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The success of software projects depends
on complex decision-making (e.g. which tasks
should a developer do first, who should perform
this task, is the software of high quality, is a
software system reliable and resilient enough
to deploy, etc). Bad decisions cost money (and
reputation) so we need better tools for making
better decisions. This paper discusses the “why”
and “how” of explainable and actionable software
analytics. For the task of reducing the risk of
software defects, we show initial results from a
successful case study that offers more actionable
software analytics. Also, we present an interac-
tive tutorial on the subject of Explainable AI
tools for SE in our Software Analytics Cookbook
(http://analytics-cookbook.github.io), and discuss
some open questions that need to be addressed.

STOP TELLING ME WHAT IS.
While the adoption of software analytics en-

ables software organizations to distill actionable
insights and support decision-making, there are

still many barriers to the successful adoption
of such software analytics in software organiza-
tions [2].

First, most software practitioners do not un-
derstand the reason behind the predictions from
software analytics [2]. They often ask the follow-
ing questions:

• Why is this person best suited for this task?
• Why is this file predicted as defective?
• Why is this task required the highest develop-

ment effort?
• Why should this task be done first?
• Why is this developer predicted to have low

productivity?
• How can we improve the quality of software

systems in following iterations?

These concerns about a lack of explanation often
leads to a lack of trust and transparency, hindering
the adoption of software analytics in practice.

Also, our recent work also found that prac-
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titioners are very concerned about their privacy
and fairness if defect prediction models were
deployed in practice. Practitioners even asked
”Would developers be laid-off due to the use of
defect prediction models for identifying who are
most likely to introduce software defects?” [4].
Article 22 of the European Union’s General Data
Protection Regulation (GDPR) states that the use
of data in decision-making that affects an in-
dividual or group requires an explanation for
any decision made by an algorithm. Unfortu-
nately, current software analytics still often do
not uphold privacy laws [3]. Thus, the risks of
unjustified decision-making of software analytics
systems can be catastrophic, leading to potentially
erroneous and costly business decisions [2].

Is the Community Moving to the Right
Direction?
Researchers’ Focuses

We conducted a literature analysis to better
understand what researchers are currently focus-
ing on. We select defect prediction as a target
research topic as it is one of the most active
research topics in software engineering. We col-
lected 96 primary defect prediction studies that
were published in top-tier Software Engineering
venues (i.e., TSE, ICSE, EMSE, FSE, and MSR)
during 2015-2020 (as of 11 January 2021). We
then characterized the key goals of each defect
prediction study into three main goals: (1) pre-
dictions; (2) model explanation; and (3) instance
explanation [4] (see Figure 1). We found that
91% (81/96) of the defect prediction studies only
focus on making predictions, without considering
explaining the predictions. As few as 4% of
the defect prediction studies focus on explaining
the predictions of defect prediction models (see
Figure 1). This indicates that the explainability
and actionability of software analytics is still very
under researched.

Practitioners’ Needs
We conducted a qualitative survey to better

understand what practitioners perceive as the use-
fulness of each goal of defect prediction models.
We found that practitioners perceive that the ex-
plainability and actionability of software analytics
are as equally useful as the predictions [4]. 82%
of our respondents said that the explanability

goal (generating model explanations and instance
explanations) is as useful as the prediction goal.
Thus, we argue that explainable and actionable
software analytics is urgently and critically
needed. The research and practice communities
should thus start answering the key question:
”how can we make software analytics more ex-
plainable and actionable?”.

Explainable AI for SE: A Way Forward
Explainable AI is a suite of AI/ML techniques

that produce accurate predictions, while being
able to explain such predictions. The purpose
of increasing the explainability of software an-
alytics (XAI4SE) is to make its behavior more
intelligible to humans by providing explanations.
The explainability of software analytics can be
achieved by:

• “Global Explanability”: Using interpretable
machine learning techniques (e.g., decision
tree, decision rules or logistic regression tech-
niques) or intrinsic model-specific techniques
(e.g., ANOVA, variable importance) so the
entire predictions and recommendations pro-
cess are transparent and comprehensible. Such
intrinsic model-specific techniques aim to pro-
vide the global explainability. Thus, users can
only understand how the model works globally
(e.g., by inspecting a branch of decision trees).
However, users often do not understand why
the model makes that prediction.

• “Local Explanability”: Using model-agnostic
techniques (e.g., LIME [10]) to explain the
predictions of the software analytics models
(e.g., neural network, random forest). Such
post-hoc model-agnostic techniques can pro-
vide an explanation for each prediction (i.e.,
an instance to be explained). Users can then
understand why the prediction is made by the
software analytics models.

PLEASE TELL ME WHAT TO DO!
We discuss some initial evidence from a suc-

cessful case study of using Explainable AI for
Software Engineering in the context of software
defect prediction [9].

Background. In today’s increasingly digital-
ized world, software defects are widespread and
enormously expensive, but they are very hard
to detect, predict, and prevent. Thus, a failure
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Figure 1: Most software analytics (i.e., defect prediction) studies have three main goals: (1) predictions;
(2) model explanation; and (3) instance explanation. We found that 82% of our study respondents
perceived the explanability goal (generating model explanations and instance explanations) is equally
useful as the prediction goal. However, we found that 91% (81/96) of defect prediction studies only
focus on the prediction goal, and as few as 4% of defect prediction studies focus on the explainability
goal.

to eliminate software defects in safety-critical
systems could result in serious injury to people,
threats to life, death, and disasters.

Traditionally, software quality assurance ac-
tivities – software testing and code review –
are widely adopted to discover software defects
in software systems. However, ultra-large-scale
systems, such as, Google, can have more than two
billion lines of code. Thus, exhaustively review-
ing and testing every single line of code is not
feasible with limited time and resources. Defect
prediction—an AI/ML model trained on historical
data to predict if a file/commit will be defective in
the future—has been proposed to help developers
prioritize their limited software quality assurance
resources on the most risky files/commits.

Gaps. However, developers often do not un-
derstand why a file is being predicted as defective.
In addition, such predictions and global explana-
tions are still often not actionable [5]—i.e., devel-

opers do not know what to actually do – or what
to avoid doing – in order to improve the quality of
the software system. These limitations often lead
to a lack of trust in the predictions, hindering the
adoption of defect prediction models in practice.

Let’s consider a scenario where a defect pre-
diction model indicates that file size is associ-
ated with defect-proneness i.e. code in bigger
files is likely to be more defective. This insight
may help managers develop quality improvement
plans that, in the next development iteration,
developers should pay attention to the file size to
mitigate the risk of having defects. However, such
insights do not provide a concrete suggestion of
what to do and what to avoid (i.e. does increasing
or decreasing size reduce or increase defects?).
Thus, a lack of such actionable guidance remains
an extremely challenging problem, often leading
to ineffective software quality improvement plans.

Approach. To generate actionable guidance,
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we used a rule-based model-agnostic technique
to generate a rule-based explanation for each pre-
diction of defect prediction models [9]. We first
build file-level defect prediction models that are
trained using traditional software features (e.g.,
lines of code, code complexity, the number of
developers who edited a file) with a random forest
classification technique. For each prediction, we
applied a rule-based model-agnostic technique to
generate two types of actionable guidance (i.e.,
what developers should do to mitigate the risk of
having defects and what developers should not do
to avoid increasing the risk of having defects).

Visualizing the actionable guidance. For
each guidance, we translated a rule-based ex-
planation into an actionable guidance. Then, we
developed a proof-of-concept to visualize the
actionable guidance using a bullet plot (see Fig-
ure 2). The visualization is designed to provide
the following key information: (1) the list of guid-
ance that practitioners should follow and should
avoid; (2) the actual feature value of that file; and
(3) its threshold and range values for practitioners
to follow to mitigate the risk of having defects.
The green shades indicate the non-risky range
values of features, while the red shades indicate
the risky range values of features. The vertical
bars indicate the actual values of features for a
given file. The green arrows provide directions
of how a feature should be changed (i.e., increase
or decrease). The provided guidance is structured
into two parts: (1) what to do to decrease the risk
of being defective; and (2) what to avoid to not
increase the risk of being defective.

Figure 2 shows an example of such actionable
guidance to help managers develop their quality
improvement plans. In this example, to decrease
the risk of having defects, developers should
consider (1) decrease the number of class and
method declaration lines to less than 29 lines, (2)
decrease the number of distinct developers to less
than 2 developers, (3) increase the proportion of
code ownership to more than 0.85, (4) decrease
the number of blank lines to less than 8 lines, (5)
decrease the number of output variables to less
than 2 variables. Nevertheless, to not increase the
risk of having defects, developers should consider
avoid decreasing the comment to code ratio and
avoid increasing the number of minor or junior
developers.

User Study Evaluation. We conducted a
qualitative survey to investigate the practitioners’
perceptions of our visualization approach. We
also used the visualization of Microsoft’s Code
Defect AI as a baseline comparison.

Results. We found that 80% of our respon-
dents agree that our visualization is better for
providing actionable guidance when compared to
the visualization of Microsoft’s Code Defect AI.
In addition, 63%-90% of the respondents agree
with the seven actionable guidance provided by
our approach.

LESSONS LEARNED

Based on these findings, we summarise our
key lessons learned:

1) Explainable AI is very important in software
engineering, but is still under-researched [4].

2) Explainable AI techniques can be used in
software engineering to provide explanations
of the predictions and actionable guidance to
support software engineering tasks [9]. Other
initial successful evidence can be found at
[1], [3], [6], [7], [8], [11].

However, there are several open research
questions that remain largely unexplored:

• What is the best form of explanations for
software engineering tasks that are most un-
derstandable to software developers?

• Do different stakeholders need different forms
of explanations in software engineering?

• How can we measure the quality and value of
explanations in software engineering?

• How do explanations from explainable AI do-
mains impact software engineering practices?

• What are the other application areas in soft-
ware engineering that need explanations?

• How can we improve the explanations for other
complex AI/ML algorithms (e.g., deep learn-
ing, optimization, natural language processing)
to address other software engineering tasks?

We developed an interactive tutorial of Ex-
plainable AI tools for SE to support future re-
search. This can be found at our Software Analyt-
ics Cookbook http://analytics-cookbook.github.
io. We hope this article will motivate future
work to address these important questions, which
require the SE community to work together with
other disciplines and communities (e.g., Explain-
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OK

Project Name : Apache Camel (Release 2.9.0)

File Name        : ErrorHandlerBuilderRef.java
Commit ID: 0a02dd5f58a77282dd18f6468d7fa6d5c50ce326  Commit Date: 2019-08-15| 08:09:14 PM

File History

Risk Score: 70%

What to do to decrease the risk of having defects?

0 5 10 15 20 25 30 35 40 45 50

Decreasing the number of class and method declaration lines to less than 29 lines
Actual = 34 lines

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Decreasing the number of distinct developers to less than 2 developers
Actual = 3 developers

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Increasing the ownership code proportion to more than 0.85
Actual = 0.65

0 5 10 15 20 25 30

Decreasing the number of blank lines to less than 8 lines
Actual = 19 blank lines

0 1 2 3 4 5 6 7 8 9 10

Decreasing the number of output variables to less than 2 variables
Actual = 4 variables

What to avoid to not increase the risk of having defects?

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Avoid decreasing the comment to code ratio to less than 0.44
Actual = 0.51

0 1 2 3 4 5 6 7 8 9 10

Avoid increasing the number of minor developers to more than 0 developers
Actual = 0 minor developers

 
* In the bullet plots, the red shade indicates the range of values that are high risk of being defective, while the green shade indicates the range of
values that are low risk of defective. The bold vertical line indicates the actual values for each feature of this file.

Bug Risk Prediction: Yes
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values that are low risk of defective. The bold vertical line indicates the actual values for each feature of this file.

Bug Risk Prediction: Yes

Figure 2: An example of actionable guidance to help managers developing quality improvement plans.

able AI, Visual Analytics, Natural Language Pro-
cessing, Human-Centric Software Engineering).
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