
A Visual Programming Environment for Object-Oriented Languages

J.C. Grundy, J.G. Hosking, J. Hamer

Department of Computer Science

University of Auckland,

Auckland, New Zealand

jgru1@cs.aukuni.ac.nz

Abstract

Ispel is a visual programming environment

for object-oriented languages providing

multiple views of programs, utilising both

graphics and text. These views can be used

not only for program browsing, but can

also be manipulated to visually program

with an object-oriented language.

1. Introduction

In the course of developing several large

object-oriented programs, the authors have

found diagrams representing inter-class

relationships to be a useful design and

documentation aid. The usefulness of these

diagrams suggested that they could form

the basis of a visual approach to

programming with object-oriented

languages. The principal aim of the work

presented here is to improve the

environments for two object-oriented

languages, Kea1 (Hosking et al, 90,

Mugridge et al, 91) and Eiffel (Meyer, 88),

by extending the diagramming techniques

into a visual programming system. The

two languages are quite different in detail,

but share a common approach to strong

typing, information hiding, and

polymorphism. Current environments for

both languages are quite rudimentary, with

few support tools, and those that exist

being poorly integrated.

1A kea is a colourful New Zealand alpine

bird. Kea, an object-oriented functional

language, was formerly know as Class.

We begin by examining class structure

diagrams and their uses. We then

concentrate on their use for visual

programming and develop a set of criteria

for a visual programming tool. Primary

amongst these criteria is the need to allow

multiple views of a program, with shared

information, and consistency under

change. The remainder of the paper

describes Ispel, a visual programming tool

supporting the design criteria.

2. Class Structure Diagrams

The classes, features, and relationships that

comprise an object-oriented program can

be naturally and clearly expressed using

diagrams (Booch, 86; Meyer 88;

Wasserman et al, 90; Wilson, 90). Such

class structure diagrams can represent

relationships such as generalisation

(inheritance) and aggregation (feature

hierarchies). Class structure diagrams, as

used here2, are composed of boxes and

lines laid out to form a meaningful

representation of an object-oriented

program. An alternate approach is the

nested box approach of the Mjölner

environment (Hedlin and Magnusson, 88).

Fig. 1 is a class structure diagram for a

Kea program called Wallbrace, showing a

simple feature hierarchy. Wallbrace assists

a building designer to check conformance

of a building with the wall bracing

requirements of a code of practice for

timber frame houses (Mugridge and

Hosking, 88). Fig. 2 is a class structure

diagram showing inheritance relationships

between some of the Wallbrace classes.

2 There are many notations in the

literature. This is one the authors have

found useful.

jgrundy
TOOLS US 1991 Conference, Santa Barbara, Prentice-Hall, August, 1991, pp. 129-138.

jgrundy

The arrows represent a class inheriting

from its parent. Diagrams mixing both

aggregation and inheritance are also

useful.

Class structure diagrams are useful in

several areas of object-oriented

programming (Wilson, 90):

• Analysis and Design. Diagrams present

the structure of a program for

programmers to understand (Coad and

Yourdon, 91). They can assist in

choosing classes, features, and

generalisations, and aid program

structuring (Wasserman et al, 90).

Tools to support this include:

OOATool™ (Coad and Yourdon, 91);

Software through Pictures (Wasserman

and Pircher, 87); and Graspin

(Mannucci et al, 89).

• Documentation and Browsing.

Diagrams are useful in presenting a

finished design to others to help them

understand or maintain programs.

Diagrams (particularly inheritance

ones) can often be automatically

derived from program text and may

then be used for documentation, or as

the basis for a browsing tool.

Examples of this include the good

browser for Eiffel (Interactive, 89), the

browsers in the Trellis/Owl (O’Brien

et al, 87) and ObjTalk environments

(Fischer, 87), and the THINK Pascal

environment (Symantec, 89).

• Implementation. Diagrams can form

the basis of implementations. In visual

programming construction of a

diagram causes construction of all or

part of an executable program (either

with or without an intermediate textual

representation). Systems which

support object-oriented visual

programming include: Prograph

(Gunakara, 89); Fabrik (Ingalls et al,

88); PECAN (Reiss, 85); Garden

(Reiss, 87); and the Mjölner

environment (Hedlin and Magnusson,

88).

• Debugging. Diagrams can be used to

describe the execution state of an

object oriented program, such as in the

Mjölner environment (Hedlin and

Magnusson, 88). Related to this are the

areas of program visualisation and

algorithm animation (Ambler and

Burnett, 89; Myers, 90).

These uses tend, however, to be distinct

with little overlap. As can be seen,

diagrams are useful in all phases of design

and implementation, and thus integrated

support throughout the design-cycle is

needed. As a first step to achieving an

integrated environment, we have focussed

on a visual programming tool supporting

both diagrammatic design and

implementation plus browsing and

documentation. Given the indistinct

boundary between object-oriented analysis

and design (Coad and Yourdon, 91), we

feel this tool will be useful for analysis

too.

3. Design Criteria

Following our experience with class

structure diagrams and observation of

other systems, the following design criteria

for a diagramming tool to support design

and implementation of Kea and Eiffel

programs were established:

• A specialised package is needed for

drawing diagrams during analysis and

design. This is essential for

productivity (Coad and Yourdon, 91).

Drawing class structure diagrams by

hand or using a standard drawing

package is tedious.

Class
Class Name

Feature

Feature

Connection

Single

Feature

Feature Name

Feature Type

List Feature

Building

Wing

Wings

Section

Sections

Roof Storey

StoreysRoof

Figure 1. A class structure diagram from the Wallbrace system.

Roof

FlatRoof

NonFlatRoof

StarRoof RidgedRoof LeanTo OtherRoof

Figure 2. A class structure diagram for generalisation.

• Diagrams should be automatically

translated to the implementation

language, i.e visual programming is

supported. Preferably this should be

done incrementally so that errors can

be trapped as the diagrams are

constructed.

• Diagrams are not appropriate for

everything. The authors’ view is that

text is more appropriate than diagrams

at the detailed expression level, while

diagrams are more useful for the high

level object-oriented structuring of an

application. The point at which one

becomes more useful than another

varies both at different places in the

design cycle and between different

programmers. Hence the ability to

choose the appropriate representation

to work in at any stage is important

and it is essential that the diagrams for

a program be integrated with the

program text. Thus separate views for

each representation should be available

and the programmer should be free to

move between them.

• Multiple diagrams with shared

information are essential. We have

found that as applications become

complex, the ability to construct partial

views of the application is essential.

Simple examples of this are separate

views for inheritance graphs and

feature hierarchies. The WallBrace

system provides a more complex

example. In this application, the

processing consist of three conceptual

(but interleaved) phases: entry of plan

information, loadings calculation, and

bracing requirement calculation. These

phases are pervasive, each having

effects on most of the classes in the

application. Accordingly it was found

useful to construct separate class

structure diagrams for each of the

phases, each being a “vertical slice” of

the complete system ignoring features,

subclasses, and other detail concerning

only the other phases. However, these

diagrams are by no means

independent, sharing many common

classes, features, inheritance links, etc.

The application as a whole is then a

union of the information in each of the

diagrams.

• With multiple diagrammatic and

textual views available, automatic

consistency management becomes

essential. Modification of information

in one of the views (diagram or text)

should be propagated in an appropriate

way to other views affected by the

modification. This allows

programmers to move between

representations in a consistent manner.

• Diagrams should not be “static”.

Having constructed diagrams for the

purposes of designing and

implementing a program, they can be

used dynamically to view and navigate

through a developing application,

forming the basis of a browsing tool,

and as “active” documentation.

The most interesting aspects of this

specification are the multiple

diagrammatic and textual views,

particularly the emphasis on “vertical

slices”, and the consistency management

problem. Many systems integrate textual

and graphical views, e.g. PECAN (Reiss,

85) and the Mjölner environment (Hedlin

and Magnusson, 1988) but few provide the

free interchange between representations

proposed here, nor the “vertical slice”

approach to multiple diagrams. An

exception is the Garden system (Reiss, 87)

which appears to provide both of these

capabilities, but with somewhat less

emphasis on the latter. Consistency across

views is usually provided, as in PECAN,

by allowing modification from only one

view and one-way propagation to other

views. Only the Garden system appears to

provide an inter-view consistency manager

of the sort advocated here, although Reiss

(87) acknowledges that formally

specifying the semantics of consistency

checking is extremely difficult.

We have designed and prototyped a visual

programming environment for Kea and

Eiffel, called Ispel, following the above

design criteria. The basic concepts of the

Ispel design, and use of the environment

when developing a program are described

in the following section.

4. Ispel

Ispel uses the desktop metaphor. Windows

contain the diagrams (views) for a

program; menus and dialogues are used for

user interaction. Boxes and lines

comprising a class structure diagram are

manipulated using a tool palette and

mouse. Additional programming tools are

integrated into the environment using the

same interface. Fig. 3 is a screen dump of

a Macintosh prototype of Ispel.

4.1. Views and Visual Programming

Ispel allows multiple class structure

diagrams (views) for a program. Views

contain boxes and lines, representing

classes, features, and feature or inheritance

relationships. Each view represents a

particular focus on some aspect of a

program. Views are focused around one

class: the primary class for the view. For

example, Building in Fig. 3 is the primary

class for that view.

Views can share information, so a class or

feature can appear in more than one view.

Classes can also be the primary class for

more than one view. This allows a

programmer to construct views for

different aspects of a program, and to

represent different information in each

view. Views can be displayed in different

windows, so more than one view is visible

at a time. Fig. 4 shows three views from

Wallbrace.

Programmers decide when a new view or

window is to be created, and what classes

and features are included in the view. A

class can be expanded to show existing

features, subclasses, generalisations, etc.

Fig. 5 shows expansion of the FlatRoof

class of Wallbrace. Its generalisation

(Roof) and two levels of features are

displayed. The expanded details are given

a default layout, but Ispel then allows a

user to move boxes around, the lines

connecting the boxes being automatically

redrawn. Boxes can be hidden (no program

modification) from views, in which case

the boxes and lines below the box are also

removed from the view.

Figure 3. Screen dump of Ispel showing part of the Wallbrace

system.

Figure 4. The Building, Roof, and Wall views from Wallbrace.

Expand

FlatSection

FlatRoof

Roof

Roof FlatSection

FlatRoof

Roof

LoadDirection

along

integer

BracingUnit

Direction

direction

Figure 5. A class being expanded and automatically laid out by

Ispel.

Boxes and lines representing classes,

features, and inter-class relationships can

be added to views (causing program

modification) using the palette provided.

Lines can be connected to the top and

bottom of boxes, or to the sides of boxes.

Boxes and lines can be cut from a view,

resulting in modification of the program,

and other views possibly being updated.

Classes and features can be renamed, and

one class can be selected to replace

another in a diagram. More detailed

information can optionally be represented

in a graphical view. This includes the

visibility of features (public or private),

and whether a feature is a class parameter,

procedure, or function.

Programmers can create new views for a

class, initially containing only the chosen

class. Additional information is added by

expanding existing boxes or adding new

ones. Additional windows can be created

allowing several simultaneous views.

Multiple programs can be constructed at

one time, and both the graphical and

textual aspects of programs can be saved

to files.

4.2. Visual to Textual Cross-Over

Not all programming is performed using

graphics in Ispel. High-level, object-

oriented aspects of programs are

constructed and viewed visually, but

implementation of feature bodies is coded

in text. We feel that the expression level

aspects of Eiffel and Kea are better suited

to textual construction. Editing of the

textual representation of classes is

integrated with the visual programming. A

textual representation of a class can be

obtained, by double-clicking on the class

box, and then edited. Fig. 6 shows a

graphical and textual representation of the

Roof class from Wallbrace.

The current Ispel implementation only

supports one textual view of a class,

showing all of the contents of that class,

not just those displayed in the graphical

view the textual view was accessed from.

Future implementations will include

multiple textual views, allowing textual

views of a class to be tailored in a similar

manner to the diagrammatic views.

4.3 Consistency

An important aspect of diagrammatic

views is that they are always kept

consistent. If several views share

information, and that information is

changed in one view, all views are updated

to reflect the change. For example, if the

feature Roof is deleted from class Section

in Fig. 4, all views including this feature

are updated to reflect the change.

Cross representational consistency

between diagram and textual views is not

as well developed as yet. Propagation of

changes is currently only unidirectional

from diagram to text. For example, if the

feature across is deleted from the graphical

view in Fig. 6, then the textual view is

updated appropriately. Consistency

between the graphical and textual

representations is maintained by using a

common underlying representation for

views. Propagation of changes in textual

views to corresponding graphical views is

currently being implemented.

When complete, this approach will have

the advantage that all diagram and textual

representations of programs are consistent

with each other, with consistency

maintained by the environment, not the

programmer. The integration of graphics

and text provides flexibility in that a

programmer can choose the appropriate

representation in which to construct

programs.

4.4. Program Navigation Using Views

Multiple views can be used to browse

through a program. The structure of the

program can be viewed in many different

ways, and additional views created to aid

program navigation. As the textual

representation for the implementation of

classes can be accessed via the graphical

views, Ispel provides a high-level structure

for accessing implementation details.

To navigate between views, two

complementary facilities are provided.

Classes have a view icon which, when

double-clicked, changes the view. Each

class has one view called a primary view,

class Roof

export across, along;

feature

across : RoofDirection;

along : RoofDirection;

end -- class Roof

Figure 6. Visual and textual views of the Roof class in

Wallbrace.

View icon

Menu

Figure 7. An example of view navigation in Ispel.

which is the “most useful” view for the

class. Double-clicking on the class view

icon selects this view. The programmer

can change the primary view for a class if

required to assist view navigation. As

classes can have several views for which

they are the primary class, and can also be

used in many other views, a second facility

provides menus for view selection. Fig. 7

shows an example of view navigation.

Roof occurs in the view for the Section

class, which the programmer is about to

display. Views can be displayed in

different windows or the same window (to

avoid screen clutter).

5. Structure of Ispel

Ispel uses a three level architecture, shown

in Fig. 8. The top level is the screen

representation of both the visual and

textual versions of the program, the level

that a user of Ispel sees and manipulates.

The middle level contains abstract versions

of the visual and textual representations,

eliminating layout information. The visual

representation is composed of views, i.e

class structure diagrams. The textual

representation is a collection of classes

including information, such as expressions,

not represented visually. The bottom level

is an abstract representation of the object-

oriented parts of the entire program. The

main purpose of this layer is to provide

consistency between each of the views and

also with the textual representation.

Changes to this layer are propagated to

views and the program text.

The purpose of each layer is clearer if we

examine the sorts of operations that affect

each layer. The table below gives

examples. The important point to note is

that if a change is made to information in

the common layer, that change must

propagate to each view (diagram or text)

using that information.

A formal model of Ispel’s architecture has

been developed which defines the visual

and common levels in terms of graphs and

operations that manipulate these graphs.

Formalising Ispel has had several benefits.

The way in which different aspects interact

is fully defined, and consistency between

different representations maintained. As

operations that can change Ispel’s state are

defined formally, they can be proven

correct, and thus the environment proven

to work as it should. Formal definition also

gives an abstract view of the environment,

serving as a specification for how the basic

aspects of Ispel should behave, and how

they must be kept consistent.

 Changes

Visual Textual

 Screen only Move a box Add white space

 Screen and View Hide a box

Expand a box

Modify a feature body

 Screen, View and

Common OO

Add a feature box

Remove a feature box

Add a feature

Remove a feature

Screen

Representation

(Boxes and Lines)

Screen

Representation

(Text)

Abstract Visual

Representation

(Views)

Textual

Representation

Common

Object-Oriented

Representation

Figure 8. Representation levels in Ispel.

object

language_object visual_object

class

generalisation

feature viewview_object

box_shape line

Figure 9. Classes representing language elements in Ispel.

We have developed two prototypes of

Ispel and are in the process of

implementing a more complete

development environment. The first

prototype of Ispel was developed using

LPA MacProlog™ on the Macintosh. The

purposes of this prototype were to

determine if visual programming was

applicable for object-oriented languages,

and to refine the user interface and visual

programming aspects of Ispel. A second

prototype of Ispel was implemented using

Eiffel. The purpose of the Eiffel prototype

was to develop and refine an object-

oriented implementation of Ispel, and to

identify important parts of the formal

definition.

Many aspects of a visual programming

system are appropriately expressed in an

object-oriented manner, e.g. the objects

that comprise a system share attributes and

functions at different levels of abstraction.

Fig. 9 shows the hierarchy representing the

visual and textual language elements of a

Kea program within Ispel. Ispel operations

are also expressed as objects, and

genericity and generalisation permit reuse,

polymorphic assignment, and code sharing

between operations. Expressing operations

as objects also allowed an undo facility,

important for interactive software (Reiss,

85), to be provided at minimal cost.

Relationships, such as inheritance and

feature, are also expressed using objects,

as is the framework for the environment.

This model of implementation is similar to

the OROS (Object, Relationship, and

Operation System) model of the Arcadia

environment (Rosenblatt et al, 89). Key

ideas of inter-object dependency,

propagation of changes via relationships,

and visual representation of an underlying

program have been developed as part of

this model.

6. Conclusions and Future

Research

We have described Ispel, a visual

programming environment for object-

oriented languages. We have found Ispel

to be useful for programming object-

oriented systems. Most of the diagrams in

this paper have been drawn using the

Prolog prototype of Ispel. Reconstruction

of parts of the Wallbrace system with Ispel

has demonstrated that this environment

significantly enhances the speed of

program development. The object-oriented

design of the Eiffel prototype was

constructed and modified using the Prolog

prototype.

The major conclusions of our work are:

• A multiple view “vertical slice”

approach to both visual programming and

program browsing allows programmers to

focus on particular aspects of a program.

In the process, other irrelevant information

can be excluded. Using the set-of-services

approach to class construction advocated

by Meyer (1988) leads to classes

containing many features, but where these

features tend to be naturally grouped into

common service areas. Constructing

multiple views, one concentrating on each

group, allows the complexity of such

classes to be managed.

• Consistency between views is

critical. Our formal model is one step

towards providing a semantics for

consistency management, while the object-

oriented implementation provides a base

set of tools to implement those semantics.

Currently, we are developing a full

implementation of Ispel using C++ with an

X windows graphical user interface. This

will provide an environment intended for

multi-user development, with interfaces to

the C++, Eiffel, and Kea compilers and

run-time systems. It will help to further

refine many concepts of Ispel, and assist

enhancement of the implementation and

formal models. A performance evaluation

of the environment is planned to determine

how much assistance such a tool gives to

object-oriented development.

The diagramming notation for Ispel will be

extended to provide more visual

programming power, and include more

powerful design and implementation

facilities. We have noted that there are

many commonalities between aspects of

direct manipulation, diagramming, and

visual programming systems. We hope to

simplify the construction and modification

of all of these systems by abstracting the

implementation and formal models for

Ispel so that more generic environment

components can be produced for reuse.

Acknowledgements

The authors would like to thank Iain

Shearer and Rick Mugridge for their help

in developing this research project. The

financial assistance of Mana Systems Ltd,

the Building Research Association of New

Zealand, and the University of Auckland

Research Committee is gratefully

acknowledged.

References
Ambler, A., Burnett, M., 1989: “Influence

of Visual Technology on the Evolution

of Language Environments”, IEEE

Computer, October, pp. 9-22.

Booch, G., 1986: “Object-Oriented

Development”, IEEE Transactions on

Software Engineering, Vol. SE-12, No.

2, February, pp. 211-221.

Coad, P., Yourdon, E., 1991: “Object-

Oriented Analysis”, Second Edition,

Yourdon Press.

Fischer, G., 1987: “Cognitive View of

Reuse and Redesign”, IEEE Software,

July, pp. 60-72.

Gunakara Sun Systems, 1989: “Prograph

Reference Manual”, The Gunakara Sun

Systems Ltd.

Hedlin G., Magnusson, B.,1988: “The

Mjölner environment: direct interaction

with abstractions”, Proc ECOOP ‘88,

pp41-54.

Hosking, J.G., Hamer, J., Mugridge W.B.,

1990: “Integrating functional and

object-oriented programming”, Proc

TOOLS Pacific, Sydney, pp. 345-355.

Ingalls, D., Wallace, S., Chow, Y.Y.,

Ludolph, F., Doyle, K., 1988: “Fabrik:

A Visual Programming Environment”,

OOPSLA ‘88 Proceedings, pp. 176-

189.

Interactive, 1989 “Eiffel: The

Environment”, Technical Report TR-

EI-5/UM (Version 2.2), Interactive

Software Engineering Inc., August.

Mannucci, S., Mojana, B., Navazo, M.C.,

Romano, V., Terzi, M.C., Torrigiani, P.,

1989: “Graspin: A Structured

Development Environment for Analysis

and Design”, IEEE Software,

November, pp. 35-43.

Meyer, B., 1988: “Object-Oriented

Software Construction”, Prentice-Hall.

Mugridge W.B., Hosking J.G., 1988: “The

development of an expert system for

wall bracing”, Proc 3rd New Zealand

Expert System Conference, Wellington,

pp. 10-27.

Mugridge W.B., Hamer, J., Hosking J.G.,

1991: “Multi-methods in a statically-

typed programming language”, to be

presented to ECOOP ‘91, Geneva, July.

Myers, B.A., 1990: “Taxonomies of

Visual Programming and Program

Visualization”, Journal of Visual

Languages and Computing, Vol. 1, No.

1, March, pp. 97-123.

O’Brien, P.D., Halbert, D.C., Kilian, M.F.,

1987: “The Trellis Programming

Environment”, OOPSLA ‘87

Proceedings, pp. 91-102.

Reiss, S.P., 1985: “PECAN: Program

Development Systems that Support

Multiple Views”, IEEE Transactions on

Software Engineering, Vol. 11 (3),

March, pp. 276-285.

Reiss, S.P., 1987: “Working in the

GARDEN Environment for Conceptual

Programming”, IEEE Software,

November, pp. 16-26.

Rosenblatt, W.R., Wileden, J.C., Wolf,

A.L., 1989: “OROS: Toward a Type

Model for Software Development

Environments”, OOPSLA ‘89

Proceedings, pp. 297-304.

Symantec Corporation, 1989: “THINK

Pascal Reference Manual”, Symantec

Corporation.

Wasserman, A.I., Pircher, P.A., 1987: “A

Graphical, Extensible, Integrated

Environment for Software

Development”, SigPlan Notices, Vol.

22, No. 1, January, pp. 131-142.

Wasserman, A.I., Pircher, P.A., Muller,

R.J., 1990: “The Object-oriented

Structured Design Notation for

Software Design Representation”, IEEE

Computer, March, pp. 50-63.

Wilson, D.A., 1990: “Class Diagrams: A

Tool for Design, Documentation and

Teaching”, JOOP, January/February,

pp. 38-44.

