
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

SplashKit: A Development Framework for Motivating
and Engaging Students in Introductory Programming

Jake Renzella
School of Information Technology

Deakin University, Geelong
Melbourne, Australia

jake.renzella@deakin.edu.au

John Grundy
Faculty of Information Technology

Monash University, Clayton
Melbourne, Australia

john.grundy@monash.edu

Alex Cummaudo
Applied Artificial Intelligence Institute

Deakin University, Geelong
Melbourne, Australia

ca@deakin.edu.au

Jonathon Meyers
School of Information Technology

Deakin University, Geelong
Melbourne, Australia

jon.meyers@deakin.edu.au

Andrew Cain
School of Information Technology

Deakin University, Geelong
Melbourne, Australia

andrew.cain@deakin.edu.au

Abstract—Learning to program is known to be challenging for
many students. Upon entry, students often have poor perceptions
of their capabilities with some anxiety around the challenges they
expect to face in learning to code. Lowering the barriers to entry
will help ease students into programming and enable a broader
range of student to continue programming. SplashKit is an
educationally focused development framework designed to aid the
teaching of programming by empowering students to create
interesting and dynamic programs from their first programming
tasks. This paper explores how SplashKit can be used in tertiary
education to underpin a range of introductory programming
approaches.

Keywords—programming framework, programming education,
introductory programming, motivating programming students

I. INTRODUCTION
Since the introduction of computer programming

coursework at the undergraduate level students’ understanding
of code has always posed a challenge to educators [11], [16],
[17]. Accordingly, a range of approaches aimed at helping to
ease this process have been developed. These approaches range
from innovations associated with tool support, curricula,
pedagogy, and language choice [20]. In relation to tool support,
there are challenges with many programming tools being
developed and focused on professional software engineers. In
this context, the array of options provided to professionals will
overwhelm students for whom even the basics are challenging
[2].

Within the education tool space, there are a range of
graphical programming environments that aim to simplify the
construction of valid programs by switching from a text-based
language to a building block-based approach [12]. These
graphical languages abstract away part of the software
development process, thereby focusing the student’s attention on
algorithmic thinking, rather than syntax and language-specific
features. While these approaches have great merit, they are not
likely to be appropriate for computer science and software
engineering students who need to start building their proficiency
and familiarity with the tools that are primarily used within their
industry. In this context, a different approach is required.

The approach we propose is based around two main goals: to
enable students to create interesting, fun and engaging programs,
while also ensuring that students use industry standard
languages, and tools, and are put in control of the programs they
create.

The benefits of these goals have been shown in innovations
like Georgia Tech's Media Computation course [1], which
suggests that allowing students to develop programs they engage
with is likely to increase the time students spend on the task and
has seen improved outcomes. Integrating professional tools is
more challenging, the goal here is to focus on selecting options
that are not likely to increase the cognitive load of tasks students
perform [2]. By getting started using only basic tools we aimed
to help students better understand the processes behind more
complex environments, while still enabling them to create
programs that are likely to engage their interest.

As the focus of the introductory programming units is around
developing algorithmic awareness, and understanding of the
notional machine [3], it is important that these elements are the
focus of student attention. In this regard, the second goal requires
such tools to empower students while requiring them to
implement the controlling logic. The application programming
interfaces (APIs) students first use when learning to program
need to be simple and flexible, with a focus on ensuring that
students can rationalise about the programs they create.

Teaching programming has a varied range of methodologies,
both for future software engineers and practitioners who will
need to program to fulfil domain-specific duties. Moreover,
programming is rapidly moving from an undergraduate to K-12
curriculum. To make programming fun and engaging from day-
one, and not to overwhelm students with complex programming
tools such as IDEs, we developed SplashKit, a cross-platform,
multi-language, open-source library and set of tools with
accompanying learning resources. Using SplashKit, students can
build a wide range of programs — such as video games,
programs to consume and publish resources via web services,
programs to perform data manipulation and persistence in
databases, and programs that interact over a network. The design
of the SplashKit API enables these complex features to be
implemented with less code and in a way that helps students
develop appropriate conception of computation.

John Grundy
2018 IEEE Teaching, Assessment and Learning for Engineering (TALE), 4-7 December 2018, Wollongong, Australia, (c) 2018 IEEE

In this paper, we first detail SplashKit and its features in
Section II, explore how SplashKit supports student learning in
Section III, and discuss possible benefits and implementations of
SplashKit in curriculum in Section IV.

II. RELATED WORK
Since the development of the BASIC programming language

in 1963 [8], computer science educators have been designing or
simplifying programming environments in order to reduce the
barrier of entry for students new to programming. There are two
large categories of student motivation for learning programming
[9]:

a. Students or practitioners seeking to solve domain
problems with computer programs; e.g. biology students
who write algorithms for DNA sequencing.

b. Students learning to program for their own sake; i.e.
computer science students.

The BASIC programming language is an example of
category a. Kemeny and Kurtz [8] attempted to reduce the
complexity for non-science students when learning to program.
Existing languages — such as Fortran or Algol — required a
level of specificity, that they were concerned may deter students.
More recent programming languages such as Blue (1996) and
Grace (2010) were designed for category b, addressing the
problems in teaching programming in an introductory
programming unit [10], [12]. Grace’s development panel
describe its primary goal as an aid to cover first-year
programming principles, such as program design, data structures
and algorithms [11].

Furthering these developments, the recent push to deliver
programming curriculum from the undergraduate level to the K-
12 level has resulted in an increasing number of teachers making
use of teaching-first languages and environments [18], [19]. An
example of this is the Scratch programming environment [12], a
live, visual programming environment aimed for students
between the ages eight and sixteen. Scratch has largely been very
successful: as of May 2018, there have been over twenty-eight
million users registered in the Scratch programming framework
website [14]. Even with Scratch targeting younger learners, it
has also been used in early introductory programming
undergraduate courses with a transition to Java mid-semester

[15]. Table 1 shows further examples of common educational
resources and their associated teaching approaches.

TABLE 1. EXAMPLES OF LANGUAGE APPROACHES
Approach Examples

Primarily graphical
“building-blocks”. Scratch, Alice, Google Blockly.

Educational-first designed
programming languages. Grace, Pascal

Industry languages commonly used
in education (with or without
frameworks).

Python, Java, C#

These past and current efforts highlight the ongoing pursuit
of and demand for high quality educational resources designed
to ease new students into programming. While tools like Scratch
and Alice are very popular resources, their purpose and approach
comprise mainly of graphical “building blocks”. This approach
differs widely to that of SplashKit which we explore in later
sections.

III. INTRODUCING SPLASHKIT

A. Overview
SplashKit consists of a core API, dependent libraries,

associated tools and educational resources. These components
work together to enable SplashKit to be used in support of a
range of different teaching methods and approaches (see Fig. 1).

Central to SplashKit is the SplashKit Core API, which
exposes features for students to use. This API is written on
dependent libraries including: libCURL, SQLite, SDL. The API
is read by the SplashKit Translator to generate website
documentation and multiple language adapters (currently
Python, Pascal, C# and C/C++). Students can then write
programs in any of these supported programming languages,
with the aid of the accompanying open education resources
available online. To compile these programs, students make use
of the SplashKit Manager (SKM), which works as an interface
between the source code and language’s compiler, giving the
programmer access to a broader range of features from the
SplashKit API, as well as optimisation tools to more easily
initialise a new project.

Fig. 1: Overview of SplashKit.

B. SplashKit Features
Having a context in which to apply the use of computing has

been shown to make programming more relevant, and to
improve student success [4]. This can be challenging when
delivering a general introductory programming unit, as a single
context may not engage all students. For many years, we used a
games programming context with an earlier version of
SplashKit, and while this has been successful for many students,
we have found that this one context does not appeal to all, for
example business students may not be motivated to create
games. To help address this, we redeveloped the framework used
for games programming to incorporate a wider range of potential
contexts. When used in conjunction with a flexible assessment
approach — such as the approach used by Cain et al. in portfolio
assessment [5], [6] — core work can be targeted in a general
context, with students free to pursue their own interests across a
range of tasks. We anticipate that the broader set of capabilities
is likely to appeal to a greater number of students, and to help
engage students from other disciplines.

SplashKit encapsulates several third-party libraries to
provide a simple, consistent interface for students to program

against. External libraries provide means of developing multi-
media applications, interacting with embedded databases,
accessing web resources, creating web servers, parsing and
creating JSON structures, interacting with social media, and
other capabilities. The SplashKit API packages these and
exposes them in a consistent manner, so that they are accessible
to beginner programmers. This provides students access to
advanced capabilities while removing the need to address issues
such as compatibility, installation and configuration.

For these capabilities, we spent time designing the interface
of the SplashKit Core API so that it is used in a procedural style,
with the beginner programmer always in control of the program
sequence. This typically meant introducing some inefficiencies
to prioritise simplicity and to enable a clear programming style
to be adopted by the students.

An example of this is the way students create and engage
with the embedded web server. The underlying library uses an
asynchronous, call-back-based architecture, allowing
professional programmers to register call-backs that will execute
when the web server receives different requests. This saves the
programmer from having to write what would be considered

boiler plate code, but requires that the programmer understand
the idea of a call-back, and the idea that the library code has some
processing that will call the registered functions when given
criteria are met. Similarly, standard graphical applications
typically abstract away the idea of the event loop. Instead
developers would register for events, and receive call-backs
when these events occur.

In these cases, the call-back structure is advantageous to
professional developers, but hides away important details for
beginners. These architectures require a greater level of
understanding to comprehend how they function, and therefore
tend to hinder beginner students as they attempt to understand
how their programs are behaving within the computer.

The approach we took with SplashKit, was to hide these
more advanced concepts and require students to actively control
the program's behaviour themselves. An example can be seen in
Fig. 2, which shows the listing of a simple web server that hosts
a RESTful web service and includes a graphical user interface.
This program creates a web server to accept requests and opens
a window to provide some feedback on the current state of the
program. The student would then need to implement an event
loop that runs until the user quits the program. Within the loop
the program is then responsible for updating the window and
handling any incoming requests. In terms of programming
constructs, this uses basic programming structures, making this
more accessible for beginners.

The program in Fig. 2 may easily be extended by students as
they are introduced to more concepts. The string data could be
expanded to a custom data type using a structure. Multiple values
could be handled with an internal array or with data saved into
an embedded database. The graphical interface could be
enhanced to track the number of times values are changes,
added, or deleted, and so on. The capabilities of SplashKit allow
students and staff to explore a wide range of interest areas.

SplashKit supports both object-first and object-later
approaches of programming curriculum. For instance, the code
in Fig 2. shows an example of a Web Server, using the
has_incoming_requests(message_service) function (line 33).
When used in C# (not shown), the codebase makes use of an
equivalent object-oriented call, by mapping such functionality to
a getter property: message_service.HasIncomingRequests.
Similarly, the function is_get_request_for(request, "/message")
is mapped to the instance variable: request as a method:
request.is_get_request_for("/message"). This is discussed
further in Section IV.

Fig. 2 Example Web Service written in SplashKit in C++ in 42 lines of code.

C. Compiling SplashKit Projects
SplashKit incorporates a number of underlying libraries, and

needs to be linked or otherwise made accessible to the
executables students create. To enable this, we needed a way to
easily allow students to compile their programming projects. We
did not want to involve complex setups of IDEs, or long
convoluted compiler calls from the command line.

To address this, we created the SplashKit Manager (SKM), a
tool designed to act as the student interface to SplashKit on the
command line. To get started with SplashKit, students first need
to install SKM. The SKM installation is designed to be simple,
but not oversimplify development practices such that it also
teaches transferrable development skills. Students install SKM
using a single command line instruction. This instruction
downloads and installs the latest release of the SplashKit Core
API, language adapters, and SKM.

One challenge to this process is the different command line
environments and tools available across the different operating
systems. While the process is relatively straightforward on Linux
and macOS, the same approach requires an extra step on
Windows as Windows users need to install a POSIX
compatibility layer, such as MSYS2 [23], to access the
command line tools. To ease this process, an installer is provided
which is preconfigured for SplashKit/SKM. It is believed that as
the Windows Bash Subsystem matures, this could replace the
need to install a tool such as MSYS2 [7].

1. void process_request(web_server message_service, string &me
ssage) {

2. http_request request = next_web_request(message_service);
3.
4. if (is_get_request_for(request, "/message"))
5. send_response(request, message);
6. else if (is_put_request_for(request, "/message")) {
7. message = request_body(request);
8. send_response(request);
9. }
10. else if (is_get_request_for(request, "/index.html"))
11. send_html_file_response(request, "message_index.html");
12. else
13. send_response(request, HTTP_STATUS_BAD_REQUEST);
14. }
15.
16. int main() {
17. string message = "Get started with SplashKit";
18.
19. web_server message_service = start_web_server();
20.
21. open_window("Quote of the Moment", 300, 100);
22.
23. while (not quit_requested()) {
24. process_events();
25. clear_screen();
26.
27. draw_text(message, COLOR_BLACK, 10, 10);
28. draw_text("Activity:", COLOR_BLACK, 10, 30);
29. draw_text("Close to quit server", COLOR_BLACK, 10, 60);
30.
31. refresh_screen();
32.
33. if (has_incoming_requests(message_service)) {
34. fill_rectangle(COLOR_GREEN, 80, 30, 10, 10);
35. refresh_screen();
36. process_request(message_service, message);
37. delay(150);
38. }
39. }
40.
41. return 0;
42. }

Once the installation download is complete, SKM will be
added to the student’s PATH environment variable so that they
can build and run SplashKit code for any of the supported
languages without any further configuration. An example usage
of SKM to build a SplashKit program is seen in Fig. 3.

We designed SKM to wrap valid calls to the compiler. This
can be demonstrated again in Fig. 3, by removing the prepended
skm from the compilation command, the user is left with a
completely valid call to the clang++ compiler. This is done to
ensure students are learning transferable skills, and will develop
an appropriate understanding of how to use the compiler
themselves across the duration of introductory programming
units. Ideally, students would start compiling with SKM, and as
they learn more about the compilation process, they could
eventually transition to providing these compilation flags
themselves.

Fig. 3 Example SplashKit compilation commands using SKM and without SKM.
Prefixing a clang++ call with skm simply adds all required compiler flags that
would, otherwise, confuse first-time programmers.

Rather than have students interact with the command-line,
using an Integrated Development Environment (IDE) with
SplashKit and SKM is also a possibility. There is a concern that
the introduction of fully-featured IDE in introductory
programming may overwhelm the students, and increase the
initial cognitive load of learning to program. In an introductory
Java course, Z. Chen and D. Marx [23] proposed having students
use the JDK directly (command-line) for tasks in the first few
weeks, before switching over to a fully featured Eclipse IDE.
Another approach is to use simplified IDEs such as Visual
Studio Code [24], which provides the benefits of traditional
IDEs without overloading the students with complex features
that are not relevant in learning the basics of programming.

In addition to compilation, SKM also includes features for
keeping the SplashKit Core API and language adapters up to
date. This simplifies the process of updating SplashKit, enabling
students to get the latest version by running skm update.

IV. SUPPORTING STUDENT LEARNING WITH SPLASHKIT
To accompany the SplashKit software we have also

developed a range of online resources aimed to help students
develop their understanding of computation and to make
effective use of the SplashKit API as they learn to program.

Website documentation provides a key reference resource
for students, enabling them to explore SplashKit and get details
on its various features and how these can be integrated into their
code. While the main goal of the website is to facilitate access to
the API, this process also helps students develop important skills
associated with reading API documentation, an essential
software engineering skill.

Accessible from the SplashKit YouTube channel are a range
of video resources developed to help students understand the
concepts that underlie their code. These videos portray
programming concepts using a conversational format, with the
presenters typically taking on student and teacher roles to help
discuss and address common issues and misconceptions.
Programming concepts are inherently abstract, making them
difficult for students to engage with. To help address this, the
videos use visualisations and analogies to provide students with
an effective means of approaching these concepts. Programming
concepts are also highly interrelated, and the videos make use of
hyperlinks within the videos to connect to associated concepts
and to provide an interactive experience for students online.

The open and extensible nature of these resources provide
educators with a platform for teaching introductory
programming. One of the great benefits of a free and open-
source platform is that others are welcome, and encouraged, to
provide contributions to extend SplashKit where desired features
are not present in any of the resources or APIs.

A. Decoupling SplashKit from Languages and Paradigms
Another key goal of SplashKit was to ensure that the API

would work across a range of imperative programming
languages and across procedural and object-oriented paradigms.
To this end, the SplashKit Core API and translator were designed
to enable the generation of language specific adapters. This is
shown in Fig. 1.

The SplashKit Core API is read by the SplashKit Translator
which outputs adapters that include the code necessary to
connect to SplashKit from different programming languages.
The translator reads marked comments in the Core API code, to
provide appropriate mappings between the different languages,
ensuring that each language adapter mirrors its language's style
and practices.

Using language adapters enables SplashKit to support a wide
range of different programming languages, and the translator is
designed in such a way that new languages can be added
relatively easily by specifying the new language's coding
conventions and means of integrating with external libraries.

Students develop their programs in a supported language,
and the adapter is responsible for ensuring that data is correctly
marshalled between the adapter's programming language and the
native Core API library. In addition to generating language
adapters, the translator is also used to generate API
documentation published on the SplashKit website
(https://splashkit.io). The documentation produced by the
translator is primarily language neutral, while allowing students
to select their programming language to see the relevant
signatures. In this way, the one set of API documentation can be
used to support multiple programming languages.

To support both an objects-first and objects-later approach to
introductory programming, HeaderDoc comments in the Core
API code include additional details which are used to generate
both procedural and object-oriented APIs. Internally, the Core
API is implemented using the procedural paradigm with
resources passed to functions that operate on them. SplashKit
resources are implemented as pointers, which allow them to be

passed in or encapsulated as an object. When generating an
adapter, the Translator exports functions for a procedural
adapter, or wraps the resources as objects and converts the
functions to methods on these objects.

Fig. 4 shows an example of the marked up SplashKit code
for some Sound Effect related functions. The class attribute is
used to indicate the class these functions will be attached to in
an object-oriented adapter. This translation also requires a
change to the method name, which is facilitated through the
method attribute. For example, the Play Sound Effect function in
a procedural language is change to the Play method on the Sound
Effect class in an object-oriented language. In this way, the
translator is able to create both object-oriented and procedural
APIs.

Fig. 4 Sample documentation in the SplashKit Core API.

Fig. 5 How the play_sound_effect function appears in several languages on the
SplashKit API documentation website. From top to bottom: C++, C#, Pascal
and Python.

Function and method overloading is another issue that
needed to be tackled by the translator. Examine the Play Sound
Effect function in Fig. 4. The function is overloaded to allow the
caller to provide either the sound effect or its name, as well as
combinations that allow changes in the volume and number of
times the effect is to be played. To address this, the document
attributes also include a suffix that can be applied in cases where
the adapter language does not support overloading. In each of
these cases, the suffix attribute is added to the function or method
name in the adapted language. Fig. 5 shows examples of how the
sound effect functions from Fig. 4 would appear in C++, C#,
Pascal and Python adapters, as shown in the SplashKit API
documentation website. Note how the C# listing shows two ways
of calling this method: either through the Audio class (as bound
via the static attribute) or through the generic SplashKit class.

The multi-lingual nature of SplashKit provides additional
advantages in helping ease student's transitions to new
programming languages. Learning a new language involves
learning both the syntax of the language, as well as becoming
familiar with the language's standard libraries and utilities to

perform basic actions. By using SplashKit, we can help reduce
this complexity by having students program against the
SplashKit API in the new language. This enables students to
focus initially on learning the language, while making use of the
familiar SplashKit API.

B. Sample Curriculum
We have used SplashKit to teach introductory programming

for several years at both undergraduate and postgraduate level.
In our case, we have adopted an objects-later approach, with the
first unit of study exploring structured procedural programming,
and the subsequent unit introducing object-oriented design.

In the introductory programming unit, SplashKit is used to
guide students through the core programming concepts. Topics
were organised so that students can understand and rationalise
about all the code presented with as little "magic" (unexplained
code) as possible. The intent here is to guide students through
the software development process and understand core concepts
without abstracting too much of this process away. Content
within each topic is organised in three categories:

• Artefacts are programming abstractions students create in
their code, with accompanying material encouraging them
to visualise these as entities that exist in their code.

• Actions relate to the instructions for the computer to
perform, with these statements interacting with the software
artefacts to achieve the program's objectives.

• Terminology encompass all other concepts and include
things students need to memorise and understand to operate
effectively in the areas of computer science and software
engineering.

The curriculum starts by introducing students to program,
library, and procedure artefacts, the procedure call action, and
the key concept of sequence. Programs are the overall coding
artefact, with the logic being divided into many procedures.
Procedures are then an artefact that contains a sequence of
instructions designed to perform a single task. At this stage, each
instruction is itself a call to a procedure, where the procedure
may exist in the program's code, or in an external library such as
the language's standard library or the SplashKit library. Within
Topic 1 we have students use SplashKit to create a scripted
sequence, such a drawing a picture using basic shapes, or
creating a short animation with images and sounds. We have
found that this task helps students familiarise themselves with
programming processes, while exploring the basic programming
concepts in a creative fashion. It is always interesting to see how
creative students can be even with such limited programming
abstractions.

Data, parameters, and functions follow in Topic 2. These
build on the ideas from Topic 1 and help overcome one of the
limitations where similar tasks would need to be duplicated even
if they differ only in data values used. This topic introduces
students to the variable and function artefacts, the assignment
statement action, as well as the terminology associated with
variables (i.e. parameters, arguments, local, and global variables
etc.). SplashKit functions provide a convenient means of helping
students explore this topic. Students can create custom drawing
functions that accept parameters, use local variables to calculate

coordinates, and then perform the required drawing. An example
may be to draw a framed image, where the frame and image may
be of different sizes, requiring appropriate scaling for the frame
to correctly surround the picture.

This leads nicely on Topic 3, control flow, which helps
address the obvious limitation that is: up to this point programs
have been just a sequence of actions. This introduces the ideas
of selection and repetition, which can be motivated by exploring
limitations students will have faced. For example, implementing
an event loop is a nice motivating example for this topic. A small
program can be written to show a picture, with a short delay to
keep it on the screen. When it disappears, this can be used to
discuss the current limitations and hopefully spark a desire to
overcome this through additional programming understanding.
This exploration can then lead onto the idea of using a loop to
repeat instructions until the window is closed, and then even
further to using if statements to selectively run code if a certain
key is held down, or when a request is received over the network.
With just these few concepts, students can now start to explore
the API to make exciting small programs including games,
database applications, and web servers.

Following on from this topic, we have students learn about
organising data with custom data types (structures) and then on
to working with arrays and objects. In each case, SplashKit

empowers students to build fun and engaging programs, while
keeping the focus on programming concepts.

C. Student Programs
In our experience teaching with SplashKit, students have

been able to use these tools to create a wide range of fun and
engaging games, as well as small business-like applications. Fig.
6 shows three small games which have been developed. IsoCity
is a City Simulator in which the user can build and demolish
buildings in a simulated city. Dart Dodger has the player
controlling a balloon as it aims to rise high into the sky. As the
balloon ascends the difficulty increases with wind, and the
number of obstacles increasing, ultimately leading to a high
score saved to disk. Finally, Shape Platformer has the player
navigate a green square through several levels that include
platforms, spikes, and jumping pads and provides a level editor
in which students can create and save levels to a file and load
later. These programs were all designed and implemented by
first-year students in their first programming unit.

SplashKit is also often used by students less motivated by the
idea of programming games, and these students have created
basic programs making use of databases and web servers.

Fig. 6 Sample student projects developed with an earlier version of SplashKit.

V. CONCLUSION
Since the early days of tertiary introductory programming

courses, there have been a number of programming languages,
approaches, and tools developed to help lower the barrier to
entry for new students. These tools are often designed for
professionals — with interfaces and features overwhelming
students new to programming.

SplashKit is a free, open-source, language-agnostic, and
cross-platform development framework designed for tertiary
education. SplashKit is flexible, supporting a wide range of
approaches to programming education including: objects-first or
objects-later curriculum design, programming language choices,
and a range of engaging and relevant programming tools such as
a fully-featured game engine, databases, and web-servers — all
with an easy to approach API design.

The Core API can be developed to add new capabilities and
libraries such as Machine Learning or
Data Analytics libraries, which when complete will
automatically be available across the different programming
languages and platforms with no extra effort. New languages can
be added to the translator, thereby bringing SplashKit to
educators with existing materials and curriculum which make it
difficult and costly to switch programming languages at their
institution.

We are motivated by the amazing applications and games
which first-time students have been able to build using
SplashKit, and the engagement we have seen so far. Where
others adopt SplashKit for their teaching, we also hope they will
contribute to the education resources so that we may grow as a
community.

VI. ACKNOWLEDGEMENTS
The authors acknowledge the many helpful comments from
students and tutors who have used the SplashKit development
platform in improving this work.

REFERENCES
[1] M. Guzdial, "Exploring Hypotheses About Media Computation", Proc. 9th

Ann. Conf. International Computing Education Research, 2013, pp. 19-
26.

[2] R. Mason, G. Cooper, "Distractions in Programming Environments",
Proc. 15th Australasian Computing Education Conference, 2013.

[3] B. DuBoulay, "Some difficulties of learning to program", J.Educational
Computing Research, 2(1), 1986, pp. 57-73

[4] L. Porter, M. Guzdial, C. McDowell, and B. Simon, "Success in
introductory programming: what works?" Commun. ACM, 56(8), 2013,
pp. 34-6.

[5] A. Cain, C. Woodward, "Toward Constructive Alignment with Portfolio
Assessment for Introductory Programming", Proc. 1st IEEE Int. Conf.
Teaching Assessment and Learning for Engineering, 2012, pp. 345-350.

[6] A. Cain, "Factors influencing student learning in portfolio assessed
introductory programming.", Proc. 3rd IEEE Int. Conf. Teaching
Assessment and Learning for Engineering, 2014, pp. 55-62

[7] J. Hammons, et.al. "Bash on Ubuntu on Windows", Microsoft Developer
Network at https://msdn.microsoft.com/en-us/commandline/wsl/about

[8] KURTZ, T. 1981. BASIC. In Wexelblat, R., Ed. History of Programming
Languages. Academic Press, New York, 515–537.

[9] C. Kelleher and R. Pausch, “Lowering the barriers to programming: A
taxonomy of programming environments and languages for novice

programmers,” ACM Computing Surveys (CSUR), vol. 37, no. 2, pp. 83–
137, Jun. 2005.

[10] M. Kölling, J. Rosenberg, M. Kölling, and J. Rosenberg, Blue—a
language for teaching object-oriented programming, vol. 28, no. 1. ACM,
1996, pp. 190–194.

[11] A. Gomes and A. J. Mendes, An environment to improve programming
education. New York, New York, USA: ACM, 2007.A. Black, K. B.
Bruce, and J. Noble, “Designing the Next Educational Programming
Language,” 2010.

[12] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
Scratch Programming Language and Environment,” ACM Transactions
on Computing Education (TOCE), vol. 10, no. 4, pp. 16–15, Nov. 2010.

[13] "Scratch - Imagine, Program, Share", Scratch.mit.edu, 2018. [Online].
Available: https://scratch.mit.edu/statistics/. [Accessed: 28- May- 2018]

[14] D. J. Malan, H. H. Leitner, D. J. Malan, and H. H. Leitner, Scratch for
budding computer scientists, vol. 39, no. 1. ACM, 2007, pp. 223–227.

[15] M. Armoni, O. Meerbaum-Salant, and M. Ben-Ari, “From Scratch to
‘Real’ Programming,” ACM Transactions on Computing Education
(TOCE), vol. 14, no. 4, pp. 25–15, Feb. 2015.

[16] T. Jenkins, “On the difficulty of learning to program,” Proceedings of the
3rd Annual Conference of the LTSN Centre for Information and
Computer Sciences, vol. 4, Feb. 2002.

[17] P.-H. Tan, C.-Y. Ting, and S.-W. Ling, “Learning Difficulties in
Programming Courses: Undergraduates' Perspective and Perception,”
presented at the 2009 International Conference on Computer Technology
and Development, pp. 42–46.

[18] S. Grover and R. Pea, “Computational Thinking in K–12: A Review of the
State of the Field,” Educational Researcher, vol. 42, no. 1, pp. 38–43, Jan.
2013.

[19] Y. B. Kafai and Q. Burke, “Computer Programming Goes Back to
School:,” Phi Delta Kappan, vol. 95, no. 1, pp. 61–65, Sep. 2013.

[20] A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams, J. Bennedsen, M.
Devlin, J. Paterson, A. Pears, S. Seidman, L. Malmi, L. Mannila, E.
Adams, J. Bennedsen, M. Devlin, and J. Paterson, “A survey of literature
on the teaching of introductory programming,” arXiv, vol. 39, no. 4, pp.
204–223, Dec. 2007.

[21] "SplashKit", Splashkit.io, 2018. [Online]. Available:
http://www.splashkit.io/. [Accessed: 06- Jun- 2018].

[22] "MSYS2 homepage", Msys2.org, 2018. [Online]. Available:
https://www.msys2.org/. [Accessed: 06- Jun- 2018].

[23] Z. Chen and D. Marx, “Experiences with Eclipse IDE in programming
courses,” J. Comput. Sci. Coll., vol. 21, no. 2, pp. 104–112, Dec. 2005.

[24] "Visual Studio Code - Code Editing. Redefined", Code.visualstudio.com,
2018. [Online]. Available: https://code.visualstudio.com/. [Accessed: 07-
Jun- 2018].

