
Department: Head
Editor: Name, xxxx@email

Addressing Bad Feelings in
Agile Software Project
Contexts
K. Madampe
Monash University, Australia

R. Hoda
Monash University, Australia

J. Grundy
Monash University, Australia

Abstract—Like all people, software developers feel several emotions – positive and negative –
when working on projects. But what are the underlying reasons for these emotions? Are their
emotions linked to their work satisfaction and productivity? Can we boost developer satisfaction
and productivity by remedying the causes of negative emotions? Agile is the most common
software development approach currently used. Based on our empirical industry studies, we
propose several solutions to overcome the causes of negative emotions in agile contexts.

Improving productivity in teams has always
been a priority in organisations, given their mo-
tives to amplify business performance1. This is no
less for software teams, where they are expected
to be productive throughout the project and timely
deliver the software they work on. Team welfare
has become an increasingly important concern,
especially developer mental health. Work satisfac-
tion has always been important, but increasingly
so in recent years.

A single Google search on “how to be pro-
ductive” results in thousands of articles, where

1https://www.pwc.com.au/digitalpulse/perform-business-
productivity.html

the majority talk about work habits. Many of
these habits are closely aligned with ways to
stop one from getting burnout – physical, emo-
tional, or mental exhaustion that are accompanied
by decreased motivation, lowered performance,
and negative attitudes toward oneself and others
[1]. One could consider following these habitual
improvements to uplift their productivity, but it
might not always work.

Expecting software teams to be constantly
high functioning and constantly productive is
unrealistic. A key factor impacting productivity
and satisfaction are developer emotions [2], [3],
[4]. We have been exploring what causes negative

IEEE Software Published by the IEEE Computer Society © 2023 IEEE 1

Department Head

agile developer emotions and looking for reme-
dies to overcome them. In this article, we suggest
some possible approaches to remedy causes of
developer negative emotions in agile contexts
discovered through our empirical research. Some
of solutions may appear obvious, but act as strong
reminders to developers to gain the maximum
use of agile practices and artefacts, and agile’s
flexible nature.

We first summarise the State of Agile Report
findings about productivity and agile practices.
We briefly summarise what the literature says
about developer productivity and their emotions,
and then present our empirical research findings.
We use these to suggest several solutions to
addressing negative developer emotions from an
agile perspective. Throughout this article, we use
the terms developer and practitioner interchange-
ably, as developers play multiple roles in agile
software contexts.

Productivity and agile practices
Over the past 16 years, the State of Agile

Report (SOA) has presented many insights into
adopting and scaling agile in enterprises, con-
ducting an annual survey of agile practitioners
worldwide. It has especially shed light on un-
derstanding the reasons for adopting agile, how
agile has positively impacted several factors in
organisations, and significant barriers to adopting
and scaling agile practices. According to the 15th
SOA [5], adopting agile methods within software
teams has skyrocketed from 37% in 2020 to 86%
in 2021. One of the top three reasons for agile
adoption reported is to increase productivity. 60%
of the participants believed that agile positively
impacted team productivity. However, the most
significant barriers to adopting and scaling agile
practices is reported to be inconsistent use of
processes and adaption of practices across teams,
lack of organisational culture supporting agile
methods, and lack of experience and expertise
with agile practices [5]. In other words, teams
adopt agile to increase productivity and agile
positively impacts productivity. However, incon-
sistent processes and practices across teams, lack
of expertise with agile practices and lack of
organisational support hinder the adoption and
scaling of agile practices [5]. Overcoming these
issues is crucial to getting the maximum benefit

from practising agile.

Developer productivity and their
emotions

Several empirical studies in software en-
gineering show a significant linkage between
developer productivity and developer emotions.
Through a study focusing on the impact of emo-
tions on productivity during software develop-
ment, Wrobel [6] found that frustration is felt
often by developers, lowering their productivity.
Enthusiasm and, interestingly, anger tend to in-
crease productivity. Emotions transit from frus-
tration → anger → contentment → enthusiasm.
While it is interesting that negative emotions such
as anger increase productivity, it is necessary to
know the level of anger to understand if a high
or low level of anger boosts productivity, and
possibly, if and how this might be sustainable or
even desirable. Giradi et al.’s [7] study provides
evidence on the connection between emotions and
productivity. They found that valence is posi-
tively correlated with perceived productivity with
stronger connections in the afternoon whereas
correlation between dominance and productivity
is stronger in the morning for the developers.

Our empirical studies demonstrate that prac-
titioners feel diverse emotions when they are
working on software projects [8], [9], [10]. In
one study, 201 practitioners shared with us how
they feel when working on projects with nu-
merous requirements changes (RCs) such as fea-
ture requests – an obvious phenomenon in agile
contexts. We provided them with 20 emotions
(positive and negative) using a well-established
emotion scale, Job Affective Wellbeing Scale
[11]. The practitioners told us when they felt
those emotions. Their feedback indicated that
their feelings vary at different milestones due
to various reasons. Fig. 1 summarises these
key milestones, the emotions they felt, and the
reasons. The ‘smileys’ in the figure represent
two levels of high and low emotions in each.
High2 represents emotions: Energetic, Excited,
Ecstatic, Enthusiastic, Inspired, High1 represents
emotions: At-ease, Calm, Content, Satisfied, Re-
laxed, Low1 represents emotions: Angry, Anxious,
Disgusted, Frightened, Furious, and Low2 repre-
sents emotions: Bored, Depressed, Discouraged,
Gloomy, Fatigued. Key findings are the reasons

2 IEEE Software

During
delivery

- Frightened

Project announced

+ Energetic

Project
commencement

+ High2 in general
+ Inspired
+ Excited
+ Energetic
+ Enthusiastic - Anxious

Development
commencement**

+ Energetic - Low1 in general

Project partially
completed

+ Energetic

+ Content
+ Satisfied
+ Relaxed
+ Calm

Deadline
approached

- Low1 in general

About to complete
the project

+ High2 in general
+ Energetic

Project
completed/delivered

+ High1 in general
+ Satisfied
+ Relaxed

Project
fails/drops***

- Low1 in general
- Low2 in general

Throughout the project*: + Inspired| + Excited| + Energetic| + Enthusiastic|+ High1 in general | - Anxious

During development: + High1 in general|- Fatigued
- Discouraged | During testing: - Anxious

*in general; while specific junctures trigger specific emotions
**may overlap with the beginning of the project
***may happen at any timeFigure 1. Emotion Dynamics of Practitioners in Project Life Cycle (*in general while specific emotions are

triggered at specific milestones; **may overlap with the beginning of the project; ***may happen at any time;
Emoji: Dominating emotion sub-scale; : High2; : High1; : Low1; : Low2; : both high/low emotions
exist; Stimuli: +: RC, ²: Team)

behind practitioners feeling negative emotions at
the project milestones of project commencement,
during development, and when deadline is ap-
proached. Some of the experiences shared by our
participants, were:
At project commencement: unstable require-
ments. Unstable requirements result in anxiety at
the commencement of the project:

“I was anxious when we first started
and the requirements were still not set-
tled on.” – Tester

During development: Requirements changes
introduced after design and implementation.
During development, when RCs are introduced
after design and implementation, practitioners are
discouraged and fatigued.

“I was fatigued in one such project
(startup project), where almost every
feature (3 out of 5 feature sets) had
a change request in the midst of im-
plementation phase. The most discour-
aging part is the time / phase when
the requirement change happens. Most
of the time it happens after the design
and implementation phase.” – Agile
Coach/Scrum Master, Developer

However, when an RC is introduced during
testing, anxiety is felt, as reported by another
participant:

”During online trading system devel-
opment after the development phases
is completed and we are in testing

phase of our product client called to
roll back the whole segment of project
which make me and my team anxious.”
– Business Analyst.

Deadline approached: None of the team mem-
bers could solve the unresolved issues. As
mentioned by a participant, as none of the practi-
tioners in the team could solve unresolved issues,
emotions such as boredom, depression, discour-
agement, gloom, and fatigue occur “The above
emotions happened to me when the deadline of
the project approached. At the last day of the
release there were some issues which couldn’t
be sorted out by anyone” – Agile Coach/Scrum
Master, Developer

We linked the State of Agile report findings on
productivity and practices, literature on emotions
and productivity in agile, and our research find-
ings on emotions, causes and possible solutions
through an agile lens. This is depicted in Fig. 2.

Overcoming causes of negative
emotions

From our empirical studies [12], [10], we
identified that practitioners use numerous agile
practices and artefacts, and modifying and adopt-
ing some of these artefacts and practices may
better support challenges in an agile environment.
In Table 1, we highlight some possible solutions
to the above mentioned issues that our studies
suggest are used and/or positively viewed by
practitioners. However, to verify that these solu-
tions are more generally useful and significant,

xxxx 2023 3

Department Head

Figure 2. Better use of agile practices and artefacts (green arrows) will support overcoming causes leading to
negative emotions in practitioners, which will eventually contribute to a productive agile team (italic: State of
Agile Survey findings; *: literature; bold: our survey findings; bold and italic: possible agile-based solutions
we suggest). The icons are from https://www.flaticon.com/

further empirical research needs to be done. It
is also important to note that the possibility of
choice and execution of the solutions may change
from context to context. For example, for one
team, it might be possible to conduct frequent
customer demos whereas it might not be possible
for some other team due to their circumstances.

At project commencement: Unstable re-
quirements: Practitioners should consider ac-
tively labelling unstable, incomplete or unclear
requirements in their product backlog if they
clearly seen as vague or subject to change [12].
The same can be done with Scrum/ Kanban
boards. User stories and use cases of such re-
quirements should also be tagged. We suggest
defining stability and an acceptable level or cri-
terion to consider a requirement to be ‘stable’
so that such definitions and measurements can
be used to decide whether to include them in
the sprint backlog. Consideration should be given
to marking such unstable requirements as low-
priority items until further refinement with cus-
tomers. Review meetings should be utilised to
discuss. Practitioners may consider discussing
unstable requirements with the team during daily
standups/ team meetings. Having clarity through
such discussions [13], or at least knowing that
requirements may change by having them labeled
in artefacts, will help reduce feeling negative
emotions.

During development: RC introduced after
design and implementation: Even though prac-

titioners claim that they practice agile, it may
not be possible to practice ‘pure’ agile [14] –
– i.e., practising agile by following formative
literature such as Scrum guide or Scrum primer
[14]. However, [14] has shown that in the real
world, many teams do not consistently follow all
of these practices all the time. Teams may limit
sprints to sub-phases of the software development
life cycle (SDLC), as in the waterfall model.
Introducing an RC to such an environment may
make the triple constraints of cost, time, and
scope suffer. RCs introduced after design and
implementation tends to make practitioners feel
negative emotions [9]. We suggest not limiting
sprints to phases of the SDLC, but practising agile
– as it was intended – as much as possible.

Another example is that the Scrum method
if practised as intended prohibits RCs during
a sprint [15]. We found that many teams find
this practice overly prescriptive in practice [12].
However, this introduction of RCs during a sprint
we found can have negative developer emotional
consequences [9]. Late introduction of RCs could
be avoided by conducting more frequent customer
demos, and discussing need for refinements with
customers during review meetings. Variations to
agile practice is common, but some variations are
harmful deviations – that are neither temporary
nor justified – and can lead to losing the core
benefits of using agile methods [14]. Introducing
RCs once a sprint commences and especially later
in the sprint, is one such deviation that leads to

4 IEEE Software

Table 1. Possible Solutions from an Agile Perspective to Overcome Causes of Negative Emotions

Artefact*/ practice Project commencement:
Unstable requirements

During development:
RC introduced after design and
implementation

Deadline approached:
None of the members could
solve unresolved issues

Product backlog*
Scrum/ Kanban
board*
User stories*
Use cases*

Label unstable requirements where possible

Sprint backlog

If an acceptable level of
stability is not met,
do not include in
sprint backlog/ mark
low priority until confirmed
after discussion with
customer

Do not limit sprints to phases of
SDLC, practise agile

Have an empty backlog item:
Allocate time for unforeseen
issues

Daily standup/
team meeting

Discuss unstable requirements
with the team

Discuss unresolved issues often
during the standups, get help
from others early without
waiting till last minute
help

Retrospectives
Discuss what went wrong and
ways of improving for future
sprints

Review meetings

Discuss unstable requirements
with customer until
acceptable level of stability reached
get management support to
defer RC to next Sprint

Discuss the requirements with
the customer

Collective
estimation Improve estimations

Customer demos Conduct frequent customer
demos

Release planning Avoid planning to release features
with unresolved issues

Pair programming Improve pair programming

negative developer emotions.
Deadline approaching – Unresolved issues:

There may be issues left unresolved when a
project deadline is reached and our participants
claimed they feel very negative when this happens
[9], [10]. Proactive solutions, such as having an
empty sprint backlog item and allocating time for
unforeseen issues, may help practitioners avoid
stressful last minute rushes. Practitioners could
improve their estimations through collective es-
timations. Better estimations come with experi-
ence, and if estimations are done collectively,
practitioners with less experience be enabled to
better manage workloads to deliver when a dead-
line is approaching [9]. Practitioners need to get
the maximum use of daily standups to frequently
discuss unresolved issues, and to proactively get
help from others. Having unresolved issues near
a deadline demands discussion during retrospec-
tives so that such occurrences will not happen
again in future sprints. Pair programming can
also be better utilised to resolve some issues.
Our practitioners report that pair programming
is not a popular practice in many agile teams.

However, pair programming can be an excellent
way to identify and address unresolved issues that
no single developer can solve last-minute.

Consistent Agile Practices: Our practitioners
report that inconsistent use (using agile practices
on and off during their project –sometimes using
them, but sometimes not) of agile practices across
teams hinders adopting and scaling agile [12].
Since software development is not a task of a
single team, but a collaborative effort of multiple
teams, it is vital to have the consistency of us-
ing practices and artefacts, which helps improve
productivity.

Summary
Feeling a variety of emotions during software

development is normal. But it is necessary not
to allow negative emotions to impact individual
productivity, which in turn contributes to overall
team productivity. One of the main reasons why
software teams adopt agile is that they believe it
improves team productivity. Smart use of agile
practices and artefacts can help avoid the causes
of negative emotions when working on a software

xxxx 2023 5

Department Head

project.

ACKNOWLEDGMENTS
We thank all the participants who partici-

pated in our studies. This work was partially
supported by the Monash Faculty of IT Postgrad-
uate Publications Award. Madampe and Grundy
are supported by ARC Laureate Fellowship
FL190100035.

REFERENCES
1. G. R. VandenBos, APA Dictionary of Psychology. Amer-

ican Psychological Association, 2007.

2. R. Colomo-Palacios, A. Hernández-López, Garcı́a-

Crespo, and P. Soto-Acosta, “A study of Emotions

in Requirements Engineering,” in Communications in

Computer and Information Science, 2010.

3. D. Graziotin, X. Wang, and P. Abrahamsson, “Do Feel-

ings Matter? On the Correlation of Affects and the Self-

Assessed Productivity in Software Engineering,” Jour-

nal of Software: Evolution and Process, 2015.

4. A. Kolakowska, A. Landowska, M. Szwoch, W. Szwoch,

and M. R. Wrobel, “Emotion Recognition and Its Ap-

plication in Software Engineering,” in 2013 6th Interna-

tional Conference on Human System Interactions, HSI

2013, 2013.

5. “15 th State of Agile Report,” tech.

rep., https://info.digital.ai/rs/981-LQX-

968/images/SOA15.pdf.

6. M. R. Wrobel, “Emotions in the Software Development

Process,” in 2013 6th International Conference on Hu-

man System Interactions, HSI 2013, 2013.

7. D. Girardi, F. Lanubile, N. Novielli, and A. Serebrenik,

“Emotions and Perceived Productivity of Software De-

velopers at the Workplace,” IEEE Transactions on Soft-

ware Engineering, pp. 1–1, 6 2021.

8. K. Madampe, R. Hoda, and P. Singh, “Towards Un-

derstanding Emotional Response to Requirements

Changes in Agile Teams,” in IEEE/ACM 42nd Interna-

tional Conference on Software Engineering New Ideas

and Emerging Results (ICSE-NIER’20), (Seoul, Repub-

lic of Korea), p. 4, ACM, New York, NY, USA, 2020.

9. K. Madampe, R. Hoda, and J. Grundy, “The Emo-

tional Roller Coaster of Responding to Requirements

Changes in Software Engineering,” IEEE Transactions

on Software Engineering, 2022.

10. K. Madampe, R. Hoda, and J. Grundy, “A Framework

for Emotion-oriented Requirements Change Handling

in Agile Software Engineering,” IEEE Transactions on

Software Engineering, pp. 1–20, 2023.

11. P. T. Van Katwyk, S. Fox, P. E. Spector, and K. Kel-

loway, “Using the Job-Related Affective Well-Being

Scale (JAWS) to Investigate Affective Responses to

Work Stressors.,” Journal of occupational health psy-

chology, vol. 5, no. 2, pp. 219–230, 2000.

12. K. Madampe, R. Hoda, and J. Grundy, “A Faceted

Taxonomy of Requirements Changes in Agile Contexts,”

IEEE Transactions on Software Engineering, 2021.

13. K. Madampe, R. Hoda, and J. Grundy, “The role of emo-

tional intelligence in handling requirements changes in

software engineering,” arXiv preprint arXiv:2206.11603,

2022.

14. Z. Masood, R. Hoda, and K. Blincoe, “Real World Scrum

A Grounded Theory of Variations in Practice,” IEEE

Transactions on Software Engineering, pp. 1–1, 9 2020.

15. “The Scrum Guide.” https://scrumguides.org/index.html.

Kashumi Madampe is a Research Fellow at Monash
University, Melbourne, Australia. Her research in-
terests are developer productivity and experience,
software analytics and tools, AI for software en-
gineering, product management, and privacy en-
gineering. More details about her research can
be found at https://kashumim.com. Contact her at
kashumi.madampe@monash.edu.

Rashina Hoda is an Associate Professor in Soft-
ware Engineering at the Faculty of Information
Technology, Monash University, Melbourne. Her re-
search focuses on human and socio-technical as-
pects of software engineering and empirical software
engineering. She has introduced “socio-technical
grounded theory (STGT)” for qualitative and mixed
methods research and theory development. She
serves as an Associate Editor for IEEE Transactions
on Software Engineering, ICSE2024 workshops co-
chair, and FSE2024 Diversity and Inclusion co-chair.
For details see www.rashina.com. Contact her at
rashina.hoda@monash.edu.

John Grundy received the BSc (Hons), MSc, and
PhD degrees in computer science from the Univer-
sity of Auckland, New Zealand. He is an Australian
Laureate fellow and a professor of software engi-
neering at Monash University, Melbourne, Australia.
He is a Senior Associate editor of ACM Computing
Siurveys, and Associate Editor of ACM Transactions
on Software Engineering and Methodology and Au-
tomated Software Engineering. His interests include
human-centric software engineering, automated soft-
ware engineering and software engineering educa-
tion. More details about his research can be found
at https://sites.google.com/site/johncgrundy/. Contact

6 IEEE Software

https://scrumguides.org/index.html

him at john.grundy@monash.edu.

xxxx 2023 7

	Productivity and agile practices
	Developer productivity and their emotions
	Overcoming causes of negative emotions
	Summary
	ACKNOWLEDGMENTS
	REFERENCES
	Biographies
	Kashumi Madampe
	Rashina Hoda
	John Grundy

