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Abstract Detecting inconsistencies is a critical part of Requirements Engineering
(RE) and has been a topic of interest for several decades. Domain knowledge and
semantics of requirements not only play important roles in elaborating requirements
but are also a crucial way to detect conflicts among them. In this paper we present
a novel knowledge-based RE framework (KBRE) in which domain knowledge and
semantics of requirements are central to elaboration, structuring, and management of
captured requirements. Moreover, we also show how they facilitate the identification
of requirements inconsistencies and other related problems. In our KBRE model,
Description Logic (DL) is used as the fundamental logical system for requirements
analysis and reasoning. In addition, the application of DL in the form of Manchester
OWL Syntax brings simplicity to the formalization of requirements while preserving
sufficient expressive power. A tool has been developed and applied to an industrial
use case to validate our approach.

Keywords Requirements Engineering, Inconsistencies, Identification, Description
Logics, Manchester OWL Syntax, Ontology

1 Introduction

Requirements Engineering (RE) is an iterative process of eliciting, elaborating, struc-
turing, specifying, analyzing, and managing requirements of stakeholders on a soft-
ware system (Sommerville, 2011; Pressman, 2005; Van Lamsweerde, 2001). Incon-
sistencies or conflicts between requirements have been known to present a key chal-
lenge to requirements engineers during the RE process. These can arise during or be-
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tween different phases of software development (Boehm and In, 1999). Two or more
requirements are inconsistent if they cannot be satisfied simultaneously by the system
being developed without sacrificing at least one of them. Inconsistencies are consid-
ered a serious problem in RE because it requires removing or modifying requirements
to ensure that a conflict-free requirement set is produced at the end of the software
development process. Moreover, this can be a potential cause of project failure since
removing or modifying a requirement can directly affect the correctness of require-
ments and thus, the success of the project. A study of a number of large projects in
2006 (Henderson, 2006) has pointed out that requirements related issues, including
inconsistencies, are among the major reasons causing project failures. In addition,
research reports from the Standish Group (Doe, 2009) also emphasize requirements
inconsistencies and stakeholders’ conflicts in specifying system requirements as a
serious issue in RE.

There have been numerous techniques proposed in response to the industry’s need
for improved RE processes over the last two decades (Boehm et al., 1995; Robinson
and Pawlowski, 1999; Egyed and Grunbacher, 2004; Dardenne et al., 1993; Van Lam-
sweerde, 2001; Fuxman et al., 2004; Chung, 1993; Lauenroth and Pohl, 2008; Grundy
et al., 1998; Kamalrudin et al., 2010; Weston et al., 2009). We are particularly in-
terested in logic-based approaches to identify conflicts, as they entail well-defined
inconsistency detection procedures. This is due to the formalization of requirements
using logical languages and also because it enables checking arbitrary inconsistency
rules (Spanoudakis and Zisman, 2001). However, most existing research within this
paradigm either lacks or insufficiently supports the creation and maintenance of do-
main knowledge and semantics of requirements. These play important roles in speci-
fying system requirements (Zave and Jackson, 1997; Kenzi et al., 2010; Kaiya et al.,
2010). Requirements can be viewed as optative statements that capture stakeholder
demands, whose understanding requires domain knowledge to help bridge between
a stakeholder’s design on what a system needs to do and what is practically im-
plementable in that system. The domain knowledge, which also contains rules and
assumptions about the system’s operating environment, offers us a practical means to
identify inconsistencies and overlaps in requirements that may arise from the com-
peting objectives and/or different stakeholders’ preferences. Some types of require-
ment inconsistencies may not be detectable in the absence of such domain knowl-
edge (Boehm et al., 1995; Robinson and Pawlowski, 1999). Consider, for example, a
scenario stipulating conflicting quality attributes for bitmaps in a graphical user inter-
face. The requirements “the application must support bitmaps of at least 1280x960
pixels” and “the size of an individual bitmap must not exceed 3MB” cannot be satis-
fied simultaneously in the presence of the domain knowledge that also includes the
rule “bitmaps can require a color-depth of up to 24 bits per pixel.”

Moreover, reasoning about requirements typically demands semantics of the re-
quirements and the related concepts and constraints be defined using instances, con-
cepts and roles (Breaux et al., 2008). In knowledge representation, concepts and roles
are defined abstractly in the domain-level knowledge base using sub-class or spe-
cialization relationships. For instance, when specifying requirements, there may be
several terms referring to the same concept, such as customer and client. In order
to determine if inconsistencies exist and to aid requirements elicitation, it is neces-
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sary that these concepts are formally defined. For example, by using an ontology
that gives precise meanings to the terms used to specify requirements. Furthermore,
the relationships between concepts and instances also need to be taken into account
when performing analysis on the captured requirements. Consider two requirements
regarding the languages supported by an enterprise-wide system: one states that “Chi-
nese must be supported” and another says that “only major languages should be sup-
ported.” The interaction (e.g., conflict) between the two requirements cannot be de-
termined precisely without knowing about the relationship between Chinese and the
concept of major languages (i.e., whether Chinese is one of the major languages).

Finally, many existing approaches provide little or no explanations of the detected
requirements conflicts. From our point of view, good explanation given to require-
ments engineers and stakeholders about detected requirements conflicts are critical.
This is because they give requirements engineers and stakeholders a clear idea of
where the conflicts come from, why they are conflicting, and help point to possible
resolutions to the problems.

In this paper, we propose a new goal-directed RE process that addresses the above
mentioned problems and describe our knowledge-based RE framework (KBRE).
In the KBRE model, domain knowledge and semantics of requirements are cen-
tralized. Using these, requirements can be elicited, elaborated, and inconsistencies
and other related requirements problems can be detected. We use the description
logic SROIQ (Horrocks et al., 2006) as the fundamental logical system for anal-
ysis of and reasoning about requirements. In particular, we focus on identifying
inconsistencies between requirements as well as redundancies and overlaps of re-
quirements. In addition, the use of description logic codified in the form of Manch-
ester OWL syntax (MOS) (Horridge et al., 2006),1 as the requirements specifica-
tion language, facilitates the creation and maintenance of the ontologies for stor-
ing the domain knowledge and semantics of requirements. Furthermore, the appli-
cation of MOS brings more simplicity to our framework while preserving sufficient
expressive power. More precisely, MOS offers us a means to reduce the potential
risk of creating pragmatic barriers (Dwyer et al., 1999). In addition, MOS allows
the successful application of our approach as it seeks for balance the efficiency of
a formal language with the expressiveness of a natural language (Guarino et al.,
2009). Using description logic also allows us to utilize an off-the-shelf OWL rea-
soner Pellet (Clark & Parsia, LCC, 2012) with some extensions, as a tool for com-
plete and sound conflict detection and to provide explanation services. Moreover,
the KBRE model was developed based on the Goal-oriented Requirements Engi-
neering approach (Anton, 1996; Van Lamsweerde, 2001) to improve the manage-
ability of requirements and to facilitate the traceability of the underlying rationale
of inconsistent requirements. To demonstrate the feasibility of our RE model, we
have also developed REInDetector, a prototype knowledge-based requirements en-
gineering tool that supports automatic detection of a range of inconsistencies. The
tool and a user guide are available for download and experimentation with from:
http://www.ict.swin.edu.au/personal/huannguyen/REInDetector.html

1 In our model, expressions in Manchester Syntax can be translated into Description Logics automati-
cally and vice versa.
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The rest of the paper is structured as follows. Section 2 presents some background
knowledge of this work. Section 3 provides a discussion of the new goal-directed
RE process that we propose. The analysis and reasoning services provided by this
model are presented in Section 4. In Section 5, we discuss the REInDetectortool
that we have developed to realize and demonstrate our proposed framework. The
evaluation of the tool with a simple use case can be found in 6. Section 7 contains
the reviews on related works in the problem of requirements conflict identification.
In Section 8, we conclude our contributions and point out the future works. Details
about the REInDetectortool can be found in the Appendix.

2 Background

2.1 Goal Oriented Requirements Engineering

Most traditional Requirements Engineering (RE) approaches have been shown to be
inadequate in dealing with complex software systems engineering(DeMarco, 1979;
Ross, 1977; Rumbaugh et al., 1991). These approaches treat requirements as consist-
ing of only processes and data and do not capture the rationale behind them, thus
making it difficult to understand requirements with respect to some high-level con-
cerns in the problem domain. In addition, most techniques focus on modeling and
specification of the software alone and therefore, lack support for reasoning about
the overall system comprising both the system-to-be and its environment (Rumbaugh
et al., 1991).

The Goal-oriented Requirements Engineering (GORE) approach was developed
in an attempt to overcome these problems. GORE is concerned with the use of goals
for eliciting, elaborating, structuring, specifying, analyzing, negotiating, document-
ing, and modifying requirements (Van Lamsweerde, 2001). The idea of GORE is
derived from the recognition that goals are the root from which all requirements of
a project can be defined. In fact, the system under consideration is typically ana-
lyzed in its organizational, operational and technical settings. As soon as problems
are pointed out and opportunities are identified, high-level goals can be defined and
possibly refined into sub-goals to address those problems and to meet the identified
opportunities. Subsequently, requirements are elaborated to satisfy these goals. Re-
quirements can also be further refined into more specific requirements to meet the
higher-level requirements. Other requirements are then elicited by repeating this pro-
cess. GORE addresses the key issues associated with a lack of requirements’ ratio-
nale by providing both top-down and bottom-up refinement and operationalizations
between requirements. It is thus possible to point out the underlying reason for this
requirement (through links to higher-level requirements) and how it is realized by
the system being developed (through links to lower-level requirements). The main
benefits of a GORE-based approach include:

– Goals provide a precise criterion for sufficient completeness of a requirements
specification. That is, the specification is complete with respect to a set of goals if
all the goals can be proved to be achieved from the specification and the properties
known about the domain considered (Yu, 1993).
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– Goals help to avoid capturing irrelevant requirements. That is, goals provide a
precise criterion for requirements pertinence: a requirement is pertinent with re-
spect to a set of goals in the domain considered if its specification is used in the
proof of at least one goal (Yu, 1993).

– GORE also helps when explaining requirements to stakeholders. Goals provide
the rationale for requirements, in a way similar to design goals in design processes
(Lee, 1991; Mostow, 1985). A requirement appears because of some underlying
goal which provides a base for it (Ross, 1977; Sommerville and Sawyer, 1997;
Dardenne et al., 1991).

– Goal refinement provides a natural mechanism for structuring complex require-
ments for increased readability.

– Requirements engineers are faced with many options to consider during the re-
quirements elaboration process. Van Lamsweerde (Van Lamsweerde, 2001) has
pointed out that alternative goal refinements provide the right levels of abstrac-
tion at which decision makers can be involved to validate choices being made
or suggest other overlooked alternatives. Alternative goal refinements also allow
alternative proposals for the realization of a system to be explored (Van Lam-
sweerde, 2000).

2.2 Description Logics

Description Logics (DLs) (Baader et al., 2007) are a family of knowledge represen-
tation languages which are decidable subsets of first-order logic. DLs are commonly
used as a formal basis for object/class-style ontology languages. We propose to use
description logic as the underlying framework for formalizing, analyzing and reason-
ing about requirements in the GORE process for the following key reasons:

– Although other formal languages such as temporal logics or first-order logic can
also be used to specify requirements and to provide a reasoning framework for
supporting the analysis of requirements, they are too complex syntactically to be
accessible for requirements engineers in practice or computationally undecidable,
or both.

– With the objectives of creating and maintaining domain knowledge and seman-
tics for requirements that require the concepts and relationships in the problem
domain to be defined, DLs provide a rich formal semantics for ontology spec-
ification languages such as various members of the Web Ontology Languages
(OWL) (Corcho and Gómez-Pérez, 2000).

– Description logic fits nicely to the need of representing the relations between
concepts, roles and instances in GORE in an intuitive manner.

In this section, we provide an overview of the SROIQ description logic (Horrocks
et al., 2006). We choose to use SROIQ logic because of its expressiveness. This al-
lows declarations of disjoint roles2 (i.e. if two classes are related by a binary role
then they must not be related by another binary role which is disjoint with the previ-
ous role), reflexive and irreflexive roles and negated role assertions. These forms of

2 In description logics, roles represent binary relationships between classes.
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expressions are critical in order to build relationships between concepts and roles in a
problem domain and are not fully supported in other description logics. Furthermore,
the SROIQ logic corresponds to OWL-2, the newest version in the family of OWL
languages.

In SROIQ logic, the domain of interest is modeled by individuals, concepts and
roles. Individuals are the instances that instantiate particular concepts, thus concepts
can be viewed as representing unary properties of individuals, while roles consist of
binary relations between concepts or individuals. In this section, we use C and D to
denote concept expressions. A concept inclusion axiom is an expression of the form
C v D (which means the concept C is a specialization of the concept of D). For
instance, the class (or, concept in description logics terminologies) AcademicStaff is
inclusive in the class Staff, denoted by AcademicStaff v Staff. A SROIQ TBox is a
set of general concept inclusion axioms. Thus, a TBox can capture a class hierarchy.
On the other hand, an ABox is a finite set of concept expressions of the form C(a)
(which means a is an instance of C). For instance, to express that James is an aca-
demic staff member, we write AcademicStaff(James). Or, to express that Mary is a
friend of James, we write friendOf(James,Mary). Finally, all assertions concerning
roles are gathered in a RBox (which is introduced only in SROIQ). For instance, to
indicate that the relationship hasPart translates the ownership of an object (e.g., a
car) to the ownership of its parts (e.g., the car’s engine), we can state the following
role inclusion axiom in an RBox: own ◦hasPart v own. The SROIQ knowledge base
is the union of the TBox, ABox and RBox. An interpretation I consists of a set ∆I

called the interpretation domain and an interpretation function .I . The interpretation
function assigns to each atomic concept A a subset of ∆I , each role R a subset of
∆I × ∆I and each individual a an element of ∆I . Table 1 illustrates the syntax of
SROIQ logic.

Name Syntax Semantics

inverse role R− {〈x, y〉 ∈ ∆I ×∆I |〈y, x〉 ∈ RI}
universal role U ∆I ×∆I

top > ∆I

bottom ⊥ ∅
negation ¬C ∆I\CI

conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

nominals {α} {αI}
univ.restriction ∀R.C {x ∈ ∆I |〈x, y〉 ∈ RI implies y ∈ CI}
exist.restriction ∃R.C {x ∈ ∆I | for some y ∈ ∆I , 〈x, y〉 ∈ RI and y ∈ CI}
Self concept ∃S.Self {x ∈ ∆I |〈x, x〉 ∈ SI}
qualified number ≤ nS.C {x ∈ ∆I |#{y ∈ ∆I |〈x, y〉 ∈ SI and y ∈ CI} ≤ n}
restriction ≥ nS.C {x ∈ ∆I |#{y ∈ ∆I |〈x, y〉 ∈ SI and y ∈ CI} ≥ n}

Table 1 Semantics of concept constructors in SROIQ for an interpretation I with domain ∆I (Horrocks
et al., 2006)
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In general, SROIQ logic is mainly used to represent concepts, instances and their
relationships. Table 2 presents the examples adapted from (Horrocks et al., 2006) to
illustrate the use of SROIQ logic as a formal representation language.

SROIQ constructors Examples Meaning

Conjunction (u) UserWithLockedAccount≡Useru
∃hasAccount.LockedAccount

A user-with-locked-account is a user
who has had his account locked

Disjunction (t) Messaging ≡ InstantMessaging t
AsynchronousMessaging

A type of messaging can be either in-
stant or asynchronous

Negation (¬) User ≡ ¬ Admin A user account is not an admin account
of the system

Inclusion (v) ProfilePicture v Photo A profile picture is a photo

Nominal ({}) {English} An individual named ‘English’ (which
is a language in this domain)

Universal restriction
(∀)

User u ∀hasPhoto.LandscapePhoto The class of users whose photos are all
landscape photos

Existence restriction
(∃)

SocialSystem v ∃ support-
Language.MainLanguage

A social networking system needs to
support at least one main language

Table 2 Examples of SROIQ logic

3 A process model for Requirements Engineering - KBRE

In this section, we describe our new RE process model, the Knowledge-Based Re-
quirements Engineering methodology (or, KBRE), that supports elaboration, man-
agement and analyses of requirements goals. We first provide an overview of the
model and then present the language used for specifying requirements. We also de-
scribe the goal refinement constructs and the syntax for specifying goals and their
relationships.

3.1 Model overview

The KBRE model is adapted from the one used in KAOS (Van Lamsweerde et al.,
1998). In KBRE, the focus is on the refinement, formalization and analysis of goals.
Therefore, compared to KAOS, it does not support the definition of agents and re-
sponsibility assignments.

The KBRE method is derived from the Goal oriented Requirements Engineer-
ing approach. It supports the capturing of the system’s functional and non-functional
requirements and shows how they are related to each other through refinement and
operationalization links. In addition, it enables the detection of a number of prob-
lems in captured requirements, including inconsistencies between requirements and
redundancies and overlaps of requirements.

In KBRE, goals are the high-level expectations of stakeholders in the system be-
ing developed and requirements are referred to the lowest level of expectations of
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stakeholders which are refined/operationalized in a goal tree. Currently, KBRE only
supports analysis and reasoning with low-level goals for the following two reasons.
First, low-level goals contain sufficient details and information at the domain level
to enable analysis that is meaningful to requirements engineers. Second, high-level
goals are normally vague. The identification of inconsistencies related to these goals
requires the understanding of requirements engineers in particular context and thus
is beyond the current support of our ontology. For instance, ‘Building a cost-effective
system’ is a vague goal. Assume that there is a requirement that ‘Support video con-
ferences and instant messaging. If implementing video conferences and instant mes-
saging is very costly, it could prevent the ‘cost-effective goal being achieved. Such
a situation needs to be identified as a potential inconsistency. However, in order to
identify such an inconsistency, the ontology needs to somehow represent the ‘con-
tradictory relationship between ‘supporting video conferences and instant messag-
ing and ‘having cost-effective system’. We are currently working on an extension of
KBRE to enable it to include a meta-model for the this type of relationship to enable
reasoning at higher levels of the requirements hierarchy. This extension, however, is
still part of our work in progress and will not be discussed in this paper.

Graphically, a goal model is represented by an AND/OR graph, called a goal
graph. In the goal graph, each individual goal is represented as a node that is anno-
tated according to the goal’s feature. Each goal node is connected to other goals in
the same graph via edges. A set of related edges (i.e. edges connecting a parent-goal
to its sub-goals) represents a refinement or an operationalization. A refinement not
only indicates how a goal is decomposed into sub-goals, i.e. how a goal is realized,
but also reveals the parent goal it comes from, showing the rationale behind the goal.

3.2 A Requirements Specification Language

Closely based on Manchester OWL Syntax (MOS) (Horridge and Patel-Schneider,
2009), our requirement specification language has the following advantages. First, it
is a user-friendly specification language since the formal expressions are constructed
from English words and therefore can be easily understood and communicated by
humans. Second, MOS expressions can be automatically translated into description
logics (and vice versa) and allow requirements to be formally analyzed and reasoned
about. Lastly and most importantly, by using Manchester OWL Syntax, we can add
semantics to requirements and store domain knowledge by building and maintaining
an ontology of concepts and roles for the problem domain.

The semantics and syntax of our proposed specification language are the same as
those of MOS except that it borrows the OWL language constructor ’SubClassOf’,
which is named specifier in this language, to achieve more expressive power for rep-
resenting requirements. In addition, the symbol “%” is introduced to allow concepts
to be defined within a requirement’s formalization.

A requirement is usually represented by one or more sentences. Each sentence
consists of two expressions connected by the specifier. The expression on the right-
hand side generally denotes the expectation, or constraints on the concepts or individ-
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uals represented in the expression on the left-hand side of the specifier. The following
example illustrates the use of this language.

Example 1. The requirement ‘The system supports Photo Upload’ is formalized as:
‘System SubClassOf supportFeature VALUE PhotoUpload.’

The requirement ‘Photos must not exceed 4Mb in size’ is formalized as: ‘Photo

SubClassOf hasSizeInMb MAX 4.’

Apart from requirements, MOS is also used to represent knowledge in the domain
in a similar way. Example 2 shows how the rule bitmaps can require a color-depth of
up to 24 bits per pixel is represented

Example 2. ‘Bitmap SubClassOf hasDepthInBitsperpixel MAX 24.’

3.3 Ontology

In KBRE, to facilitate analysis of and reasoning about requirements, we augment the
specifications of requirements with semantics and domain knowledge in the form of
an ontology.

3.3.1 Ontology Definition and Representation

An ontology can be considered as a repository of concepts, roles and instances in
the requirements’ domain. In the OWL language, an ontology is referred to as a col-
lection of the definitions of a number of classes, properties, individuals and their
relationships. As discussed earlier, in KBRE Manchester OWL Syntax is used for
specifying requirements. In this language, each requirement specification is made
up from classes, individuals and properties. An ontology will be created and kept up-
dated during the RE process to store the definitions and relationships of those classes,
properties and individuals to enable the analysis and reasoning on the requirements.
From this section to the end of the paper, we use the term ontology entities to refer to
concepts, properties, individuals and their relationships in an ontology.

Figure 1 shows the main parts of the meta-model of our ontology. As can be
seen from the figure, class, individual and property are three main ontology entities.
Classes are categorized according to the way they are constructed. A class can be
constructed from boolean combinations of other classes with Complement, Intersec-
tion and Union. A class also can be created either from the restrictions that apply
constraints on the range of a property for the context of a class or direct enumera-
tions of named individuals. There are two different types of properties, namely object
properties and data properties. A property always has its domain as a class. An ob-
ject property has its range as a class while a data property’s range is a data type. An
individual is an instantiation of a class and is the subject of a Property Value, which
instantiates a property. An individual can be an object of an Object Property Value
while the subject of a Data Property Value must be a Data Value. Readers who are in-
terested in meta-model of OWL ontology can find more details in (Brockmans et al.,
2004).
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Fig. 1 Ontology’s meta-model

3.3.2 How to build and maintain an ontology?

The RE process normally starts with domain studies. Here, requirements engineers
gain an understanding of the system domain, environment and the system’s stake-
holders (van Lamsweerde, 2003). The creation of the ontology should fall within this
phase. The ontology creation can be seen as a two-step process: obtaining ontology
elements and incorporating domain knowledge into the ontology.

Although building a domain ontology is current out of scope of this work, there
are a number of sources and methodologies that could be utilized to obtain ontology
entities for specific domains. TONES Ontology Repository (TONES, 2008), Protégé
Ontology Library (Wiki, 2007) and others (D’Aquin and Noy, 2011) provide rich
sources of ontologies in a variety of domains. These libraries are actively contributed
to by many researchers and developers in the semantics web area. In addition, tech-
niques for extracting ontology elements from natural language texts (Goldin and
Berry, 1997), ontology learning (Maedche and Staab, 2001) and web-mining (Kaiya
et al., 2010) can augment the ontology elements collection process.

The step of incorporating domain knowledge into the ontology is carried out as
the understanding of requirements engineers about the domain evolves. Upon dis-
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Fig. 2 A requirement incorporated into the Ontology

covery, domain knowledge is formalized in MOS, and is then translated into a set of
ontology elements and incorporated into the ontology.

While the creation of the domain ontology should be carried out at from the be-
ginning of domain study phase, it can be extended at any time during the RE process
whenever new knowledge about the domain is obtained.

During the RE process, requirements are formalized and incorporated into the
ontology in the same way as domain knowledge. Figure 2 shows an example of this
knowledge incorporation process.

The top box shows the formalization of the requirement “If a user makes 3 failed
login attempts, then their account will be locked.” The formalization is then inter-
preted in order to map the requirement to relevant ontology elements. We identify a
number relevant classes and properties in which a new class called UserWith3FailedLogins

has been defined (The definition of it is: % User AND hasLogins EXACTLY 3 FailedLogin

%). In addition, the requirement is interpreted in a form of a constraint that the User

must have an account, which has been locked after three failed login attempts: UserWith3FailedLogins
SubClassOf User AND hasAccount SOME LockedAccount. The last box shows that the
ontology is updated with the new definition and constraint.The entire process of re-
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quirement interpretation and ontology update is carried out automatically by our tool
REInDetector which will be discussed in section 5.

3.3.3 How to evaluate an ontology’s quality?

In KBRE, as the results of requirements analysis and reasoning (see section 4 largely
depend on the ontology’s quality, it is important that the ontology is ensured to be
correct, complete and consistent.

The ontology’s correctness and completeness are dependent on the ontology de-
velopment methodology used, the skills of knowledge engineers, time constraints
and the availability of supporting documents and resources. In addition, since it is a
general consensus that there is no single way to develop ontologies and no correct
ontology for any particular domain (Noy et al., 2001), and with the focus solely on
Requirements Engineering, ensuring the ontology’s correctness and incompleteness
is beyond the scope of this work.

In KBRE the ontology’s inconsistency can be guaranteed with the assistance of
REInDetector, which supports the identification of inconsistencies within the ontol-
ogy in the same way as how inconsistencies are detected among requirements. The
inconsistency detection support will be discussed in more details in section 4.

3.4 Goal Refinement and Operationalization Process

The goal refinement and operationalization process is conducted in both top-down
and bottom-up directions. Requirements engineers usually start with high-level goals
from stakeholders. They then need to answer HOW questions (i.e. How can this goal
be achieved?) to refine/operationalize the goal into sub-goals. The sub-goals would
be the conditions for satisfying the higher-level goals. On the other hand, require-
ments engineers may also need to verify the correctness and appropriateness of the
refinements/operationalizations by asking themselves WHY questions (i.e. Why does
this goal exist?). These questions help them verify if the goal is necessary (i.e. Does it
really contribute to satisfying a higher-level goal?) or if there are other goals needed
to be introduced. This bi-directional approach ensures the completeness of the re-
quirements and also avoids redundancy in the goal refinement process.

In our KBRE model, the refinement and operationalization process is assisted by
the use of a goal graph. The goal graph visualizes how high-level goals are re-
fined/operationalized into lower-level goals, or alternatively, how low-level goals
contribute to the realization of higher-level goals. For a particular goal, it can be
refined into multiple sub-goals via different types of refinement links including AND-
links, OR-links and Optional-links. Each of these link types is described in the fol-
lowing.

3.4.1 AND-Link

In KBRE, AND-Links are used for cases of minimal refinement, which means the
goal can only be satisfied if all of the sub-goals linked to it via AND-Links are sat-
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Fig. 3 An example of AND-Link

Fig. 4 An example of OR-Link

isfied. In other words, if there is any of the sub-goals unsatisfied, the goal will not
be fulfilled. An example of an AND-Link is illustrated in Figure 3. In this example,
the goal ‘Support Photo Upload’ is refined into 4 sub-goals, all with AND-Links. That
means the satisfaction of that goal can only be achieved if all the 4 sub-goals are
fulfilled.

3.4.2 OR-Link

OR-Links are used in cases of alternative refinement, which means the goal being
refined can be satisfied by fulfilling any of the sub-goals involved in the OR-Links.
Conversely, satisfying any of the sub-goals would fulfill the goal. In the model, when-
ever OR-Links are needed, a virtual goal must be created to link the goal with its
alternative refinements. This virtual goal is connected to the goal via an OR-Link and
to the sub-goals via AND-Links. Figure 4 illustrates an example of an OR-Link. In



14 Tuong Huan Nguyen et al.

Fig. 5 An example of Optional-Link

this example, OR-Links are used to allow the specification of three alternatives of
supporting group communication (any one of the three options plus the goal ‘Support
asynchronous group messaging’ will suffice to satisfy the goal ‘Support group communica-
tion’). The yellow circle denotes a virtual goal, which is created only for the purpose
of linking alternative options to the top goal via OR-Links.

3.4.3 Optional-Link

In the KBRE model, Optional-Links are used in cases of optional refinement. This
denotes that the sub-goals involved in Optional-Links are the preferred options but
they are not strictly required for the higher-level goal to be fulfilled. They may con-
tribute to the realization of the goal being refined. However, without such sub-goals,
the goal can still be satisfied. In the goal graph, Optional-Links can be used to con-
nect functional goals or non-functional goals to any other goals. However it can’t be
used to connect virtual goals to any other goals. Figure 5 presents an example of the
use of Optional-Link. This example shows a case of refining the goal ‘Support private
communications’. According to the refinement, this goal can be achieved by supporting
asynchronous private messaging between users in the system. However, it is desir-
able to enable instant messaging services. This feature is considered a “nice-to-have”
feature and thus its existence does not critically affect the satisfaction of the parent
goal.

3.5 Goal Annotations

In the KBRE model, each goal is annotated by a number of features that individually
characterize the goal. The goal annotation elements can be described as follows (with
Figure 6 illustrating an example the annotations of a goal that specifies that the system
needs to support private communication between users):

– Name: This element uniquely identifies the goal within the goal model. For exam-
ple, in Figure 6, F52 SysSupPrivateComm is the name of a requirement specifying
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Name F52 SysSupPrivateComm

Value Connecting

GoalType Functional

Refines F37 SysSupComm

RefinementLink AND

RefinedTo F53 SysSupAsynMessaging, F54 SysSupInstantMessaging,
F55 SysSupVoiceCall

InformalDef System needs to support private communication

FormalDef System SubClassOf supportCommunication SOME PrivateCommuni-
cation

Fig. 6 An example of goal annotations

that the system needs to support private communication between the users of the
system.

– Value: Each goal has one or more values. A value represents the perspective,
or the top most objective, which derives the goal. For instance, the requirement
F52 SysSupPrivateComm has two values, namely ‘Collaboration’ and ‘Social Activity’.
This indicates that the added value to the system, once this requirement is ful-
filled, is to enable collaboration between users and social activities for users.

– GoalType: each goal has a type, which can be ‘Functional’, ‘Non-functional’
or ‘Mixed’, when the requirement can contribute to both functional and non-
functional features of the system.

– Refines: This element indicates the higher-level goal being refined. In other words,
it refers to the parent goal of the annotated goal. Unless this is the top-most goal,
which doesn’t refine any other goal, this element refers to a unique parent goal.
To deal with cross-cutting sub-goals that have multiple parent goals, we are cur-
rently extending our model so that goal graphs can be arbitrary graphs rather than
just a tree. The extension however makes the analysis and reasoning about goals
much more complex.

– Refinement Link: This element indicates the type of the refinement link from
the annotated goal’s parent to itself (this is empty if the goal is the top most
one). According to the previous section, the refinement type can be AND, OR or
Optional.

– RefinedTo: This element indicates the list of goals which are generated as the
results of the refinement on this goal. We refer to them as the ‘children’ goals of
the annotated goal.

– InformalDef: This defines the goal in natural language. For instance, ‘The system
needs to support private communication’.

– FormalDef: This defines the goal in the formal requirements specification lan-
guage. For instance, the above goal is formally defined as: ‘System SubClassOf

supportCommunication SOME PrivateCommunication’.

Figure 6 illustrates the annotations of the goal specifying that the system needs
to support private communications between users. It comes from the refinement of
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a higher-level goal requiring that the system allow methods of communications (Re-
fines). The goal is derived from the objective of encouraging social activities as well
as work collaborations among users (Value). It is refined into 3 other sub-goals, which
are F10 SysSupAsynMessaging, F11 SysSupInstantMessaging and F12 SysSupVoiceCall.

4 Analysis and Reasoning Support

Apart from detecting inconsistencies between requirements, our model also provides
several mechanisms for identifying redundancies and overlaps of requirements. In
the rest of the paper, we use the term “requirements problems” to refer to these three
issues. In this section, we describe the analysis and reasoning services for identify-
ing such requirements problems. We assume a common knowledge base that stores
all relevant information produced during the requirements engineering process, in-
cluding the ontology and all of the requirements specifications. While we allow the
requirements engineer to formally specify requirements using the Manchester OWL
syntax (MOS), there is a one-to-one translation mapping MOS statements to descrip-
tion logic axioms. Since the assertions expressing the ontology can also be repre-
sented as description logic axioms, the whole knowledge base consists of a set of
axioms in the SROIQ logic.

4.1 Inconsistency Detection

From a requirements engineering perspective, a set of requirements is consistent if
their specifications do not contain any contradiction and they are not in conflict with
each other. Inconsistencies are the impossibility in satisfying requirements which
may arise from competing objectives. For instance, If a requirement is derived from
a stakeholder with the purpose of increasing usability of the system; it is likely to be
in conflict with another requirement put forward by a stakeholder with the objective
of saving development cost. In our model, as all requirements and domain knowl-
edge are captured in a description logic knowledge base, we can appeal to the logical
consistency of the knowledge base to formally define the notion of consistency (and
inconsistency) between requirements.

Inconsistency arises in a description logic knowledge base when there are two or
more axioms of the knowledge base that cannot concurrently exist. Formally,

Definition 1. A set of axioms {A1, A2, . . . Ak} is inconsistent if and only if there
does not exist any interpretation that concurrently makes the axioms A1, A2, . . . , Ak

true.

In the description logic SROIQ, inconsistency can be explained as a situation in
which a concept or an object cannot exist. From the definition of inconsistency, we
define the minimal set of inconsistent axioms, called minimal set of inconsistency.
Informally, a minimal set of inconsistency is an inconsistent set of axioms and the
inconsistency can be solved by removing any one of the assertions.
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Definition 2. An inconsistent set of axioms {A1, A2, . . . , Ak} is a minimal set of in-
consistency if and only if for each i = 1, . . . , k, the set of axioms {A1, A2, . . . , Ak}\
{Ai} is consistent.

In this work, we employ the description logic reasoner Pellet to facilitate several
analysis services, including detection of inconsistencies. Specifically, if the reasoner
is able to derive that there is an unsatisfiable concept or non-existent instance in the
knowledge base then inconsistencies are identified. An example of an inconsistency
is given in the following example:

Example 3. Consider the following security requirements, presented both in the form
of natural language and in the corresponding MOS specification:

R 1: After three continuous failed login attempts, the account would be locked by
the system (User AND hasFailedLogins VALUE 3 SubClassOf User AND hasAccount

SOME LockedAccount).
R 2: Once an account is locked, the system sends an account lock notification

email to the account’s owner (User AND hasAccount SOME LockedAccount SubClassOf

User AND receiveEmail SOME AccLockedNotification).
R 3: Once an account is locked, the system would also send a SMS message to the

account’s owner to notify him/her about the situation owner (User AND hasAccount

SOME LockedAccount SubClassOf User AND receiveSMSMessage SOME AccLocked-

Notification). And another requirement with the goal of minimizing unnecessary
features:

R 4: If a user already received a notification via email, he/she won’t receive the
same notification in SMS (User AND receiveEmail SOME Notification SubClassOf

Not (User AND receiveSMS SOME Notification)).
Based on the ontology that holds the definitions of the concepts and properties in

the above formalization, we are able to detect that this is an inconsistency. We can also
determine that the minimal inconsistent requirement set contains R 2, R 3 and R 4
by pointing out that the class of (User AND has Account SOME LockedAccount) is
unsatisfiable and the removal of any of the three requirements would eliminate the
inconsistency.

4.2 Detecting Redundancies

Definition 3. A description logic knowledge base is said to be redundant if it contains
an axiom that can be inferred from the other axioms in the knowledge base.

In the SROIQ logic, redundancy can be explained as a situation in which an inclu-
sion axiom between two concepts or between an instance and a concept is redundant.
For instance, if the knowledge base contains the axioms: C v D, D v E, and C(a),
then the axioms C v E and D(a) are both redundant. Axiom C v E can be derived
from C v D and D v E, while axiom D(a) can be derived from C(a) and C v D.
These are two basic inference problems in description logic, namely the subsumption
and the instantiation problems (Baader et al., 2007).

In RE, redundancies are not always considered serious problems as their existence
normally does not affect the correctness of the requirement set. They are instead
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referred to as warnings to requirements engineers as they may cause confusion or
unnecessary documentation effort. Moreover, the elimination of redundancies could
potentially lead to significant optimizations in requirement analysis and reasoning.

In our approach, identification of redundancies is performed by the DL reasoner
Pellet by reducing the inference problems subsumption and instantiation to checking
consistency of a knowledge base. For instance, to check whether C v E follows
from a knowledge base K, we can verify whether K∪{C u¬D} is inconsistent. The
following example demonstrates a case of requirement redundancy.

Example 4. There are three requirements regarding the supported languages in a
Social Networking System as follows:

R 1: The system needs to support all three languages: English, French and Japanese
(System SubClassOf supportLanguage VALUE {English, French, Japanese}).

R 2: The system needs to support language translation (System SubClassOf

supportFeature VALUE LanguageTranslation).
R 3: If supporting multiple languages, the system needs to allow language trans-

lation (System AND supportLanguage MIN 2 SubClassOf supportFeature VALUE

LanguageTransaltion).
In this example, R 2 is redundant because the fact that the system needs to support

language translation can be inferred from R 1 and R 3. Indeed, the system is required
to support three languages. That means it support multiple languages and according
to R 3, the feature of language translation needs to be included in the system.

4.3 Detecting Overlaps

Overlaps refer to situations in which there are two or more assertions that refer to
some common or inter-related phenomena. Overlap and inconsistency are considered
two levels of interference between specifications; the first is the pre-requisite for the
second (DeMarco, 1979). Overlaps normally arise from differences in stakeholders’
preferences or opinions in regard to what should be done to satisfy a certain aspect of
a system.

In the SROIQ logic and OWL language, an overlap can be explained as a situation
in which there are at least two assertions that contain the same concepts (aka. classes
in OWL language) or instances (aka. individuals in OWL language).

In Requirements Engineering, overlaps occur when there are two or more require-
ments specifying constraints on the same features, or rules. Therefore, overlaps can
lead to inconsistencies if one of these requirements changes and causes conflicts to
others. Subsequently, overlaps are not considered serious problems but instead are
flagged as warnings for potential sources of inconsistencies in requirements.

Based on the above description, in the KBRE model, overlaps are detected by
checking the subsumption relationships of the related classes in the ontology (two or
more classes are ‘related’ if they have subsumption relationship or share at least one
instance). The following example illustrates an occurrence of overlaps.

Example 5. Given an instance ‘John’ that belongs to both Student and Staff

classes. The two requirements below are overlapped in the context of a library man-
agement system:
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Problem Inconsistency

Explanation UserWithLockedAccount class is unsatisfiable

Problematic Requirements F62 IfLockedThenSMS (Security), F63 IfLockedThenEmail (Secu-
rity), F71 IfEmailThenNoSMS (Cost-effective)

Reason(s)

UserWithLockedAccount SubClassOf User AND receiveSMS SOME
AccLockedNotif

UserWithLockedAccount SubClassOf User AND receiveEmail SOME
AccLockedNotif

UserReceiveLockedNotifEmail SubClassOf NOT User AND receiveSMS
SOME AccLockedNotif

UserReceiveLockedNotifEmail EquivalentTo User AND receiveEmail SOME
AccLockedNotif

Fig. 7 An example of explanations

R 1: Staff are allowed to keep their borrowed items up to 30 days (Staff SubClassOf

hasRight SOME (Right AND keepBook MAX 30)).

R 2: Students are allowed to keep their borrowed items up to 20 days (Student
SubClassOf hasRight SOME (Right AND keepBook MAX 20)).

R 1 and R 2 are overlapped because they specify the same rule (maximum loan
duration) on two related sets of actors (Student and Staff) that have an instance
(‘John’) in common.

4.4 Explanations

For any detected requirements problems, detailed explanations are provided to help
requirements engineers and their stakeholders get better insights into the problem.
The explanations include the main reason why the problem exists (e.g., which classes
are in conflict or which instance must not exist,. . . and why) and the “hypothesis”
underlying the problem (e.g., a requirement whose value is ‘cost-effective’ can be in-
consistent with a requirement that aims to improve ‘usability’ through some complex
user interface features).

Figure 7 shows the explanations for the inconsistency between the security re-
quirements in example 4. In this example, the three requirements F18 IfLockedThenSMS,
F17 IfLockedThenEmail, F19 IfEmailThenNoSMS are inconsistent because they lead to the
fact that the class UserWithLockedAccount is unsatisfiable. According to the expla-
nations, this problem is due to the conflicting between the Security and Cost-effective
goals. The causes of that are presented under the Reason(s) part of the explanations.
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4.5 Querying Requirements

When a set of requirements is detected as having potential requirements problems
(i.e., inconsistency, redundancy or overlap), it is sometimes necessary for require-
ments engineers to take a closer look to get more insights into the requirements, un-
derstand the problems and probably try to resolve them. For instance, if inconsistency
is detected in a knowledge base with hundreds of requirements, it is not likely that all
of these requirements are involved in causing the conflict. There may be only two or
three requirements directly involved in the problem. In these situations, a query for
minimal set of inconsistent requirements would enable the analysis of the inconsis-
tency more effectively. Furthermore, requirements engineers may only be interested
in a subset of requirements rather than all requirements for the entire system. For
instance, they only need to study the requirements relevant to the communication
features in a social networking system. To address these needs, the KBRE model al-
lows requirements engineers to query particular subsets of requirements and for the
specific types of problems they are concerned about. In particular, they can choose
a specific list of requirements and check for inconsistencies or redundancies among
the selected set of requirements.

5 The REInDetector Tool

We have developed REInDetector - a prototype tool to demonstrate the feasibility of
our new goal-directed, DL-based RE model as an automated RE framework. REIn-
Detector allows requirements engineers to enter requirements, specify relationships
between requirements (via AND, OR and Optional links), and formalize requirements
in the Manchester OWL Syntax. The tool also supports the creation and maintenance
of an ontology for storing the domain knowledge and semantics of requirements.
REInDetector equips requirements engineers with the analysis services described in
Section 4. The analysis services provided in REInDetector are largely based on the
Pellet reasoner (Clark & Parsia, LCC, 2012), which is extended to facilitate the iden-
tification of redundancies and overlaps and to allow more comprehensive explana-
tions for detected requirements problems (including inconsistencies, redundancies,
and overlaps).

Figure 8 illustrates the high-level architecture of our REInDetector tool, consist-
ing of three main modules. The Input module is responsible for taking specifica-
tions from requirements engineers. The Requirement Elicitor enables one to capture
a system’s functional and non-functional requirements and shows how they are re-
lated through refinement links. Knowledge, semantics, rules, and constraints in the
requirements domain can be defined using the Ontology Editor, which allows users
to directly interact with the ontology. All these types of inputs need to be properly
formalized in order to allow the effective analysis and reasoning on requirements.
The formalizations of inputs are then sent to the Manchester OWL Syntax parser
(MOS parser) in the Knowledge module. This parser then extracts the classes, roles,
instances ,and the relationships declared in the formalization and sends the data to
the Ontology manager which then updates the ontology with new data. The Reasoner
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Requirement
Elicitor

Ontology
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Fig. 8 General structure of REInDetector

module is responsible for providing analysis and reasoning services, including detec-
tion of requirements problems, giving answers to requirements queries (carried out
by the Reasoner component) and generating explanations (carried out by the Expla-
nation Generator).

REInDetector is a Java application that provides a graphical user interface (based
on the JUNG library (O’Madadhain et al., 2005)) to perform all requirements elicita-
tion, management, and validation tasks (Zave and Jackson, 1997). We have developed
a dedicated structuring and management system to capture requirements and their re-
lationships following the Goal-oriented Requirements Engineering model (Van Lam-
sweerde, 2001). In addition, the use of Description Logic (Baader et al., 2007) en-
ables us to define object/class-style ontologies, which are the core for requirements
formalization and analysis in REInDetector. Description Logic specifications can be
faithfully mapped to Manchester OWL syntax (Horridge and Patel-Schneider, 2009).
As a result, we are able to use the off-the-shelf OWL 2 reasoner Pellet (Clark & Par-
sia, LCC, 2012) for requirements analysis. However, rather than using an existing
OWL editor such as Protégé (Noy et al., 2003) or SWOOP (Kalyanpur et al., 2006),
which are too general-purpose, we constructed our own ontology editor in order to
obtain a better match with the Requirements Engineering domain.

REInDetector finds implicit consequences of explicit requirements and offers all
stakeholders an additional means to identify problems in a more timely fashion than
existing RE tools. An important feature of REInDetector is its ability to generate com-
prehensive explanations to provide deeper insights into the detected inconsistencies.
We rely on Pellet for inconsistency checking and explanation generation. However, in
order to detect redundancies and overlaps we also had to implement a number of sub-
sumption relationship verifications so that these requirements issues can be checked
and explained also.
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6 Evaluation

To evaluate the effectiveness of our KBRE model and proof of concept tool, we
have used a complex, industrial software development scenario for design and de-
velopment of a traveler social networking system and verified the results produced
by REInDetector. Our motivation for choosing this scenario was twofold. First, it
involves the development of a large-scale software system with many diverse com-
ponents. This enabled us to test our KBRE model on a variety of varying require-
ment types. Second, due to the size of the system, requirements originate from dif-
ferent stakeholders perspectives that may naturally give rise to emerging inconsis-
tencies. We selected a subset of approx. 80 requirements from the “Review and Rat-
ing” and “Blogging” components for evaluation, as these components constitute the
main building blocks in the system. The selection of these requirements was based
on our awareness of the potential conflicts induced by the competing Usability,
Cost-effective, and Reliability goals. We opted to conduct this type of evalua-
tion instead of carrying out an end user survey on our Knowledge-based RE approach,
as our focus was on the applicability and utility of the KBRE model.

This case study comprises an ontology with more than 350 classes, properties,
and instances. REInDetector found all inconsistencies, redundancies, and overlaps in
the requirement set, manually verified by us. The inconsistencies arose from logical
conflicts between requirement goals. It took about 4 seconds to detect inconsisten-
cies, 9 seconds to locate the redundancies, and 14 seconds to identify all overlaps in
the selected requirements set. The experiment was carried out on a MacBook Pro run-
ning MacOS X 10.6.8 with a 2.53 GHz Intel Core 2 Duo processor and 4Gb of 1067
MHz DDR3 Memory. The running time for detecting redundancies and overlaps are
significantly longer than that for checking inconsistencies, because redundancies and
overlaps need to be first reduced to a knowledge base consistency problem, which
usually requires multiple queries to be posed to the reasoner. Considering that re-
dundancies and overlaps are not the most serious issues in requirements engineering
and that they are, in general, not as frequent as inconsistencies, we think that this
performance of REInDetector is satisfactory.

In this case study, we were able to detect complicated inconsistencies involv-
ing multiple requirements. The requirements mostly came from conflicting view-
points among stakeholders (e.g., Cost-effective vs. Security, Cost-effective

vs. Usability, Usability vs. Functionality, etc.). Figure 9 presents an annoted
screenshot of the REInDetector system in which inconsistency is detected and the
explanations for it are also provided.

This scenario focuses on the decision of connecting travellers and providing a
place for them to come to for discussions, exchanging experiences and seeking ad-
vices/tips for their coming trips. There are two requirements promoting the user ex-
perience with the system:

– F22 SupForum: System needs to provide a forum for discussions (System
SubClassOf supportFeature SOME Forum).

– F26 SupUserGroup: System supports the creation of user groups to facilitate the
connection (System SubClassOf supportFeature SOME UserGroup).
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Logical ProblemLogical Problem

Detailed ExplanationsDetailed Explanations

Fig. 9 Example of an identified inconsistency

However, stakeholders with the Cost-effective point of view had another require-
ment with the aim of minimizing the development cost:

– F24 IfGrpCommNoForum: If the system supports any type of group communica-
tion, then no forum is needed (supportFeature SOME GroupCommunication

NOT (SubClassOf supportFeature SOME Forum)).

The underlying rationale is that, with any group communication feature, travelers
would be able to contact and discuss in a group, therefore, it would be a waste to
implement a forum.

We found this case interesting as UserGroup is a type of GroupCommunication,
and the conflict among the three requirements can’t be identified without having the
relationships between UserGroup and GroupCommunication explicitly defined.

The corresponding explanations provide a rationale governing the problem. De-
pending on the Usability and Cost-effective preferences, there are two possible
solutions to rectify the problem. First, if the viewpoint Usability is more important
than Cost-effective, then a resolution is to remove F24 IfGrpCommNoForum, which
would allow users to have more comforts in participating in discussions and shadings
as a forum is far better than user groups in discussions due to the better organiza-
tion and structure. Alternatively, we can remove F22 SupForum or F26 SupUserGroup,
which would also solve the issue, but at the expense of Usability. Without a forum
or user groups, travelers may not be provided with the best facilities to connect with
each other and exchange experiences and thus the satisfaction of the project’s objec-
tives may not be guaranteed. The decision here must be made by the stakeholders,
probably through some kinds of negotiation.

Nevertheless, while this case study REInDetector was able to identify all prob-
lems related to the requirements expressible in Manchester OWL Syntax (MOS) as
long as the relevant concepts and roles are completely specified in the ontology, the
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tool is not able to detect the conflicts associated with the requirements that are not
expressible in MOS. This is expected since there are a number of limitations with
MOS expressiveness which prevent certain types of requirements to be captured. For
instance, it is not possible to use MOS for representing requirements with temporal
properties. Thus, a requirement such as “When the user chooses to show his/her on-
line status, the user’s status button will always reflect the user’s availability on the
system” can not be expressed in MOS.

7 Related Work

The related works to our approach can be categorized into two groups; one is ontol-
ogy formal representation languages which allow automated analysis and reasoning
and another include the approaches for detecting inconsistencies in RE. The formal
languages proposed in the community of knowledge, ontology and requirements en-
gineering can be classified into two categories: languages based directly on logics
and controlled subsets of English which is translatable to logics for reasoning. The
works fall into the first category include: RML (Greenspan et al., 1994), TELOS
(Mylopoulos et al., 1990), FRORL (Tsai et al., 1992), KAOS requirements repre-
sentation language (Dardenne et al., 1993; Van Lamsweerde, 2001), Formal Tropos
(Fuxman et al., 2004). The common problem with these languages is that although
being very powerful representation languages with the expressiveness inherited from
logics, they are fairly complicated and normally require technical training for their
use and elaboration (Jaramillo et al., 2006).

In addition, Controlled Natural Languages (CNLs) has been a recently emerg-
ing area. Research in this field has attempted to overcome the limitations of tradi-
tional logic-based representation languages by proposing different sub-sets of En-
glish which are transformable to logics or formal languages to allow automated anal-
ysis and reasoning. Some examples of well-known CNLs include ACE (Fuchs et al.,
2005), PENG Schwitter (2002), V2E (Pratt-Hartmann, 2003) and SOS (Cregan et al.,
2007). ACE, PENG and V2E are transformable to First-order Logic (FOL), repre-
sent a great combination of Logics and natural languages and thus are powerful in
both expressiveness and user-friendliness. However, except V2E which is proved to
be equivalent to the decidable 2-variable sub-set of FOL (in term of expressiveness),
other languages are known to be undecidable. Moreover, although possessing great
expressiveness power, these languages are proved not suitable to represent concepts,
roles and their relationships, due to their syntactic constraints (inherited from En-
glish grammar) (Schwitter et al., 2008). In particular, ACE neither provides explicit
constructs for enumerations nor allows datatype properties to be defined. In addi-
tion, representing relationships between roles or specifying disjoints entities are very
complex in ACE.

SOS is the language most comparable to MOS. It is a controlled natural language
which is transformable to OWL1.1 to allow the representation of OWL ontologies
and automated reasoning. The disadvantage of SOS is that it is equivalent to OWL1.1
while MOS is equivalent to OWL2 which is more expressive. More precisely, OWL2
better supports qualified number restrictions, property and data type expressivity.
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MOS offers us a good option for balancing between the user-friendliness, effi-
ciency and expressiveness of a representation language. MOS, with its expressions
constructed from natural language words, has been proved to be well-received by
non-logicians (Cregan et al., 2007). In addition, being transformable to Description
Logics, a decidable sub-set of FOL, MOS guarantees the sound and complete reason-
ing. Moreover, using MOS is also benefited from the availability of various reasoners
for Description Logics. Furthermore, although possessing less expressive power than
FOL or Temporal logics (MOS is not able to allow temporal operators), MOS is pow-
erful in its representation of domain knowledge, with concepts, roles, and instances
and their relationships, the key focus of our work here.

A main limitation of MOS is that it is not capable of representing temporal con-
straints. For instance, a requirement such as “When the user chooses to show his/her
online status, the user’s status button will always reflect the user’s availability on the
system” can not be expressed in the language.

In the next part of this section, we discuss the key related research approaches
that have been proposed for dealing with the problem of detecting requirements in-
consistencies in RE.

WinWin (Boehm et al., 1995) is a human based-collaborative approach designed
for detecting conflicts between stakeholders’ win conditions. This approach doesn’t
provide explicit support for conflict detection. It and its QARCC extension (Boehm
and In, 1999), instead allow stakeholders to enter win conditions and these condi-
tions are associated with quality attributes. Based on the predefined knowledge base
of potential conflicting quality attributes, potential conflicts between win conditions
are flagged. Although this approach can produce fast and precise results in some situ-
ations, it may not be complete and sound because the correctness of the identification
process heavily depends on the completeness of the knowledge base. In addition, it
is labour-intensive and difficult to be applied for large models.

Similar to WinWin, Robinson and Pawlowski (1999) proposed a technique called
DealScribe following the a human-based collaborative approach. In DealScribe, stake-
holders are expected to identify conflicts between the root requirements, which are
the most general requirements defined for the relevant concepts in the models. The
stakeholders are expected to explore and indicate the interactions between all the pos-
sible pairs of root requirements in the models. An interaction may be characterized
as “very conflicting,” “conflicting,” “neutral,” “supporting,” or “very supporting.” The
conflicts among requirements in the models would then be detected based on these
interactions. This technique has similar drawbacks to those of WinWin.

Sharing the same idea of predefining potential conflicting software quality at-
tributes with WinWin and DealScribe, Egyed and Grunbacher (2004) also introduce
the concept recovering dependencies among requirements. This facilitates the incre-
mental exploration of conflict identification based on the automated traceability of
the dependency as the requirements evolve. Although this approach avoids the time-
intensive and error-prone process in the other two approaches, its soundness could
be challenged as the identification of conflicts still heavily relies on the predefined
potential conflicts among quality attributes. In addition, neither the use of domain
knowledge and semantics of requirements nor requirements conflicts explanations
are supported in this approaches.
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KAOS (Dardenne et al., 1993; Van Lamsweerde, 2001) is a comprehensive frame-
work aimed at supporting the process of Requirements Engineering including the
management of conflicts among requirements. In KAOS, requirements are formal-
ized in linear temporal logic (LTL) to enable the identification of conflicts using for-
mal reasoning methods. Three of such techniques are described in (Van Lamsweerde
et al., 1998) including using regressing negated assertions, divergence patterns and di-
vergence identification heuristics. In addition, other types of conflicts such as process-
level deviations or instance-level deviations can also be detected using consistency
rule checks.

KAOS provides a very rigorous approach for detecting conflicting requirements.
However, as mentioned above, the use of LTL in specifying requirements requires
requirements engineers to be sufficiently familiar with LTL and be able to correctly
specify requirements in LTL. Thus, its applicability in practice can be fairly limited
(Dwyer et al., 1998). In addition, although KAOS supports the creation and main-
tenance of domain knowledge through the use of its conceptual meta-model, the
concepts, roles, and instances in the problem domain as well as the semantics of
requirements cannot be adequately expressed and reasoned in LTL (Breaux et al.,
2008).

Tropos (Fuxman et al., 2004) is a framework that provides formal and mechanized
analysis of early requirement specifications. The requirements analysis in Tropos is
done using the model checking approach with the support of a specification language
called Formal Tropos which is developed from the combination of the i∗ modeling
language (Chung, 1993) and the temporal specification language inspired by KAOS.
Similar to the specification language in KAOS, the Formal Tropos is also too com-
plicated to be used in practice. In addition, the semantics of requirements cannot be
defined sufficiently in Tropos as the framework uses no sub-classing or specification
of structures and thus the domain and instance-level are not distinguished in the for-
malization (Breaux et al., 2008). Hence, explanations of conflicts are not provided in
both frameworks.

Lauenroth and Pohl (2008) proposed an approach for dynamically checking con-
sistencies among domain requirements in Product Line Engineering. The detection
of inconsistencies in their work is based on the combination of the variability model,
which is for representing the variances among different products in the same prod-
uct line, and the domain requirements specification model. The dynamic check for
inconsistencies is accomplished by using a contradiction function which conforms to
the model checking methods. Yet, explanations for conflicting requirements as well
as domain knowledge and semantics of requirements are not supported.

We are aware of a few works in the area of Ontology-based Requirements En-
gineering that are close to our approach. Siegemund et al. (2011) proposed building
an ontology to support the RE process. However, their focus was mainly on tracking
the interactions among requirements (e.g., supporting, retracting, etc.). Inconsistency
detection is for identifying conflicts between these interactions rather than between
the requirements themselves. In addition, Kaiya and Saeki (2005) also use ontology
to define semantics in requirements’ domain. However, they translate concepts in re-
quirements into UML class diagrams in which each class represents a concept and
introduce different types of links to represent relations among these classes. Based
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on these some inconsistencies can be detected. The process of translation is omitted
in this work. The disadvantage of this approach is that it is not able to express some
complex requirements which can be done with Manchester OWL Syntax (i.e., condi-
tioning requirements such as “a user has 3 failed logins attempt, their account will
be locked”). Moreover, modeling semantics with UML class diagrams would cause
complexity when the number of requirements evolves.

Although sharing the same objectives of detecting inconsistencies in RE, the
works of Grundy et al. (1998), Kamalrudin et al. (2010) and Weston et al. (2009)
have a different focus. Grundy et al. (1998) address the problem of inter-model con-
sistency in software development environment tools. They focus on managing in-
consistencies in multiple views which are derived from a common repository. The
automated identification of inconsistency is facilitated based on representing the ar-
tifacts in the repository by using a special kind of graph. Very limited explanation of
the inconsistency root cause is provided. Kamalrudin et al. (2010) focus on detecting
inconsistencies between specifications at different levels of abstraction while We-
ston et al. (2009) propose an approach for checking inconsistencies among semantics
compositions in aspect-oriented requirements. As these use semi-formal representa-
tions, more limited inconsistency and overlap detection can be achieved than in our
description logic-based approach.

To summarize, there have been a number of different approaches sharing common
objectives with our work. The key differentiation between the existing approaches
and our model lies in the ability of our framework to store domain knowledge and se-
mantics of requirements which assist requirements engineers not only in elaborating
requirements but also in identifying requirements problems. Moreover, explanations
for conflicting requirements are an integral part of our RE process model allowing
requirements engineers to have a better understanding into the nature of the detected
problems. Finally, our approach and our requirements specification language permit
requirements to be formalized in a simple and intuitive syntax, making it easy for
practitioners to understand and communicate between each other.

8 Conclusion

In this paper, we described a new Knowledge-based Requirements Engineering frame-
work (KBRE) aimed at providing a more effective requirements analysis process that
also incorporates support for the detection and explanation of inconsistencies, re-
dundancies, and overlaps within a given set of requirements. In the KBRE model,
domain knowledge and semantics of requirements are centralized in the form of an
ontology while requirements are expressed in an intuitive requirements specification
language based on the Manchester OWL Syntax (MOS). Both, the ontology and the
requirement specifications, are directly translated into the description logic SROIQ
that provides a logical and reasoning system to yield a sophisticated, yet practical,
means to unveil inherent problems in a given requirements set. Our approach allows
the sources of these problems to be traced along the requirements goal graph that
results from the application of the Goal-oriented Requirements Engineering (GORE)
method to requirements elicitation. Automatically generated explanations can guide
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requirements engineers towards feasible conflict resolution methods in case of con-
flicting requirements.

Our Knowledge-based Requirements Engineering method has produced some
promising results. The Manchester OWL Syntax (MOS) is sufficient for representing
a wide range of requirements. Yet, there are certain features that cannot be formalized
in MOS. For example, we are currently unable to formalized temporal properties, as
MOS is not equipped to capture those aspects. Moreover, in the KBRE model, the re-
quirements problems can only be detected if the related concepts, roles, and instances
as well as their relationships are declared in the ontology. As a consequence, specific
requirements problems may escape detection if ontology is not powerful (i.e., descrip-
tive) enough. Given the limitation of OWL expressiveness in dealing with temporal
operators, we intend to extend the requirements specification language with temporal
constructors. Significant upgrades would then be expected in the underlying reasoner
to cope with the extensions of the specification language. In addition, we are planning
to work on an automated mechanism to produce warnings to requirements engineers
in the situations when potential concepts, roles, instances, and their relationships are
not declared in the ontology. Finally, more comprehensive evaluation will need to be
carried out in order to assess the effectiveness of our framework in varying problem
domains and detailed requirements engineer feedback on our approach and toolset.
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9 APPENDIX

9.1 ReInDetector Description

In this section, we present a scenario to demonstrate the functionality of REInDetec-
tor. The scenario in this demonstration is part of the traveller social networking use
case which was taken in the evaluation section. The steps through this demonstration
are described as followed.

1. In the first step, the requirement F24 IfGrpCommNoForum is added (assume that it
has not been added) (cf. Figure 10).

Fig. 10 Adding new requirements.

2. In this step, we show the value of domain knowledge and semantics and how they
can help in detecting requirements inconsistencies. We use

– F22 SupForum: System needs to provide a forum for discussions (System
SubClassOf supportFeature SOME Forum).
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– F26 SupUserGroup: System supports the creation of user groups to facilitate
the connection (System SubClassOf supportFeature SOME UserGroup).

– F24 IfGrpCommNoForum: If the system supports any type of group communi-
cation, then no forum is needed (supportFeature SOME GroupCommunication

NOT (SubClassOf supportFeature SOME Forum)).

But without a proper characterization of the associated relationship between the
capture concepts, no problems can manifest (cf. Figure 11). We wish to emphasize
this point here, in particular, to motivate the need for proper knowledge represen-
tation in requirements engineering.

Fig. 11 Requirements set with inconsistent goals.

3. Next, we demonstrate how the ontology editor can be used to define concepts,
roles, instances, domain knowledge, rules, and constraints (cf. Figure 12) In par-
ticular, we show how “UserGroup” can be defined as a sub-concept of “Group-
Communication”.

4. Next, we show how to use the reasoner in analyzing requirements to identify
inconsistencies and how the provided explanations may help requirements engi-
neers get more insights into the problem (cf. Figure 13).

5. In the next step, we present the requirement query support provided by REInDe-
tector. We particularly make a query to analyze a partial set of requirements which
doesn’t contains all requirements involved in the inconsistency. The results from
the reasoner indicates that there is no inconsistency in this set of requirements (cf.
Figure 14).

6. In the final step of the demonstration, we show how the identified inconsistency
can be resolved. In this case, that is done by removing one of the inconsistent
requirements (F24 IfGrpCommNoForum) (cf. Figure 15)
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Fig. 12 Defining semantics with Ontology Editor.

Logical problemLogical problem

requirements involvedrequirements involved

detailed explanationsdetailed explanations

Fig. 13 A scenario of inconsistency.

9.2 Availability

REInDetector, accompanied with a demo scenario and user quick-start guide are
available for download at: http://www.ict.swin.edu.au/ personal/huannguyen/REInDetector.html
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Fig. 14 Requirement query service.

Fig. 15 All inconsistencies resolved.


