
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021 1

OL-MEDC: An Online Approach for
Cost-effective Data Caching in Mobile Edge

Computing Systems
Xiaoyu Xia, Feifei Chen, Qiang He, Senior Member, IEEE , Guangming Cui, John Grundy, Senior Member,

IEEE , Mohamed Abdelrazek, Athman Bouguettaya, Fellow, IEEE , and Hai Jin, Fellow, IEEE

Abstract—Mobile Edge Computing (MEC) has emerged to overcome the inability of cloud computing to offer low latency services. It
allows popular data to be cached on edge servers deployed within users’ geographic proximity. However, the storage resources on
edge servers are constrained due to their limited physical sizes. Existing studies of edge caching have predominantly focused on
maximizing caching performance from the mobile network operator’s perspective, e.g., maximizing data retrieval success rate,
minimizing system energy consumption, balancing the overall caching workload, etc. App vendors, as key stakeholders in MEC
systems, need to maximize the caching revenue, considering the cost incurred and the benefit produced. We investigate this novel
Mobile Edge Data Caching (MEDC) problem from the app vendor’s perspective, and prove its NP-hardness. We then propose Online
MEDC (OL-MEDC), an approach that formulates MEDC strategies for app vendors, without requiring future information about data
demands. Its performance is theoretically analyzed and experimentally evaluated. The experimental results demonstrate that
OL-MEDC outperforms state-of-the-art approaches by at least 20.41% on average.

Index Terms—data caching, mobile edge computing, online algorithm, cost-effective.

F

1 INTRODUCTION

THe world is witnessing an exponential growth of mobile
and Internet-of-Things devices in recent years [1]. These

devices generate enormous network traffic, often increase
network latency and cause network congestion. To tackle
this challenge, Mobile Edge Computing (MEC) has emerged
to distribute computing and storage resources at the net-
work edge by deploying edge servers at base-stations within
end-users’ geographic proximity [2]. Mobile and Internet-
of-Things application vendors – referred to as app vendors
hereafter – can request the use of computing and storage
resources on edge servers to deploy applications for ensur-
ing low-latency service and data accesses for their users [3].
Some computation tasks may be offloaded from their end-
devices to edge servers for reducing computation time and
energy consumption [4], [5].

As the number of end-users accessing edge applications
increases, it is expected that a large amount of app data
will be transmitted via edge servers between remote cloud
servers and users’ end-devices. Caching app vendors’ data
on edge servers, (e.g. viral videos), will significantly reduce

• X. Xia, F. Chen and M. Abdelrazek are with School of Information
Technology, Deakin University, Geelong, Victoria, Australia.
E-mail: xiaoyu.xia@deakin.edu.au; feifei.chen@deakin.edu.au;
mohamed.abdelrazek@deakin.edu.au.

• Q. He and G. Cui are with School of Software and Electrical Engineering,
Swinburne University of Technology, Melbourne, Victoria, Australia. E-
mail: qhe@swin.edu.au; gcui@swin.edu.au.

• J. Grundy is with Faculty of Information Technology, Monash University,
Melbourne, Victoria, Australia. E-mail: john.grundy@monash.edu.

• A. Bouguettaya is with School of Computer Science, University of Sydney,
Australia. Email: athman.bouguettaya@sydney.edu.au.

• H. Jin is with School of Computer Science and Technology, Huazhong
University of Science and Technology, China. Email: hjin@hust.edu.cn.

their users’ data retrieval latency because the users can
retrieve data directly from edge servers within their close
geographic proximity.

Data caching techniques have been intensively studied
and applied to leverage their advantages in saving band-
width consumption, minimizing access costs and reducing
network latency [6], [7], [8]. In the last few years, there
has been intensive research investigating network cache in
the conventional network paradigms relying on different
perspectives, e.g., information-theoretic caching [9] and re-
quest routing [10]. As a new computing paradigm, MEC
offers new opportunities but poses new challenges for data
caching. In MEC systems, the fundamental goal is to lower
users’ data retrieve latency by caching popular data on edge
servers [11].

Research has started in earnest to study data caching
problems in MEC systems – referred to as the Mobile Edge
Data Caching (MEDC) problem hereafter – from the mobile
network operator’s perspective with different offline opti-
mization objectives, e.g., minimum response latency [12],
minimum delay cost [13], maximum data sharing efficiency
[14]. However, these studies have not systematically con-
sidered the requirements and concerns of app vendors like
Facebook or Uber who posses storage resources on edge
servers to cache data. In the MEC environment, app vendors
and mobile network operators are two stakeholders with
quite different interests. From the mobile network oper-
ator’s perspective, the main objective is to optimize the
overall caching performance in edge data caching scenarios,
e.g., maximizing data retrieval success rate [15], minimizing
system energy consumption [16], or balancing the overall
caching workload [17]. In addition to mobile users, app
vendors are the mobile network operators’ other group of

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021 2

customers in the MEC environment. The key challenge for
app vendors is to formulate more cost-effective caching
strategies, considering both the caching benefit obtained
from providing low-latency data retrieval to its app users
and the caching cost incurred based on the pay-as-you-go
scheme.

Given a set of requested data in an area, caching all the
requested data on every individual edge server is a straight-
forward solution for app vendors to ensure low latency for
all the users. However, edge servers’ cache capacities are
normally limited and expensive because of their physical
size limits [2], [18]. It is difficult to cache a large amount of
data for each app vendor on each edge server because of
the competitions among app vendors. A common practice
is to reserve cache capacities on individual edge servers
in advance. Users may then benefit from low-latency data
retrievals provided by their nearby edge servers, producing
caching benefits for the app vendor. In the meantime, caching
costs are incurred based on the pay-as-you-go scheme when
data are transmitted to be cached [19]. Both caching benefits
and caching costs must be considered when cost-effectively
formulating MEDC strategies for app vendors. In addition,
different data will need to be cached dynamically over time.
Cached data may need to be flushed out to save cache
spaces for more popular data. These dynamic data demands
are not known in advance and must be accommodated on
the fly. Thus, offline MEDC approaches are subject to low
effectiveness over time.

In this paper, we study this online MEDC problem from
the app vendor’s perspective for maximizing the caching revenue,
considering both caching benefits and caching costs. The main
contributions include:
• We formulate this online MEDC problem and prove its
NP-hardness.

• We propose OL-MEDC (Online MEDC), an online ap-
proach for formulating cost-effective MEDC strategies
over time, to solve the MEDC problem over time without
requiring future information about data demands.

• We analyze the guarantee bound of OL-MEDC theoreti-
cally.

• We compare OL-MEDC with five representative ap-
proaches through extensive experiments, and show OL-
MEDC’s advantages over these approaches in addressing
the online MEDC problem.

The organization of the paper is as follows. An example
motivating the MEDC problem is provided in Section 2.
In Section 3, we present the system model, formulate the
MEDC problem and prove that the MEDC problem is NP-
hard. In Section 4, we present the design of OL-MEDC,
and prove its performance guarantee theoretically. Section 5
evaluates OL-MEDC experimentally against five represen-
tative approaches, and analyzes the threats to the validity of
the experimental evaluation. The related work is reviewed
in Section 6. We conclude this study and point out the future
work in Section 7.

2 MOTIVATING EXAMPLE

In an MEC environment, edge servers in an area can trans-
mit data with other via high-speed links [3], [4]. Those
edge servers and links constitute an edge server network

d1

d2

d3

d4

v1

v2 v3

v4u1

u4

u5

u6

u7

u11

u8

u9

u10

u2

u3

Edge Server

Mobile User

Fig. 1: An example MEDC scenario

[19]. This architecture single-point failure problem in the
edge-cloud architecture, where a centralized macro base
station is used to control the communications between edge
servers [20]. It also avoids unpredictable network latency
when edge servers can only communicate the backhaul
network [19]. In fact, the edge-cloud architecture is a fully-
connected edge server network. Thus, OL-MEDC can also
accommodate the edge-cloud architecture.

Fig. 1 shows a typical MEC system, involving 4 edge
servers, {v1, ..., v4} and 11 users, {u1, ..., u11} that request 4
data, {d1, ..., d4}. Compared to cloud servers, the storage
resources at the network edge are constrained by edge
servers’ limited physical capacities. As discussed in Section
1, caching plenty of data on each edge server is usually im-
possible due to edge servers’ constrained storage resources
and the consequent competition among app vendors [2],
[21]. This is the capacity constraint. Due to this constraint, an
app vendor will not always be able to acquire the required
cache spaces. Thus, app vendors normally need to reserve
a certain number of cache spaces on every edge server
in advance. Take Fig. 1 for example. The app vendor has
reserved four cache spaces on edge server v1. However,
d1, d2 and d3 are requested in the coverage area of v1,
and the cache spaces of v1 do not suffices to cache those
three kinds of data. Usually, reserving a large amount of
cache spaces on an individual edge server is cost-ineffective
because users’ data demands for popular data vary from
area to area [22]. The ability for edge servers to enable
collaborative caching further reduces the app vendor’s need
to reserve large amounts of cache capacities on individual
edge servers.

Each edge server in the MEC system has its coverage
area, and only the users in this coverage area can access
the edge server directly [23]. In an overlapping area covered
by multiple edge servers, a user can access its local edge
servers, i.e. the edge servers covering this user. For example,
user u4 in Fig. 1 can access both v1 and v2 directly. This is
the coverage constraint. If a user cannot retrieve data from its
local edge servers, this user can obtain the data from remote
edge servers as long as the app-specific latency constraint
is not violated [21], [24]. This is the latency constraint. Take
u6 in Fig. 1 for example. It can obtain data directly from its
local edge servers v2 and v3, or remote edge servers v1 and

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021 3

v4. If none of them has the requested data, the user has to
retrieve it from the cloud. The main difference between these
retrieval methods lies in the corresponding data retrieval
latencies.

In addition to the above three unique constraints in MEC
systems, the main difference between this study and existing
studies is that this paper investigates the MEDC problem for
app vendors, considering data dynamics in MEC systems.
Please note that the cost of hiring cache spaces is fixed
because cache spaces are reserved in advance by the app
vendor. The optimal MEDC strategy for app vendors should
maximize the app vendor’s caching revenue, i.e., caching benefit
minus caching cost. Fig. 1 shows that users u9, u10 and u11
request data d1. Caching d1 on v4 in its reserved cache
spaces can reduce the data retrieval latency of those users,
compared with retrieving data from the remote cloud. This
produces the caching benefit. However, transmitting d1 to
v4 is charged by the mobile network operator. This incurs
the caching cost. Furthermore, the status of a dynamic real-
world MEC system changes over time. For example, users
may leave the system and new popular data may be re-
quested by new users. The MEDC strategy must be updated
accordingly to remain optimal, taking into account these
system dynamics, the information of which is not available
prior to their occurrences. Finding and implementing the
global optimal MEDC strategy over a long period of time is
impractical. The app vendor’s MEDC must be updated over
time in an online manner without the need for knowing
future data dynamics in the real-world MEC system.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system architecture,
then define the data retrieval latency, caching cost, and
caching benefit under constrains discussed in Section 2.

3.1 System Architecture
Let V denote the set of edge servers and E denote the set
of links in an MEC system, the edge server network can be
modeled as a graph G(V,E). The notations are summarized
in Table 1.

Let D denote the data requested in the MEC system in
a specific time slot t, let st = {st1, ..., stn} denote the MEDC
strategy for time slot t, where sti = {sti,f ,∀df ∈ D}, and sti,f
indicates whether df is decided to be cached on vi in time
slot t:

sti,f =

{
0 if df is not cached on vi in t
1 if df is cached on vi in t

(1)

Let qtm,d denote whether user um requests data df in
time slot t:

qtm,f =

{
0 if um does not request df in t
1 if um requests df in t

(2)

The data cached on vi must not exceed the reserved
spaces on vi in any time slot:∑

df∈D
sti,f · |df | ≤ Ai,∀vi ∈ V, t ∈ T (3)

where |df | is the size of df . This is the cache space constraint.

TABLE 1: Summary of Notations

Notation Description

Ai reserved cache spaces on vi
c remote cloud server

cce unit data transmission cost from cloud to edge server

cee unit data transmission cost between edge servers

D set of requested data

df data f

E set of edges in G

G edge server network

qtm,f binary variable indicating um requests for df in t

S data caching strategy over T

st data caching strategy in t

sti,f binary variable indicating df will be cached on vi
at the end of t

t time slot t

T set of time slots

V set of edge servers

vi edge server i

U set of end-users’ devices

Uj set of end-users’ devices covered by vj
um end-users’ device m

γ unit of caching benefit

Φj,i hops between edge server vj and vi
ΦL latency limit

Φt
i,f lowest latency transmitting df for vi in t

Φt
m,f lowest latency of um retrieving df in t

3.2 Data Retrieval Latency
There are two main components in the data retrieval latency
of a user, including the latency transmitting data between
edge servers and the latency transmitting data to the user
from an edge server covering this user. Since the latter is
extremely low in 5G and is not influenced by the MEDC
strategy, we do not consider this component in the model.
Modeling the connected edge servers in the MEC system
as a graph in the same way as [19], the number of hops in
MEC systems is used to generically quantify data retrieval
latency. The latency of user um retrieving data df in time
slot t, denoted by Φtm,f , is calculated as follows:

Φtm,f = min{Φj,i, stj,f = 1,∀vj ∈ V
⋃
c},∀um ∈ Ui (4)

where vj is the edge server caching df , vi is the edge server
covering um, and Φj,i is the minimum number of hops
between vj and vi.

Remark: Similar to [19], [21], specific latency models can
be easily integrated into OL-MEDC to accommodate various
real-world MEDC scenarios. Specifically, Φj,i in (4) can be
replaced with a latency function Φ(j, i, f) that represents
the latency in delivering data df from vj to vi:

Φtm,f = min{Φ(j, i, f), stj,f = 1,∀vj ∈ V
⋃
c},∀um ∈ Ui

(5)

Let ΦL denote the app-specific latency constraint, i.e., the
maximum data retrieval latency allowed. If Φtm,f is higher
than ΦL, um will access df from the remote cloud.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021 4

3.3 Caching Cost
To cache a data df on an edge server in the MEC system,
df can be transmitted from another edge server or from the
cloud. Either way, the transmission cost occurs. The caching
cost incurred by implementing an MEDC strategy st is the
total transmission cost incurred by transmittingD according
to st. As discussed in Section 2, the app vendor reserves
cache spaces on edge servers in advance. Thus, the cost
incurred by hiring cache spaces is fixed and thus does not
need to be considered here.

Similar to (4), let Φti,f = min{Φi,j , st−1j,f = 1,∀vj ∈ V }
denote the lowest latency in transmitting df to vi in time slot
t. There are two types of data transmissions: from the remote
cloud server to an edge server and from an edge server to
another. Let cce denote the unit cost of transmitting data
from cloud to edge servers, and cee denote the unit cost of
transmitting data between edge servers. If the cost incurred
by transmitting df from the remote cloud server (cee ·Φti,f >
cce) is lower than that from another edge server in the MEC
system (cce < cee · Φti,f), the data will be transmitted from
the remote cloud to vi. Thus, the cost of transmitting data
df in time slot t, denoted as C(st), is:

C(st) =
∑
vi∈V

∑
df∈D

|df | · sti,f (1− st−1i,f) · costti,f (6)

where costti,f = min{cee ·Φti,f , cce} is the minimum cost for
delivering df to vi in time slot t.

Remark: Similar to latency, specific transmission cost
models can be easily integrated into OL-MEDC. A cost func-
tion c(j, i, f) that represents the cost of delivering df from
vj to vi can be employed to calculate the actual minimum
cost of delivering df to vi in time slot t:

costti,f = min{c(j, i, f), stj,f = 1,∀vj ∈ V
⋃
c} (7)

3.4 Caching Benefit
As discussed in Section 2, a user retrieves data from a local
edge server covering it or a remote edge server caching the
data as long as it does not violate the app-specific latency
constraint ΦL. Thus, caching benefit is yielded when a user
can retrieve data in the MEC system within ΦL. Let Btm,f be
the caching benefit yielded for individual user um’s retrieval
of data df . It can be calculated as follows:

Btm,f =


max{ΦL − Φtm,f , 0} if um retrieves df from

an edge server
0 if um retrieves df from

the remote cloud
(8)

Now, the caching benefit yield by an MEDC strategy in
time slot t can be calculated by:

B(st) =
∑
um∈U

∑
df∈D

Btm,f · qtm,f (9)

3.5 Problem Formulation And Hardness
Let γ denote the app vendor’s priority for lowering users’
data retrieval latency. A large γ indicates that the app
vendor is inclined to lower network latency for its users
at higher caching costs, and vice versa. Based on the cost

and benefit models in Sections 3.3 and 3.4, the caching
revenue produced by MEC strategy st, denoted by P(st),
can be calculated by caching benefit B(st) minus caching
cost C(st):

P(st) = γ · B(st)− C(st)
=

∑
um∈U

∑
df∈D

γ · Btm,f · qtm,f −
∑
vi∈V

∑
df∈D

|df | · sti,f ·

(1− st−1i,f) · costti,f
(10)

Now, the MEDC problem over a period of time T that
consists of multiple time slots can be modeled as follows:

max lim
T→∞

T∑
t=1

P(st)

s.t. : (1), (2), (3), (4)

Now, we prove the NP-hardness of the MEDC problem
in an individual time slot t (referred to as the t-MEDC
problem hereafter) with Theorem 1.
Theorem 1. The t-MEDC problem in a time slot is NP-hard.

Proof To do the proof, we first introduce the weighted k-
set packing (WKSP) problem, a classic NP-hard problem.
Let X denote an element universe with ∀x ∈ X and S
denote the set of all subsets in X . Each subset s ∈ S covers
a set of elements with weight w(s). Given the limit k, the
WKSP problem can be represented by:

max
∑
s∈S

w(s) · cs (11a)

s.t. :
∑
s∈S

cs ≤ k (11b)∑
x∈X

cx ≤ 1 (11c)

where cs ∈ {0, 1} indicates whether set s ∈ S is included
into the solution, and cx ∈ {0, 1} indicates whether element
x is covered.

Now we present how to reduce a special case
of the t-MEDC problem with same size data to the
WKSP problem. Here we construct an 1-time-slot in-
stance t − MEDC(V,U, n,P(s)) based on a given in-
stance MEDC(V,U, n,P(s)) in the polynomial time where
|S| = |V |, |X | = |U | and n = k. The function P(s) is the
caching revenue produced by the MEDC strategy s based
on (10). In this case, we can project the revenue function
P(s) to w(s). This way, any solution satisfying the objective
of the t-MEDC problem also satisfies objective (11a). As
constraint (11b) constrains the maximum number of selected
sets,

∑
vi∈V

∑
df∈D si,f ≤

∑
vi∈V Ai based on (3) can be

projected to (11b). Since the caching benefit of each data
request df of user um can only be counted once, (11c) is
satisfied. In this case, any solution satisfying constraints (3)
and (4) also satisfies constraints (11b) and (11c). Thus, the
WKSP problem can be reduced from the t-MEDC problem.
Since the WKSP is NP-hard, the t-MEDC problem is also
NP-hard. �

The t-MEDC problem is a special case of the MEDC
problem where T = 1. Thus, the MEDC problem over T
is also NP-hard based on Theorem 1.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021 5

Algorithm 1 Single Time-slot MEDC Algorithm (ST-MEDC)

1: initialization
2: s̃, ŝ← ∅
3: end of initialization
4: s̃i,f ← ∅
5: repeat
6: s̃← s̃

⋃
s̃i,f

7: obtain the most cost-effective data caching deci-
sion s̃i,f under cache space constraint: s̃i,f =

arg max{B(s̃
⋃
s̃i,f)−B(s̃)
|df | ,∀vi ∈ V, df ∈ D}

8: until no feasible decision s̃i,f
9: ŝi,f ← ∅

10: repeat
11: ŝ← ŝ

⋃
ŝi,f

12: obtain the data caching decision ŝi,f with the highest
benefit increase under cache space constraint: ŝi,f =
arg max{B(ŝ

⋃
ŝi,f)− B(ŝ),∀vi ∈ V, df ∈ D}

13: until no feasible decision ŝi,f
14: return arg maxs∈{s̃,ŝ}B(s)

4 ALGORITHM DESIGN AND ANALYSIS

The complete information about the MEC system over time
is required to solve the MEDC problem optimally. However,
it is unrealistically in real-world scenarios where users’ data
requests usually arrive dynamically. In this section, we first
present the ST-MEDC (Single Time-slot MEDC) algorithm
for solving the MEDC problem in a single time slot. Then,
we introduce the OL-MEDC (Online MEDC) algorithm for
finding near-optimal MEDC strategies over time.

4.1 Single Time-slot MEDC Algorithm

Finding optimal solutions in large-scale MEDC scenarios is
intractable, due to the NP-hardness of the t-MEDC prob-
lem. Thus, OL-MEDC employs a heuristic algorithm named
ST-MEDC (Single Time-slot MEDC) to solve the t-MEDC
problem, aiming to maximize the caching benefit B(st) in
individual time slots.

The pseudo-code of ST-MEDC is shown in Algorithm
1. Starting with initialization, ST-MEDC creates two initial
MEDC strategy candidates s̃ and ŝ (Lines 1-3). Then, it
obtains s̃ first in an iterative manner: always including the
data caching decision s̃i,f that produces the highest ratio
of caching benefit over used caching spaces B(s̃

⋃
s̃i,f)−B(s̃)
|df |

into s̃ until the cache space constraint (3) is violated or
no feasible decision s̃i,f can be found (Lines 4-8). Simi-
larly, the algorithm obtains ŝ by selecting the data caching
decision ŝi,f with the highest increase in caching benefit
B(s̃

⋃
s̃i,f) − B(s̃) (Lines 9-13). In Line 14, the solution

with the higher total caching benefit is the final result of
Algorithm 1.

The computational complexities of finding decisions in
Lines 7 and 12 are at mostO(|V |·|D|), respectively. There are∑
vi∈V Ai at most iterations in each of the two loops in ST-

MEDC. Thus, the computational complexity of ST-MEDC is
O(2 · |V | · |D|

∑
vi∈V Ai) = O(|V |2 · |D|).

Algorithm 2 Online MEDC Algorithm (OL-MEDC)

1: initialization
2: β = 0, t = 1, s0 ← ∅, S = {s0}
3: end of initialization
4: while t ≤ T do
5: obtain MEDC strategy st by Algorithm 1
6: calculate B(st), C(st) by st and st−1

7: calculate B(st−1) by st−1

8: if γ · β ≥ k · C(st) or β = 0 then
9: β = B(st)

10: else
11: β = β + B(st−1)
12: st ← st−1

13: end if
14: S ← S

⋃
st

15: t = t+ 1
16: end while

4.2 Online MEDC Algorithm
Now we present OL-MEDC, the online algorithm for for-
mulating cost-effective MEDC strategies over time based
on ST-MEDC. The pseudo-code of OL-MEDC is shown
in Algorithm 2. As discussed in Section 2 and Section 3,
caching cost is an important component in the caching
revenue. Updating the MEDC strategy in every time slot
may incur high caching costs. Thus, OL-MEDC updates
the current MEDC strategy only when it has already pro-
duced adequate benefits, i.e. γ · β > k times the caching
cost incurred by implementing the MEDC strategy update,
where β is the accumulated caching benefit produced by
the current MEDC strategy since its implementation and
k is a parameter specified by the app vendor based on its
willingness to trade off caching cost for caching benefit.
In general, a large k will tend to reduce caching costs by
keeping the current MEDC strategy.

Algorithm 2 initializes the accumulated caching benefit
by β = 0 and creates an initial MEDC strategy (Lines 1-3). In
each time slot, Algorithm 2 first obtains an approximation
solution st with Algorithm 1 (Line 5), then calculates the
benefit produced by st and the caching cost incurred by
updating st−1 to st (Line 6). After that, it calculates the
caching benefit produced with the current MEDC strategy
unchanged (Line 7). Then, through Line 8 to Line 15, the
algorithm compares the accumulated caching benefit β ob-
tained by st−1: if β > 1

γ times C(st) or st−1 is infeasible,
st−1 is updated by st. Otherwise, st−1 remains and no extra
caching cost incurs.

As discussed in Section 4.1, the computational com-
plexity of ST-MEDC is O(|V |2 · |D|). Thus, the computa-
tional complexity of OL-MEDC in each time slot is also
O(|V |2 · |D|). This indicates the high efficiency of OL-MEDC
and allows it to formulate MEDC strategies rapidly over
time.

4.3 Performance Analysis
Here, we first analyze the approximation ratio of ST-MEDC
in terms of caching benefit, i.e., the ratio of the caching
benefit produced by ST-MEDC in the worst case over that
produced by the optimal solution. After that, we analyze

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021 6

the competitive ratio of OL-MEDC over time, i.e., the ratio
of the total caching revenue produced by OL-MEDC in the
worst case over that produced by the optimal strategy, based
on the approximation ratio of ST-MEDC.

In terms of caching benefit, we obtain the approximation
ratio of ST-MEDC by analyzing the performance bound of s̃
with Theorems 2 - 5. We divide each data cache decision s̃i,f
into |df | sub-decisions, where each sub-decision produces
B(s̃

⋃
s̃i,f)−B(s̃)
|df | caching benefit. Let s̃′ denote the set of sub-

decisions based on data caching strategy s̃.
Let s̃′l denote the sub-decision set when the lth sub-

decision is included in s̃′. Let s∗ denote the optimal solution
of the t-MEDC problem, and B(s∗) denote the caching ben-
efit yielded by the optimal t-MEDC strategy. The increase
in the caching benefit by including the lth sub-decision,
denoted by ∆B̃l, is at least

B(s∗)−B(s̃′l−1)∑
vi∈V

Ai
.

Theorem 2. For the lth sub-decision included in s̃′, the
increase in benefit, ∆B̃l, follows:

∆B̃l ≥
B(s∗)− B(s̃′l−1)∑

vi∈V Ai
(12)

Proof To proof this theorem, we first divide the optimal
the optimal t-MEDC strategy s∗ into a set of sub-decisions
s′∗, where B(s∗) = B(s′∗). Since s̃′l selects the sub-decision
with the maximum ratio of benefit when including the lth
sub-decision, for the first sub-decision in s′∗ but not in
s̃′l−1, it is at most ∆B̃l increased in the caching benefit. In
addition, there is at most

∑
vi∈V Ai cache spaces available

in the MEC system. Thus, the total caching benefit produced
by {s′|s′ ∈ s′∗

⋂
¬s̃′l−1} is at most

∑
vi∈V Ai ·∆B̃l. Thus, the

above inequality is satisfied. �
Now, we prove that the caching benefit produced by s̃′l

provided by ST-MEDC with the lth sub-decision included, is

at least

(
1−

(
1− 1∑

vi∈V
Ai

)l−1)
times the caching benefit

produced by s′∗ with Theorem 3.
Theorem 3. For each included sub-decision l, the caching

benefit produced by s̃′l fulfills the following:

B(s̃′l) ≥

1−
(

1− 1∑
vi∈V Ai

)l−1B(s′∗) (13)

Proof According to Theorem 2, we can obtain the caching
benefit produced by s̃′l based on (14).

B(s̃′l) = B(s̃′l−1) + ∆B̃l ≥ B(s̃′l−1) +
B(s′∗)− B(s̃′l−1)∑

vi∈V Ai

=

(
1− 1∑

vi∈V Ai

)
B(s̃′l−1) +

1∑
vi∈V Ai

B(s′∗)

(14)

This way, we can prove this theorem by the inductive proof
easily, and omitted details here. �

According to Theorem 3, the lower bound of the caching
benefit with the (l + 1)

th sub-decision of s̃′ can be calcu-
lated:

B(s̃′l+1) ≥

1−
(

1− 1∑
vi∈V Ai

)lB(s′∗) (15)

The total amount of available cache spaces is
∑
vi∈V Ai.

When all the cache spaces are occupied (l =
∑
vi∈V Ai), the

caching benefit produced by strategy s̃l+1 fulfils:

B(s̃′l+1) ≥

1−
(

1− 1∑
vi∈V Ai

)lB(s′∗)

=

(
1−

(
1− 1

l

)l)
B(s′∗) ≥

(
1− 1

e

)
B(s′∗)

(16)

However, s̃l+1 violates the cache space constraint with
the (l + 1)

th sub-decision included into s̃′l+1, where l =∑
vi∈V Ai. Here, we prove the lower bound of the caching

benefit produced by s̃′l with Theorem 4.
Theorem 4. When l =

∑
vi∈V Ai, the benefit produced by s̃′l

is at least e−12e times what is produced by s′∗:

B(s̃′l) = B(s̃′∑
vi∈V

Ai
) ≥ e− 1

2e
B(s′∗)

Proof According to (16), the benefit produced by s̃′l ful-
fills:

B(s̃′l) ≥
(

1− 1

e

)
B(s′∗)−∆ ˜Bl+1 (17)

Since the increase in the caching benefit in the l + 1th

time slot ∆ ˜Bl+1 cannot be higher than that in the lth time
slot:

∆ ˜Bl+1 ≤ ∆B̃l ≤ B(s̃′l) (18)

Thus, we can obtain:

B(s̃′l) ≥
(

1− 1

e

)
B(s′∗)− B(s̃′l) ≥

e− 1

2e
B(s′∗) (19)

Thus, the theorem holds. �
Please note that the MEDC strategy s̃ obtained by ST-

MEDC considers the differentiated data sizes. Thus, the
set of sub-decisions s̃′ derived from s̃ will not always
contain up to

∑
vi∈V Ai sub-decisions. Now, we analyze the

approximation ratio of the t-MEDC strategy s provided by
ST-MEDC in terms of the caching benefit:
Theorem 5. The caching benefit produced by ST-MEDC

is at least (1−ω)(e−1)
2e times the caching benefit pro-

duced by the optimal solution s∗, where ω =

|V |·min

{
min
{
Ai,∀vi∈V

}
,max

{
|df |,∀df∈D

}}
∑

vi∈V
Ai

.

Proof We first analyze the performance of s̃ in ST-MEDC
here, to obtain the approximation ratio of ST-MEDC.

B(s̃) ≥ B(s̃′∑
vi∈V

Ai
)− ω · B(s̃′∑

vi∈V
Ai

)

= (1− ω) · B(s̃′∑
vi∈V

Ai
) ≥ (1− ω) · e− 1

2e
B(s′∗)

=
(1− ω)(e− 1)

2e
· B(s′∗) =

(1− ω)(e− 1)

2e
· B(s∗)

(20)

Since the final MEDC strategy constituted by ST-MEDC
always produces benefit no lower than s̃, we can obtain:

B(s) = max{B(s̃),B(ŝ)} ≥ B(s̃) ≥ (1− ω)(e− 1)

2e
· B(s∗)

(21)

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021 7

Thus, the approximation ratio of ST-MEDC in terms of
caching benefit is (1−ω)(e−1)

2e . �
According to Theorem 5, we can prove the competitive

ratio of OL-MEDC in terms of caching revenue:

Theorem 6. The competitive ratio of OL-MEDC is
(k−γ)(1−ω)2(e−1)2η

4ke2 , where η =
min
{
B(st),∀t∈{1,...,T}

}
max

{
B(st),∀t∈{1,...,T}

} .

Proof According to Line 8 in Algorithm 2, the caching cost
is at most γk times the accumulated caching benefit β. In the
worst case, the MEDC has to be updated in every time slot
over T and the total caching cost incurred (

∑T
t=1 C(st)) is

no more than γ
k

∑T
t=1 B(st). Thus, the total caching revenue

produced by S = {s0, s1, ..., sT } can be calculated by:

T∑
t=1

P(st) =
T∑
t=1

(B(st)− C(st)) ≥ (
k − γ
k

) ·
T∑
t=1

B(st) (22)

Let
∑T
t=1 P(s∗t) denote the caching revenue obtained by

the offline optimal approach over T .

T∑
t=1

P(st) ≥ (
k − γ
k

) ·
T∑
t=1

(1− ω)(e− 1)

2e
B∗min

≥ (
k − γ
k

) · (1− ω)(e− 1)

2e
·
T∑
t=1

η∗ · B∗max

≥ (
k − γ
k

) ·
(

(1− ω)(e− 1)

2e

)2

· η ·
T∑
t=1

P(s∗t)

(23)

Thus, OL-MEDC always provides a solution that
achieves (k−γ)(1−ω)2(e−1)2η

4ke2 times the optimal offline solu-
tion in terms of the caching revenue.

�

5 EXPERIMENTAL EVALUATION

5.1 Benchmark Approaches

In the experiments, OL-MEDC is compared with five repre-
sentative approaches :
• IP-MEDC: In each individual time slot, it provides the

optimal solution P(st) to t-MEDC problem described in
Section 3.5 with IBM’s CPLEX Optimizer.

• CEDC-O [21]: This online approach aims to maximize the
coverage of user requests while minimizing the system
cost. As mentioned in Section 2, the app vendor needs to
reserve cache spaces. Thus, the cost of hiring cache spaces
is not included in this approach.

• Request-based Collaborative Caching (RCC) [25]: This
online approach focuses on serving the most users by the
MEDC strategy over time in the MEC system.

• AEDC [26]: This offline approach finds solutions to t-
MEDC problems with the aim to approximate the max-
imum caching benefits obtained by IP-MEDC. In the
experiments, AEDC runs in each individual time slot to
obtain the results.

• Distributed Caching Algorithm (DCA): This distributed
algorithm originates from [27] and is enhanced to solve
the online MEDC problem. Edge servers communicate

and cache data collaboratively in each time slot. This algo-
rithm maximizes the overall caching revenue by heuristi-
cally caching data on edge servers that yield the highest
caching revenues.

5.2 Experimental Settings

The real-world EUA dataset1 is used for conducting the
experiments in this study. In the experiments, a total of
200 mobile users are randomly selected from the dataset to
simulate users in the system. According to the experimental
settings, a certain number of edge servers are randomly
selected from the dataset and connected to simulate an
MEC system. The latency limit ΦL is set to 2 hops. Similar
to [28], a number of these users are randomly selected
to send requests for a set of data (D) in each time slot,
following N (µ, σ2), a normal distribution, where µ = |M |

2

and σ = |M |
4 . The sizes of data requested are also randomly

selected between 1 to the maximum reserved cache spaces
in the experiments.

AWS’s Snowball Edge Pricing2 is adopted in the exper-
iments. We set cce to $0.016, cee to $0.006 and γ to $0.004.
The normal distribution N (µ′, σ′2) is used to randomly
generate the reserved cache spaces on every edge server,
where µ’ equals to half of the maximum reserved cache
spaces among all the edge servers and σ′ = 1.

5.3 Parameter Settings

To evaluate OL-MEDC comprehensively, we conduct seven
sets of experiments to simulate various MEDC scenarios.
Set #1 aims to demonstrate and compare the performance of
the six approaches over 100 time slots, i.e., T = 100. Set #2
aims to demonstrate the applicability of OL-MEDC in four
different MEDC modes:
• General Mode (GM). In this mode, the generic latency

and cost models presented in Section 3 are applied and
data demands in individual time slots follow a discrete
uniform distribution across individual edge servers.

• Zipf Mode (ZM). In this mode, the generic latency and
cost models are applied in the same way as GM, while
users’ demands for different data follow a Zipf distribu-
tion, similar to [29].

• Latency-specific Mode (LM). In this mode, a specific
latency model is applied by randomly selecting a latency
value from (0, 2) for each link between two edge servers.
In addition, a generic cost model is applied and data
demands follow a discrete uniform distribution.

• Cost-specific Mode (CM). In this mode, a specific cost
model is applied by randomly selecting a cost value from
(0, 2) for each link between two edge servers. In addition,
the generic latency model is applied and data demands
follow a discrete uniform distribution.

As summarized in Table 2, we vary the value of one
of the following five parameters while fixing the others
in Sets #2-#7. In this way, we can evaluate OL-MEDC in
different MEDC scenarios and demonstrate the impacts of
the parameters. In these sets, each experiment also continues

1. https://github.com/swinedge/eua-dataset
2. https://aws.amazon.com/snowball-edge/pricing/

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021 8

TABLE 2: Parameter Settings

Mode |V | θ MS |D| k

Set #1 GM 10 1.0 4 4 1

Set #2 GM, TM, LM, CM 10 1.0 4 4 1

Set #3 GM 6, 8, 10, 12, 14, 16 1.0 4 4 1

Set #4 GM 10 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 4 4 1

Set #5 GM 10 1.0 2, 3, 4, 5, 6 4 1

Set #6 GM 10 1.0 4 2, 3, 4, 5, 6 1

Set #7 GM 10 1.0 4 4 1, 4, 16, 64, 256

0 20 40 60 80 100
Time slot t

0.0

0.2

0.4

0.6

Ca
ch

in
g

re
ve

nu
e

IP-MEDC
OL-MEDC
CEDC-O

RCC
AEDC
DCA

(a) P(st) vs. t

0 20 40 60 80 100
Time slot t

0.2

0.3

0.4

0.5

0.6

Ca
ch

in
g

be
ne

fit

(b) B(st) vs. t

0 20 40 60 80 100
Time slot t

0.0

0.1

0.2

0.3

Ca
ch

in
g

co
st

(c) C(st) vs. t

Fig. 2: Set #1

for 100 time slots, is repeated 100 times when a setting
parameter varies, and the average results are reported. The
changed parameters in Sets #3-#7 are:
• Number of edge servers (|V |). This parameter varies from

6 to 16 in steps of 2 and impacts the size of the MEC
system.

• Edge density (θ). Given n edge servers in the simulated
MEC system, e edges are randomly generated based on
θ = e/n. This parameter increases from 1 to 2 in steps of
0.2.

• Maximum reserved cache spaces among all edge servers
(MS). This parameter decides the maximum reserved
cache spaces on the edge servers, varying from 2 to 6 in
steps of 1.

• Number of data (|D|). This parameter increases from 2 to
6 in steps of 1 and is the number of users’ requested data
over T .

• Parameter k in Algorithm 2. This parameter varies among
1, 4, 16, 64, 256 and is used in Algorithm 2 to determine
the updating frequency of the data caching strategy.

As discussed in Section 2, it is cost-ineffective to reserve
huge cache spaces on individual edge servers. Therefore,
those reserved cache spaces must not exceed the threshold
MS in the experiments.

5.4 Performance Metrics
Four performance metrics are adopted in the experiments
for evaluating OL-MEDC:
• Caching revenue P(st), the higher the better.
• Caching benefit B(st), the higher the better.
• Caching cost C(st), the lower the better.
• Maximum computation time, measured by seconds, the

lower the better.

In the evaluation, we observe the maximum computation
time of an approach across the 100 time slots to measure
its efficiency and feasibility, rather than the average com-
putation time. This is because if the approach freezes in
any of the time slots due to excessive computation time, it
will not be able to continue to update the MEDC strategy
for the rest of T . Since DCA is a distributed algorithm,
the computation time in each time slot is determined by
the most time-consuming data caching decision. Please note
that the efficiency results of Set #7 is not presented because
k does not impact the computation time of OL-MEDC.

5.5 Effectiveness
Figs. 2 - 8 show the experimental results of all seven sets of
experiments. Overall, IP-MEDC achieves the highest average
caching revenue, closely followed by OL-MEDC. The average
advantages of IP-MEDC and OL-MEDC are 29.78% and
20.41% over CEDC-O, 39.52% and 29.45% over RCC, 40.05%
and 29.94% over AEDC and 149.80% and 131.76% over
DCA.

Fig. 2 depicts the results of Set #1. Overall, IP-MEDC
and OL-MEDC’s performance are stable over time, outperform-
ing the other four approaches significantly in maximizing the
caching revenue. Fig. 2(a) shows that the average caching
revenues achieved by IP-MEDC and OL-MEDC are 37.09%
and 22.96% higher than CEDC-O, 46.64% and 31.52% higher
than RCC, 54.36% and 38.45% higher than AEDC, 121.30%
and 98.49% higher than DCA. The average caching revenue
achieved by OL-MEDC reaches 89.69% of that achieved
by IP-MEDC. This indicates the high effectiveness of OL-
MEDC. The advantages of IP-MEDC and OL-MEDC in
maximizing caching revenue come from their high ability
to achieve high caching benefits. This can be seen in Fig.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021 9

GM ZM LM CM
Mode

0.2

0.3

0.4

0.5

0.6

0.7
Av

er
ag

e
ca

ch
in

g
re

ve
nu

e IP-MEDC
OL-MEDC
CEDC-O

RCC
AEDC
DCA

Fig. 3: Set #2

6 8 10 12 14 16
|V|

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e

ca
ch

in
g

re
ve

nu
e IP-MEDC

OL-MEDC
CEDC-O

RCC
AEDC
DCA

Fig. 4: Set #3

1.0 1.2 1.4 1.6 1.8 2.0
θ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

ca
ch

in
g

re
ve

nu
e

IP-MEDC
OL-MEDC
CEDC-O

RCC
AEDC
DCA

Fig. 5: Set #4

2 3 4 5 6
MS

0.2

0.4

0.6

0.8

Av
er

ag
e

ca
ch

in
g

re
ve

nu
e IP-MEDC

OL-MEDC
CEDC-O

RCC
AEDC
DCA

Fig. 6: Set #5

2 3 4 5 6
|D|

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

ca
ch

in
g

re
ve

nu
e IP-MEDC

OL-MEDC
CEDC-O

RCC
AEDC
DCA

Fig. 7: Set #6

1 4 16 64 256
k

0.35

0.40

0.45

0.50

0.55

0.60

Av
er

ag
e

ca
ch

in
g

re
ve

nu
e/

be
ne

fit Revenue
Benefit

0.00

0.05

0.10

0.15

0.20

0.25

Av
er

ag
e

ca
ch

in
g

co
st

Cost

Fig. 8: Set #7

2(b). Achieving comparable caching benefits, IP-MEDC and
OL-MEDC outperform CEDC-O, RCC, AEDC and DCA by
large margins. Specifically, their average caching benefits
are 46.98% and 45.17% higher than CDEC-O, 18.29% and
16.83% higher than RCC, 12.95% and 11.56% higher than
AEDC, and 119.47% and 116.78% higher than DCA. Fig. 2(c)
compares the caching costs incurred by the six approaches
over T . CEDC-O incurs the lowest caching cost because
CEDC-O aims to minimize the system cost. On average,
the caching costs incurred by IP-MEDC and OL-MEDC are
0.0424 and 0.0881, lower than RCC and AEDC’s 0.1190,
0.1583, but higher than CEDC-O and DCA’s 0.0039 and
0.0212.

Fig. 3 demonstrates the average caching revenues
achieved by all six approaches in Set #2. In all four modes,
IP-MEDC and OL-MEDC outperform CEDC-O, RCC, AEDC
and DCA with large margins. The average advantages of IP-
MEDC and OL-MEDC are 34.87% and 24.58% over CEDC-
O, 42.88% and 31.97% over RCC, 41.86% and 31.03% over
AEDC and 176.39% and 155.30% over DCA. In the ZM mode
where data demands follow the Zipf distribution, the six ap-
proaches achieve caching revenues similar to those achieved
in other modes. This indicates the ability of OL-MEDC to
accommodate data demands following different patterns.
The average caching revenues achieved by IP-MEDC and
OL-MEDC in the LM and CM modes are higher than
those in GM and ZM modes. In the LM mode, IP-MEDC
and OL-MEDC can effectively increase caching benefits by
delivering data through low-latency links, which increases
caching revenues. In the CM mode, they excel at minimizing
caching costs by delivering data at low transmission costs,
which also increases caching revenues.

Fig. 4 - Fig. 7 show the experimental results of Set #3 -
#6. Those figures demonstrate that IP-MEDC and OL-MEDC
significantly outperform the other four approaches again in terms

of caching revenue. The results of Set #3 is depicted in Fig.
4 with various numbers of edge servers. With the initial
increase from 6 edge servers, the caching revenues achieved
by IP-MEDC and OL-MEDC increase. The reason is that
more users can be served by their nearby edge servers and
the caching benefits increases correspondingly. However,
the caching revenues decrease when the number of edge
servers exceeds 10. This is because the maximum achievable
caching benefits are fixed with the fixed numbers of users.
With more edge servers, there are more cache spaces in the
MEC system. This increases the possibility of data transmis-
sions, which potentially incurs extra caching costs. Thus,
the caching revenues achieved by all approaches decrease
in Fig. 4.

When the edge density θ increases, the caching revenue
increases in Fig. 5, because each end-user has a higher
chance of being served by an edge server under the latency
constraint. As a result, all the approaches can achieve higher
caching revenues. When the maximum reserved spaces
increase from 2 to 6, the caching revenues achieved by
all the fix approaches increase in Fig. 6. However, when
the maximum reserved spaces increase from 5 to 6, the
increase becomes much slower. This indicates that reserving
a large amount of cache spaces on an individual edge server
is usually cost-ineffective. Fig. 7 depicts the results of Set
#6. When the number of requested data |D| decreases, the
caching revenues achieved by all the approaches decrease.
The increase in |D| leads to a higher possibility of trans-
mitting data from the cloud because the reserved caching
spaces are fixed. This way, it decreases the caching benefits
and consequently the caching revenues.

Fig. 8 shows the impact of parameter k on OL-MEDC in
caching revenue, benefit and cost. As discussed in Section
4.2, Algorithm 2 employs k to reduce caching costs. As
shown in Fig. 8, a larger k can indeed lower the caching cost.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021 10

TABLE 3: Maximum computation time

Set #1 Set #2 Set #3 Set #4 Set #5 Set #6

IP-MEDC 2.6540 2.6637 379.9838 3.3022 19.9294 7.6132

OL-MEDC 0.0095 0.0108 0.1541 0.0102 0.0087 0.0090

CDEC-O 0.3661 0.5285 3.1908 0.3836 0.6719 0.7918

RCC 0.0054 0.0061 0.0107 0.0078 0.0063 0.0075

AEDC 0.0057 0.0068 0.0129 0.0058 0.0066 0.0077

DCA 0.0005 0.0010 0.0008 0.0006 0.0005 0.0010

However, it also decreases the caching benefit in the mean-
time. Thus, an app vendor pursuing maximum caching
benefit despite caching cost can feed a small k value to
Algorithm 2. If an app vendor wants to maximize the cost-
effectiveness of its MEDC strategy, it can select a k value
that maximizes the caching revenue, e.g., k = 16 in Set #7.

5.6 Efficiency
In the experiments, we use the maximum computation time
taken across the 100 time slots to evaluate the efficiency.
The results are presented in Table 3. It demonstrates that
IP-MEDC takes much more computation time than others, due
to the NP-hardness of the t-MEDC problem. In particular,
the maximum computation times taken by IP-MEDC and
CDEC-O are 379.9838 seconds and 3.1908 seconds in Set #5,
while the maximum computation times taken by OL-MEDC,
RCC, AEDC and DCA are at most 0.1541 seconds, 0.0107
seconds, 0.0129 seconds and 0.0008 seconds, respectively.
This shows that OL-MEDC is computationally feasible to deploy
on large scales, real-world edge data caching problems.

5.7 Threats to Validity
In this section, we analyze the threats to the validity of the
experimental evaluation, including the threats to construct
validity, internal validity and external validity.

5.7.1 Threats to Construct Validity
The main threats to construct validity in the experiments
are the generated graphs and five comparison approaches.
Randomly generated graphs may not always illustrate real-
world scenarios precisely. To minimize this threat, the
graphs are randomly generated in each execution - 100
graphs are generated when a parameter changes. Moreover,
the five comparison approaches, i.e., IP-MEDC, CDEC-O,
RCC, AEDC and DCA, may not suffice to evaluate OL-
MEDC comprehensively. To minimize this threat, we sim-
ulate different MEDC scenarios by varying five parameters.
In addition, we also evaluate the applicability of OL-MEDC
in different real-world scenarios by evaluating its perfor-
mance in four MEDC modes.

5.7.2 Threats to Internal Validity
For the internal validity, the main threat is the experiment
settings that may favor OL-MEDC over other approaches.
To tackle this threat, we simulated various MEDC scenarios
by changing six parameters for comprehensively and fairly
comparing the performance of all the six approaches. In

addition, the experiment was repeated 100 times to obtain
the averaged results when a setting parameter varies. In
this way, biased results obtained in extreme experiments,
e.g., those with unrealistic data request distribution or edge
server distribution, are neutralized.

5.7.3 Threats to External Validity
The generalize application of OL-MEDC in different MEDC
scenarios is the main threat to the external validity. In this
paper, we generically modeled the MEDC problem and
evaluated all approaches to reduce this threat. We employed
the number of hops to measure latency. Therefore, we can
easily interpret the evaluation results with specific retrieval
latency and data size models. Furthermore, the experiments
were conducted on a real-world dataset. In addition, we
changed the complexity and size of the MEDC problem
by varying the parameters in the experiment settings. In
this way, we can ensure the representativeness and compre-
hensiveness of experimental evaluations. Thus, the threat to
external validity is mitigated.

6 RELATED WORK

Mobile edge computing (MEC) extends cloud computing by
pushing computing resources and services to the network
edge [30]. App vendors can deploy their services and data
on edge servers to offer their users low service latency and
data retrieval latency.

Existing data caching approaches for cloud computing
and conventional distributed computing are rendered obso-
lete, due to the characteristics of MEC systems. Researchers
are starting to study data caching problems in MEC sys-
tems. In [31], the authors considered the caching revenue
produced during the data delivery process. They proposed
an auction mechanism to find an optimal data caching
solution. The authors of [32] proposed a new edge cache
architecture by including caches on smart vehicles into
the network caches. This approach improves the resource
utility and the effectiveness of this architecture. However,
these studies focus on offline approaches, which require
complete information about the MEC system over time.
Thus, dynamic MEDC scenarios cannot be handled by these
offline approaches.

Very recently, a number of online data caching ap-
proaches have been proposed. The authors of [33] studied
the joint service caching and task offloading problem in
MEC. They proposed a Lyapunov-based approach, namely
OREO, to achieve the minimum network latency while
ensuring the low energy consumption in the long-term.
Considering users’ mobility, the authors of [34] propose
MOREA that allocates various resources, i.e. cache spaces
and CPU circles on edge servers for scheduling offloading
tasks. The authors of [18] studied a micro-service deploy-
ment problem with the aim to minimize the overall cost
instead of data retrieval latency. They proposed IDA4ReE,
a primal-dual based algorithm, to find the solution to
this problem with consideration of resource constraints
and performance requirements. However, existing studies
investigated data caching problems in the MEC systems
mainly to complement offloading scheduling. Thus, they
failed to pay sufficient attention to data caching itself, as

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021 11

a unique technology aiming to reduce data retrieval latency,
especially from the app vendor’s perspective.

The MEDC problem was first studied from the app ven-
dor’s perspective in [26]. This research aims to cache data in
an MEC system for serving all the users while minimizing
the total cost. The main limitations of this study are the lack
of consideration of edge servers’ storage capacities and the
data dynamics on MEC systems. In [35], Xia et al. considered
cache space reservation in the MEDC problem. However,
they ignored the dynamics in MEC systems, and only
focused on caching benefit without considering caching
cost. The authors of [21] provided a Lyapunov-based online
algorithm, CEDC-O, for solving the MEDC problem dy-
namically. However, they unrealistically assumed that app
vendors can always hire the needed storage spaces on edge
servers without reservation, and focused solely on user cov-
erage rather than caching revenue. The experiment results
in Section 5.5 show that the caching revenue produced by
CEDC-O is much lower than that produced by OL-MEDC.
To the best of our knowledge, OL-MEDC is the first attempt
to solve the MEDC problem efficiently for app vendors in an
online manner, taking into the unique constraints and data
dynamics in real-world MEC systems.

7 CONCLUSION

In this paper, we investigated the Mobile Edge Data Caching
(MEDC) problem in MEC systems from the app vendor’s
perspective. We identified the major challenges and mod-
eled the MEDC problem formally. We then proved that the
MEDC problem is NP-hard. To accommodate the dynam-
ics of MEC systems, we proposed OL-MEDC, an online
approach for formulating MEDC strategies over time with
a provable performance guarantee. Through extensive ex-
periments, the results demonstrated the advantages of OL-
MEDC in maximizing the caching revenue in MEC systems,
compared with representative approaches. We will consider
MEC systems that allow data to be partitioned for caching
in our future work.

ACKNOWLEDGEMENT

This research is funded by Australian Research Council Dis-
covery Projects No. DP180100212, DP200102491 and Laure-
ate Fellowship FL190100035.

REFERENCES

[1] Z. Ning, P. Dong, X. Wang, X. Hu, L. Guo, B. Hu, Y. Guo, T. Qiu,
and R. Y. K. Kwok, “Mobile edge computing enabled 5g health
monitoring for internet of medical things: A decentralized game
theoretic approach,” IEEE Journal on Selected Areas in Communica-
tions, vol. 39, no. 2, pp. 463–478, 2021.

[2] Z. Xu, L. Zhou, S. C.-K. Chau, W. Liang, Q. Xia, and P. Zhou,
“Collaborate or separate? distributed service caching in mobile
edge clouds,” in IEEE Conference on Computer Communications.
IEEE, 2020, pp. 2066–2075.

[3] S. Pasteris, S. Wang, M. Herbster, and T. He, “Service placement
with provable guarantees in heterogeneous edge computing sys-
tems,” in IEEE Conference on Computer Communications. IEEE,
2019, pp. 514–522.

[4] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading
for energy-constrained mobile edge computing in small-cell net-
works,” IEEE/ACM Transactions on Networking, vol. 26, no. 4, pp.
1619–1632, 2018.

[5] Z. Ning, P. Dong, X. Wang, X. Hu, J. Liu, L. Guo, B. Hu, R. Kwok,
and V. C. M. Leung, “Partial computation offloading and adaptive
task scheduling for 5g-enabled vehicular networks,” IEEE Transac-
tions on Mobile Computing, pp. 1–1, 2020.

[6] G. Casale, “Analyzing replacement policies in list-based caches
with non-uniform access costs,” in IEEE Conference on Computer
Communications. IEEE, 2018, pp. 432–440.

[7] A. Mukhopadhyay, N. Hegde, and M. Lelarge, “Optimal content
replication and request matching in large caching systems,” in
IEEE Conference on Computer Communications, 2018, pp. 288–296.

[8] K. Ji, G. Quan, and J. Tan, “Asymptotic miss ratio of lru caching
with consistent hashing,” in IEEE Conference on Computer Commu-
nications, 2018, pp. 450–458.

[9] S. H. Lim, C.-Y. Wang, and M. Gastpar, “Information-theoretic
caching: The multi-user case,” IEEE Transactions on Information
Theory, vol. 63, no. 11, pp. 7018–7037, 2017.

[10] L. Pu, L. Jiao, X. Chen, L. Wang, Q. Xie, and J. Xu, “Online resource
allocation, content placement and request routing for cost-efficient
edge caching in cloud radio access networks,” IEEE Journal on
Selected Areas in Communications, vol. 36, no. 8, pp. 1751–1767, 2018.

[11] S. Li and T. Lan, “Hotdedup: Managing hot data storage at
network edge through optimal distributed deduplication,” in IEEE
Conference on Computer Communications. IEEE, 2020, pp. 247–256.

[12] J. Xie, D. Guo, X. Shi, H. Cai, C. Qian, and H. Chen, “A fast hybrid
data sharing framework for hierarchical mobile edge computing,”
in IEEE Conference on Computer Communications. IEEE, 2020, pp.
2609–2618.

[13] T. Tran and D. Pompili, “Adaptive bitrate video caching and pro-
cessing in mobile-edge computing networks,” IEEE Transactions on
Mobile Computing, pp. 1–15, 2018.

[14] G. Luo, H. Zhou, N. Cheng, Q. Yuan, J. Li, F. Yang, and X. S. Shen,
“Software defined cooperative data sharing in edge computing
assisted 5g-vanet,” IEEE Transactions on Mobile Computing, 2019.

[15] D. Malak, M. Al-Shalash, and J. G. Andrews, “Optimizing con-
tent caching to maximize the density of successful receptions in
device-to-device networking,” IEEE Transactions on Communica-
tions, vol. 64, no. 10, pp. 4365–4380, 2016.

[16] F. Gabry, V. Bioglio, and I. Land, “On energy-efficient edge caching
in heterogeneous networks,” IEEE Journal on Selected Areas in
Communications, vol. 34, no. 12, pp. 3288–3298, 2016.

[17] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman, X. Jin, and I. Sto-
ica, “Distcache: Provable load balancing for large-scale storage
systems with distributed caching,” in 17th {USENIX} Conference
on File and Storage Technologies ({FAST} 19), 2019, pp. 143–157.

[18] S. Deng, Z. Xiang, J. Taheri, K. A. Mohammad, J. Yin, A. Zomaya,
and S. Dustdar, “Optimal application deployment in resource con-
strained distributed edges,” IEEE Transactions on Mobile Computing,
2020.

[19] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin,
“Cost-effective app data distribution in edge computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 1, pp.
31–44, 2020.

[20] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture
for mobile computing,” in 35th Annual IEEE International Confer-
ence on Computer Communications. IEEE, 2016, pp. 1–9.

[21] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin,
“Online collaborative data caching in edge computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 2, pp.
281–294, 2020.

[22] P. Yang, N. Zhang, S. Zhang, L. Yu, J. Zhang, and X. S. Shen,
“Content popularity prediction towards location-aware mobile
edge caching,” IEEE Transactions on Multimedia, vol. 21, no. 4, pp.
915–929, 2018.

[23] L. Yuan, Q. He, S. Tan, B. Li, J. Yu, F. Chen, H. Jin, and Y. Yang,
“Coopedge: A decentralized blockchain-based platform for coop-
erative edge computing,” in Proceedings of the 30th Web Conference,
2021.

[24] Q. He, C. Wang, G. Cui, B. Li, R. Zhou, Q. Zhou, Y. Xiang,
H. Jin, and Y. Yang, “A game-theoretical approach for mitigating
edge ddos attack,” IEEE Transactions on Dependable and Secure
Computing, 2021.

[25] A. Gharaibeh, A. Khreishah, B. Ji, and M. Ayyash, “A prov-
ably efficient online collaborative caching algorithm for multicell-
coordinated systems,” IEEE Transactions on Mobile Computing,
vol. 15, no. 8, pp. 1863–1876, 2016.

[26] X. Xia, F. Chen, Q. He, G. Cui, P. Lai, M. Abdelrazek, J. Grundy,
and H. Jin, “Graph-based data caching optimization for edge

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021 12

computing,” Future generation computer systems, vol. 113, pp. 228–
239, 2020.

[27] Y. Huang, X. Song, F. Ye, Y. Yang, and X. Li, “Fair and efficient
caching algorithms and strategies for peer data sharing in perva-
sive edge computing environments,” IEEE Transactions on Mobile
Computing, vol. 19, no. 4, pp. 852–864, 2019.

[28] S. Chen, L. Jiao, L. Wang, and F. Liu, “An online market mecha-
nism for edge emergency demand response via cloudlet control,”
in IEEE Conference on Computer Communications. IEEE, 2019, pp.
2566–2574.

[29] Y. Yang and J. Zhu, “Write skew and zipf distribution: Evidence
and implications,” ACM transactions on Storage (TOS), vol. 12, no. 4,
pp. 1–19, 2016.

[30] B. Gao, Z. Zhou, F. Liu, and F. Xu, “Winning at the starting
line: Joint network selection and service placement for mobile
edge computing,” in IEEE Conference on Computer Communications.
IEEE, 2019, pp. 1459–1467.

[31] X. Cao, J. Zhang, and H. V. Poor, “An optimal auction mechanism
for mobile edge caching,” in 38th IEEE International Conference on
Distributed Computing Systems, 2018, pp. 388–399.

[32] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Cooperative
content caching in 5g networks with mobile edge computing,”
IEEE Wireless Communications, vol. 25, no. 3, pp. 80–87, 2018.

[33] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task
offloading for mobile edge computing in dense networks,” in IEEE
Conference on Computer Communications, 2018, pp. 207–215.

[34] L. Wang, L. Jiao, J. Li, J. Gedeon, and M. Mühlhäuser, “Moera:
Mobility-agnostic online resource allocation for edge computing,”
IEEE Transactions on Mobile Computing, vol. 18, no. 8, pp. 1843–
1856, 2018.

[35] X. Xia, F. Chen, J. Grundy, M. Abdelrazek, H. Jin, and Q. He,
“Constrained app data caching over edge server graphs in edge
computing environment,” IEEE Transactions on Services Computing,
2021.

Xiaoyu Xia received his Master degree from The
University of Melbourne, Australia in 2015. He
is a PhD candidate at Deakin University. His
research interests include edge computing, par-
allel and distributed computing, service comput-
ing, software engineering and cloud computing.

Feifei Chen received her PhD degree from
Swinburne University of Technology, Australia in
2015. She is a lecturer at Deakin University. Her
research interests include software engineering,
cloud computing and green computing.

Qiang He received his first PhD degree from
Swinburne University of Technology, Australia,
in 2009 and his second PhD degree in com-
puter science and engineering from Huazhong
University of Science and Technology, China,
in 2010. He is an Associate Professor at
Swinburne. His research interests include ser-
vice computing, software engineering, cloud
computing and edge computing. More de-
tails about his research can be found at
https://sites.google.com/site/heqiang/.

Guangming Cui received his Master degree
from Anhui University, China, in 2018. He is a
PhD candidate at Swinburne University of Tech-
nology. His research interests include software
engineering, edge computing and service com-
puting.

John C. Grundy received the BSc (Hons), MSc,
and PhD degrees in computer science from
the University of Auckland, New Zealand. He
is currently Australian Laureate Fellow and a
professor of software engineering at Monash
University, Melbourne, Australia. He is an As-
sociate Editor in Chief of IEEE Transactions
on Software Engineering, and Associste Edi-
tor of Automated Software Engineering Jour-
nal and IEEE Software. His current interests in-
clude domain-specific visual languages, model-

driven engineering, large-scale systems engineering, and software en-
gineering education. More details about his research can be found at
https://sites.google.com/site/johncgrundy/.

Mohamed Abdelrazek is an Associate Pro-
fessor of Software Engineering and IoT at
Deakin University. Before joining Deakin Uni-
versity in 2015, he worked as a senior re-
search fellow at Swinburne University of Tech-
nology and Swinburne-NICTA software innova-
tion lab (SSIL). Before 2010, he was the head of
software development department at Microtech.
More details about his research can be found at
https://sites.google.com/site/mohamedalmorsy/.

Athman Bouguettaya is a Professor in the
School of Computer Science at University of
Sydney, Australia. He received his PhD in Com-
puter Science from the University of Colorado at
Boulder (USA) in 1992. He is or has been on
the editorial boards of several journals including,
the IEEE Transactions on Services Computing,
ACM Transactions on Internet Technology, the
International Journal on Next Generation Com-
puting and VLDB Journal. He was the recipient
of several federally competitive grants in Aus-

tralia (e.g., ARC) and the US (e.g., NSF, NIH). He is a Fellow of the
IEEE and a Distinguished Scientist of the ACM.

Hai Jin received the Ph.D. degree in computer
engineering from Huazhong University of Sci-
ence and Technology (HUST), Wuhan, China,
in 1994. He is a Cheung Kung Scholars Chair
Professor of computer science and engineering
with the HUST. His research interests include
computer architecture, virtualization technology,
cluster computing and cloud computing, peer-to-
peer computing, network storage, and network
security.

