
Copyright 1998 IEEE. Published in the Proceedings of TOOLS’98, 24-27 November 1998, Melbourne, Australia. Personal

use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes

or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this

work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center /

445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 732-562-3966.

Tool Integration, Collaboration and User Interaction Issues in
Component-based Software Architectures

John Grundy†, Rick Mugridge††, John Hosking†† and Mark Apperley†

†Department of Computer Science
University of Waikato

Private Bag 3105
Hamilton, New Zealand

{jgrundy, M.Apperley}@cs.waikato.ac.nz

††Department of Computer Science
University of Auckland

Private Bag 92019
Auckland, New Zealand

{john, rick}@cs.auckland.ac.nz

Abstract

Component-based software architectures are becoming increasingly popular solutions for
use in a wide range of software applications. Particular areas in which these architectures
may provide improved software development support include tool integration, distribution
and collaborative work support, and human interaction and end-user configuration.
However, a number of open research issues exist to do with the deployment of component-
based solutions in these areas. We review our recent research experiences in deploying
component-based solutions in these problem domains, and overview potential research
directions.

1. Introduction

In recent years there has been an increasing interest in the use of component-based
software architectures (also known as "componentware"). These architectures use the notion
of a software component object, which advertises its methods, properties and events for use
by other components, and use large-scale component composition to build up software
applications. This contrasts with traditional software construction using libraries and
frameworks, which results in "monolithic" software applications that are difficult to build
and dynamically reconfigure. Component-based systems often allow end-users to reconfigure
the components that make up their applications, and "plug and play" third-party components.

Various software architectures have been developed using components, including
JavaBeans [16], COM/DCOM [18], and OpenDoc [1]. Tools allowing such architectures to
be used to specify components and component-based applications include JBuilder [4],

Visual Javascript [21] and Visual Age [15]. Component-based solutions offer great potential
for reusing components that support tool integration, collaborative work and object
distribution, and end-user interaction and configuration of applications. Component-based
solutions contrast to more traditional approaches such as federation [5], toolkits and
frameworks [17], and UIMS [20] used to implement these aspects of software applications.
However, careful design is required to make reuse of these aspects straightforward.

We describe our recent research into component-based software architectures. This
focuses on support for component-based architectures, component-based tool integration and
collaborative work support, and issues of end-user interaction with and reconfiguration of
component-based software systems. Examples of systems we have developed using
component-based solutions are discussed, with particular emphasis on difficult and unsolved
research issues. Our research has led to the formulation of a design and implementation
approach we call "aspect-oriented" component-based system development. We briefly
discuss this approach and illustrate tool support for it, which characterises aspects of
components concerned with human-interfaces, end-user configuration, distribution and
collaboration.

This paper begins with an example component-based software application, a process
modelling and enactment environment. The following sections overview the use of
components in supporting tool integration, collaborative work, human interaction and
configuration in this environment and its software architecture. The use of aspects to
characterise parts of components supporting these facilities is examined, and our research
compared and contrasted to related architectures and systems. We conclude with a summary
of our experiences with component-based software architectures and our future research
plans.

2. Problem domain

Figure 1 shows a screen dump from Serendipity-II, a component-based workflow
management system [12]. The top two windows show parts of a work process model (in this
case, a simple process for modifying a software system). The dialogues show information
about process enactment (i.e. work history), and a to-do list for each user of the system. This
application allows users to design models of their work processes, enact (run) these process
models and use them to guide their work, and to track actual work performed using the
processes [12] [10].

Software components are used throughout the implementation of Serendipity-II. Figure 2
illustrates the software architecture of part of Serendipity-II. Icons and editing tools used for
the graphical views are all reusable components that we have deployed in other applications.
These are linked to application-specific "process stage" and "process model view"
components, used to represent process model information. The Collaboration menu is the
interface to a "collaborative editing" component, also reused elsewhere. The enactment
history dialogue is the interface to a generic "change history" component that is used
throughout our component-based applications to store and display events for users.

Users can add components on-the-fly, which we call event filters and actions, to provide
useful additional functionality, modify how existing facilities of Serendipity-II work, or
provide interfaces to third-party systems [12]. Event propagation is used extensively to keep
process models consistent, record change histories, support collaborative editing, and drive

process enactment. The shaded lines in Figure 2 indicate propagation of "change event"
objects between components in Serendipity-II.

Serendipity-II illustrates several uses of component-based software architecture solutions:
• Tool integration. We have integrated Serendipity-II with several other tools, including

communications software, a file sharing server, CASE tools, programming
environments, and office automation tools. These third party tools were integrated
with Serendipity-II process models by using filters and actions to "wrap up" the
functionality of the tools, and thus provide component-based interfaces to them.

Figure 1. Serendipity-II: example of a component-based software system.

Graphic icon
component

Editing panel
component

Rendering menus etc.

Process stage
component

Process model
view component

Window/panel

Change history
component

Enactment history
component

Collaborative
editing component

(changes to other
user’s environments)

Editing operation

change event

"Filter/action"
component(s)

add menu…

Figure 2. The component-based architecture of Serendipity-II.

• Distribution and collaborative work. Serendipity-II environments support multiple users,
and thus process models and enactment information needs to be both distributed and
collaboratively accessed and edited. Components comprising the architecture must
support distribution and appropriate collaborative editing facilities must be provided to
users. Our component-based software architecture provides basic component object
distribution and event propagation mechanisms, which are leveraged by components in
Serendipity-II to provide versioning, configuration management and collaborative
editing.

• End-user interaction and configuration. Users of Serendipity-II need to be able to
interact with the components that make the environment in appropriate and consistent
ways, and be able to plug in new components and reconfigure existing components. As
Serendipity-II is comprised of a variety of reusable components, these should provide a
consistent look-and-feel to users. Users of the environment are provided with both
simple configuration "wizards" to add new components and reconfigure components, and
with advanced, visual interfaces to carry out complex component configuration. This
allows users to extend their environment’s functionality and to integrate other tools with
Serendipity-II process support facilities.

In the following section we describe our component-based software architecture and its
support tools with which environments like Serendipity-II are built. We discuss and illustrate
how these tools support the specification and implementation of tool integration,
collaborative work and user interaction facilities in our environments. We then overview our
recent work in identifying and codifying these and other "aspects" of component-based
systems, and compare our work with other research in this area.

3. JViews and JComposer

We have been developing component-based software architectures for the construction of
design environments for several years [13] [11]. Our latest architecture, implemented using
the JavaBeans component-based API, is JViews [14]. Figure 3 shows the basic
characteristics of JViews-based systems: components (rectangular icons), component
relationships (oval icons), inter-component links, and the propagation of events (which we
call "change descriptions"), along links and relationships. These abstractions provide
structural foundations for representing application data, interconnectivity and inter-
component dependency and constraints. Additionally, event filter and action components
provide reusable event-handling behaviour. Component interconnection can be both
statically and dynamically specified.

JViews provides a richer range of event detection and propagation mechanisms than do
other component-based approaches like JavaBeans, COM and CORBA. This includes the
facility for components to listen for change descriptions generated both before and after
component state has been modified, and to handle change descriptions sent to other
components both before and after a third component’s state has changed. Change descriptions
can be stored, used to support undo/redo and versioning, and propagated to other users’
environments to support collaborative editing [11].

For example, in Figure 3 a repository process stage component is linked to: a view
relationship, linked to view components representing some aspect of the process stage (e.g.

graphical view icons and textual view descriptions); other process stage components, via an
event flow relationship; and an event filter component. When the state of the process stage is
modified, e.g. its name property changed, JViews change descriptions are sent to the linked
components. Relationship components typically handle the event and update other linked
components appropriately, while directly linked components respond to the event themselves
e.g. updating their own state, redisplaying their icon/text, enforcing a constraint etc.

Repository
process stage

View relationship

Action comp

View process
stage iconOther view comps…

? Event filter comp

Event flow rel

Other process stages…

Figure 3. The JViews component-based software architecture.

JViews is implemented as a set of framework classes in Java, extending the JavaBeans
componentware API. Developing applications with the JViews framework classes directly is
tedious, time-consuming and error-prone. We developed a CASE tool, using JViews, to
assist developers to build component-based environments. Called JComposer [14], the tool
provides visual languages for specifying components, relationship components, links, filters
and actions, and a range of interdependency links between these components. JComposer
generates JViews class specialisations, implementing the specified environment as a set of
JViews components. A set of reverse engineering tools allows developers to construct
JComposer specifications from JViews classes, or to reverse engineer JViews specifications
which "wrap" JavaBeans classes. JComposer specifications can be saved to persistent store
and can be collaboratively edited using the same facilities as in Serendipity.

Figure 4. An example of JComposer being used to specify Serendipity-II.

Figure 4 shows JComposer being used to specify Serendipity-II. A number of views of
Serendipity are used, each providing specification of different aspects of Serendipity such as
graphical specifications of components, filters and actions, or Java code implementing
specialised JViews methods for detailed processing.

4. Tool integration

In order to effectively use component-based environments like Serendipity-II, appropriate
integration of third party tools and components must be supported. Serendipity-II ’s
filter/action event handling language, based on that of JComposer, allows users to plug in
components representing third-party tools and link them to Serendipity artefacts and other
reusable filters and actions via event propagation connections.

Figure 5 shows the specification of a simple software agent that automatically downloads
and uploads files from a shared file server. When the Serendipity process stage "2. Design
changes" is enacted (i.e. the user starts work on this stage), an event indicating this is
generated and sent to all stages, filters and actions connected to this stage. The Serendipity
filter and action model on the left specifies that when an enactment event is detected from
this process stage, a "request stage artefacts" action should be run. This reusable component
determines the files associated with the "2. Design changes" stage (specified in another
Serendipity-II view) and downloads (checks out) these to the user’s computer from the file
sever. When the stage is completed, the files are automatically uploaded (checked in) back to
the file server.

The illustration on the right in Figure 5 shows how components providing the tool
integration between Serendipity-II and the shared file server work. When the user adds the
"request stage artefacts" action, a JViews component (implemented with JComposer or
directly in Java) is created which implements the Serendipity-II action’s behaviour. The
JViews component establishes a connection to the distributed file server. When the
Serendipity-II stage is enacted, the enactment event propagated to the action by the filter
instructs it to request all files associated with the process stage be downloaded.

Serendipity-II "request
stage artefacts" action

Serendipity-II "enacted
stage" event filter

Serendipity-II process
stage "2. design changes"

?

JViews "request stage
artefacts" action

Distributed file server

Shared files

Check out/in files

Serendipity-II action uses
JViews action component to
implement functionality…

Enactment event

Enactment event

(a) Supporting external tool usage. (b) Intercommunication between tools.

Figure 5. Specifying the use of a third-party file server in Serendipity-II.

Another example of component-based tool integration is shown in Figure 6. In this
example, a set of tools for planning travel, all independently developed, is being integrated.
This tool set includes a reusable tree editor (used in this example to edit and browse a
structured travel itinerary), a map visualisation, a chat tool, and a Web browser. The
JComposer filter/action model shown in Figure 7 specifies interconnection between these
tools, represented as components. This results in the map visualisation being dynamically
updated whenever the travel route specified in the itinerary editor is changed, and a chat
message is written when the map visualisation (and hence itinerary travel route) is updated.

The chat tool, map and tree browser/editor are third-party Java applets which have been
"wrapped" with JViews component interfaces, with the Java events generated by these tools
being converted into JViews change descriptions. A JViews action was written which parses
the textual representation of the tree editor for city names and updates the map city route.
Another action sends a chat message via the chat tool with parameters for user and chat
message. JComposer was then used to create instances of each of these tool "components"
and actions, and additional filters which detect itinerary item updates and map route property
updates respectively. Connecting these components, filters and actions in JComposer results
in the integrated environment illustrated in Figure 6.

Figure 6. Integrating an itinerary editor, map visualisation and chat tool.

Figure 7. Serendipity-II filter/action models specifying tool integration mechanism.

Using JComposer to facilitate tool integration has been quite successful in the domains we
have used it for. This has included Serendipity-II integrated with CASE tools, programming
environments, communication tools and office automation tools, and several tools
characterised with JViews components and then integrated. We have been able to
successfully and very tightly integrate Serendipity-II, JComposer, a UML modelling tool and
an ER modelling tool [14]. Limitations of this approach are encountered when having to
"wrap" third-party tools that do not already have well-developed component interfaces. This
requires the development of JViews components to communicate with these tools, often in a
limited way, and the translation of tool events into JViews change descriptions. This can be a
complex process [20][7][28], and one which sometimes can only provide limited interface
solutions. We hope that as component-based architectures become more widely used, 3rd

party tools will increasingly provide component-based interfaces we can leverage more
effectively.

5. Collaborative work support

Supporting collaborative work has been an important aim in many of our component-
based environments [11] [12]. Usually much effort is required to adequately architect an
environment for collaborative editing, and to re-architect a single-user environment is very
difficult and time-consuming. Our JViews-based environments were all originally single-user
environments, and we used a component-based approach to seamlessly add flexible
collaborative editing support, without necessitating changes to the environments or the
components we used to facilitate this editing functionality.

Figure 8 shows a "collaboration" menu in use in Serendipity-II to configure the "level" of
collaborative editing with a colleague (e.g. asynchronous, synchronous and "presentation"
i.e. show editing changes to others as they occur but don’t action them) [9]. The "change
history" dialogue on the bottom, right hand side shows a history of editing events for the
user’s process model. Some changes were made by the user ("John"), and others by a
collaborator ("Mark").

The illustration on the right in Figure 8 shows how these collaborative editing
components were added to Serendipity-II (and can in fact be added to any JViews-based
environment, with no change to these components or the components that make up the
environment). A "collaboration menu" component is created when the user specifies they
want to have collaborative editing of a view. This listens to editing changes in the view, and
records these. If the user is in presentation or synchronous editing modes with another user,
the changes are propagated to that user’s environment. There they are stored and presented in
a dialogue (presentation) or actioned on the other user’s view (synchronous editing). With
asynchronous editing, a user requests a list of changes made to another user’s view and
selects from a dialogue which they wish to have applied to their view.

EntityIcon

BaseEntity

Display in
window…

RelIcon

RoleGlue

Repository

View

…

BaseRole

BaseRel…

Version Record

Other views…

Store
changes…

Listen before/after
changes made… "Collaborative Menu"

Collaborator
Clients

Send changes
To collaborators

Other user's
Collaboration

serveres

User's Collaboration
"Server"

Received changes and

collaboration requests

Present changes Import changes

(a) Asynchronous collaborative editing. (b) Software components.

Figure 8. Collaborative editing components in Serendipity-II.

JViews has abstractions supporting the replication of components (via object versioning),
which are used to maintain copies of collaboratively edited views. Change descriptions
generated in one view are propagated to another user’s environment with component
references translated appropriately. The change description propagation and listening support
of JViews made it very easy to add collaborative editing components to existing JViews-
based environments. It even allows fully synchronous editing, with locking, to be properly
supported with no change to the original environment or the collaborative editing
components [9].

Figure 9 shows another example of distributed components in Serendipity-II. In this
example, a distributed software agent is being specified using reusable filter and action
components. When artefacts (in this example, Java source files) are modified while stage "4.
Modify code" is enacted, events describing these changes are sent to all components linked to
this stage. The two filters note the modification of Shape.java or EditorWindow.java, and the
action forwards the change descriptions it receives to a "remote" stage, identified by remote
user and name properties specified for the sender action. The receiver action in the right hand
view forwards all changes it receives to a store action, which records the change description

in an event history artefact. The left-hand view is run by Bill’s Serendipity-II environment,
while John’s runs the right hand view. The nett result is that changes made by Bill to either of
the two classes are sent to John for later examination via the user interface of the history
artefact.

Implementing and deploying JViews-implemented collaborative editing components for
JViews-based environments has been successful. In general, however, it is difficult to
distribute components and provide appropriate collaborative editing functionality for them if
they have not been designed with this in mind. Often component-based systems use simple
subscribe-notify patterns that broadcast component update events only after the event has
been actioned. It is often very difficult to provide fully synchronous editing for such
components. Propagation of events and replication of component objects across multiple
machines requires component registration and identification mechanisms that are also hard to
retrofit to software components designed for single-user use.

Figure 9. Specifying distributed software agents in Serendipity-II.

6. User interaction and configuration

Component-based software systems must provide consistent user interaction mechanisms
across all components, and must allow users to modify the configuration of their application
components in appropriate ways. A key implication of component-based software is the need
to support extensible interaction mechanisms i.e. allow new components added to an
environment to extend existing interaction menus, buttons, dialogues and windows.

We have developed a range of extensible interaction mechanisms and reusable
components with human interfaces in our environments. For example, the change history
dialogue (

Figure 1) and enactment history dialogue (Figure 8 (a)) are both human interfaces of the
JViews "version record" component, used to record change descriptions. The collaborative
editing component illustrated in Figure 8 extends the menu bar provided by the view editing
panel component of JViews-based systems. The buttons and menu items of JViews
components can be extended by other components e.g. actions can add extra menu items to
Serendipity-II process stage icon pop-up menus to allow users access to extra functions they
provide.

End-user configuration of components is supported in our environments by several
mechanisms: "wizards" which guide users through component configuration, visual
manipulation of component object representations, the use of plug-in actions, property
sheets, and menus and buttons provided by components. Figure 10 illustrates a configuration
wizard dialogue allowing a user to configure a simple change monitoring action and the
visual configuration of an equivalent change monitor using filters and actions. Both of these
techniques have been successful in our environments, with wizards useful for end-users with
little knowledge of the component-based architectures behind the environment, and visual
filter and action component composition useful for more sophisticated configuration by
experienced users.

(a) Part of a simple configuration "wizard" (b) Visual component configuration.

Figure 10. End-user configuration in Serendipity-II.

7. Advertising and using component aspects

End-user interaction and configuration are two common "aspects" of component-based
systems and inter-component interaction that need to be carefully designed, implemented and
used, to ensure appropriate mechanisms are supported and are accessible by both end-users
and other components. For example, the JViews version record dialogue should provide the
ability to disable and/or hide its undo/redo buttons, which are sometimes not used when this
component is reused, e.g. as a Serendipity-II enactment history. Similarly, JViews editing
panel components should provide methods allowing (or disallowing) other components to
extend its menu bar, as done by the collaborative editing component.

Other aspects of component-based systems we have commonly dealt with include
distribution and collaboration support, persistency, and inter-component linkage for tool
integration. Each of these requires a component to advertise certain characteristics (such as
unique identifier allocation, change locking and/or transactioning ability, and valid
component types it can be linked to), so other components can effectively interact with this
component.

We have been developing a design and implementation methodology, and appropriate
support tools in JComposer and Serendipity-II, for representing and using such aspects of
components. Figure 11 illustrates the publication of and subscription to such aspects in
JViews, and how end-users can use these when configuring and using component-based
systems. A component publicises information about aspects it supports and how these can be

used e.g. a set of methods to allow extension/modification of its human interface aspects.
Other components query it for these aspects and use them as necessary and appropriate.

Component

Advertise low-level
properties, methods, events

Other
Components

Advertise component inter-
connection schemes & other

configuration info

Advertise component
human interface(s)

Attributes
…
Methods
…
Events
… Use to add buttons,

menu items etc;
display data etc.

Advertise component
distribution, persistentcy etc. Use to support

cooperative work,
distribution etc.

Use in component-
specific ways…

Other component-specific
aspects (collections of

related attributes, methods
& events…)

Use in wizard,
dynamically

determine interfaces
& Connectivity
validation etc.

(a) Implementing aspects for JViews
components

(b) Using component aspects in Serendipity-II

Figure 11. Describing and using component aspects in JViews and Serendipity-II.

Our implementation of component aspects in JViews uses a set of design patterns and
associated AspectInfo classes and methods to provide an extensible set of characterisations
of a component. JComposer and Serendipity-II allow component designers and users to
access these aspects and check components are correctly linked and interacting by using
aspect information. Automatic reconfiguration of components is also supported.

The example on the right in Figure 11 shows an end-user browsing the aspects of a
"RemoteSendChange" action, which publicises four aspects (its parameters, links to other
components, configuration constraints and human interface elements). The user can obtain
extra information about these aspects as desired. Other components can also make use of
these aspects, for example wizards, visual configuration tools and other components that
want to reuse and/or extend the component. Aspects differ from low-level property, method
and event descriptions JavaBeans publicise and COM type libraries, in that they describe
responsibilities of sets of component methods, properties and events. Our JViews AspectInfo
classes also provide methods allowing other components to use different kinds of aspects in
"standard" ways, no matter what methods, properties and events are used to implement the
aspect.

8. Discussion

Much recent work has been done in relation to component-based systems development.
Various component-based software architectures have been developed, including JavaBeans
[1], COM [18], and OpenDoc [1]. In addition, distributed object management architectures
like OMG CORBA [22] offer capabilities for component modelling and distribution. Various
tools have been developed for engineering systems with such architectures including
JBuilder [4], Visual Age [15], Visual Javascript [21], and those for specialised application
domains like 3D modelling [29]. All of these systems provide low-level support for
component development. End-user configuration support is generally limited to simple

component object linking. All component-based architectures provide mechanisms for
publicising component properties, methods and events, but generally have no concept of
higher level aspects encompassing collections of component features.

Tool integration approaches include federation [5], enveloping [28], middleware
architectures [7], database and file-based integration [19], and message passing [23]. While
these techniques have proved successful in limited domains, none has managed to provide an
ideal solution. Enveloping, middleware and message passing architectures are the most
similar to component-based tool integration approaches that we have used.

Workflow management systems and process-centred environments generally provide
some support for task automation, tool integration and collaboration. Examples include
ProcessWEAVER [8], SPADE [2], Oz [3], and Regatta [27]. These generally adopt low-
level, macro or programming languages to support environment extension, or use a basic
range of inflexible event-based triggers configured with Wizards. We have found the use of
primarily visual notations to support environment extension to be more useful, although
Wizards and property sheets provided by components are also important. It is difficult to
design components for end-user configuration in advance as designers often do not know
exactly how and where their components are to be deployed.

Computer-supported cooperative work tools and environments allow groupware tools to
be constructed which support distributed workers and artifacts. Examples include GroupKit
[24], Suite [6], COAST [26], and TeamWave [25]. TeamRooms and COAST adopt
component-based approaches, but require systems to be designed with this functionality in
mind from the outset. We have managed to re-architect JViews-based tools to support
various forms of collaborative work without the need to re-implement existing components.

9. Conclusions

Component-based software architectures are becoming increasingly important as
solutions for a wide range of software engineering problems. We have focused on the use of
software components to support diverse tool integration mechanisms, collaborative work and
object distribution, extensible human-interfaces, and end-user configuration of software
applications. We have developed both software architectures that support component-based
software development, and tools for design and implementation with these architectures.
Component-based solutions for tool integration, collaboration, human-interfaces and end-
user configuration have proved appropriate and useful in the domains we have worked.

We are developing JViews-based "wrapper" components for a variety of third-party
components and tools, including standard JavaBeans, COM components and CORBA
objects, and software development, office automation and database tools. The use of semi-
automatic component interface and event generation tools in JComposer will make this easier
and repeatable. Mapping components supporting complex inter-component event and method
mappings are being developed, allowing both tool integration and collaborative work with
components to be better-supported. We are working on techniques for designing extensible
human interface aspects for components, along with automatic wizard generation for end-
user configuration of components. The publicising of and subscription to component aspects,
and a development methodology for components incorporating standardised aspect patterns,
will enable more flexible combination of all aspects of software components.

References

[1] Apple Computer Inc., OpenDoc™ Users Manual, 1995.
[2] Bandinelli, S. and DiNitto, E. and Fuggetta, A., Supporting cooperation in the SPADE-1 environment, IEEE

Transactions on Software Engineering 22 (12), December 1996, 841-865.
[3] Ben-Shaul, I.Z. and Kaiser, G.E., A Paradigm for Decentralized Process Modeling and its Realization in the

Oz Environment, 16th International Conference on Software Engineering, IEEE CS Press, 1996, 179-188.
[4] Borland JBuilder™, Borland Inc, http://www.borland.com/jbuilder/.
[5] Bounab, M. and Godart, C., A federated approach to tool integration, Proceedings of CaiSE*95, Finland,

June 1995, LNCS 932, Springer-Verlag, pp. 269-282.
[6] Dewan, P. and Choudhary, R. Flexible user interface coupling in collaborative systems, in Proceedings of

ACM CHI'91, ACM Press, April 1991, pp. 41-49.
[7] Dossick, S. and Kaiser, G.E., Middleware architectures for workgroups, Proceedings of IEEE Workshops on

Enabling Technologies: Infrastructure for Collaborative Enterprises, June 17-19, 1998, IEEE CS Press.
[8] Ferstrom, C. ProcessWEAVER: Adding process support to UNIX, 2nd International Conference on the

Software Process, Berlin, February 1993, IEEE CS Press, 12-26.
[9] Grundy, J.C. Engineering Component-based, User-configurable Collaborative Editing Systems, Proceedings

of 7th Conference on Engineering for Human-Computer Interaction, Crete, September 14-18, 1998, Kluwer
Academic Publishers. (in press)

[10] Grundy, J.C. and Hosking, J.G., Serendipity: an integrated environment for process modelling, enactment
and work coordination, Automated Software Engineering, Vol. 5, No. 1, Kluwer Academic Publishers,
January 1998, 27-60.

[11] Grundy, J.C., Hosking, J.G. and Mugridge, W.B., Supporting flexible consistency management with discrete
change description propagation, Software - Practice & Experience 20 (9), September 1996, 1053-1083.

[12] Grundy, J.C., Hosking, J.G., Mugridge, W.B. and Apperley, M.D., A decentralised architecture for process
modelling, IEEE Internet Computing, Vol. 2, No. 5, September-October, 1998, IEEE CS Press.

[13] Grundy, J.C., Hosking, J.G., and Mugridge, W.B., Inconsistency management in multiple-view software
engineering environments, IEEE Transactions on Software Engineering, Vol. 24, No. 11, November 1998.

[14] Grundy, J.C., Mugridge, W.B., and Hosking, J.G., Visual specification of multi-view visual environments,
Proceedings of 1998 IEEE Symposium on Visual Languages, Halifax, Nova Scotia, September 2-4 1998.

[15] IBM Inc, VisualAge™ for Java, 1998, http://www.software.ibm.com/ad/vajava/.
[16] Java Beans™ 1.0 API Specification, Sun Microsystems Inc., 1997, http://www.javasoft.com/beans/.
[17] Linton, M. and Vlissides, J.M. and Calder, P.R., Composing User Interfaces with InterViews, COMPUTER,

Vol. 22, No. 2, February 1989, 8-22.
[18] Microsoft Corporation, Component Object Model™, 1998, http://www.microsoft.com/com/.
[19] Meyers, S. Difficulties in Integrating Multiview Editing Environments, IEEE Software, Vol. 8, No. 1,

January 1991, 49-57.
[20] Myers, B.A. et al, The Amulet Environment: New Models for Effective User Interface Software

Development, IEEE Transactions on Software Engineering, Vol. 23, No. 6, June 1997, 347-365.
[21] Netscape Communications Inc, Visual Javascript™, 1998, http://www.netscape.com/

compprod/products/tools/visual_js.html.
[22] OMG CORBA, Object Management Group, 1998, http://www.omg.org/.
[23] Reiss, S.P. Connecting Tools Using Message Passing in the Field Environment, IEEE Software, Vol. 7, No.

7, July 1990, 57-65.
[24] Roseman, M. and Greenberg, S., Building Real Time Groupware with GroupKit, A Groupware Toolkit,

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1997, 1-37.
[25] Roseman, M. and Greenberg, S., Simplifying Component Development in an Integrated Groupware

Environment, Proceedings of the ACM UIST'97 Conference, ACM Press, 1997.
[26] Shuckman, C., Kirchner, L., Schummer, J. and Haake, J.M., Designing object-oriented synchronous

groupware with COAST, in Proceedings of the ACM Conference on Computer Supported Cooperative Work,
ACM Press, November 1996, pp. 21-29.

[27] Swenson, K.D. and Maxwell, R.J. and Matsumoto, T. and Saghari, B. and Irwin, K., A Business Process
Environment Supporting Collaborative Planning, Journal of Collaborative Computing, Vol. 1, No. 1, 1994.

[28] Valetto, G. and Kaiser, G.E., Enveloping Sophisticated Tools into Process-centred Environments, Automated
Software Engineering, Vol. 3, 1996, 309-345.

[29] Wagner, B., Sluijmers, I., Eichelberg, D., and Ackerman, P., Black-box Reuse within Frameworks Based on
Visual Programming, in Proeedings of the. 1st Component Users Conference, Munich, July 1996, SIGS.

