In Proceedings of TOOLS Pacific '95, Melbourne, Nov 28-30, 1995, (c) Prentice-Hall.

Explicit Relationships in Object Oriented Development

James Noble
Centre for Object Technology, Applications, and Research.
University of Technology, Sydney.
Email: kjx@socs.uts.edu.au

John Grundy
Department of Computer Science.
University of Waikato, Hamilton, New Zealand.
Email: jgrundy@cs.waikato.ac.nz

Abstract

Traditional object oriented analysis methodolo-
gies are based not only upon objects, but also
upon relationships between objects. Object ori-
ented programming languages do not provide
support for relationships, and so analysis rela-
tionships must be expressed indirectly within
a program’s design, and then incorporated into
implementations of other objects in a program’s
code. By using explicit relationships in design
and implementation, analysis relationships can
be expressed directly within a program’s code.
Programs which use explicit relationships are of-
ten smaller and easier to comprehend than tra-
ditional OO programs, and are generally quicker
to write and easier to maintain.

1 Introduction

Seamlessness is one of the most important ben-
efits of object orientation (Henderson-Sellers
1994). 1In an object oriented system develop-
ment lifecycle, the same conceptual model (the
object model) is used to organise the analysis
of a problem, the design of a solution, and the
implementation of a running program. Seam-

lessness promotes traceability (Pfleeger 1991),
so that an object in a program can be easily
traced back to an object in the program’s de-
sign, and further back to an object identified by
an analyst and understood by the program’s cus-
tomer. The seamlessness of object oriented de-
velopment makes quite a contrast to the discon-
tinuities of the more traditional forms of analysis
and design, where the models built for analysis
(such as data-flow diagrams) bear little relation
to the models built for design (such as structure
charts or entity-relationship diagrams), or to the
final program.

In practice, object oriented development is not
as seamless as it may first appear. This is be-
cause object oriented analysis techniques (such
as OMT (Rumbaugh, Blaha, Premerlani, Eddy,
and Lorensen 1991), OOADA (Booch 1994) or
MOSES (Henderson-Sellers and Edwards 1994))
actually construct models using both objects
and relationships between objects. In contrast,
object oriented programming languages (such as
Smalltalk (Goldberg and Robson 1983) or C++
(Stroustrup 1986)) are based solely upon ob-
jects: they do not support relationships other
than object containment and object references.
Thus, while an object in an analysis can corre-
spond to an object in a program, relationships
from analysis are lost during design and imple-
mentation.

This paper describes an approach to object ori-
ented design and implementation which consid-
ers relationships as well as objects. In this ap-
proach, analysis relationships are transformed
into objects during design. These design objects

John Grundy
In Proceedings of TOOLS Pacific '95, Melbourne, Nov 28-30, 1995, (c) Prentice-Hall.

can then be implemented directly in an object
oriented language. In this way, analysis relation-
ships (as well analysis objects) can be seamlessly
traced through design into objects in the imple-
mented program.

This paper is centred around a case study —
the implementation of a simple invoicing sys-
tem. Section 2 describes the system’s require-
ments, using generally accepted techniques of
object oriented analysis. Section 3 describes
how standard object oriented design and imple-
mentation can be used to implement the invoic-
ing system based upon this analysis, and shows
that although these techniques preserve the ob-
jects identified in analysis, they do not preserve
the relationships between objects. Section 4
then applies our alternative design approach
to the same invoicing system, and shows how
this approach maintains analysis relationships
through design to implementation. Section 5
compares this explicit relationship approach to
design with the standard object oriented ap-
proach. Section 6 discusses related work, and
Section 7 presents our conclusions.

2 Object Oriented Analysis

Most object oriented analysis techniques focus
on the encapsulation of attributes and meth-
ods within objects or classes (Rumbaugh, Blaha,
Premerlani, Eddy, and Lorensen 1991; Booch
1994; Henderson-Sellers and Edwards 1994).
These objects are then inter-related via gener-
alisation, aggregation and association relation-
ships. Generalisation relationships specify type
and inheritance hierarchies between objects. Us-
ing object oriented design and implementation,
generalisation relationships are guaranteed to be
preserved as inheritance — which, therefore, we
do not consider further in this paper.

Aggregation relationships specify the aggrega-
tion of objects to form larger object models.
Association relationships indicate one object
makes use of another object in some way. Ag-
gregation and association relationships are gen-
erally refined into one or more direct references
between objects during design and implementa-
tion. Unlike generalisations, there is no guar-
antee that aggregation and association relation-
ships will remain explicitly present in the pro-

gram.

2.1 A Case Study

Consider a simple invoicing system which stores
information about customer purchases. In terms
of data requirements, the company has a num-
ber of customers, each having a customer code,
name and address. Each customer buys prod-
ucts, with each group of purchases recorded line
by line on a dated invoice. Each customer has an
account, and accounts have transactions which
are used to record the amount of each purchase
for each invoice line. Customers have a credit
limit, and accounts hold a balance and year-to-
date balance. Products are made up of individ-
ual parts, with the price of the product calcu-
lated from the price of its parts.

The functional requirements of this system in-
clude the ability to:

e add and delete customers, invoices, ac-
counts, transactions, and products.

e modify an invoice number and date, a cus-
tomer name or address, or product names,
parts, and prices.

e print, find, and sort customers, invoices, ac-
counts, and products.

e calculate the cost of each invoice line pur-
chase (including tax).

e calculate account balance and YTD bal-
ance.

2.2 Analysis

Figure 1 contains a high-level analysis diagram
for the data requirements of this system. Only
attributes are shown here. There are a variety
of relationships between classes used in this di-
agram, either aggregation (unarrowed) or asso-
ciation (arrowed). Company objects are an ag-
gregate of the accounts, customers and products
the company has (all one to many relationships).
An account holds zero or more transactions, and
a product is made up of one or more parts. A
customer has one account and zero or more in-
voices. Each invoice has one or more lines, with
each line having one transaction and one prod-
uct.

accounts 1: customers 1l:n

products 1l:n
account

over_cr
cr_limit
address

balance
id code

name

transactions 0:n

transaction

invoices Q:n

trans 1:le—m |

parts 1l:n
purchase 1:1

invoice line

Figure 1: Analysis of Invoicing System Data Requirements

We can extend this data model to provide ba-
sic methods associated with each class to carry
out the functional requirements described in the
previous section (see Figure 2). We have associ-
ated these methods with the class most likely
to carry out this functionality. For example,
the company class manages the top-level func-
tions of adding, deleting and locating account,
customer and product information. The ac-
count class manages its own initialisation and
deletion, posting and reversal of transactions,
and updating its YTD balance. The customer
class manages its own initialisation and deletion,
the adding, deleting, printing and finding of in-
voices, and modification of its code or name.

customer
(normal)

add_invoice

pay_invoice

customer
(over credit limit)
calc_total

Figure 3: Dynamic Model of Customer Objects

customer
(adding invoice)

calc_total

The system functionality embodied in methods
can be captured using dynamic models and func-
tional models (Rumbaugh, Blaha, Premerlani,
Eddy, and Lorensen 1991). These describe the
changes in objects’ states, and data and control
flows between objects. For example, Figure 3
shows a dynamic model describing the possible
states of customer objects. If a customer’s ac-
count balance exceeds their credit limit, then
new purchases for the customer are rejected.

Figure 4 shows the functional specification for
adding an invoice for a customer. The invoice is
first created, then successive invoice lines and
their associated transactions created. If the
credit limit for the customer is exceeded, no
more purchases are allowed. If not, further lines
are added. When adding of lines is completed,
a receipt is printed for the customer.

Note that this analysis only represents some of
the classes, relationships, attributes and meth-
ods that may comprise a large system. For
example, the account, customer and product
classes would normally be used by other sub-
systems, such as inventory, payroll, job cost-
ing, creditors, etc. Thus many of these classes
would have other relationships and many more
attributes and methods, making their interac-

find customer
delete_customer
delete_product

add_account
add_customer
add_product

accounts l:n customers 1l:n

account customer
change_type find invoice
set_ytd print_invoices
modify id modify name
reverse_trans ackount 1:1 modify_c?ode.
delete delete_invoice
post_trans \ delete
create add_invoice
create
;T/
invoices

transactions 0:n

transaction
change type
modify date
modify amount
delete
create

trans 1:1

products 1l:n

0:n

purchase 1:1 parts 1l:n

Figure 2: Analysis of Invoicing System Functional Requirements

customer - add invoice

add invoice R R
. invoice
details

add line

—>

fld invoice

v

add invoice under limit

finished

modify
invoice line

line

g (pinimeice i gpf cwsomer |

invoice line
calc total

' calc total

post
transaction

calculate

invoice

total

< 1
—| check cr limit

check limit

print receipt

limit exceeded

Figure 4: Functional Specification for Adding an Invoice

tions with each other very complex.

3 Traditional OO Design and
Implementation

Using traditional OO design techniques, the
analysis model from the previous section is re-

fined to a design which uses only those rela-
tionships supported by the chosen programming
language. In particular, aggregation and asso-
ciation relationships are replaced with simpler
relationships which do not embody functional-
ity of their own. New methods are required to
encode relationships’ behaviour, and these are
added into the objects which participate in the
relationships.

Figure 5 shows the resulting object model for
the account, transaction, customer, invoice and
invoice line objects. Reference attributes have
been used to represent the analysis relation-
ships, which, therefore, are no longer explicit
in the diagram. For example, the “transac-
tions 0:n” relationship between accounts and
transactions in Figure 1 has been replaced by
a reference from the account class to the trans-
action class (via the account’s “trans_list” at-
tribute). This refers to the first transaction
associated with that account. FEach transac-
tion stores a reference to the account’s next
transaction in the “next_trans” reference at-
tribute, and a reference back to their owning ac-
count in the “account_ref” attribute. Other ob-
ject reference attributes include, “invoices_list”,
“next_invoice” and “customer_ref” representing
the “invoices 0:n ” relationship, and “lines_list”,
“next_line” and “invoice_ref”, representing the
“lines 1:n ” relationship.

Extra operations have been added to these
classes to carry out the basic functions of the
system. For accounts this includes updating
the account balance and YTD balance, chang-
ing the account’s name and type, and deleting
the account’s transactions. Transaction oper-
ations include changing the transaction date,
amount and type. Customer operations include
checking the customer credit limit. Invoice op-
erations include checking the customer credit
limit, deleting lines and modifying line num-
bers. Invoice line operations include modifying
line dates, numbers and amounts, and updat-
ing the invoice line total. All of these methods
include extra functionality to ensure that the
relationships are maintained. For example, to
ensure account totals are updated correctly for
the account type, account transactions are only
deleted if other objects linked to the transac-
tions are also deleted, ensuring removed invoice
lines are removed from their invoice list and their

transactions are reversed.

Extra design refinements may be carried out at
this stage. These might include improving the
efficiency of object linkages, adding extra refer-
ences to improve access efficiency, designing al-
gorithms to carry out functional behaviour, or
caching values as attributes for efficiency.

3.1 Traditional OO Implementation

This design would normally be implemented us-
ing traditional OO implementation languages.
Operations would be encoded in methods and
attribute types would be defined and imple-
mented. The operational behaviour described
above would be implemented by sending mes-
sages between appropriate objects to carry out
an algorithm.

For example, when adding an invoice line
the invoice::add_line method would call: the
invoice_line::create method, the invoice::lines

linked list
insert method, the account::post_trans method,
the invoice_line::add_trans

method, the invoice::calc_total method, the
invoice::check_cust_limit method, and then the
This algo-
rithm must be carefully encoded to ensure all
methods are called in the right order and with
the right parameters.

customer::check_cr_limit method.

Any change to this algorithm, or any reloca-
tion of methods to other classes, would require
major modification to several of these methods.
This is because much of the functionality is not
directly associated with any one particular ob-
ject, but rather serves to support the relation-
ship between several objects. This functionality
must be arbitrarily assigned to one of the ob-
jects, or equally arbitrarily split between two or
more objects. For the same reason, a similarly
complex sequence of method calls would be re-
quired when modifying or deleting invoice lines,
with many constraints needing to be checked by
each method to ensure both the correctness of
the operation and correct modifications to re-
lated objects.

trans_list
update_balance

delete trans
change_type

account_ref trans_list

transaction

next trans
account_ref

change date
change amount| %
change type

trans_ref

change_trans_type | s#fem gccount ref

customer
invoices_list
~~jaccount_ref
check cr limit

™

customer_ref invoices_list

invoice_ref

invoice line

next line
invoice ref
trans_ref
purchase

modify number
change_date
change_amount
update_inv_total

—

invoice

next_invoice
customer ref
lines_list

check cust_ limit

delete lines
modify number

lines_list

Figure 5: Design using Reference Attributes

3.2 Main Problems of Traditional OO
Design

This simple example shows the complexity that
is introduced by associating all system be-
haviour with objects and none with the rela-
tionships between objects. Classes quickly be-
come quite large, and class methods quickly
start to embody complex calculations and con-
straint checking dependent on inter-object rela-
tionships.

For example, consider the account class. This
needs to handle the functionality of the “trans-
actions 0:n” relationship between itself and the
transaction class and possibly the “account 1:1”
relationship with the customer class. As ac-
counts are used in many parts of an information
system, there will be many more relationships
from account to jobs, purchase orders, creditors,
and so on. If an account or one of these re-
lated objects is modified, the account class may
have to embody many complex procedures. For

example, if the account type is changed, there

will be many constraints to check depending on
the kind of relationships account participates in
e.g., check valid account type for things account
related to. This functionality will have to be
embodied in one or more methods, which may
become large and complex.

The adding and modifying of invoice lines il-
lustrates that constraints and calculated values
impose some especially difficult problems. The
complex method calling sequences and split-
ting up of constraints and calculations illustrates
this. As another example, consider the calcu-
lation of the account balance and the checking
of the customer credit limit required when an
invoice line is added or modified. It is easy
to make errors by omitting functionality or by
calculating things in the wrong order. This is
compounded if a method must embody a large
amount of functionality relating to different
functional behaviour, such as invoice::calc_total,
used by several invoice line processing functions.
Designers and implementers must ensure these
methods are called at the appropriate times.

The more relationships an object participates in,
the more difficult it becomes to ensure this and
to maintain and reuse classes.

Maintenance is made more difficult with meth-
ods embodying code for many different system
functions. Trying to split up this code into sev-
eral methods makes the classes much more com-
plex and more difficult to reuse, as method call-
ing sequences and arguments become very diffi-
cult to manage.

4 Relationship Oriented De-
sign and Implementation

A relationship oriented design approach pre-
serves the relationships from the analysis phase
by representing them as objects in their own
right. These relationship objects are then allo-
cated responsibility for much of the inter-class
relationship functionality. Note that relation-
ship objects are no different from any other ob-
jects used in design or implementation, except
that they represent analysis relationships, rather
than analysis objects. Relationship oriented im-
plementation techniques provide efficient ways
of writing these relationship objects, and ensur-
ing relationship behaviour is always carried out
even after system modification.

4.1 Relationship Oriented Design

The key idea of relationship oriented design is
to use extra objects to represent relationships
explicitly. Behaviour which is associated with
the relationship can then be put into the rela-
tionship object. In this section we present an
alternative design for the invoicing system, in
which some of the relationships from the anal-
ysis model have been converted into explicit re-
lationship objects. The decision on which rela-
tionships to convert and which to leave as ref-
erences is based on how much functionality can
be embodied in the relationships themselves.

The alternative design is shown in Figure 6.
In this design, all the aggregation relationships
have all been refined into relationship objects.
These objects exhibit behaviour common to all
aggregations, in that when one object is copied
or deleted, all other objects participating in
the relationship must also be copied or deleted.

This behaviour must not only ensure objects are
properly copied, but that the new objects are
correctly connected together, and that any con-
straints upon the aggregate are maintained —
for example, that totals are recalculated appro-
priately. Similarly, when an object is deleted,
the other participating objects must be discon-
nected from other objects, disposed if necessary,
and any constraints on the aggregate must be
maintained.

The aggregation relationships in Figure 6 also
embody behaviour specific to their particular
place in the system. For example, consider the
“account_trans” relationship. This handles the
addition of new transactions into the relation-
ship; the deletion of a transaction or all trans-
actions (if the account is deleted); changing of
all transaction account types if the account type
is modified; updating the balance of the account
if a transaction is added, deleted or updated. It
could also be extended to handle sorting, print-
ing or copying transactions for the account, and
location of single or groups of transactions via
various key values. Some operations attempted
may violate constraints e.g., the account type
change might be invalid as relationships from
the account’s transactions to other objects may
not allow this new account type, or a customer
code change might be invalid as another cus-
tomer already has this code. Such operations

should be aborted.

The “invoices 0:n” association relationship be-
tween the customer class and the invoice class
has been refined to the “customer_invoices” re-
lationship object. This does not embody aggre-
gation behaviour, but does embody behaviour
about the relationship between customer and in-
voice objects. For example, if an invoice number
or date is changed, any lookup table for find-
ing invoices for customers needs to be appro-
priately updated, and the operation aborted if
it would duplicate invoice numbers. This rela-
tionship also handles the creation and deletion
operations on invoices previously handled by the
customer class itself, thus reducing the customer
class size and complexity.

The two 1:1 association relationships involving
the invoice_line class (the “trans 1:1” relation-
ship with the transaction class, and the “pur-
chase 1:17 relationship with the product class)
have not been refined to relationship objects.

account

trans_rel

change type
update_balance

trans_rel

account_trans
account
transactions

add trans
change_trans_types
update_balance
delete_trans

account_rel

transaction

trans_ref

_.account_ref-

invoice line
trans_ref
invoice rel
change date
change_type
change amount

invoice rel

customer

invoices_rel

1account_ref
check cr limit

invoices_rel

customer invoices

inv_number changed
cust_date changed

customer

invoices
add_invoice
delete_invoice
check cust_ limit

——

customer_ rel

invoice

customer_rel

lines rel

lines rel

invoice lines

invoice

lines
delete_lines
change_dates
update_total
add_line
delete_line
modify number

—

purchase

Figure 6: Design using Explicit Relationship Objects

This is because it would be rather expensive in
terms of object storage to do so, as there will be
many transaction and invoice line objects. Also,
if relationship objects were used to represent
these relationships, almost all of the “trans 1:1”
relationship behaviour, such as changing dates
and amounts and adding or reversing transac-
tions would be factored from the invoice_line
objects into this relationship object, and the
invoice_line objects would simply be placehold-
ers for one end of the relationship.

4.2 Relationship Oriented Implemen-
tation

There are several implementation approaches
which can be adopted in order to implement the
relationship objects described above. The most

conservative simply involves associating meth-
ods with these objects which are called at ap-
propriate times. More abstract approaches in-
clude the notification of an object’s dependents,
the propogation of reified update descriptions,
and the automatic monitoring of participating
objects. These approaches allow programmers
to ensure functionality associated with relation-
ship objects is carried out at the correct times,
and result in less complex and much more easily
extended and maintained systems.

Methods in Relationship Objects

The relationship oriented design in Figure 6
uses classes to define the relationship objects.
These relationship classes incorporate references
to the objects participating in the relationship,
and methods to manage adding and deleting the

objects being related. Objects in relationships
keep a reference to each relationship they par-
ticipate in.

Methods embodying functionality particular to
the relationship are then associated with these
relationship object classes, and the objects
participating in the relationship are modified

to call them at appropriate times. Some
methods can be given very general names,
such as “check_constraints”, “object_deleted”,

“object_updated”, and so on. This allows meth-
ods in participating classes to be implemented so
that they always call these standard relationship
methods. Extra system functionality or modi-
fications can then be incorporated more easily
than in traditional OO implementation, as they
are added in standard places (the relationship
objects).

Libraries of relationships with useful, generic
functionality can also be built up. For exam-
ple, generic aggregation relationships can sup-
port an “object_updated” method which always
sends an update message to every other object
participating in the relationship when one of the
objects is updated.

Relationships as Dependents

A more abstract approach to the implementa-
tion of relationships is via a dependency mecha-
nism as found in Smalltalk (Goldberg and Rob-
son 1983) or the Observer pattern (Gamma,
Helm, Johnson, and Vlissides 1994). Each ob-
ject which participates in relationships stores
their relationships in a list of dependents, rather
directly referring to their relationships. When a
participating object is changed, it sends a single
“update:” message to all relationships on its list
of dependents, rather than sending a message to
each relationship individually.

For example, if a transaction object is added,
modified or deleted, the TransOfAccount rela-
tionship’s update method is called and this then
updates the account’s balance appropriately (see
Figure 7). If the update method is given ar-
guments describing the change to related ob-
jects, then it can be implemented more effi-
ciently. If update is called for TransOfAccount
with “trans_amount” as one argument and the
amount’s old and new values as others, then it is
straightforward to update the account’s balance.

This approach is more abstract than the pre-
vious one as objects have less knowledge about
the relationships in which they participate. A
system designed so all object classes use this
protocol (as in Smalltalk) is generally easier to
extend.

account

update_balance
call: update_balance($25.00)

(reference: parent)
TransOfAccount
Update

/1 call: Update("trans_amount",

(reference: children) $75.00.$100.00)

(dependents)

transaction

—» |update_amount
call:
update_amount($100.00)

Figure 7: MVC-style Indirect Invocation

Update Description Propagation

A still more general approach is the propaga-
tion of reified updates to relationship objects
(Grundy and Hosking 1993a; Grundy and Hosk-
ing 1994). This is similar to the dependency
model described in the previous subsection, as
each object stores a list of relationship objects
representing the relationships in which they par-
ticipate. Whenever a participating object re-
ceives an event or is updated, rather than sim-
ply sending a message to its relationships, it con-
verts the event or update into an object describ-
ing the update or event. This “update object” is
then sent to all relationships the object partic-
ipates in. Relationships interpret these update
objects and respond to them by updating their
participating objects.

Using explicit update description objects is more
flexible than simply notifying relationship ob-
jects via message-sends. Update descriptions
can be forwarded directly to other, related ob-
jects. They can also be grouped into transac-
tions of related sequences of updates, stored to
document changes objects have undergone, re-
versed to support undo and abort mechanisms,
and can be used to drive efficient, incremental
constraint and calculation mechanisms (Grundy

call: delete

——» |increment
delete

call: increment

(list of relationships) (balance,$25.00)
NG
call: update(
delete_event)
| TransOfAccount |
update
call: delete call:
» /' update(attribute amount,$7
5.00,$100.00)

(list of relationships)

ll

- <4+—
update(amount,$100.00)

Figure 8: Update Description Propagation

and Hosking 1994). Figure 8 shows the propa-
gation of update descriptions between objects.

As long as objects utilise a standard set of de-
scriptions, this approach is very general. It
is very easy to build up libraries of generic,
reusable relationship objects which support ag-
gregation, constraints and transactions (Grundy
and Hosking 1995).

Monitoring Abstract Updates

In all these approaches, methods which update
objects or correspond to important events must
be annotated to notify the objects’ relationships
by sending either messages or update descrip-
tions (Brown and Hershberger 1991; Grundy
and Hosking 1993b). In a reflexive language
(Maes 1987) relationships can monitor the ex-
ecution of the participating objects, and auto-
matically detect changes and generate update
descriptions (Noble and Groves 1992; Noble,
Groves, and Biddle 1995). This increases the
independence of objects and the relationships in
which they participate, as methods in partici-
pating objects need not be annotated, and ob-
jects do not have to be modified to participate
in relationships. Figure 9 shows an example of
this approach.

4.3 Advantages of Explicit Relation-
ships

Using this relationship oriented design and
implementation approach, objects tend to be
smaller and more reusable. For example, the re-

call: delete

——p> |update_balance
delete

(reference)

call: update_balance($25.00)

A (refence:
call: spy(delete) A spied parents)

TransOfAccount

call: delete X call: spy(

update_amount($100.00)

Sl

(reference)

(reference:
spied children)

transaction
update_amount

call:
update_amount($100.00)

Figure 9: Monitoring Abstract Updates

lationship oriented version of the account class
embodies much less functionality, as much has
been abstracted out into its relationships. This
version is much smaller, as it concentrates on
modelling the core functionality of an account,
and so should be more reusable. Any new rela-
tionships in which account participates, or mod-
ifications to relationships or system functional-
ity, can be more readily incorporated by asso-
ciating them with appropriate relationship ob-
jects.

It is generally easier to understand and modify
a design or implementation based on this ap-
proach, particularly if the behaviour associated
with the relationship between objects changes.
For example, as the behaviour associated with
account class relationships is now abstracted
into methods of relationship objects, new con-
straints and functionality associated with these
relationship objects is easier to add to the evolv-
ing system design. In addition, if the relation-
ships themselves change, it is easier to identify
where the behaviour associated with the old re-
lationship structures can be modified to suit the
new structures.

Explicit relationship objects markedly improve
the traceability of object oriented development.
Every object in the design (in Figure 6) can be
traced back to either a single object or single re-
lationship from analysis (Figure 1). Every anal-
ysis object can be traced forwards to a single de-
sign object, and every analysis relationship can
be traced forwards either to a single object, or
a single reference attribute.

5 Discussion

There are several possible objections to the use
of relationship objects. Using relationship ob-
jects may be decried as “not being pure object
orientation”. This criticism presumes there is
a definition of “pure object orientation”, and
that such a definition does not include objects
which can be seen to represent relationships be-
tween other objects. From an object oriented
modelling view, where objects are supposed to
represent abstractions in the domain of the real
world, objects representing relationships may be
problematic since they do not represent some-
thing in the real world. From our perspective,
relationship objects are important precisely be-
cause they do represent important things in the
real world — although, they represent things
that are intangible. If the relationships were
not part of the real world, they would not be
in the analysis model and would not need to be
implemented within the program.

An object oriented design using relationship ob-
jects may also seem more complex than an
equivalent design without relationship objects:
in particular, the relationship oriented design
will use more objects. If both programs are basi-
cally equivalent, then the information about the
relationships must be contained somewhere in
the program, and in the more basic design it will
be spread across several objects. Thus, although
the more basic design will involve less objects,
the individual objects will be larger, and their
mutual interactions will be more complicated.

5.1 Cohesion and Coupling

The use of relationship objects decreases the size
of the participating objects, as data and be-
haviour are relocated into the relationship ob-
jects. Relationship objects simultaneously in-
crease the cohesion of the participating objects,
as those objects now contain only a core of
data and behaviour, while reducing coupling,
as the behaviour within the participating ob-
jects relating to each other has been moved into
the relationship object. Relationship objects
will, of course, introduce coupling between the
participating objects and the relationship ob-
jects, however, this will be many-to-one cou-
pling, since the many objects participating in a

relationship are coupled to one relationship ob-
ject. This should be more manageable than the
many-to-many coupling required if the responsi-
bility for maintaining the relationship is spread
over all participating objects. It is important to
realise that, since the relationship was identified
in analysis and is part of the program’s model
of the real world, the classes must be coupled in
some way to be able to implement the program’s
requirements’.

5.2 Encapsulation

Extra relationship objects existing “outside”
their participating objects may also be seen as
breaking the participating object’s encapsula-
tion (Rumbaugh 1987). The first point to note
here is that many relationships occur between
objects which are themselves parts of another
aggregate object: that is, the relationship and
the participating objects may all be encapsu-
lated by another object. The second point here
is that if encapsulation is broken by the rela-
tionship, this is because the encapsulated ob-
jects need to be accessed by the relationship ob-
ject in order to implement the semantics of the
relationship. Without the explicit relationship
object, the analysis relationship would have to
be implemented in another way, by being built
in to the participating objects. If the relation-
ship requires access to the “inside” of an object,
breaking its encapsulation, these objects would
therefore need to break each other’s encapsula-
tion anyway. In short, using an explicit rela-
tionship object cannot worsen breaches of en-
capsulation. The root of the problem is not the
relationship object (i.e. how the relationship is
implemented), but the existence of the relation-
ship as part of the problem domain.

In some circumstances, relationship objects may
actually increase encapsulation, as the imple-
mentation of the relationship itself becomes
encapsulated against the participating objects
when it is moved in to a separate relationship
object.

Colloquially, “There ain’t no such thing as a free
lunch”. (Raymond and Steele 1993)

5.3 Implementation

Finally, there is the question of implementa-
tion: are programs which use relationship ob-
jects larger or slower than those which do not?
At this point we are not aware of any system-
atic studies to determine the matter, however,
we believe that there is no reason why programs
which use relationship objects should be greatly
slower that those which do not. Various types
of relationship objects have been used success-
fully in performance-sensitive applications such
as CASE tools (Grundy, Hosking, Mugridge,
and Fenwick 1994) and user-interface systems
(Maloney, Borning, and Freeman-Benson 1989;
Berlage 1992). The Hotdraw event-based draw-
ing tool (Johnson 1992) was converted to use
relationships (in this case, arithmetic con-
straints) with no noticeable change in perfor-
mance (Freeman-Benson 1993). Finally, it ap-
pears that compilers will be able to use infor-
mation about relationships (when explicitly re-
tained in programs) to optimise programs’ exe-
cution (Vander-Zanden 1994).

5.4 Finding the Objects

Designing programs using explicit relationship
objects involves three stages: first, important re-
lationships from analysis are reified as objects;
second, data and behaviour associated with a
relationship are moved into the relationship ob-
ject from the other objects participating in the
relationship; and third, implicit invocation and
reified events can be used to link the relationship
objects to the other participating objects.

This suggests an alternative perspective on the
technique of designing with explicit relation-
ship objects. A fundamental problem in ob-
ject oriented analysis is how to “find the ob-
jects”, since the objects are the foundation on
which the remainder of the analysis will be built.
Many techniques for finding objects have been
proposed, including underlining verbs (Booch
1994), using index cards (Wirfs-Brock, Wilk-
erson, and Wiener 1990), and design patterns
(Gamma, Helm, Johnson, and Vlissides 1994) —
Henderson-Sellers (Henderson-Sellers and Ed-
wards 1994) provides a comprehensive survey.
Explicit relationship objects can be seen as an-
other technique which can be used to find ob-

jects: one takes analysis relationships and re-
fines them into objects.

6 Related Work

Several of the published OO methodologies do
address the difference between analysis (with
relationships) and design (without relation-
ships), however we consider that this sup-
port is quite superficial. For example, the
MOSES (Henderson-Sellers and Edwards 1994)
and OOADA (Booch 1994) methodologies effec-
tively include two sets of notations for relation-
ships — one set for relationships at the analy-
sis level (such as aggregations and associations),
and a second set for relationships at the im-
plementation level (such as reference attributes,
embedded objects, and friends). These method-
ologies provide little guidance on the design pro-
cess required to deal with analysis relationships,
other than to note that relationships must be
manually translated into patterns of reference
attributes (as in the example in Section 4) or
collection classes (in languages like Smalltalk).

Rumbaugh’s OMT (Rumbaugh, Blaha, Premer-
lani, Eddy, and Lorensen 1991) methodology
does take greater cognisance of the existence
of relations in design. However, OMT’s “re-
lation objects” simply link the objects partici-
pating in a relationship, in a similar manner to
the relations in relational databases (Rumbaugh
1987). Using attributes to control operation
propagation over relation objects (Rumbaugh
1988) does allow relation objects to distribute
control flow to their participating objects, but
does not support application-specific function-
ality within relation objects. Rumbaugh also
advocates language support for relation objects,
and in his “Object-Relational” language DSM
(Shah, Hamel, Borsari, and Rumbaugh 1989)
(and implicitly in OMT), relations and classes
are equally important constructs. In contrast,
we have described how analysis relationships can
be modelled by objects in standard OO lan-
guages.

Soukup’s Pattern Classes (Soukup 1994b)
are distantly related to relationship objects
(or relationship classes), even though they
were proposed for implementing design pat-
terns (Gamma, Helm, Johnson, and Vlis-

sides 1994) rather than implementing relation-
ships. Soukup’s example Composite pattern
class (Soukup 1994a) has several features in
common with a relationship object: it repre-
sents a relationship between objects, and the
relationship is managed via the relationship ob-
ject rather than by directly accessing the par-
ticipating objects. Pattern classes are distin-
guished from our relationship objects in that
pattern classes contain only the executable code
necessary to maintain the relationship: the rela-
tionship’s data are distributed into the objects
participating in the relationship.

Research continues into the modelling of rela-
tionships in object oriented design and program-
ming languages. For example, Civello (Civello
1993) describes a set of categories which can be
used to classify relationships at the design stage.
Kristensen (Kristensen 1994) identifies two cate-
gories of association relationships and describes
language extensions which can be used to imple-
ment these relationships.

6.1 Existing Systems using Relation-
ship Objects

One of the earliest uses of objects to model re-
lationships was the addition of constraints be-
tween objects’ attributes. A constraint is much
like a formula in a spreadsheet which defines a
relationship between spreadsheet cells. When
a cell changes, other cells are recalculated so
the relationship between cells is maintained. In
ThingLab (Borning 1981) objects’ attributes are
linked by constraints, which can read and up-
date other objects. When one attribute changes,
the constraint causes other attributes to be re-
calculated. More recently, systems such as Gar-
net (Myers, Guise, Dannenberg, Vander Zanden,
Kosbie, Pervin, Mickish, and Marchal 1990),
Rendezvous (Hill, Brinck, Rohall, Patterson,
and Wilner 1994) and Snart (Fenwick, Hosking,
and Mugridge 1994) have added constraints to
the basic object model. In these systems, con-
straints are modelled with objects; these con-
straint objects are thus special cases of relation-
ship objects.

6.2 Relationship Objects in Smalltalk

The evolution of the Smalltalk system also pro-
vides several examples of objects being used to
explicitly represent relationships, resulting in a
simpler design. In the original Smalltalk-80 sys-
tem (Goldberg and Robson 1983), a Smalltalk
object can have dependents — other objects
which are notified if the primary object changes.
Section 4.2 described how the dependency mech-
anism can be used to implement other relation-
ships; however, this mechanism can be viewed as
a relationship in its own right. In Smalltalk-80,
behaviour to add and remove an object’s depen-
dents, and to broadcast change notifications is
included in the Object class, which also main-
tains a global database of objects’ dependents.
ObjectWorks (ParcPlace Systems 1992), a later
version of Smalltalk, provides the Model class
which improves the handling of dependents. The
Model class records its dependencies in an in-
stance of a DependentsCollection. The Depen-
dentsCollection both stores an object’s depen-
dents, and contains special behaviour for access-
ing them and broadcasting change notifications.
The Model class does not require the global de-
pendents database, or behaviour to manage de-
pendencies. From the perspective of this paper,
the DependentsCollection explicitly represents
the relationship between an object and its de-
pendents.

VisualWorks (ParcPlace Systems 1994), an even
more recent Smalltalk version, also uses an-
other kind of explicit relationship object to en-
hance the ObjectWorks implementation of de-
pendents. Many Smalltalk objects need to in-
form their dependents whenever one of their
attributes changes. Using Models and Depen-
dentCollections, change notifications can be ef-
ficiently broadcast to an object’s dependents,
but the change notification must be triggered
explicitly by the programmer. VisualWorks in-
troduces the ValueHolder class (Woolf 1994)
which can automatically generate the required
change notifications. A ValueHolder is inter-
posed between a primary object and another
object which is the value of the primary ob-
ject’s attribute. To change the attribute, the
primary object stores the new attribute value
into the ValueHolder, and the ValueHolder au-
tomatically generates the required change noti-
fication. ValueHolders are thus essentially re-

lationship objects which model the relationship
between an object and its attributes.

7 Conclusion

Traditional object oriented methodologies have
difficulty dealing with relationships. In particu-
lar, relationships are used in analysis but not in
design or implementation, and this counteracts
some of the benefits of seamlessness and trace-
ability generally produced by object oriented
techniques. We have described how using ob-
jects to represent relationships explicitly can fi-
nesse this difficulty, allowing the relationships to
persist from analysis through design and into the
implemented program. Using explicit relation-
ship objects typically makes programs smaller
and easier to understand, and thus quicker to
write and to maintain.

We intend to continue our investigations into
the use of explicit objects to represent relation-
ships in object oriented development. In par-
ticular, we are interested in the methodological
implications of relationship objects. For exam-
ple, if relationships in design and implementa-
tion are best represented as objects, how much
special consideration of relationships in nota-
tion and process activities is needed? We are
continuing to refine experimental systems we
have built which use relationship objects (Noble
and Groves 1992; Grundy, Hosking, Mugridge,
and Fenwick 1994), and are also very interested
in finding further examples of existing systems
where relationships are modelled by objects.

Acknowledgements

We would like to thank Lindsay Groves for his
helpful comments on the first draft of this pa-
per. This work is supported by the Centre for
Object Technology, Applications, and Research
at the University of Technology, Sydney, and the
University of Waikato.

References

Berlage, T. (1992). Using taps to separate the
user interface from the application code.

In Proceedings of the ACM Symposium on
User Interface Software and Technology.

Booch, G. (1994). Object Oriented Analy-
sis and Design with Applications (Second
ed.). Benjamin Cummings.

Borning, A. (1981, October). The program-
ming language aspects of Thinglab, a
constraint-oriented simulation laboratory.
ACM Transations on Programming Lan-
guages and Systems 3(4).

Brown, M. H. and J. Hershberger (1991, De-
cember). Color and sound in algorithm an-
imation. IEEE Computer 25(12).

Civello, F. (1993). Roles for composite objects
in object-oriented analysis and design. In

OOPSLA Proceedings.

Fenwick, S., J. G. Hosking, and W. B. Mu-
gridge (1994). Visual debugging of object
oriented systems. In TOOLS Pacific.

Freeman-Benson, B. N. (1993). Converting an
existing user interface to use constraints.
In Proceedings of the ACM Symposium on
User Interface Software and Technology.

Gamma, E., R. Helm, R. E. Johnson, and
J. Vlissides (1994, October). Design Pat-
terns. Addison-Wesley.

Goldberg, A. and D. Robson (1983).
Smalltalk-80: The Language and its Im-
plementation. Addison-Wesley.

Grundy, J. C. and J. G. Hosking (1993a).
Constructing multi-view editing environ-
ments with MViews. In Proc. IEFFE Visual
Languages Workshop.

Grundy, J. C. and J. G. Hosking (1993b). The
MViews framework for constructing multi-
view editing environments. New Zealand
Journal of Computing 4(2).

Grundy, J. C. and J. G. Hosking (1994). Con-
structing integrated software development
environments with dependency graphs.
Working Paper 94/4, Department of Com-
puter Science, University of Waikato.

Grundy, J. C. and J. G. Hosking (1995). Sup-
porting flexible consistency management
via discrete change description propaga-
tion. Working Paper 95/2, Department of
Computer Science, University of Waikato.

Grundy, J. C., J. G. Hosking, W. B. Mu-
gridge, and S. Fenwick (1994). Connecting
the pieces. In M. M. Burnett, A. Goldberg,
and T. G. Lewis (Eds.), Visual Object-

Oriented Programming. Prentice-Hall.

Henderson-Sellers, B. (1994). A BOOK of
Object-Oriented Knowlege. Prentice-Hall.

Henderson-Sellers, B. and J. M. Edwards
(1994). BOOKTWO of Object-Oriented
Knowlege: The Working Object. Prentice-
Hall.

Hill, R. D., T. Brinck, S. L. Rohall, J. F.
Patterson, and W. Wilner (1994). The
Rendezvous architecture and language for
constructing multiuser applications. ACM
Transactions on Computer-Human Inter-
action 1(2).

Johnson, R. E. (1992, October). Document-
ing frameworks using patterns. In OOP-
SLA Proceedings.

Kristensen, B. B. (1994). Complex associ-
ations in object-oriented modelling. In

OOPSLA Proceedings.

Maes, P. (1987). Concepts and experiments
in computational reflection. In OOPSLA
Proceedings.

Maloney, J. H., A. Borning, and B. N.
Freeman-Benson (1989). Constraint tech-
nology for user-interface construction in

ThingLab I1. In OOPSLA Proceedings.

Myers, B. A., D. A. Guise, R. B. Dannen-
berg, B. Vander Zanden, D. S. Kosbie,
E. Pervin, A. Mickish, and P. Marchal
(1990). Garnet: Comprehensive support
for graphical, highly interactive user in-
terfaces. IEEE Computer 23(11).

Noble, J., L. Groves, and R. Biddle (1995).
Object oriented program visualisation in
Tarraingim. Technical report, COTAR.

Noble, R. J. and L. J. Groves (1992, Decem-
ber). Tarraingim — A Program Anima-
tion Environment. New Zealand Journal
of Computing 4(1).

ParcPlace Systems (1992). Object-
Works Smalltalk User’s Guide (4.1 ed.).

ParcPlace Systems.

ParcPlace Systems (1994). Visual-
Works Smalltalk User’s Guide (2.0 ed.).

ParcPlace Systems.

Pfleeger, S. L. (1991). Software Engineering:
The Production of Quality Software (sec-
ond ed.). MacMillan.

Raymond, E. and G. L. Steele (1993). The
New Hacker’s Dictionary (Second ed.).
MIT Press.

Rumbaugh, J. (1987). Relations as semantic
constructs in an object-oriented language.

In OOPSLA Proceedings.

Rumbaugh, J. (1988). Controlling propaga-
tion of operations using attributes on re-
lations. In OOPSLA Proceedings.

Rumbaugh, J., M. Blaha, W. Premerlani,
F. Eddy, and W. Lorensen (1991). Object-
Oriented Modeling and Design. New Jer-
sey: Prentice Hall.

Shah, A. V., J. H. Hamel, R. E. Borsari, and
J. E. Rumbaugh (1989). DSM: An object-

relationship modeling language. In OOP-
SLA Proceedings.

Soukup, J. (1994a). Implementing patterns.
In Pattern Languages of Program Design.
Addison-Wesley.

Soukup, J. (1994b). Taming C++: Pat-
tern Classes and Persistence for Large
Projects. Addison-Wesley.

Stroustrup, B. (1986). The C++ Program-
ming Language. Addison-Wesley.

Vander-Zanden, B. T. (1994). Optimizing
toolkit-generated graphical interfaces. In
Proceedings of the ACM Symposium on
User Interface Software and Technology.

Wirfs-Brock, R., B. Wilkerson, and L. Wiener
(1990). Designing Object-Oriented Soft-
ware. Prentice-Hall.

Woolf, B. (1994). Understanding and us-
ing the ValueModel framework in Visual-

Works Smalltalk. In Pattern Languages of
Program Design. Addison-Wesley.

