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Abstract—This study tackles the online user allocation problem in mobile edge computing (MEC) systems powered by non-orthogonal
multiple access. App vendors need to determine a proper wireless channel in a base station/edge server and sufficient transmit power
for every user. We consider a stochastic MEC system where users arrive and depart over time. When an edge server runs out of
computing resources, some users will have to wait until the resources become available again, which incurs an allocation delay cost.
This cost is often not investigated in many studies, which also do not consider a multi-cell, multi-channel system as we do in this work,
due to its complexity. We aim to minimize the allocation delay and transmit power costs, increasing the system’s energy efficiency. To
achieve this objective while guaranteeing users’ data rate requirements over time, we adopt the Lyapunov framework to convert this
long-term optimization problem into a series of subproblems to be solved in every time slot. To solve the aforementioned subproblems
efficiently, we present a distributed game theory-based approach. The proposed algorithm is theoretically evaluated and experimentally
demonstrated to outperform several baseline and state-of-the-art methods, highlighting the significance of systematic consideration for
both computation and communication aspects of this problem.
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1 INTRODUCTION

MOBILE edge computing (MEC) fuels the potential of
latency-sensitive applications (smart cities, IoT, criti-

cal monitoring systems) as edge servers can be installed at
cellular base stations (BSs) in close distance to users. App
vendors can rent computing resources in edge servers and
host their services for their users to access. To facilitate the
massive connectivity over 5G/6G networks, non-orthogonal
multiple access (NOMA) is proposed [1]. Compared to tra-
ditional multi-access methods for wireless communication
(e.g., OFDMA, TDMA, or CDMA), NOMA achieves greater
spectral efficiency and user throughput performance by
accommodating multiple users concurrently with the same
frequency or time resources in the power or code domain
[1]. Integrating NOMA into MEC systems will further pro-
mote latency-sensitive applications in the 5G/6G era.

The edge user allocation (EUA) problem has been investi-
gated extensively in recent years as an offline problem [2],
[3], [4], [5], [6], [7]. MEC researchers have begun to study
computation offloading with NOMA. However, the EUA
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problem in NOMA-based MEC still remains open. Here, we
study an online EUA problem in downlink multi-channel
multi-cell power-domain NOMA-based MEC systems. In
power-domain NOMA, a frequency channel can serve mul-
tiple users simultaneously. An app vendor needs to select
a suitable subchannel in a suitable BS/edge server1 with a
sufficient amount of transmit power to serve each user and
satisfy its data rate requirement. This functionality is offered
in MEC systems as app vendors can now access and lever-
age network data such as received signal, received power,
throughput, neighbor cells, QoS, etc. [8], [9]. We tackle a
highly stochastic time-slotted MEC system. In every time
slot, there is a random number of user arrivals and depar-
tures. All future user arrivals and departures are unknown.
Applications hosted on edge servers usually serve users
by processing their requests then returning a large amount
of data, such as videos published by content providers or
graphics rendered by VR/AR applications. Thus, this study
focuses on downlink transmissions.

When allocating users, app vendors have to incorporate
two types of costs. Firstly, due to the heterogeneity and
limitation of edge servers’ computing resources [10], new
users might have to wait until existing users depart the
system and free up the occupied computing resources in
edge servers. This incurs an allocation delay cost. Secondly,
the transmit power cost must be minimized. With the above
in mind, a minimum data rate requirement must be fulfilled
for as many users as possible. In NOMA, the transmit
powers allocated to different users are tightly coupled and
must be considered in conjunction with each other.

Existing user allocation methods often do not jointly

1. The terms ”edge server” and ”base station” (BS) will be used
interchangeably.
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consider computation and communication aspects of MEC.
These approaches in MEC [2], [7], [11], [12], [13] neglect the
critical communication aspect such as power control, the
availability of multiple subchannels, and intra-cell/inter-
cell interference, especially in NOMA-based networks. This
is highly uneconomical since app vendors can now utilize
network data. Meanwhile, user allocation methods in pure
cellular networks lack the consideration of computation
aspect of MEC as edge servers have different and limited
amounts of computing resources. To simplify the problem,
many of those do not take into account multi-channel [14],
[15] or multi-cell [16], [17], or even impose a cap on the
number of users on each subchannel [18], [19], [20], un-
necessarily impeding the prospect of NOMA. Furthermore,
many user allocation approaches have been investigated in a
static scenario where temporal system dynamics is out of the
equation. Without the temporal dimension, the allocation
delay cost could be very high and it would impact users’
quality of experience profoundly. In this study, we overcome
all these limitations. We jointly make two decisions for
each user: 1) user allocation, including BS/edge server and
channel assignments; and 2) power allocation, so that the
allocation delay and transmit power costs are minimized
while not violating a number of constraints (long-term data
rate requirement, resource, and proximity constraints) over
all time slots. Fig. 1 provides an illustration of the EUA
problem. Our key contributions include:

• We formulate an online EUA problem in stochas-
tic multi-channel multi-cell NOMA-based MEC. We
adopt Lyapunov optimization to convert this long-
term problem into a series of subproblems to be
solved in individual time slots. Unlike typical adop-
tions of Lyapunov optimization that model target
systems as queuing systems, our approach aims to
stabilize users’ data rates over time.

• We address a number of limitations of existing ap-
proaches in power and user allocation as identified
above. In summary, they do not jointly consider
the communication aspect (power control, multi-
channel, multi-cell, interference), the computation
aspect (heterogeneity and limitedness of computing
resources), and the user dynamics (random user ar-
rivals and departures) of an MEC system. Some even
limit the number of users on a subchannel.

• We show that the subproblem mentioned above is a
potential game. Due to it being an NP-hard problem,
it is intractable to find an optimal solution in large-
scale scenarios. To find a sub-optimal solution effi-
ciently, or a Nash equilibrium in this game, within
each time slot, we introduce a two-stage decentral-
ized game theoretical user and power allocation al-
gorithm, utilizing the distributed nature of MEC.

• We theoretically and experimentally evaluate the
proposed approach and show that it outperforms
various baseline and state-of-the-art approaches sig-
nificantly.

The rest of this paper is organized as follows. Key
motivations are discussed in Section 2. Section 3 models
the MEC system with different types of associated costs
and formulates the problem. In Section 4, we present a

downlink

inter-cell 

interference
downlink

BS 3

BS 2

BS 1

user 1 user 2

intra-cell 

interference

allocation delay cost

Frequency/Time

T
ra

n
sm

it
 p

o
w

er

user 1

user 2

Frequency/Time

T
ra

n
sm

it
 p

o
w

er

user 1

user 2

Fig. 1: An illustration of EUA problem in NOMA-based
MEC

Lyapunov optimization-based online user allocation algo-
rithm. As part of this online algorithm, we introduce a
game-theoretical approach in Section 5. Our approach is
experimentally evaluated in Section 6. In Section 7, relevant
literature is reviewed. Finally, Section 8 concludes the paper
and suggests some future research directions.

2 MOTIVATION

A 5G cellular network is usually densely populated with
many multi-channel BSs, especially in high-traffic areas (up
to 50 base stations per km2) [21], creating numerous over-
lapping cell coverage areas. Thus, a user may have many
neighbor BSs/edge servers and experience severe inter-cell
interference [15]. An app vendor needs to carefully deter-
mine which subchannel in which BS should serve the user.
Compared with a usual cloud server, computing resources
in an edge server are much more scarce and heterogeneous
[22], [23]. Therefore, when an edge server runs out of
computing resources, users allocated to this server might
have to wait until some existing users depart [24]. Without
incorporating this characteristic into user allocation, some
of the users might have to wait for an excessive amount of
time. This queuing system is very common in applications
such as online gaming [25], [26], [27].

In power-domain NOMA, multiple users share the same
subchannel at the same time. Still, a subchannel cannot
simultaneously serve too many users because of the severe
interference. App vendors thus need to find a balance in
the number of users allocated to different subchannels.
To decode the superposed signal transmitted from the BS,
which includes the signal intended to other users on the
same subchannel, each user employs a multi-user signal
separation method called successive interference cancella-
tion (SIC). In downlink transmissions, this is facilitated by
varying users’ transmit power. In a single-cell scenario, on a
subchannel, weaker users (those with poorer channel gain)
receive more transmit power than stronger users (those with
better channel gain) to ensure successful decoding of the
superposed signal. However, this approach is not applicable
in multi-cell scenarios since a user’s channel condition is
partly influenced by strong inter-cell interference, which
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cannot be neglected.

3 SYSTEM MODEL

We model a NOMA-based multi-channel multi-cell MEC
system in this section and summarize the key notations in
Appendix A of the supplementary file.

3.1 System Description

Edge servers: An MEC system consists of M BSs denoted
by S = {s1, ..., sM}. The cell radius of BS sj ∈ S is
radj . The set of K subchannels in each BS sj is denoted
by Cj = {c1j , ..., cKj }. We divide the total bandwidth B
of each BS sj equally into all subchannels Cj . Each sub-
channel ckj ∈ Cj has a bandwidth Bk

j = B/K . Each BS
sj has an edge server installed, whose computing capac-
ity is denoted by an |R|-dimensional vector Rj = (Rr

j )
with dimension Rr

j being the capacity of resource type
r ∈ R = {CPU, memory, storage,...}.

Mobile users: This system’s operational timeline is rep-
resented by a series of equal-length time slots t. Let U(t)
denote the set of newly-arrived users ui in time slot t, and
U denote the set of all the current users in the system. We use
an |R|-dimensional vector wi = (wr

i ), r ∈ R, to denote the
required amount of computing resources to accommodate
user ui in an edge server. The distance from user ui to BS
sj is dj,i. We use Si = {sj ∈ S|dj,i ≤ radj},∀ui ∈ U(t),
to denote the set of user ui’s neighbor BSs, i.e., BSs that
cover the user. The length of a user session (i.e., the period
of time when a user uses the application, or is served by an
edge server) is unknown at any time and represented by a
number of time slots. For every user ui, we need to make
two decisions as follows.

User Allocation Decision. akj,i(t) denotes user ui’s bi-
nary decision variable in time slot t. akj,i(t) = 1 if user ui is
assigned to BS sj on subchannel ckj in time slot t; otherwise
akj,i(t) = 0. Let a(t) = {ai(t)|ui ∈ U(t)} represent the user
allocation strategy comprised of all the users’ decisions in
time slot t. ai(t) ≜ (sj , c

k
j ), where akj,i(t) = 1, indicates the

BS and subchannel that serve user ui in time slot t. We let
ai(t) ≜ (0, 0) when user ui is unallocated.

Power Allocation Decision. pi(t) indicates user ui’s al-
located transmit power in time slot t. Let p(t) = {pi(t)|ui ∈
U} represent the power allocation strategy comprised of
the power allocation decisions for all the current users in
the system in time slot t. We consider a discrete power
control scheme [28], [29], [30], where the transmit power
of each user is selected from a set L of discrete power levels.
Discrete power control enables a simpler transmitter design
than continuous power control and significantly reduces the
overhead incurred by information exchange among network
nodes [29].

Let Uj(t) = {ui ∈ U|
∑K

k=1 akj,i(t) = 1}, be the set of
users allocated to BS sj in time slot t, and Uk

j (t) = {ui ∈
U|akj,i(t) = 1}, be the set of users allocated to subchannel
ckj in BS sj in time slot t, Uk

j (t) ⊆ Uj(t). A user cannot
be allocated to multiple subchannels or BSs in a time slot.
During a user session, an allocated user can switch to other
subchannels in the same BS. We do not allow switching an
allocated user to another BS unless necessary (a user might
move outside the coverage area of its associated BS, in this

case we consider the user as a new user in the next time
slot) since it would interrupt the user session and require
migrating user data back and forth from one edge server to
another, which could be very costly if not impractical.

3.2 Allocation Delay Model

When user ui is assigned to server sj that has insufficient
computing resources, ui will be put in a waiting list Qj

waiting to be served. Once one or more existing users have
left and free up the occupied resources, server sj can start
serving the users in the waiting list on a first-come, first-
served basis. Given edge server sj ’s computing capacity, we
can easily calculate Nj , the maximum number of simulta-
neous users it can serve in a time slot. For instance, say
there are three amounts/levels of computing resources wi

that might be required by each user ui, wi ∈ {< 3, 1, 2, 2 >
,< 1, 3, 1, 2 >,< 2, 1, 3, 1 >}. An edge server sj with a
capacity of < 43, 43, 41, 41 > is capable of serving 22 users
simultaneously (7 users that require < 3, 1, 2, 2 > each, 10
users that require < 1, 3, 1, 2 > each, and 5 users that require
< 2, 1, 3, 1 > each); Nj = 7 + 10 + 5 = 22. We use ℓ to
represent the expected length of a user session, which can
be approximated based on historical data in practice. Edge
server sj ’s service rate can then be calculated by Nj/ℓ. Let
nj(t) be the number of users that server sj is serving and
Qj(t) be the length of server sj ’s waiting list in time slot t.
The number of time slots that a newly-arrived user ui has to
wait until being served by sj , or ui’s allocation delay cost,
can be estimated by:

Mi(a(t)) =


[nj(t)−Nj+Qj(t)+1]+

Nj/ℓ
, if

∑
ckj∈Cj

akj,i(t) = 1

Mmax, if
∑

sj∈S

∑
ckj∈Cj

akj,i(t) = 0

(1)
where Mmax is the penalty when user ui is unallocated,
which can be any arbitrarily large number. An unallocated
user always incurs a greater allocation delay cost than an
allocated user to drive app vendors into allocating users.
When user ui is allocated to edge server sj , its alloca-
tion delay cost is [nj(t)−Nj+Qj(t)+1]+

Nj/ℓ
. The denominator is

the service rate of server sj . Intuitively, the numerator
([nj(t)−Nj +Qj(t) + 1]+) is the number of users currently
served by sj and users ahead of the newly-arrived user
in the waiting list Qj when sj is exhausted of computing
resources. We have [nj(t)−Nj+Qj(t)+1]+ = 0 when server
sj has enough resources to serve the new user immediately
without putting it in waiting list Qj . This allocation delay
cost is one of the optimization objectives to be minimized.

3.3 Interference Model

3.3.1 Signal Model
With NOMA scheme, a BS transmits a superposition-

coded signal to everyone on a subchannel [1]. In downlink
transmissions, users employ SIC to decode the received
superposed signal. Without loss of generality, suppose that
all users Uk

j (t) on subchannel ckj are sorted by their channel
conditions: u1, u2, ..., u|Uk

j (t)|, where u1 has the weakest
channel condition and u|Uk

j (t)| has the strongest channel
condition. User u1, being the weakest user in Uk

j (t), decodes
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the signal without performing SIC. Then, user u1’s decoded
component is subtracted from the superposed signal. The
subsequent user in Uk

j (t), i.e., user u2, can decode the
received signal without interference from user u1. Follow-
ing this principle, the signal received by user ui ∈ Uk

j (t)
on subchannel ckj in BS sj in time slot t has a signal-to-
interference-plus-noise ratio γi(t) of:

γi(t) =
|hk

j,i|2pi(t)

|hk
j,i|2

∑|Uk
j (t)|

q=i+1 pq(t) + Ikj,i(t) + σ2
(2)

where |hk
j,i|2 is user ui’s channel gain on subchannel ckj ,

|hk
j,i|2

∑|Uk
j (t)|

q=i+1 pq(t) is the intra-cell interference experi-
enced by user ui (caused by those sharing the same sub-
channel with user ui), Ikj,i(t) =

∑
sl∈Si\{sj} |h

k
l,i|2pkl (t) is

the inter-cell interference experienced by user ui (caused by
users in ui’s neighbor BSs), and σ2 is the addictive white
Gaussian noise. Taking into account the factors that affect
a channel’s condition, the SIC decoding order of users on
subchannel ckj in time slot t must follow:

Θk
j (t) ≜

Ikj,1(t) + σ2

|hk
j,1|2

≥ ... ≥
Ik
j,|Uk

j (t)|(t) + σ2

|hk
j,|Uk

j (t)||
2

(3)

where weaker users (high inter-cell interference and low
channel gain) decode before stronger users. According to
[14], Θk

j (t) is optimal for efficiently improving each indi-
vidual user’ data rate. When Θk

j (t) is followed, user ui’s
achievable data rate ri in time slot t is then:

ri(t) = Bk
j log2

(
1 + γi(t)

)
(4)

3.3.2 Interference Cost Model
Given allocation strategies a(t) and p(t), the

interference-plus-noise Ii(a(t),p(t)) experienced by user ui

can be measured by:

Ii(a(t),p(t)) =



|hk
j,i|2

∑|Uk
j (t)|

q=i+1 pq(t) + Ikj,i(t) + σ2,

if
∑

ckj∈Cj

akj,i(t) = 1

Imax, if
∑

sj∈S

∑
ckj∈Cj

akj,i(t) = 0

(5)
where Imax is the theoretical highest interference-plus-noise
that a user may receive in any subchannel. Imax can also
be any arbitrarily large number. It acts as a penalty for
unallocated users to drive the allocation of users, similar
to how the allocation delay cost is formulated in Section 3.2.
This interference cost is one of the optimization objectives
to be minimized. By minimizing the interference cost, the
transmit power cost will consequently be minimized.

3.4 Problem Formulation
We formulate the online EUA problem as follows.

(P1)min lim
T→∞

1

T

T−1∑
t=0

E
{ ∑

ui∈U

(
η1Mi(a(t)) + η2Ii(a(t),p(t))

)
︸ ︷︷ ︸

Y (a(t),p(t))

}

s.t.
|Uj |∑
i=1

|R|∑
r=1

K∑
k=1

akj,i(t)w
r
i ≤ Rr

j ,∀sj ∈ S,∀t (6a)

M∑
j=1

K∑
k=1

akj,i(t)dj,i ≤ radj ,∀ui ∈ U ,∀t (6b)

Θk
j (t),∀sj ∈ S,∀ckj ∈ Cj ,∀t (6c)

lim
T→∞

1

T

T−1∑
t=0

E
{
ri(t)

}
≥ rreq,∀ui ∈ U (6d)

M∑
j=1

K∑
k=1

akj,i(t) = 1,∀ui ∈ U (6e)

K∑
k=1

|U|∑
i=1

akj,i(t)pi(t) ≤ Pj ,∀sj ∈ S,∀t (6f)

akj,i(t) ∈ {0, 1},∀sj ∈ S,∀ui ∈ U ,∀ckj ∈ Cj (6g)

pi(t) ∈ R≥0,∀ui ∈ U ,∀t (6h)

where η1 and η2 (η1 + η2 = 1) are the weights that indicate
the importance of allocation delay and interference costs.
Parameters η1 and η2 are adjustable and to be set empir-
ically by the app vendor, depending on its priorities for
allocation delay and interference cost (or energy efficiency).
For example, if the app vendor wants to prioritize energy
efficiency, it can increase the value of η2, and vice versa.
As the MEC system is highly stochastic, optimizing the
long-term system performance is more beneficial than op-
timizing the short-term, spontaneous system performance.
The objective is to minimize the time-average expectation
of system cost, which consists of allocation delay costs
and interference costs over multiple time slots. We use
Y (a(t),p(t)) =

∑
ui∈U

(
η1Mi(a(t)) + η2Ii(a(t),p(t))

)
de-

note the system cost incurred by user and power allocation
strategies a(t) and p(t) in time slot t.

Constraints (6a) and (6b) ensure that an edge server/BS
does not accommodates users outside its computing capac-
ity and cell coverage, respectively. Constraint (6c) enforces
the SIC decoding order (3). Constraint (6d) ensures a long-
term minimum data rate requirement rreq for every user.
Constraint (6e) makes sure that a user is not allocated to
multiple subchannels or BSs in a time slot. Constraint (6f)
ensures that the total power assigned to all users in a BS
does not exceed the BS’s maximum power allowance at any
time. Constraints (6g) and (6h) define the acceptable values
of akj,i(t) and pi(t).

4 ONLINE USER AND POWER ALLOCATION WITH
LYAPUNOV OPTIMIZATION

In this section, we introduce a Lyapunov optimization-
based algorithm to solve problem P1.

4.1 Problem Transformation with Lyapunov Optimiza-
tion

The MEC system being studied is a time-slotted system.
The app vendor enforces a minimum data rate requirement
rreq for its users. The conventional method would be to
enforce this constraint in every time slot. In other words,
every user would receive this exact data rate in every time
slot. In contrast, our approach allows user data rate to
be slightly higher or lower than the target data rate rreq ,
which might be more beneficial in terms of system cost
minimization. In the long term, the data rate achieved by
our approach still meets the data rate requirement (6d). As
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the user data rate can be slightly higher or lower than the
target data rate in a time slot, there must be a mechanism to
drive the data rate towards the target data rate in the next
time slot(s), i.e., to stabilize users’ average data rate over
time. We introduce a concept called accumulated data rate for
each user ui, defined by:

Di(t+ 1) = max{Di(t) + rreq − ri(t), 0} (7)

where Di(0) = 0,∀ui ∈ U . The accumulated data rate
Di(t + 1) of a user ui represents its overdue data rate
accumulated over t time slots relative to the data rate
requirement rreq . Its value increases if the user’s data rate
in the previous time slot ri(t) decreases and vice versa.
This can be used to adjust the user and power allocation
strategies to stabilize users’ average data rate over time
as enforced by (6d). To fulfill the long-term data rate re-
quirement, Di(t) must be stabilized, or mean rate stable

[31]: lim
t→∞

E
{
Di(t)

}
t = 0. Based on Eq. (7), we define a

quadratic Lyapunov function: L(D(t)) ≜ 1
2

∑
ui∈U Di(t)

2,
where D(t) ≜ {Di(t),∀ui ∈ U}. We can see that L(D(t)) is
high when there is at least one user with a high accumulated
data rate Di(t), and L(D(t)) is low when the accumulated
data rate of every user is small, representing a stable state.
We then define a conditional Lyapunov drift to observe how
the Lyapunov function changes between two consecutive
time slots: ∆(D(t)) ≜ E{L(D(t + 1)) − L(D(t))|D(t)}.
We minimize the system cost while stabilizing users’ av-
erage data rate. By incorporating the system cost into the
Lyapunov drift above, our optimization objective can be
fulfilled without violating the data rate constraints. This can
be achieved via a drift-plus-penalty:

∆(D(t)) + V E
{ ∑

ui∈U

(
η1Mi(a(t)) + η2Ii(a(t),p(t))

)∣∣D(t)
}

where V > 0 is a parameter which adjusts the relative
importance of the system cost to the accumulated user
data rate. In other words, V controls the rate of stabilizing
user data rate. Depending on the application context, app
vendors can flexibly regulate the trade-off between time-
average system cost and accumulated data rate by changing
the value of V . For instance, they can increase V to relax
the data rate requirement and put more emphasis on sys-
tem cost minimization. Under the Lyapunov optimization
scheme, we pursue the optimization objective in P1 by
minimizing the supreme bound of the above drift-plus-
penalty.

Lemma 1. Given any user and power allocation strategy in any
time slot, the drift-plus-penalty is bounded by:

∆(D(t)) + V E
{ ∑

ui∈U

(
η1Mi(a(t)) + η2Ii(a(t), p(t))

)∣∣D(t)

}

≤ O +
∑
ui∈U

E
{
r2i (t)

2
+Di(t)

(
rreq − ri(t)

)
− rreqri(t)

+ V
(
η1Mi(a(t)) + η2Ii(a(t), p(t))

)∣∣D(t)

}
(8)

where O =
r2req
2 is a finite constant.

Proof. See Appendix B.

Next, we propose OUAD (Algorithm 1), an Online User
Allocation algorithm in Dynamic NOMA-based MEC sys-
tems, which formulates a user and power allocation strategy,
a(t) and p(t), to lower the upper bound of the drift-plus-
penalty (8) in every time slot, effectively solving Problem
P1. Based on Lemma 1 and the concept of minimizing an
expectation opportunistically [31], we can accomplish this
by solving problem P2 defined as follows in every time slot.
P2 is derived from the right-hand-side term of (8), which is
the upper bound of the drift-plus-penalty.

(P2) min
a(t),p(t)

∑
ui∈U

(
r2i (t)

2
+Di(t)

(
rreq − ri(t)

)
− rreqri(t)

+ V
(
η1Mi(a(t)) + η2Ii(a(t),p(t))

))
(9)

s.t. (6a), (6b), (6c), (6e), (6f), (6g), (6h)

Algorithm 1 OUAD

1: Input: S, V, η1, η2, rreq
2: Output: user and power allocation decisions

akj,i(t),pi(t),∀t, ∀sj ∈ S,∀ui ∈ U
3: for every time slot t do
4: Observe newly-arrived users U(t) and each current

user’s accumulated data rate Di(t),∀ui ∈ U
5: Determine a(t),p(t) by solving P2
6: Update users’ accumulated date rate Di(t+1),∀ui ∈

U , according to Eq. (7)
7: Update Qj(t+ 1),∀sj ∈ S
8: end for

In every time slot, newly-arrived users are assigned to
BSs/edge servers with sufficient transmit power (Line 5 of
Algorithm 1) based on the observed user arrivals and users’
accumulated data rates (Line 4). Users that are assigned
to an exhausted edge server will be put on a waiting list
for that edge server and wait until one or more existing
users depart. A user leaving the system releases computing
resources, which can then be used to accommodate the
waiting users. Users’ accumulated data rates and waiting
lists for all the edge servers are updated after a user and
power allocation strategy has been determined in each time
slot (Lines 6-7). OUAD works without prior knowledge of
future user arrivals/departures, and statistics of the user
distribution. This online algorithm allocates users as soon
as they arrive and thus can accommodate user mobility
and dynamic user sessions. When a user moves out of its
associated BS’s cell coverage, OUAD will treat it as a newly-
arrived user and allocate it to another BS in the next time
slot. The same treatment applies when an existing user ter-
minates its current session and initiates a new one. Or if an
application supports multiple concurrent user sessions by
the same user, those sessions can be handled individually.
The following theorem demonstrates that OUAD achieves
an [O(1/V ),O(V )] trade-off between time-average system
cost and accumulated data rate.

Theorem 1. Let y(t) ≜
∑

ui∈U
(
Mi(a(t)) + Ii(a(t), p(t))

)
,

ymax ≜ max(y(t)), and yopt be the theoretical optimal solution
of problem P2. If there exists positive constants V,O,C, and ϵ
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such that for all possible values of D(t) and all time slots t the
following drift holds:

∆(D(t))− V E
{
y(t)

∣∣D(t)
}
≤ O + C (10)

− ϵ
∑
ui∈U

Di(t)− V yopt

then the time-average system cost and accumulated data rate
satisfy:

lim
T→∞

1

T

T−1∑
t=0

E
{
y(t)

}
≥ yopt −

O + C

V
(11)

lim
T→∞

1

T

T−1∑
t=0

∑
ui∈U

E
{
Di(t)

}
≤ O + C + V (ymax − yopt)

ϵ

(12)

Proof: See Appendix C of the supplementary file.
This theorem implies that the time-average system cost

and accumulated data rate are proportional to control pa-
rameter V . This provides app vendors with a powerful
mechanism to control system performance. For example, V
can be decreased for latency-sensitive services so that users’
data rate can be quickly stabilized at the required minimum
data rate. This theorem will be experimentally illustrated in
Section 6.3.3.

Problem P2 is NP-hard because its subproblem is already
NP-hard, which we will show later. Problem P2 is part of
Problem P1, hence Problem P1 is also NP-hard. Problem
P2 is hard to be solved optimally within a time slot. To
find a near-optimal solution efficiently, we break it down
into a user allocation problem (Stage #1 - Section 4.2) and
a power allocation problem (Stage #2 - Section 4.3). We
first assign users to subchannels in BSs in Stage #1. Here,
we seek a solution with a low allocation delay cost that is
most likely to result in low interference overall. We use the
words ”most likely” because we have not properly allocated
transmit power to users yet, and thus the interference has
not been evaluated or considered. Once all the users are
allocated to BSs, we will proceed to Stage #2 to adjust their
transmit power to meet their data rate requirements in an
energy-efficient manner.

4.2 User Allocation Problem
In this phase, we allocate every user to a subchannel in

a BS by solving problem P3 modeled below.

(P3)min
a(t)

∑
ui∈U

(
r2i (t)

2
+Di(t)

(
rreq − ri(t)

)
− rreqri(t)

+ V
(
η1Mi(a(t)) + η2Ii(a(t),p(t))

))
(13)

s.t. (6a), (6b), (6e), (6g)

Interference and transmit power are highly interdepen-
dent. An app vendor allocates transmit power to users based
on the inter- and intra-cell interference they experience,
which is partly caused by other users’ transmit power. To
handle this interdependence, we fix one decision (power
allocation decision) while choosing the other (user allocation
decision). At this stage, all the users are assigned a default
transmit power. This allows us to estimate the interference

experienced by users and incorporate it into optimization
objective (13). This increases the possibility of low interfer-
ence when a proper power allocation algorithm is applied
later on. Problem P3 is NP-hard because its special case is a
reduction of the NP-complete PARTITION problem [32]. The
proof employs the same technique used in Appendix B of
[3] so it will be omitted here.

4.3 Power Allocation Problem
All the users are now assigned to subchannels in BSs

once problem P3 is solved. Next, we adjust their transmit
power by solving problem P4, which is modeled by:

(P4)min
p(t)

∑
ui∈U

(
r2i (t)

2
+Di(t)

(
rreq − ri(t)

)
− rreqri(t)

+ V η2Ii(a(t),p(t))
)

(14)

s.t. (6c), (6f), (6h)

Mi(a(t)) is now excluded in the objective because power
allocation decisions have no impact on users’ allocation
delays. The transmit power of users that arrived in previous
time slots will also be adjusted because their received inter-
ference might change when there are new users arriving at
the system.

5 USER AND POWER ALLOCATION GAME

To effectively solve problem P2 within each individual
time slots, we first model it as a potential game. To find Nash
equilibria in this game, we propose a decentralized two-
stage algorithm, where each stage is responsible for solving
a subproblem defined above (P3 and P4).

5.1 Game Formulation and Properties
In each time slot t, an app vendor pursues objective (9)

by finding a suitable user and power allocation strategy
a(t) and p(t). The decisions ai(t) and pi(t) made for each
individual user ui is influenced by other users’ decisions
a−i(t) and p−i(t).

The EUA problem in a time slot is modelled as a game
Z = (U(t), {Ai(t),Pi(t)}ui∈U(t), {C(ai(t),pi(t))}ui∈U ),
where U(t) is the set of players (users) arriving in time
slot t, Ai(t) and Pi(t) are the sets of possible user and
power allocation decisions available to each user ui, and
C(ai(t),pi(t)) is the cost incurred by decisions ai(t) and
pi(t) made for user ui (derived from Eq. (9)), the lower
the better. Please note that cost C(.) is not the same as the
system cost Y (a(t),p(t)) formulated in Problem P1.

C(ai(t),pi(t)) =
∑
ui∈U

(
r2i (t)

2
+Di(t)

(
rreq − ri(t)

)
− rreqri(t) + V

(
η1Mi(a(t)) + η2Ii(a(t),p(t))

))
(15)

A Nash equilibrium of Z is a stable state of Z where
an app vendor cannot lower the cost C(.) any further by
unilaterally changing the decision for any single user. In a
Nash equilibrium a∗(t),p∗(t), the allocation decision made
for a user is the best reaction to the allocation decisions
made for all other users [33]. This makes sure that if a
Nash equilibrium exists, the decisions for all the users will



7

automatically self-organize into a Nash equilibrium in finite
iterations. In each iteration, every user proactively responds
to the decisions made for all the other users to further reduce
the cost C(.). A potential game (defined below) always
admits one or more Nash equilibria [34]. By showing that
Z is a potential game, we can prove that it possesses at least
one Nash equilibrium .

Definition 1. (Ordinal Potential Game) An ordinal potential
game is a game that has a potential function ϕ(ai(t), pi(t)) sat-
isfying C(ai(t), pi(t)) > C(a′

i(t), p′
i(t)) ⇔ ϕ(ai(t), pi(t)) >

ϕ(a′
i(t), p′

i(t)), where ai(t), a′
i(t) ∈ Ai(t), and pi(t), p′

i(t) ∈
Pi(t).

Clearly, Z is an ordinal potential game with cost function
C(.) being a direct potential function.

5.2 Algorithm Design
To find Nash equilibria in game Z , we present a dis-

tributed algorithm that adopts best-response dynamics [33],
an iterative evolutionary procedure. In each iteration, we
determine an allocation decision for every user by finding
the best response to the decisions applied to other users.
This decentralized procedure can be executed in parallel on
edge servers, which coordinate the game through messaging
synchronization [10], [35]. This procedure always converge
to a Nash equilibrium thanks to Finite Improvement Property
[34]. Our approach consists of two stages: Stage #1 (Algo-
rithm 2) for solving problem P3, and Stage #2 (Algorithm 3)
for solving problem P4.

Stage #1 (Algorithm 2): Algorithm 2 allocates every user
to a subchannel in a BS. At this stage, every user is assigned
a temporary default transmit power. Once Algorithm 2
completes, Algorithm 3 will adjust their transmit power to
meet their data rate requirements. In Algorithm 2, all users
are initially unallocated (Line 1). Subsequently, allocation
decisions are updated and applied for every user iteratively
(Lines 2-16), lowering the cost C(.) after every iteration until
it cannot be lowered any further - this is the Nash equi-
librium. In each iteration, we determine the best decision
a′i(t) for each user ui by iterating over all the subchannels
in all of its neighbor BSs and select the subchannel that
would generate the lowest cost C(a′i(t),p(t)) if user ui is to
be allocated to it (Lines 3-10). If C(a′i(t),p(t)) is not lower
than the current cost C(.), there is no need to update user
ui’s current decision. If the new decision a′i(t) leads to a
lower cost C(.), user ui’s current decision will be updated
with a′i(t). The request for applying a′i(t) will be submitted
for the opportunity to be officially applied (Lines 11-13).
Among all the requests for decision applying, the one with
the lowest cost C(.) will be officially applied (Line 15). The
user, whose request for decision update is selected, now has
a new allocation decision. Note that the allocation strategy
in an iteration is not final; it may be amended in following
iterations if a new allocation decision for a user is found.
Users assigned to an exhausted edge server will be put on
a waiting list until one or more existing users depart the
system and release the occupied computing resources.

The process of updating decisions for all users (Lines
4-14) can be executed in parallel because the processes for
different users are independent of each other. The search
for the best decision for each user (Lines 5-9) can also be

Algorithm 2 Stage #1: User Allocation
Input: S , U(t), fixed power allocation strategy p(t)
Output: user allocation strategy a(t)

1: ai(t) = (0, 0), ∀ui ∈ U(t)
2: repeat
3: Compute current cost C(a(t),p(t))
4: for each user ui ∈ U(t) do
5: for each neighbor BS sj ∈ Si of user ui do
6: for each subchannel ckj ∈ Cj in BS sj do
7: Compute C(a′i(t),p(t)) – the new cost if

user ui is to be assigned to ckj
8: end for
9: end for

10: Among all feasible decisions a′i(t) above, find
one that incurs the lowest cost C(a′i(t),p(t))

11: if C(a′i(t),p(t)) < C(a(t),p(t)) then
12: Request to apply a′i(t)
13: end if
14: end for
15: Among all requests for applying decision update,

apply the one with the lowest C(a′i(t),p(t))
16: until decision updates not required for any users
17: Execute Stage #2

parallelized. After all the users are allocated, we execute
Stage #2 (Algorithm 3) to adjust their transmit powers.

Stage #2 (Algorithm 3): Given the user allocation strategy
found in Stage #1, Algorithm 3 adjusts the transmit power
for all users. Note that we consider a discrete power control
scheme, where the transmit power of a user is selected
from a set L of discrete power levels. Initially, every user
is allocated the lowest power level (Line 1). After that,
for each user in each iteration, we iterate through every
possible power level to find the one that incurs the lowest
cost C(a(t),p′

i(t)) (Lines 5-8). If C(a(t),p′
i(t)) is lower than

the cost incurred by the power allocation strategy found
in the last iteration (calculated in Line 3), the request for
updating this user’s power will be submitted for a chance
to be applied (Lines 9-11). Once all the users’ requests for
updating transmit power are submitted, the request with
the lowest cost C(.) will be officially applied in this iteration
(Line 13). This iterative process terminates when we cannot
lower the cost C(.) by updating any user’s transmit power.

5.3 Performance Analysis

5.3.1 Efficiency

Theorem 2 below assesses Algorithms 2 and 3’s conver-
gence time by the maximum number of iterations they may
take before reaching a Nash equilibrium. In addition, their
efficiency, or time complexity, is experimentally evaluated
in Section 6.

Theorem 2. The convergence time of Algorithms 2 and 3 is upper

bounded by:
|U|

(
η1Mmax+η2Imax

)
min{V η1,Z} and

|U|
(
η1Mmax+η2Imax

)
X it-

erations, respectively, where Z =
r′2i (t)−r′′2i (t)

2 + rreq(r
′′
i (t) −

r′i(t)) + V η2|hmin|2p, and X =
r′2i (t)−r′′2i (t)

2 + (Di(t) +
rreq)(r

′′
i (t) − r′i(t)). Z and X represent the minimum decrease

in cost C(.) when the decision for a user is changed in the
consequent iteration in Algorithm 2 and 3, respectively. Symbols
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Algorithm 3 Stage #2: Power Allocation
Input: S , U , user allocation strategy a(t) found in Stage

#1, a set L of discrete power levels
Output: power allocation strategy p(t)

1: Every user ui ∈ U(t) is allocated the lowest power level
2: repeat
3: Compute current cost C(a(t),p(t))
4: for each user ui ∈ U do
5: for each power level l ∈ L do
6: Compute C(a(t),p′

i(t)) – the new cost if
user ui is given power level l

7: end for
8: Among all possible decisions p′

i(t) above, find
one that incurs the lowest C(a(t),p′

i(t))
9: if C(a(t),p′

i(t)) < C(a(t),p(t)) then
10: Request to apply p′

i(t)
11: end if
12: end for
13: Among all requests for applying decision update,

apply the one that has lowest C(a(t),p′
i(t))

14: until decision updates not required for any users

with a single apostrophe belong to one iteration and symbols with
double apostrophes belong to the consequent iteration.

Proof: See Appendix D of the supplementary file.

We also analyze the worst-case time complexity of Algo-
rithms 2 and 3. The sequential time complexity of Algorithm
2 is O(GmaxKMN3

ts logNts), where Nts is the maximum
number of new users in a time slot and Gmax is the highest
number of iterations (found by Theorem 2) that Algorithm
2 could take to find a Nash equilibrium. In every iteration,
we find the best subchannel and BS for every new user by
looking at all possible options (Lines 5-9 of Algorithm 2) to
find an option that incurs the lowest cost C(.) and submit
it for the opportunity to be officially applied (Line 12 of
Algorithm 2). For each user, there are at most K (subchan-
nels) x M (BSs) options. In reality, the number of neighbor
BSs of a user is considerably lower than M . In our simu-
lations, each user has a maximum of three neighbor BSs.
Each of the aforementioned options involves calculating the
cost C(.) for Nts users, where each user costs Nts logNts.
Calculating intra-cell interference dominates this calculation
of C(.) because it requires sorting users by their channel
conditions (Eq. (3)). It is more computationally expensive
than calculating inter-cell interference and allocation delay
cost. Thus, Algorithm 2 costs O(GmaxKMN3

ts logNts) if
executed sequentially, which is rather computationally ex-
pensive. However, we can take advantage of the fact that the
calculation of an option does not rely on the calculation of all
other options. This allows Algorithm 2 to be run in parallel,
lowering the complexity to roughly O(GmaxKMN3

ts logNts)
µ ,

where µ is the number of processing threads in edge servers
that run Algorithm 2 collectively. The experiments in Section
6 evaluate the efficiency of Algorithm 2 when running
in parallel. Using the same reasoning, the parallel time
complexity of Algorithm 3 is O(Gmax|L|N3

all logNall)
µ , where

Nall is the maximum number of current users in the system.

5.3.2 Effectiveness
We then analyze the theoretical optimality of the solu-

tions found by Algorithms 2 and 3 by examining the Price of
Anarchy (PoA) of the system cost Y (.). PoA, being the ratio
between the worst Nash equilibrium and the theoretical op-
timal strategy [34], is an important optimality/performance
indicator for game theory-based methods [10], [35]. We use
(aopt(t),popt(t)) to denote the optimal strategy. The system-

cost PoA is then defined as
max

a(t)∈A(t),p(t)∈A(t)
Y (a(t),p(t))

Y (aopt(t),popt(t)) .

Theorem 3. The system-cost PoA in game Z satisfies:

1 ≤ PoA ≤
η1

[|U|−Nmin]+
Nmin/ℓ

+ η2(|hmax|2lmax + σ2)

η2σ2
(16)

where Nmin is the minimum service rate (which belongs to the
most resource-limited edge server), |hmax|2 is a user’s highest
possible channel gain, and lmax ∈ L is a user’s highest power
level.

Proof: See Appendix E of the supplementary file.
This theorem reaffirms that we can improve the perfor-

mance of the Nash equilibria, or decrease the gap between
the worst Nash equilibrium and the optimal solution, when
users’ channel gains (|hmax|2) are low, when the number of
users (|U|) is low, or by increasing edge servers’ service rates
Nmin (which can be achieved by increasing edge servers’
capacities).

6 PERFORMANCE EVALUATION

6.1 Performance Benchmark
In our experiments, we evaluate OUAD against four

representative approaches:

• SUAC [24]: This online user allocation approach min-
imizes the allocation delay cost in a time-slotted set-
ting. It does not incorporate a proper power control
scheme. Thus, to ensure the fairness of the compar-
ison, after all users are allocated to BSs, we execute
DPC-SPM, a state-of-the-art power control algorithm
in NOMA [18], to assign minimum transmit power
to users while meeting their data rate requirements.

• SCG-SA [36]: This approach aims to increase the
energy efficiency while meeting user data rate re-
quirements in NOMA-based cellular networks. SCG-
SA only allocates users, who are presumably already
allocated to BSs, to subchannels. It does not allocate
users to BSs. Thus, we will allocate users to their
nearest BSs. Subsequently, SCG-SA allocates users
to subchannels based on a ranking of user channel
conditions. This approach is designed without the
consideration of time-slotted scenarios. In the exper-
iments, we execute this approach once in every time
slot. Unallocated users in a time slot are considered
as new users in the next time slot.

• miUA [3]: This approach incorporates both inter-
and intra-cell interference in NOMA-based MEC net-
works and also aims to maximize the energy effi-
ciency. Similar to SCG-SA, miUA is designed without
the consideration of time-slotted scenarios so we will
execute this approach in every time slot. Unallocated
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TABLE 1: Experiment settings

BS maximum transmit power (Pj ) 46dBm
Inter-site distance 500m
Cell radius (Rj ) 289m
Minimum distance between user &
BS

35m

Thermal noise density −174dBm/Hz
Large-scale propagation model 128.1 + 37.6log10(dj,i)dB
System bandwidth (B) 10MHz

TABLE 2: Experiment sets

Traffic
intensity ζ

Data rate
requirement rreq

Control
parameter V

Set #1 0.04, 0.041, ..., 0.049 0.5 5

Set #2 0.045 0.2, 0.3, ..., 0.7 5

Set #3 0.045 0.3, 0.5, 0.7 1, 2, ..., 10

users in a time slot are considered as new users in
the next time slot.

• Join Shortest Queue (JSQ): In each time slot, each user
is allocated to the neighbor BS/server which has the
shortest waiting list. This approach employs DPC-
SPM power allocation method.

6.2 Experiment Settings
Our experiments are compliant with the LTE specifica-

tions [37] (Table 1). We consider a 7-cell hexagon-layout
network, corresponding to 7 BSs/edge servers, each with 6
communication subchannels. Each user requires four types
of computing resources, R = {CPU, storage,RAM,GPU}.
We randomly generate edge servers’ computing capacities
using a normal distribution N (80, 202), where 80 is the
average amount of each computing resource, and 20 is the
standard deviation. All edge servers combined can serve
N =

∑
sj∈S Nj concurrent users. User arrivals are gener-

ated based on a Poisson process at rate [0, ζN ], where ζ ∈ R
controls the traffic intensity. They are uniformly distributed
within BSs’ coverage areas. wi is randomly picked from
three normalized levels {<2,2,3,3>,<2,2,2,1>,<1,1,1,2>}.
The set L of discrete transmit power levels is set to
{−30dBm,−29dBm, ..., 23dBm}. Each user session’s length
is uniformly drawn from 10 to 20 1-second time slots. We
conduct three sets of experiments (summarized in Table 2).

6.3 Experimental Results
6.3.1 Impact of Traffic Intensity (Set #1)

In Set #1, we simulate different user arrival rates by vary-
ing the traffic intensity ζ . When ζ increases, the allocation
delay experienced by a user on average (Fig. 2) gradually
increases because of the rising number of users joining the
system (for reference, there are around 20 new users in each
time slot when ζ = 0.049). SUAC, whose sole objective is
to minimize the allocation delay, clearly achieves the lowest
allocation delay among all the approaches, closely followed
by JSQ and OUAD. miUA achieves the worst performance
with an average allocation delay twice higher than OUAD.

The energy efficiency (Fig. 3) is measured by the ratio of
the total data rate to the total power consumption. miUA is
the most energy-efficient method since it solely focuses on
minimizing inter- and intra-cell interference. However, its

energy efficiency comes at the price of very long allocation
delays (Fig. 2). OUAD achieves a much lower allocation
delay while its energy efficiency is only slightly lower than
miUA (even on par with miUA in some cases). OUAD and
miUA are remarkably more energy-efficient than the other
three approaches. This shows the significance of considering
interference in user allocation. Fig. 4 depicts the total trans-
mit power required by all the approaches. We can see that
SCG-SA, SUAC, and JSQ consume more power than OUAD
and miUA by orders of magnitude. Fig. 5 illustrates the cu-
mulative distribution function (CDF) of users’ average data
rate. A great portion of users allocated by SCG-SA, SUAC,
and JSQ achieves either very low or very high data rates,
largely deviating from the target data rate rreq = 0.5Mbps.
The average data rate of users allocated by OUAD is slightly
higher than those allocated by miUA.

Fig. 6 visualizes the time efficiency under different traffic
intensities. The line plot shows the average elapsed CPU
time per time slot. The bar plot shows the number of
decision iterations taken by Algorithms 2 and 3, which
is a commonly used efficiency metric for game-theoretic
approaches [10], [38] because of its machine independence
(the time taken to solve a problem varies machine to ma-
chine). When traffic intensity ζ increases, Algorithms 2 and
3 require more iterations, consequently higher CPU time
in total. OUAD is slightly faster than miUA. OUAD and
miUA are the slowest due to the complexity of calculating
user interference. Nevertheless, their completion time is still
well within an acceptable range. In each time slot, OUAD
allocates all new users within around 30ms – well below
the duration of each time slot (1 second). This ensures that
OUAD can be practically applied in MEC systems where
low latency is mandated. In the event where OUAD takes
longer than a time slot to reach a Nash equilibrium, which
we anticipate to be very rare, OUAD can continue and take
this time slot as a slightly longer time slot. The timeline of
the system resumes when OUAD finishes in this abnormal
time slot. This will have no impact on the operation of
OUAD.

6.3.2 Impact of Minimum Data Rate Requirement (Set #2)

In Set #2, we vary the minimum data rate requirement
rreq . Unsurprisingly, this does not have any impact on
the allocation delay as shown in Fig. 7, which remains
unchanged regardless of the changing rreq . Again, OUAD
achieves a very low allocation delay, only marginally higher
than SUAC, whose only goal is to lower the allocation delay
cost. miUA is the most energy-efficient method (Fig. 8) at the
cost of very high allocation delays (Fig. 7). OUAD’s energy
efficiency is very close to miUA, while its average allocation
delay is much lower than miUA. In general, when rreq
increases, all the approaches require more transmit power
to serve users (Fig. 9). Their energy efficiency decreases
accordingly. Fig. 10 depicts the CDF of the average data
rate of all users. Again, contrasted to OUAD and miUA,
SCG-SA, SUAC, and JSQ largely deviate from the minimum
data rate requirement rreq = 0.7Mbps. They fail to deliver
satisfactory data rates to a great number of users and mean-
while, they provide excessive data rates to an equally great
number of users. This demonstrates an extremely inefficient
use of transmit power.
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Fig. 2: Average allocation delay vs. traf-
fic intensity ζ (Set #1).

Fig. 3: Energy efficiency vs. traffic in-
tensity ζ (Set #1).

Fig. 4: Total transmit power vs. traffic
intensity ζ (Set #1).

Fig. 5: CDF of all the users’ data rates
(Set #1, V = 0.045).

Fig. 6: Average number of decision itera-
tions and elapsed CPU time per time slot
vs. traffic intensity ζ (Set #1).

Fig. 7: Average allocation delay vs.
data rate requirement rreq (Set #2).

Fig. 8: Total transmit power vs. data
rate requirement rreq (Set #2).

Fig. 9: Total transmit power vs. data
rate requirement rreq (Set #2).

Fig. 10: CDF of all the users’ data rates
(Set #2, rreq = 0.7Mbps).

Fig. 11: Average number of decision itera-
tions and elapsed CPU time per time slot
vs. data rate requirement rreq (Set #2).
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Fig. 12: Control parameter V vs. users’
average data rate by OUAD (Set #3).
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Fig. 13: Control parameter V vs. total
transmit power by OUAD (Set #3).
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Fig. 11 shows the time efficiency. Changing rreq does not
affect Algorithm 2, thus its number of decision iterations
remains the same in all settings. The change in rreq impacts
only Algorithm 3. An increase in rreq increases the com-
plexity of Algorithm 3, which now requires more iterations
to converge to a Nash equilibrium. This leads to a slight
increase in CPU time. Again, in each time slot, OUAD takes
roughly 30ms to allocate all new users, which is within an
acceptable range and well below the length of a time slot.

6.3.3 Impact of Parameter V (Set #3)

We examine how parameter V impacts the user average
data rate achieved by OUAD under different data rate
requirements rreq . Based on (9), a greater value of V results
in a lower emphasis on the accumulated data rate (7). An
increase in V lowers users’ average data rate (Fig. 12), and
consequently decreases the total transmit power required
(Fig. 13). When V is very high, users’ average data rate is
even below the data rate requirement rreq since it now takes
longer for users’ data rates to converge to rreq . Because of
the slow convergence, many users already left the system
before their data rates can converge to a satisfactory level.
This observation shows that app vendors can adjust V to
flexibly control the trade-off between users’ average data
rate and energy consumption or system cost depending on
their app-specific requirements.

6.3.4 Discussion

The three experiment sets have demonstrated the perfor-
mance, flexibility, and practicality of the proposed approach
OUAD. We aim to select the simulation parameters that are
the most representative in any scenario.

The first parameter is traffic intensity ζ , or the number of
users arriving in each time slot (Experiment Set #1), which
is an important parameter in any highly stochastic MEC
system. OUAD is highly efficient even under the highest
traffic intensity.

Unlike the traffic intensity which app vendors have no
control of, the next parameter, minimum data rate require-
ment rreq (Experiment Set #2), can be adjusted by app
vendors. Varying rreq has no impact on the allocation delay
and thus allows us to study its impact on user satisfaction
or QoE at a fine granularity. A higher rreq is more resource-
demanding so more users would not receive a satisfactory
service or date rate without a proper user and power al-
location like OUAD. Parameter rreq also affects the energy
efficiency of the system.

The last parameter, V (Experiment Set #3), can be ad-
justed by app vendors to control the trade-off between users’
average data rate and energy consumption or system cost.
This experiment demonstrates the flexibility of OUAD in
allowing app vendors to adapt to different settings that are
specific to different applications and environments.

In summary, OUAD outperforms all other approaches
in all experimental settings. It is efficient and can effec-
tively allocate transmit power to users and users to edge
servers/BSs, achieving great energy efficiency while getting
satisfactory data rates for the most users. OUAD can func-
tion in multi-cell multi-channel environments and does not
assume a limit on the number of users on each subchannel.

7 RELATED WORK

MEC changes the provision of computing and storage
resources structurally and raises many new problems, e.g.,
edge user allocation [35], edge data caching [39], edge data
integrity [40], edge DDoS mitigation [41], collaborative edge
computing [42], [43], hierarchical edge intelligence [44], etc.

The edge user allocation (EUA) problem has been ex-
tensively studied recently [2], [4], [5], [6], [7], [11], [12], [13],
[24], [35], [45], [46], [47]. The authors of [7], [13] aim to assign
as many users to as few edge servers as possible. This ob-
jective is often unrealistic in highly stochastic MEC systems
since app vendors need to utilize as many edge servers as
possible to serve their users. In [12], the authors incorporate
user mobility into the user allocation and aim to increase
user coverage rate and decrease the number of reallocations,
which might occur when a user move between edge servers.
The authors of [4], [11], [35] minimize the system cost
calculated by how much computing resources are required
to accommodate users. In [5], [6], [47], the authors solve
an EUA problem where an app vendor can dynamically
adjust the QoS levels of its users, which corresponds to the
users’ resource consumption. Among the aforementioned
studies, only [4], [11] incorporate the communication aspect
of MEC, e.g., the availability of multiple communication
subchannels and wireless interference. Nonetheless, they do
not incorporate inter-cell interference, which impacts users’
data rates significantly and must not be neglected in dense
5G/6G networks. This is highly uneconomical since app
vendors can now access and leverage network data such
as received signal, received power, throughput, neighbor
cells, QoS, etc. [8], [9]. More importantly, none of those
studies considers NOMA (the de facto 5G/6G multi-access
scheme), where power control and interference must not
be ignored. The authors of [3] allocate users in power-
domain NOMA-based MEC systems so that the transmit
power cost is minimized. They incorporate both inter- and
intra-cell interference. To allocate transmit power, they use
an existing state-of-the-art power allocation method (DPC-
SPM [18]), which is not suitable in our problem because it
requires a specific data rate, i.e., every user would receive
this data rate in every time slot. Our approach allows user
data rate to be slightly higher or lower than the target data
rate, which might be more beneficial in terms of system cost
minimization. In the long term, the data rate achieved by
OUAD still meets the data rate requirement. Furthermore,
[3] and most of the aforementioned studies do not take into
account the temporal dimension of MEC systems in which
users come and go over time. Without it, the allocation
delay experienced by users could be very high and their
QoE would be impacted profoundly. The authors of [24]
consider the temporal dimension and allocation delay but
completely ignore the communication aspect of MEC. The
authors of [48] study the EUA problem in an online setting
where users come and go over time. However, they do not
consider the scenario where users might have to wait to be
served and incur allocation delay costs. Their approach may
leave users unallocated.

Computation offloading is a very popular problem in
MEC that share many similarities with the EUA problem.
However, they are distinct from each other by several
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essential characteristics. In the EUA problem, a user can
only be assigned to one edge server. To serve the user, the
edge server must dedicate computing resources (CPU cores,
memory, storage, etc.), which must always be available
during the user session. For example, a machine learning ap-
plication would require storage to store data, which is then
loaded into the memory before being processed by CPUs or
GPUs. While in the computation offloading problem, each
user generates a series of computation tasks, which can be
processed on multiple edge servers (partial/full offloading)
and/or their local device [49]; and a task is usually single-
dimensional (measured by CPU frequency) [22], [23], [50],
[51], [52], [53]. Computation offloading problems usually
concern with task execution/computation delay [22], [23],
[51], [52], [54], which are not a concern for the EUA problem.

In conventional cellular networks, the user allocation
problem (a.k.a. user association/clustering or BS assign-
ment problem) is a mature problem [14], [15], [16], [17],
[18], [19], [20], [55]. Since the introduction of NOMA, this
line of research has again received tremendous attention.
However, many of them make unrealistic assumptions, for
instance, a limit on the number of users on each subchannel
[18], [19], [20], and single-cell [16], [17] or single-channel
[14], [15] systems. These assumptions unnecessarily impede
the prospects of NOMA and render their approaches im-
practical in real-world NOMA-powered MEC systems. The
works in [48], [56], [57] aim to maximize the sum-rate,
which consequently result in energy inefficiency. Whereas
in most real-world scenarios, users only require a specific
level of data rate to ensure the QoE. In [36], [46], the
authors aim to allocate users so that the energy efficiency
is maximized. However, they, and other existing user al-
location approaches, are unsuitable in MEC environments
because they do not consider the temporal dimension and
computation aspect of MEC like we do.

8 CONCLUSION AND FUTURE WORK

We tackle an online user allocation problem in multi-
channel multi-cell mobile edge computing (MEC) systems
powered by power-domain non-orthogonal multiple ac-
cess (NOMA). The temporal dimension is incorporated to
accommodate users randomly arriving and departing the
MEC system over time. Our aim is to minimize the costs of
allocation delay and transmit power, improving the energy
efficiency while satisfying several constraints in NOMA-
based MEC systems, including a long-term user data rate
constraint. We propose OUAD, a Lyapunov-based online
user allocation algorithm that allocates users without any
data of future user arrivals and departures. OUAD decom-
poses a long-term problem into a series of subproblems to be
solved in individual time slots. To effectively and efficiently
solve the subproblem in each time slot, OUAD employs a
game-theoretical approach, which is evaluated theoretically.
OUAD is shown to significantly outperform all the repre-
sentative approaches through a series of experiments.

User allocation in NOMA-based MEC will require more
attention as NOMA continues to advance. App vendors’
access to network information (received signal, received
power, throughput, neighbor cells, etc.) in MEC systems will
raise new security concerns. Beside downlink transmission,

uplink transmission also needs to be investigated for ap-
plications that receive a great amount of data from users.
We will also attempt to validate the practicality of OUAD
further by 1) tightening up its performance bounds; and 2)
evaluate its performance on a real-world testbed.
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APPENDIX A
KEY NOTATIONS

Key notations used in this paper are listed in Table 3.

TABLE 3: Key Notations

Symbol Description

akj,i(t) user allocation decision for user ui. Its value is 1 if the
user is to be allocated to the k-th subchannel of BS sj in
time slot t. Otherwise, its value is 0

Bk
j bandwidth of channel ckj in BS sj

Cj the set of subchannels ckj , k ∈ {1, 2, ...,K}, in BS sj

C(ai(t),pi(t)) the cost incurred by a user allocation strategy ai(t) and
a power allocation strategy pi(t) in time slot t.

dj,i distance between user ui and BS sj

Di(t) the accumulated data rate of user ui in time slot t
|hk

j,i|2 channel gain of user ui on subchannel ckj in BS sj

Ikj,i(t) inter-cell interference experienced by user ui on subchan-
nel ckj in time slot t

Ii(a(t),p(t)) the interference-plus-noise cost of user ui given a user
allocation strategy a(t) and a power allocation strategy
p(t) in time slot t

Imax the penalty on interference cost of an unallocated user
ℓ expected user session length
Mi(a(t)) the allocation delay cost of user ui given a user allocation

strategy a(t) in time slot t
Mmax the penalty on allocation delay cost of an unallocated

user
nj(t) the number of users being served by edge server sj in

time slot t
Nj the maximum number of concurrent users in edge server

sj

Pj maximum transmit power (power capacity) of BS sj

pi(t) allocation decision on the amount of transmit power
allocated to user ui in time slot t

pkj (t) total transmit power of BS sj on subchannel ckj in time
slot t

Qj(t) the number of users waiting to be served by edge server
sj in time slot t

Rj computing capacity of edge server sj . Rj is a |R|-
dimensional vector

radj cell radius of BS sj

ri(t) achievable data rate of user ui in time slot t
S the set of BS/edge servers sj , j ∈ {1, 2, ...,M}
Si set of user ui’s neighbor BSs
R the set of computing resource types, or computing capac-

ity dimensions. R = {CPU,RAM, storage, ...}
U(t) the set of incoming users in time slot t
U the set of all current users in the system
Uj(t) set of users allocated to BS sj in time slot t
Uk
j (t) set of users allocated to BS sj on subchannel ckj in time

slot t
wi the amount of computing resource required to serve user

ui. wi is a |R|-dimensional vector
Θk

j (t) SIC decoding order of users on subchannel ckj in time
slot t

rreq minimum user data rate requirement
η1, η2 weights of allocation delay cost and interference cost in

the whole system cost

APPENDIX B
PROOF OF LEMMA 1
Proof.

∆(D(t)) = E{L(D(t+ 1))− L(D(t))|D(t)}

= E
{
1

2

∑
ui∈U

(Di(t) + rreq − ri(t))
2 − 1

2

∑
ui∈U

Di(t)
2|D(t)

}
= E

{ ∑
ui∈U

(
Di(t)(rreq − ri(t))− rreqri(t)

r2req
2

+
r2i (t)

2

)
|D(t)

}
≤ C + E

{ ∑
ui∈U

(
Di(t)(rreq − ri(t))− rreqri(t)+

r2i (t)

2

)
|D(t)

}
(17)

where O =
r2req
2 is a constant. By adding V

(
η1Mi(a(t)) +

η2Ii(a(t),p(t))
)

to both sides of (17), we complete the proof.

APPENDIX C
PROOF OF THEOREM 1
Proof. We first introduce the definition of C-addictive ap-
proximation [31] of an algorithm that minimizes a drift-
plus-penalty. The algorithm is the one that determines an
allocation strategy in each time slot. That strategy should
yield a conditional expected value on the right-side of (8)
within a positive constant C from the infimum over all
possible allocation strategies.

Let us assume that (10) holds. By taking expectations of
(10) and applying the law of iterated expectations, we have:

E{L(D(t+ 1))} − E{L(D(t))} − V E{y(t)}
≤ O + C − ϵ

∑
ui∈U

E{Di(t)} − V yopt (18)

This inequality is valid for all time slots t. Summing
it over t ∈ {0, 1, ..., T − 1} and employing the law of
telescoping sums yield:

E{L(D(T ))} − E{L(D(0))} − V
T−1∑
t=0

E{y(t)}

≤ T (O + C)− ϵ
T−1∑
t=0

∑
ui∈U

E{Di(t)} − V Tyopt (19)

As L(D(0)) = 0, L(D(T )) ≥ 0, and y(t) ≤ ymax,
∀t, dividing both sides of the above inequality by ϵT and
rearranging terms give us:

1

T

T−1∑
t=0

∑
ui∈U

E{Di(t)} −
E{L(D(0))}

ϵT

≤ O + C + V (ymax − yopt)

ϵ
(20)

The proof of the accumulated data rate bound (12) com-
pletes by letting T → ∞.
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To prove the bound of the long-term system cost (11), we
rearrange the terms of (19) and divide it by V T :

1

T

T−1∑
t=0

E{y(t)} ≥ E{L(D(T ))} − E{L(D(0))}
V T

− O + C

V

+
ϵ

V T

T−1∑
t=0

∑
ui∈U

E{Di(t)}+ yopt (21)

As L(D(0)) = 0, L(D(T )) ≥ 0, and Di(t) ≥ 0,∀t, we
have:

1

T

T−1∑
t=0

E{y(t)} ≥ yopt −
O + C

V
(22)

The proof of the long-term system cost bound (11) com-
pletes by letting T → ∞.

APPENDIX D
PROOF OF THEOREM 2
Proof. In each iteration of Algorithms 2 and 3, a user
ui ∈ U changes its current decision ai(t) to a new decision
a′i(t) to decrease the cost C(.), or the potential function
ϕ(ai(t),pi(t)). Intuitively, in order to find the convergence
rate, one needs to find the maximum value of the cost C(.)
or potential function ϕ(.), then divide it by the minimum
decrease in cost C(.) that might occur when this user
changes its decision in the next iteration.

First, we find the maximum value of the cost C(.) or
potential function ϕ(.). According to (??), we have:

0 ≤ ϕ(ai(t),pi(t)) ≤ |U|
(
η1Mmax + η2Imax

)
because the term

∑
ui∈U (η1Mmax + η2Imax)1ai=(0,0) in the

potential function ϕ(ai(t),pi(t)) is always greater than the
other terms combined.

Next, we need to find the minimum decrease in cost
C(.) that might occur when this user changes its decision
in the next iteration of Algorithms 2. The minimum cost
decrease happens when a user’s new decision meets all the
conditions in either one of the following cases:

Case 1:

• The user wishes to switch to another edge server/BS
only to lower its allocation delay cost. The minimum
improvement of the allocation delay occurs when the
user currently has to wait for one time slot to start
using the application in the current edge server, and
the new edge server is ready to serve the user straight
away without any delay.

• There are no changes in the data rates of any existing
user. And the switch does not affect any other user.

Case 2:

• The user wishes to switch to another subchannel only
to lower its intra-cell interference (and consequently
improve its data rate). The minimum improvement
of intra-cell interference occurs when the new sub-
channel has at least one user fewer than the current
subchannel. The intra-cell interference incurred by
this one user is at least |hmin|2p, where |hmin|2 is
the lowest possible channel gain of a user.

• This user does not suffer from inter-cell interference.

• The user is already allocated to a BS with an empty
queue and does not wish to move to another BS.
Thus, the allocation delay cost remains unchanged at
zero when ai(t) is updated to a′i(t). And the switch
does not affect any other user.

In Algorithm 2, users’ transmit power is fixed at p. We
let ∆C(.) = C ′(.) − C ′′(.) be the minimum cost decrease
between an iteration (C ′(.)) and the consequent iteration
(C ′′(.)). In Case 1, ∆C(.) = V η1M

′
i(a(t))− V η1M

′′
i (a(t)) =

V η11− V η10 = V η1. In Case 2, we have:

∆C(.) =
r′2i (t)− r′′2i (t)

2
+Di(t)(r

′′
i (t)− r′i(t))

+ rreq(r
′′
i (t)− r′i(t)) + V η2|hmin|2p

Since r′′i (t) > r′i(t) and Di ≥ 0,∀ui,∀t, the minimum value
of Di(t)(r

′′
i (t) − r′i(t)) is 0. For any user ui, the minimum

value of r′i(t) is (B/K) log2
(
1+ |hmin|2p

|hmin|2p+σ2

)
; and the mini-

mum value of r′′i (t) is (B/K) log2
(
1+ |hmin|2p

σ2

)
. Combining

Case 1 and Case 2, we have ∆C(.) = min{V η1, Z}, where
Z =

r′2i (t)−r′′2i (t)
2 + rreq(r

′′
i (t) − r′i(t)) + V η2|hmin|2p cal-

culated as aforementioned. Algorithm 2 will terminate by
driving the potential function to a minimum point (Nash

equilibrium) within at most
|U|

(
η1Mmax+η2Imax

)
min{V η1,Z} iterations.

Finding the convergence rate of Algorithm 3 follows the
same process above. In each iteration of Algorithm 3, a
user ui ∈ U changes its current decision pi(t) to a new
decision p′

i(t) to decrease the cost C(.). We need to find
the minimum decrease in cost C(.) that might occur when
this user changes its decision. Adjusting power level has
no influence on the allocation delay and interference of that
user so we have:

∆C(.) =
r′2i (t)− r′′2i (t)

2
+Di(t)(r

′′
i (t)− r′i(t))

+ rreq(r
′′
i (t)− r′i(t))

=
r′2i (t)− r′′2i (t)

2
+ (Di(t) + rreq)(r

′′
i (t)− r′i(t))

Since Di(t) + rreq ≥ 0, we have ∆C(.) =
r′2i (t)−r′′2i (t)

2 .
For any user ui, the minimum value of r′i(t) is
(B/K) log2

(
1 + |hmin|2lmin

σ2

)
; and the minimum value of

r′′i (t) is (B/K) log2
(
1 + |hmin|2lmin+1

σ2

)
, where lmin and

lmin+1 are the lowest and second lower power levels in L,
respectively. For the brevity of notation, we use X to denote
the value of ∆C(.) in Algorithm 3. We can see that the
minimum cost decrease happens when this user increases
its transmit power by one level from the lowest level lmin.
Similar to Algorithm 2, Algorithm 3 will terminate by
driving the potential function to a minimum point (Nash

equilibrium) within at most
|U|

(
η1Mmax+η2Imax

)
X iterations,

where X is calculated as aforementioned.

APPENDIX E
PROOF OF THEOREM 3
Proof. Case 1: In a time slot, the system cost incurred
by any arbitrary allocation strategy (a(t),p(t)) is clearly
always higher than the system cost incurred by an optimal
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allocation strategy, i.e., Y (a(t),p(t)) ≥ Y (aopt(t),popt(t)),
hence PoA ≥ 1.

Case 2: Next, we analyze the bounds on the system cost
of an arbitrary Nash equilibrium and an optimal solution
in a time slot. First, we find the maximum interference and
allocation delay that a user can experience on a subchannel
in a BS/edge server, which can be derived by analyzing the
worst-case scenario. In the worst-case scenario, the inter-
ference received by any user ui is at most |hmax|2|U|lmax,
where |hmax|2 is the highest possible channel gain of a user,
and lmax ∈ L is the highest power level of a user. The allo-
cation delay experienced by a user ui is at most [|U|−Nmin]+

Nminj/ℓ
,

where Nmin is the minimum edge server service rate (which
belongs to the most resource-limited edge server). There-
fore, for an arbitrary Nash equilibrium (a(t),p(t)), its system
cost Y (a(t),p(t)) always satisfies:

Y (a(t),p(t)) ≤ max
a(t)∈A(t),p(t)∈P(t)

∑
ui∈U

(
η1Mi(a(t))

+ η2Ii(a(t),p(t))
)

≤ |U|
(
η1

[|U| −Nmin]+
Nmin/ℓ

+ η2(|hmax|2|U|lmax + σ2)

)
(23)

For an optimal solution (aopt(t),popt(t)), its cost
Y (aopt(t),popt(t)) always satisfies:

Y (aopt(t),popt(t)) =
∑
ui∈U

(
η1Mi(aopt(t)) + η2Ii(aopt(t),popt(t))

)
‡
≥ |U|η2σ2 (24)

where the inequality ‡ happens because Mi(aopt(t)) ≥ 0
and Ii(aopt(t),popt(t)) ≥ σ2,∀ui ∈ U .

Since Y (a(t),p(t)) ≥ Y (aopt(t),popt(t)) ≥ 0, combined
with (23) and (24), we have:

PoA ≤
η1

[|U|−Nmin]+
Nmin/ℓ

+ η2(|hmax|2|U|lmax + σ2)

η2σ2

The combination of Case 1 and Case 2 completes the proof.


