall, with the average F1-score 0.861 across the
three projects. Even with a much stricter ground-truth SATD comments, our model still achieves
very high recall. Of course, precision in this strict setting is low as expected, but it is still much
better random guess because the percentage of SATD comments are imbalanced.

By comparing Table 25 and Table 26, it can be seen that the results with the majority-win versus
all-agree strategy has large gap. To understand the underlying reasons, we collected feedback from
the study participants about their own opinions on what should or should not be highlighted as
SATD patterns. Participants suggest that they generally look for clear SATD indicators such as
“todo”, “fixme”. When such clear indicators are present in the code comments, all participants agree
that the code comments are SATDs. However, when such clear indicators are not present in the code
comments (e.g., “there is a need to check here”), there are often disagreements between participants.
In 34 (22.67%) of such cases, the majority votes align with the model’s SATD prediction. Our manual
analysis suggests that our model is correct for 32 cases and is wrong for 2 cases. For the rest of
the 116 cases, the majority votes do not align with the model’s prediction. For example, the two
participants annotated “there is a need to check here” as non-SATD, while our model predicts it as
SATD. Depending on the comment semantics, we believe our model’s prediction is correct.

Table 27 shows the average key-phrases Jaccard coefficient for the 50 comments of each project
between each participant and our model. We can see that 14 Jaccard coefficient metrics are in
the range of 0.64 to 0.72, which indicates that the key phrases extracted by our model and those

37ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2019.

Table 28. Average Time of Model Training and Application

Approach Training time (s) Application time (s)
Text Mining 19.632 0.038
Simple CNN 1185.744 1.026
Our Model 3548.593 1.150

identified by human are similar. The dissimilar parts are mainly because human tends to highlight a
continuous sequence of words, such as “FIXME: this is probably not very efficient”, while our CNN
usually focuses on only the relevant phrases such as “FIXME” and “probably not very efficient” but
not the phrases like stop words “this is”.

Our user study confirms the high performance of our approach for SATD predication. It
also confirms that the key phrases extracted by our model largely match those that humans identify
for SATD prediction.

6 DISCUSSION
Our approach outperforms the text-mining approaches for SATD classification [10]. More
importantly, it demonstrates explainability of the prediction results that used to require significant
human effort in manually examining the data. Furthermore, the generalizability and adaptability
of our approach makes it easily deployable in practice. The explainability and deployability are
largely overlooked in the existing study of machine-learning based SATD classification. In this
section, we would like to discuss about time efficiency of our approach as well as the threats to
validity of our study.

6.1 Time Efficiency
Table 28 presents the average model training and inference time across the 10 projects. We can see
that the model training and inference time of our approach is reasonable. On average, we need
about one hour to train our SATD prediction model, and the trained model takes about 1.6 seconds
to predict the label of a code comment and highlight SATD patterns of the comment in the testing
dataset. Note that the model does not need to be updated all the time and it can be used to label
many code comments. Our model training time is longer than that of Kim’s simple CNN method
and Huang et al.’s traditional text mining approach. Our model inference time is longer than those
of the other approaches such as [10, 12], but we believe it is still acceptable (once the model has
been trained, it can quickly label and highlight patterns in code comments in seconds).

6.2 Threats to Validity
Threats to internal validity relate to errors in our implementation and personal bias in data labeling
and user studies. To avoid implementation errors, we have carefully reviewed our implementation
and its hyperparameter settings. For personal bias in manual classification of code comments,
the authors in [24] used a statistically significant sample of classified comments and invited an
independent annotator, who is not an author of their paper, to manually classify code comments.
They reported a high level of agreement between the classification given by different human
annotators (Cohen’s kappa coefficient of 0.81). This gives us high confidence in the dataset used
in our paper. For a project data in the Maldonado dataset, we consider as SATD comments only
the manually tagged lines that are not“WITHOUT_CLASSIFICATION”. However, we do not use
the fine-grained SATD categories proposed in Maldonado et al. [11]. In our work, we consider

38

only the binary classification of code comments, i.e., SATD versus non-SATD. Therefore, design
debt, requirement debt, defect debt, documentation debt and test debt are simply considered as
SATD in this work. Our RQ3 also involves manual labeling of key phrase relevance, and our RQ8
involves manual classification of code comments and manual identification of key phrases. We
perform Cohen’s kappa coefficient analysis in RQ3 and RQ8 which indicates substantial inter-rater
agreement.
Threats to external validity relate to both the quantity and quality of our experimental dataset

and the generalizability of our experiment results and findings. To guarantee the quantity and
quality of our dataset, we study 10 open source projects that vary in the number of comments as
well as comment characteristics. In total, we have analyzed 62,566 comments.

Since open source communities are highly transparent and developers are usually “forced” to do
a lot of communication through source code comments (as they are distributed), they could be more
likely to admit technical debt in comments. In contrast, it is possible that developers in a company
are hesitant to admit technical debt in the source code, as it might affect the evaluation of their job
quality. Therefore, it is still an open question if our approach can be applied to non open-source
projects. Furthermore, we use a medium size training and testing dataset in this work. This allows
us to perform manual analysis to understand the capability and limitations of our approach. In the
future, we will reduce this threat by extending our approach to larger software projects.

Threats to construct validity refers to the suitability of our evaluation metrics. We use precision,
recall and F1-score which are also used by past studies to evaluate the performance of various
automated software engineering techniques [33–35]. Thus, we believe there is little threat to
construct validity.

7 RELATEDWORK
In this paper, we propose a deep learning based method to tackle various challenges of SATD
classification of source code comments (see Section 2). Therefore, the related work includes two
main parts: code comment analysis and deep learning in software engineering.

7.1 Code Comment Analysis
There are a large number of studies focus on detecting and managing technical debts. For example,
many empirical studies use the findings of technical debt in software maintenance [3, 36, 37].
Some studies also investigate the performance differences between automated tools and human
for detecting technical debts [38–40]. According to their findings, there is a small overlap between
automated tools and human. Automated tools are more efficient in finding defect-related debts,
while human can realize more abstract categories of technical debts.

Potdar and Shihab [6] proposed the concept of self-admitted technical debt (SATD), which
considers debt that is intentionally introduced (e.g., temporary fixes or work-around) by developers
and explicitly recorded in source code comments. In this work, Potdar and Shihab manually
summarized 62 patterns that can be used to identify SATD comments, after reading more than
100,000 source-code comments from different Java projects. Based on this first work, Wehaibi et
al. [7] examined the relation between self-admitted technical debts and defects. They found that
SATD is not related to defects, rather making the system more difficult to change in the future. In
addition, Maldonado and Shihab [24] further divided SATD into five types, namely design debt,
defect debt, documentation debt, requirement debt and test debt. The most similar work of our
work is the traditional text-mining based method for SATD classification proposed by Huang et
al. [10]. In their work, they utilize feature selection to select useful features for classifier training,
and combine multiple classifiers from different source projects to build a composite classifier that
identifies SATD comments in a target project.

39ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2019.

Further more, Maldonado et al. [11] proposed an approach to auto-matically identify the two
most common types of SATD comments (i.e., design debt and requirement debt). In their work,
they built a maximum entropy classifier based on natural language processing (NLP). They use
the same dataset and same experiment setting as that of Huang et al. [10]. Huang et al. also make
comparison with Maldonado et al. [11] by following their work to do basic preprocessing (i.e.,
stemming and removing punctuation characters) and build the maximum entropy classifier to
predict whether a comment contains SATD or not. Note that compared with Huang et al. [10],
Maldonado et al. [11] didn’t use feature selection or ensemble learning in their approach, and thus
the approach by Huang et al. [10] outperforms that of Maldonado et al. [10].
From a serious of experiments, it can be found that our experiments in RQ3 and RQ4 and our

user study in RQ8 show that our CNN-based approach can learn effective SATD features for SATD
classification and the CNN-learned features correspond to intuitive SATD patterns that human
identifies. Observing the CNN-extracted features, we find many characteristics of SATD comments,
including common features (e.g., “todo”, “fixme”, “hack”, “xxx”), project-unique feature (e.g., “revisit”
in EMF), as well as negative sentiment words (e.g., “ugly”, “stupid”, “negative”, “evil”). Although
human is able to identify frequent SATD features, many project-unique or less evident features are
hard to identify by just human observation. For example, Potdar and Shihab manually summarized
only 62 SATD patterns, after reading more than 100,000 source-code comments from four Java
projects, while our approach identifies 700 SATD patterns with much diverse vocabulary in the 10
projects.
Our work suggests that the automatic feature learning by a deep learning method can

mitigate very well the limitations of human observation. This opens up opportunities for deeper
understanding of SATD practices in software development and its impact on software evolution.
For example, in this work we exploit the CNN-based SATD patterns to compare the characteristics
of SATD practices in different software projects, which in turn helps explain why our approach
performs well or does not perform well in different training and testing settings. This explainability
helps turn our experiment results in RQ5, RQ6 and RQ7 into practical guideline for effective model
training and adaptation depending on the SATD characteristics of software projects.

Some previous work on source code comments focused on investigating the relationship between
comments and code [41]. For example, Tan et al.[42] proposed a tool called iComment that
automatically analyzes comments written in natural language to extract implicit program rules,
and then they use these rules to automatically detect inconsistencies between comments and
source code, indicating either bugs or bad comments. In their follow-up work, they studied the
inconsistencies between Javadoc comments and method bodies [43]. Malik et al. presented a large
empirical study to better understand the rationale for updating comments, and they used the
Random Forests algorithm to accurately predict the likelihood of a comment being updated [44].
Fluri et al. proposed an approach to map code and comments to observe their co-evolution over
multiple versions [45].

Other work focused on using comments to assist in software development and maintenance. For
example, Khamis proposed an automatic approach for assessing the quality of inline documentation
using a set of heuristics, targeting at both the quality of language and the consistency between
source code and its comments [46]. Padioleau et al. [47] studied 1,050 comments randomly sampled
from Linux, FreeBSD, and OpenSolaris and found that 52.6% of these comments could be leveraged
for improving reliability. Storey et al. investigated how task annotations can be used to support a
variety of activities fundamental to articulation work within software development. They found
that the use of task annotations varies from individuals to teams, and if incorrectly managed, they
could negatively impact the maintenance of a system [48].

40

7.2 Deep Learning in Software Engineering
Recently, a number of studies explored deep learning techniques for software engineering tasks,
such as bug localization [49, 50], defect prediction [51], software community question retrieval
[52, 53] and so on. When using deep learning to deal with software text, it is necessary to find
an appropriate sentence representation. Traditional text representation usually uses vector space
model (VSM), which was proposed by Jacobs and Zernik[54]. In VSM, text is viewed as a set of
feature items. It uses weighted feature terms to construct a vector for text representation, and
uses word frequency information to weight text features. However, this representation suffers
from lexical gaps in text [55]. To address this issue, there has been a surge of work proposing
to represent words as dense vectors, derived using neural-network language modeling [56], [57].
These representations are called “word embedding”. Our model uses word embeddings as the input
which can better model word semantics [58, 59]. Word embeddings have also been used to improve
document retrieval in software engineering [60]. In addition, Nguyen et al. [61] proposed API
embedding method to capture the regularities of the relations of APIs in API usages.

In the NLP community, the development of CNN architectures for sentence-level and document-
level text processing is under intensive research. Some recent work utilizes CNN to learn the
semantic relations between two pieces of texts. For example, Kim [12] proposed a CNN trained on
top of word embeddings [62], and then applied the CNN to sentence classification. Xu et al. [52]
adopt word embeddings and CNN to capture word- and document-level semantics of knowledge
units. Chen et al. [18] proposed a novel cross-lingual question retrieval based on word embeddings
and CNN. Chen et al. [63] identified software-specific terms by contrasting software-specific
and general corpuses, and infers morphological forms of software-specific terms by combining
distributed word semantics, domain-specific lexical rules and transformations, and graph analysis
of morphological relations.
Training CNN requires initial setting of multiple hyperparameters (e.g., the number of filters).

Previous studies [27, 64] have shown that hyperparameter tuning is important for a prediction
model to achieve better performance. Zhang and Wallace [28] conducted a sensitivity analysis of
(and wrote a practitioners’ guide to) CNN for sentence classification [50]. They found that the
dimension size of word embedding, the number of filters, and the combination of filter heights are
the most important hyperparameters that have a large effect on performance, and should be tuned.

To sum up, our work is different from all the work mentioned above as follows:

• From the aspect of method, our model uses CNN for SATD classification and make automatic
hyperparameters tuning referring to the guidance of Zhang and Wallace [28]. In other words,
Kim [12] and Zhang and Wallance [28] inspire the design of our approach and experiments
in this work. However, our work is not a simple adoption of these two works on software
engineering data. Instead, our work contains considerable new technical and experimental
contributions, which distinguishes our work from these two references. Furthermore, we
develop a backtracking mechanism to understand and explain the CNN’s results in text
classification tasks. To the best of our knowledge, little work has been done for such
understanding and explanation of CNN results in previous studies.
Moreover many approaches relying on machine-learning methods for software engineering
tasks (not limited to SATD classification) often overlook the availability of training data and
the characteristics drift between the training data and the testing data. Unfortunately, these
two factors significantly affect the practical use of the proposed methods. If the effort to
prepare the training data is high, for example, the rich training data setting in RQ6 needs to
label nine projects’ comment for obtaining a good prediction model for one project, then it

41ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2019.

becomes less practical to deploy the approach even it has good performance. On the other
hand, if the data of a project is very limited, for example Apache Ant and EMF, then it would
be difficult to use this project’s data alone to produce a high-quality model. Furthermore, if
the data characteristics of a source project used to train the model is different from that of
the target project to deploy the trained model (see analysis in Section 5.4), then the model
performance will inevitably degrade. All of these scenarios should be carefully investigated
when designing and evaluating machine-learning based methods for software engineering
tasks. Motivated by these scenarios, our work conducts extensive experiments in RQ6 and
RQ7 on the model’s performance, generalizability and adaptability in rich and limited training
data settings and across projects with similar or different SATD characteristics. With the
knowledge of the model’s generalizability and adaptability, users would be able to deploy
our approach more effectively depending on the SATD characteristics of software projects.

• From the aspect of task, it provides a foundational technique for the effective management
of SATDs which are highly related to the software quality. Our work also contributes new
actionable knowledge to the research and practice on SATD detection in particular and data
mining for software engineering in general.
At the surface, both code comments and Twitter messages are short text. But code comments
are a core information source for documenting software knowledge and a fundamental
input to various software engineering tasks, such as code search, fault prediction, and bug
localization. In this work, we focus on a particular type of software development knowledge
embedded in code comments, i.e., self-admitted technical debt (SATDs). Empirical studies [6, 7]
confirms that “although the percentage of SATD in a project is not high, it can have a negative
impact on software complexity. More concretely, they found that source code files that contain
SATD have more bug-fixing changes, while files without SATD have more defects.” Therefore,
making SATDs explicit and managing them proactively is an important quality issue in the
lifecycle of a software system.
Imagine a developer introduced a SATD in the system and then left the project. This SATD
could become a “hidden bomb” due to this developer turnover and the growth of the system
complexity. Without knowing the presence of this hidden SATD, the project team or the
new comers in the team may have to pay a high interest later. As another example, for an
open source project where its contributors come from different knowledge and linguistic
background, making its SATD key phrases explicit would help the project team detect
“unexpected” use of certain SATD key phrases or enforce the norm of SATD descriptions.
Furthermore, making the hidden SATD patterns explicit can help developers learn better
SATD annotation practices from other projects. However, the above-mentioned effective
management of SATDs in the software life cycle is impossible without an effective technique
to make SATDs explicit. Our work contributes such a reliable and explainable SATD detection
technique.
Technically, our approach uses a CNN-based model for SATD detection. The approach is
lightweight (no need for program analysis). Not only does it lead to superior performance
than traditional text-mining approach, but it also opens up the door to investigate the model’s
explanability and adaptability. These the two aspects have been largely overlooked in the
existing research on data mining for software engineering which focus on only the model
performance. Our work suggests that the automatic feature learning by a deep learning
method can mitigate very well the limitations of human observation of software data. This
will open up the door for the community to investigate the explainable AI for assisting
software data analysis tasks. Furthermore, many approaches relying on machine-learning
methods for software engineering tasks (not limited to SATD classification) assume the

42

availability of training data and overlook the characteristics drift between the training data
and the testing data. Our experiments show that these two factors significantly affect the
practical use of the proposed methods. Our study points out that researchers and practitioners
should carefully investigate the model’s generalizability and adaptability when designing
and evaluating machine learning based methods for software data. The above insights from
our study contribute new actionable knowledge in software data analytics.

8 CONCLUSION
In this paper, we identify two key challenges in machine-learning based SATD classification, i.e.,
explainability and deployability. The deployability challenge is rooted in the vocabulary diversity,
project uniqueness, variable length and semantic variations of SATD features in code comments,
while the explainability challenge lies in the difficulty of deciphering the correspondence between
the features that a machine-learning method uses for prediction and its prediction results. With the
objective of tackling these two challenges, we design a CNN-based approach for SATD classification
with a holistic consideration of model performance, deployability and explainability.

Our evaluation shows that our CNN-based approach can effectively learn to extract variable-
length text features in code comments for SATD classification. Relying on this feature learning
capability, our approach can extract intuitive SATD features and patterns that alignwell with human-
identified features and patterns. However, the SATD patterns that our approach automatically
extracts from the comment data are more comprehensive and with more diverse vocabulary which
are hard to summarized just by human observation. Based on the extracted SATD features and
patterns, our approach can provide a good overview of the SATD characteristics of software projects
and also provide an intuitive explanation of the model’s prediction results. In addition to the superior
explainability that traditional text-mining based method lacks, our approach also demonstrates
superior performance for both within-project and cross-project prediction. Our CNN model can
learn much generalizable features and is much easier to adapt, especially in the limited training
data setting for cross-project prediction. The generalizability and adaptability of our approach
make it easy to deploy a high-quality SATD classification model for multiple projects.

In the future, we will enhance our classification model with more comment data. With a richer
dataset we expect that more SATD features and patterns will be extracted. It is also interesting to
further investigate the correlations between the extracted SATD features and patterns and other
project properties, e.g., defects, maintenance cost. Additionally, we believe that the identification of
prominent key phrases used in SATDs would also be useful for practitioners. For example, for an
open source project, making its SATDkey phrases explicit would help the project detect “unexpected”
use of certain SATD key phrases or enforce the norm of SATD descriptions. Furthermore, developers
may learn better SATD annotation practices from other projects. In this work, we simply put the
mined SATD key phrases in a long list for the purpose of explaining our model’s prediction. How
to make better use of the mined SATD key phrases within or across projects for practitioners is
beyond the scope of this paper. We leave it as part of our future work.

REFERENCES
[1] W. Cunningham, “The wycash portfolio management system,” ACM SIGPLAN OOPS Messenger, vol. 4, no. 2, pp. 29–30,

1993.
[2] N. Zazworka, M. A. Shaw, F. Shull, and C. Seaman, “Investigating the impact of design debt on software quality,” in

Proceedings of the 2nd Workshop on Managing Technical Debt. ACM, 2011, pp. 17–23.
[3] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A. MacCormack, R. Nord, I. Ozkaya et al., “Managing

technical debt in software-reliant systems,” in Proceedings of the FSE/SDP workshop on Future of software engineering
research. ACM, 2010, pp. 47–52.

43ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2019.

[4] Y. Guo and C. Seaman, “A portfolio approach to technical debt management,” in Proceedings of the 2nd Workshop on
Managing Technical Debt. ACM, 2011, pp. 31–34.

[5] C. Sterling, Managing Software Debt: Building for Inevitable Change (Adobe Reader). Addison-Wesley Professional,
2010.

[6] A. Potdar and E. Shihab, “An exploratory study on self-admitted technical debt,” in Software Maintenance and Evolution
(ICSME), 2014 IEEE International Conference on. IEEE, 2014, pp. 91–100.

[7] S. Wehaibi, E. Shihab, and L. Guerrouj, “Examining the impact of self-admitted technical debt on software quality,” in
Software Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd International Conference on, vol. 1. IEEE,
2016, pp. 179–188.

[8] R. Marinescu, “Detection strategies: Metrics-based rules for detecting design flaws,” in Software Maintenance, 2004.
Proceedings. 20th IEEE International Conference on. IEEE, 2004, pp. 350–359.

[9] R. Marinescu, G. Ganea, and I. Verebi, “Incode: Continuous quality assessment and improvement,” in Software
Maintenance and Reengineering (CSMR), 2010 14th European Conference on. IEEE, 2010, pp. 274–275.

[10] Q. Huang, E. Shihab, X. Xia, D. Lo, and S. Li, “Identifying self-admitted technical debt in open source projects using
text mining,” Empirical Software Engineering, pp. 1–34, 2017.

[11] E. da Silva Maldonado, E. Shihab, and N. Tsantalis, “Using natural language processing to automatically detect
self-admitted technical debt,” IEEE Transactions on Software Engineering, vol. 43, no. 11, pp. 1044–1062, 2017.

[12] Y. Kim, “Convolutional neural networks for sentence classification,” arXiv preprint arXiv:1408.5882, 2014.
[13] D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin, “Learning sentiment-specific word embedding for twitter

sentiment classification,” in Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), vol. 1, 2014, pp. 1555–1565.

[14] S. Lai, K. Liu, S. He, and J. Zhao, “How to generate a good word embedding,” IEEE Intelligent Systems, vol. 31, no. 6, pp.
5–14, 2016.

[15] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations of words and phrases and
their compositionality,” in Advances in neural information processing systems, 2013, pp. 3111–3119.

[16] M. Kampffmeyer, A.-B. Salberg, and R. Jenssen, “Semantic segmentation of small objects and modeling of uncertainty
in urban remote sensing images using deep convolutional neural networks,” in Computer Vision and Pattern Recognition
Workshops (CVPRW), 2016 IEEE Conference on. IEEE, 2016, pp. 680–688.

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
[18] G. Chen, C. Chen, Z. Xing, and B. Xu, “Learning a dual-language vector space for domain-specific cross-lingual question

retrieval,” in Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering. ACM,
2016, pp. 744–755.

[19] F. Sebastiani, “Machine learning in automated text categorization,” ACM computing surveys (CSUR), vol. 34, no. 1, pp.
1–47, 2002.

[20] A. McCallum, K. Nigam et al., “A comparison of event models for naive bayes text classification,” in AAAI-98 workshop
on learning for text categorization, vol. 752, no. 1. Citeseer, 1998, pp. 41–48.

[21] S. Tong and D. Koller, “Support vector machine active learning with applications to text classification,” Journal of
machine learning research, vol. 2, no. Nov, pp. 45–66, 2001.

[22] E.-H. S. Han, G. Karypis, and V. Kumar, “Text categorization using weight adjusted k-nearest neighbor classification,”
in Pacific-asia conference on knowledge discovery and data mining. Springer, 2001, pp. 53–65.

[23] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “Jdeodorant: Identification and removal of type-checking bad smells,”
in Software Maintenance and Reengineering, 2008. CSMR 2008. 12th European Conference on. IEEE, 2008, pp. 329–331.

[24] E. d. S. Maldonado and E. Shihab, “Detecting and quantifying different types of self-admitted technical debt,” pp. 9–15,
2015.

[25] J. Cohen, “Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit.” Psychological
bulletin, vol. 70, no. 4, p. 213, 1968.

[26] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions on knowledge and data engineering, vol. 21,
no. 9, pp. 1263–1284, 2009.

[27] W. Fu, T. Menzies, and X. Shen, “Tuning for software analytics: Is it really necessary?” Information and Software
Technology, vol. 76, pp. 135–146, 2016.

[28] Y. Zhang and B. Wallace, “A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for
sentence classification,” arXiv preprint arXiv:1510.03820, 2015.

[29] G. Wohlgenannt and F. Minic, “Using word2vec to build a simple ontology learning system.” 2016.
[30] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics bulletin, vol. 1, no. 6, pp. 80–83, 1945.
[31] S. S. Haykin, S. S. Haykin, S. S. Haykin, and S. S. Haykin, Neural networks and learning machines. Pearson Upper

Saddle River, NJ, USA:, 2009, vol. 3.
[32] J. L. Fleiss, “Measuring nominal scale agreement among many raters.” Psychological bulletin, vol. 76, no. 5, p. 378, 1971.

44

[33] E. Arisholm, L. C. Briand, and M. Fuglerud, “Data mining techniques for building fault-proneness models in telecom
java software,” in Software Reliability, 2007. ISSRE’07. The 18th IEEE International Symposium on. IEEE, 2007, pp.
215–224.

[34] F. Rahman, D. Posnett, and P. Devanbu, “Recalling the imprecision of cross-project defect prediction,” in Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering. ACM, 2012, p. 61.

[35] T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,” in Proceedings of the 28th IEEE/ACM International
Conference on Automated Software Engineering. IEEE Press, 2013, pp. 279–289.

[36] C. Seaman, Y. Guo, C. Izurieta, Y. Cai, N. Zazworka, F. Shull, and A. Vetrò, “Using technical debt data in decision
making: Potential decision approaches,” in Proceedings of the Third International Workshop on Managing Technical Debt.
IEEE Press, 2012, pp. 45–48.

[37] P. Kruchten, R. L. Nord, I. Ozkaya, and D. Falessi, “Technical debt: towards a crisper definition report on the 4th
international workshop on managing technical debt,” ACM SIGSOFT Software Engineering Notes, vol. 38, no. 5, pp.
51–54, 2013.

[38] E. Lim, N. Taksande, and C. Seaman, “A balancing act: what software practitioners have to say about technical debt,”
IEEE software, vol. 29, no. 6, pp. 22–27, 2012.

[39] N. Zazworka, R. O. Spínola, A. Vetro, F. Shull, and C. Seaman, “A case study on effectively identifying technical debt,”
in Proceedings of the 17th International Conference on Evaluation and Assessment in Software Engineering. ACM, 2013,
pp. 42–47.

[40] G. Bavota and B. Russo, “A large-scale empirical study on self-admitted technical debt,” in Mining Software Repositories
(MSR), 2016 IEEE/ACM 13th Working Conference on. IEEE, 2016, pp. 315–326.

[41] A.Marcus and J. I. Maletic, “Recovering documentation-to-source-code traceability links using latent semantic indexing,”
in Software Engineering, 2003. Proceedings. 25th International Conference on. IEEE, 2003, pp. 125–135.

[42] L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/* icomment: Bugs or bad comments?*,” in ACM SIGOPS Operating Systems
Review, vol. 41, no. 6. ACM, 2007, pp. 145–158.

[43] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens, “@ tcomment: Testing javadoc comments to detect comment-code
inconsistencies,” in Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth International Conference on.
IEEE, 2012, pp. 260–269.

[44] H. Malik, I. Chowdhury, H.-M. Tsou, Z. M. Jiang, and A. E. Hassan, “Understanding the rationale for updating a
functionâĂŹs comment,” in Software Maintenance, 2008. ICSM 2008. IEEE International Conference on. IEEE, 2008, pp.
167–176.

[45] B. Fluri, M. Wursch, and H. C. Gall, “Do code and comments co-evolve? on the relation between source code and
comment changes,” in Reverse Engineering, 2007. WCRE 2007. 14th Working Conference on. IEEE, 2007, pp. 70–79.

[46] N. Khamis, R. Witte, and J. Rilling, “Automatic quality assessment of source code comments: the javadocminer,” in
International Conference on Application of Natural Language to Information Systems. Springer, 2010, pp. 68–79.

[47] Y. Padioleau, L. Tan, and Y. Zhou, “Listening to programmers taxonomies and characteristics of comments in operating
system code,” in Proceedings of the 31st International Conference on Software Engineering. IEEE Computer Society,
2009, pp. 331–341.

[48] M.-A. Storey, J. Ryall, R. I. Bull, D. Myers, and J. Singer, “Todo or to bug,” in Software Engineering, 2008. ICSE’08.
ACM/IEEE 30th International Conference on. IEEE, 2008, pp. 251–260.

[49] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2016, pp. 631–642.

[50] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative model approach for accurate duplicate bug report
retrieval,” in Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 1. ACM,
2010, pp. 45–54.

[51] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural networks,” in Acoustics,
speech and signal processing (icassp), 2013 ieee international conference on. IEEE, 2013, pp. 6645–6649.

[52] B. Xu, D. Ye, Z. Xing, X. Xia, G. Chen, and S. Li, “Predicting semantically linkable knowledge in developer online
forums via convolutional neural network,” in Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering. ACM, 2016, pp. 51–62.

[53] L. Ma, Z. Lu, and H. Li, “Learning to answer questions from image using convolutional neural network.” in AAAI,
vol. 3, no. 7, 2016, p. 16.

[54] G. Salton, A. Wong, and C.-S. Yang, “A vector space model for automatic indexing,” Communications of the ACM, vol. 18,
no. 11, pp. 613–620, 1975.

[55] P. S. Jacobs and U. Zernik, “Acquiring lexical knowledge from text: A case study.” in AAAI, vol. 88, 1988, pp. 739–744.
[56] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural probabilistic language model,” Journal of Machine Learning

Research, vol. 3, no. 6, pp. 1137–1155, 2003.

45ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2019.

[57] R. Collobert and J. Weston, “A unified architecture for natural language processing: deep neural networks with
multitask learning,” pp. 160–167, 2008.

[58] J. Turian, L. Ratinov, and Y. Bengio, “Word representations: a simple and general method for semi-supervised learning,”
in Proceedings of the 48th annual meeting of the association for computational linguistics. Association for Computational
Linguistics, 2010, pp. 384–394.

[59] R. Fu, J. Guo, B. Qin, W. Che, H. Wang, and T. Liu, “Learning semantic hierarchies via word embeddings,” in Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, 2014, pp.
1199–1209.

[60] X. Ye, H. Shen, X.Ma, R. Bunescu, and C. Liu, “Fromword embeddings to document similarities for improved information
retrieval in software engineering,” in Proceedings of the 38th international conference on software engineering. ACM,
2016, pp. 404–415.

[61] T. D. Nguyen, A. T. Nguyen, H. D. Phan, and T. N. Nguyen, “Exploring api embedding for api usages and applications,”
in Software Engineering (ICSE), 2017 IEEE/ACM 39th International Conference on. IEEE, 2017, pp. 438–449.

[62] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” arXiv
preprint arXiv:1301.3781, 2013.

[63] C. Chen, Z. Xing, and X. Wang, “Unsupervised software-specific morphological forms inference from informal
discussions,” in Proceedings of the 39th International Conference on Software Engineering. IEEE Press, 2017, pp. 450–461.

[64] V. Nair, T. Menzies, N. Siegmund, and S. Apel, “Using bad learners to find good configurations,” arXiv preprint
arXiv:1702.05701, 2017.

46

	Abstract
	1 Introduction
	2 Motivation
	3 Approach
	3.1 SATD Classification by Convolutional Neural Network
	3.2 SATD Key Phrase Extraction by De-convolution
	3.3 SATD Pattern Identification

	4 Experiment Design
	4.1 Research Questions
	4.2 Baseline Methods
	4.3 Data Collection
	4.4 Evaluation Metrics
	4.5 Model Configuration
	4.6 Experimental Environment

	5 Experimental Results
	5.1 RQ1: Effectiveness of Weighted Loss for Model Training
	5.2 RQ2: Effectiveness of hyperparameters optimization
	5.3 RQ3: Feature Learning Capability by CNN
	5.4 RQ4: SATD Patterns and Their Explainability
	5.5 RQ5: Within-Project Classification Performance
	5.6 RQ6: Cross-Project Model Generalizability
	5.7 RQ7: Cross-Project Model Adaptability
	5.8 RQ8: User Study of Model Performance and Explainability

	6 Discussion
	6.1 Time Efficiency
	6.2 Threats to Validity

	7 Related Work
	7.1 Code Comment Analysis
	7.2 Deep Learning in Software Engineering

	8 Conclusion
	References

