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ABSTRACT
Software service emulation is an emerging technique for creat-
ing realistic executable models of server-side behaviour. It is
particularly useful in quality assurance and DevOps, replicating
production-like conditions for large-scale enterprise software sys-
tems. Existing approaches can automatically build client-server
and server-server interaction models of complex software systems
directly from analysis of service interaction trace data. However,
when these interaction traces become large, searching an entire
trace library to generate a run-time responses can become very
slow. In this paper we describe a new technique that utilises data
mining, specifically clustering algorithms, to pre-process large
amounts of recorded interaction trace data. With the obtained
clusters we facilitate efficient yet well-formed runtime response
generation in our Enterprise System emulation environment. We
evaluate our approach using two common application-layer pro-
tocols: LDAP and SOAP. Our experimental results show that
by utilising clustering techniques in the pre-processing step, the
response generation time can be reduced by 99% on average com-
pared with existing approaches.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Restructuring, reverse engineering, and reengineer-
ing ; D.2.9 [Software Engineering]: Management—Software qual-
ity assurance (SQA)

General Terms
Algorithms, Measurement, Performance

Keywords
Service emulation, Interaction emulation, Traces clustering, Au-
tomatic modelling

1. INTRODUCTION
Enterprise software systems have grown very large and complex.
Many software systems provide services that in turn rely on third
party services or systems to perform their functionalities. Testing
such a system must be inclusive of the functionality which inter-
acts with third party software services. However access to the real
third party services during testing may be restricted, or expensive,
or not available at the very large scale representative of the pro-
duction environment. Having an emulation environment [12, 13],
where realistic interactive models of the third party services are
executed, is therefore useful for the purposes of quality assurance
and in DevOps.

The creation of executable models is pivotal to the emulation
approach. There are two common approaches to building such
executable models: 1) to manually define interaction models by
taking advantage of available knowledge about the underlying in-
teraction protocol(s) and system behaviour [12], and 2) to au-
tomatically infer executable models based on mining interaction
recordings (henceforth referred to as interaction traces in this pa-
per) [7]. Manually defining interaction models has an advantage in
defining complex sequences of request/response patterns between
elements of the system including suitable parameter values. How-
ever, in some cases, this approach is not feasible due to the time
required or lack of required expertise.

The core of our automatic modelling approach is to synthesize pro-
tocol conformant responses by mining interaction traces, thereby
mimicking the interaction behaviour among enterprise system com-
ponents. In [7], we introduced a framework consisting of two main
functions: the Distance Function and the Translation Function.
Given an incoming request to a modelled service, the Distance
Function is used to search for the most similar request in the pre-
viously recorded interaction traces by computing their distances.
The Translation Function is then used to synthesize a valid re-
sponse. An approach which has to process the whole recorded
interaction collection - which may become extremely large - be-
comes very inefficient in practice.
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Figure 1: The Response Synthesis Framework

In order to address this problem, we describe an analysis function
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that is able to select and provide representative interaction data
to the response synthesis approach, thereby accelerating response
inference time at runtime. Our prior framework is split into 2
consecutive stages, a pre-processing stage and a run-time stage,
as shown in Figure 1. At the pre-processing stage, we use the
Analysis Function to summarise and derive characteristics of the
interaction trace collection, such as probable message types. The
Distance Function and the Translation Function work at the run-
time stage.

In this paper, we introduce a clustering-based method for the
trace analysis function in the pre-processing stage. Given a collec-
tion of interaction traces, our technique (i) calculates the distance
between pairwise interactions and builds a distance matrix; (ii)
clusters interactions; and (iii) exports the clusters and infers the
cluster centres for use later in the process. In a proof of concept
implementation, we use the Needleman-Wunsch algorithm as the
distance measure and two clustering algorithms, BEA and VAT,
to cluster the interactions. Furthermore, we use two methods
to infer responses at the run-time stage, Center Only and Whole
Cluster (cf. Section 3.4). For evaluation purposes, we report the
effectiveness and efficiency of our response synthesis approaches
after pre-processing recorded interaction traces of two widely used
application-layer protocols: LDAP [24] and SOAP [2].

The remainder of this paper is organised as follows: In Section 2,
we review some related work in the areas of software emulation
and data mining. The design of our approach for pre-processing
interaction traces to assist the response synthesis task is described
in Section 3. In Section 4, we present the results of our evaluation
and discuss the relevant findings as well as identified limitations.
Finally, we conclude this paper and identify some problems for
future work in Section 5.

2. RELATED WORK
A major challenge when attempting to assure the quality of large
enterprise systems is producing a suitable test-bed environment.
A number of approaches have been proposed over years to address
this need. Hardware virtualization tools, such as VMware [26] and
VirtualBox [17], are capable of replicating specific facets of deploy-
ment environments, but they suffer similar scalability limitations
as physical recreation of deployment environments [23]. Mock ob-
jects [8] mitigate some of these scalability concerns. However, they
are often too language specific and require the re-implementation
of some of an environment’s functionality, resulting in testing en-
vironment configuration and maintenance problems and requiring
detailed knowledge of environment components. Performance and
load testing tools, such as the ones proposed in [10, 22], provide a
means to emulate many thousands of software system clients with
limited resources. However, they are designed to generate scal-
able client load towards a target system, rather than the opposite
direction needed for our problem situation - a realistic, large-scale
emulation environment for an enterprise system-under-test.

In order to overcome shortcomings with these existing enterprise
system QA approaches and tools, the creation of “virtual”, or em-
ulated, deployment environments has been proposed. Ghosh and
Mathur [9] state that “an emulation environment, which is able
to provision representations of diverse components, enables tests
of components that interact with a heterogeneous environment,
while scalable models put scalability and performance testing for
components into practice.” In our prior work [11, 12, 13], we pro-
posed an enterprise software environment emulator, called Kaluta.
It provides a large-scale and heterogeneous emulation environ-
ment capable of simultaneously emulating thousands of endpoint

systems on one or a few physical machines. We have shown this
scales very well to the needs of enterprise system QA as outlined
above. ITKO LISA [20] is a commercial software tool which aims
to emulate the behaviour of services which a system under test
interacts with in its deployment environment. In the work above,
both creation of executable endpoint models and emulation rely
on detailed knowledge of the transport or service protocol, which
are not always available. They also must be updated whenever
the target deployment environment changes.

For building system models from analysing interaction traces, Cui
et al. [4] proposed an emulator aiming to mimic both client and
server side behaviours. With the emulator, they can record/replay
the interactions of web applications for checking conformance of
web server behaviours. In our prior work [7], we presented a
novel method of automatically building these client-server and
server-server interaction models of complex software systems di-
rectly from interaction trace data, utilising longest common sub-
sequence matching and field substitution algorithms. In above
work, the accuracy of generated responses relies on processing
and analysing the recorded interaction traces. Furthermore, if
the size of interaction traces is large, the efficiency of this method
will be jeopardised.

In recent years, data mining techniques have been widely utilised
in software engineering area for discovering the structure of com-
plex software systems [25], generating UML class diagram lay-
out [14] , analysing software crash reports [5], labelling massive
textual project profiles [28], predicting bug fixing time [30], and
etc. In this paper, we present a new technique that utilises data
mining to analyse very large recorded interaction traces. Specif-
ically, we use two popular clustering algorithms to cluster the
recorded interactions, which are the BEA (Bond Energy Algo-
rithm) algorithm [18] and the VAT (Visual Assessment of cluster
Tendency) algorithm [1]. The interaction clusters facilitate the
effectiveness and efficiency of our response synthesis approach.

3. APPROACH
In an enterprise system emulation environment, requests - sent
from the enterprise system under test - need to be responded to by
the emulated operating environment according to the various in-
teraction protocols between the deployment environment compo-
nents. Such interaction protocols include LDAP, HTTP/HTTPS,
SOAP, SMTP, SMB, etc. In an emulation environment, a request
message sent from an enterprise system under test is responded to
by a generated response message, rather than a real response mes-
sage. This allows a complex, large-scale emulation environment
to be provided to the system under test without the scalability
and configuration limitations of other techniques. However, the
technique is critically dependent on the ability of the emulation
environment to generate realistic responses to the requests.

These interaction request messages and response messages con-
tain two types of information: (i) protocol structure information
(such as the operation name), used to describe software services
behaviours; and (ii) payload information, used to express software
systems’ attributes. In general, given a collection of interactions
conforming to a specific interaction protocol, the repeated occur-
rence of protocol structure information is very common, as only
a limited number of operations are defined in the protocol speci-
fication. In contrast, payload information is usually quite diverse
according to various interaction operation parameter values.

The core of our approach to analyse a very large number of inter-
actions (thousands or even millions) is an algorithm that classifies
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these component interactions into groups to assist in searching for
the most similar recorded messages for a incoming request. At a
high level, this algorithm can be viewed as a natural application
of clustering and sequence alignment techniques for inferring pro-
tocol structure information. The motivation behind our approach
is that if request/response pairs are less distant to some other
requests/responses, then these less distant requests/responses are
more likely to have the same structure information. Hence, com-
puting the distance between each pair of messages should give us
an indication of how to classify recorded interactions. These clas-
sified interactions then enable us to generate responses conforming
better to the expected responses.

Our proposed solution requires that we first transform network
traffic to a suitable format for further processing, shown in Figure
2a. Next, we build a distance matrix that contains the distance
calculated by pairwise messages in the trace library. This process
can be seen in Figure 2b. Figure 2c shows that the distance
matrix provides a basis for the further clustering task. According
to clustering results, we can then classify the whole interaction

trace into a number of groups, shown in Figure 2d. Finally, Figure
2e shows that the Centre Messages are selected automatically to
represent each groups.

3.1 Translation
We assume that for a given protocol under investigation, we are
able to record a sufficiently large number of interactions between
two (or more) deployed software endpoints (components). These
recordings are assumed to be “valid”, that is, that the sequence of
recorded interactions are (i) correct with regards to the temporal
properties of the underlying protocol and that (ii) each request
and response message is well-formed. Without loss of generality,
we further assume that each request is always followed by a single
response. If a request does not generate a response, we insert
a dedicated “no-response” message into the recorded interaction
traces. If, on the other hand, a request leads to multiple responses,
these are concatenated into a single response.

Given these assumptions, we write (Req,Res) to denote a single
interaction, where Req represents the request, the corresponding
response of Req is defined by Res. Both Req and Res are a sequence
of characters describing the message structure and payload. An
interaction trace is defined as a finite, non-empty sequence of
interactions, which is denoted by ((Req1,Res1), (Req2,Res2) ...
(Reqn,Resn)). Tools such as Wireshark [16] have the functional-
ity to filter network traffic and record interactions of interest in
a suitable textual format for further processing, which are in the
form of Req#Res, followed by a line break.

3.2 Building Request/Response Distance Matrix
Given a sufficient number of interactions in suitable formats, the
next task is to calculate the distance between either requests or
responses. Our chosen distance measure is based on sequence
alignment [15], which was originally introduced in the area of
bioinformatics. The basic idea of the sequence alignment is align
all common subsequences of two sequences under comparison and
insert gaps into either of the sequences when they differ.

In this work, we are using the Needleman-Wunsch algorithm [21]
to find the optimal sequence alignment of the requests/responses.
The following example briefly shows how our message alignment
process works. Consider the following two text sequences:

• Where is my computer book?

• Where is your computer magazine?

The common subsequences are “Where is ”, “ computer ”, and “?”.
(Note the spaces in around “ computer ”.) “my” versus “your” and
“book” versus “magazine” are the two differing parts of the two
sequences. The fully aligned sequences will be as follows (we use
the character ‘!’ to denote an inserted gap):

• Where is my!!! computer book!!!!!!!!?
• Where is ! your computer !!!!magazine?

Based on the alignment results, we can define our distance mea-
sure as

dist(msg,msg’)=
Nmismatch

Nalg +N ′
alg −Nmismatch

(1)

where Nalg and N ′
alg denote the number of characters (includ-

ing inserted gaps) in the sequence alignment for msg, msg′, and
Nmismatch represents the total number of inserted gaps. There-
fore, 16/(37 + 37 − 16) = 0.275 is the distance for the example
given above. Then, we are able to construct a N×N symmetrical



distance matrix DM by iteratively computing the distance for all
the candidate requests/requests, where N is the total number of
requests/responses.

3.3 Grouping Similar Requests/Responses into Cl-
usters

Once the distance matrix DM has been constructed, we are able
to use it to group the requests/responses into clusters. Clustering
algorithms are applied to the distance matrix, thereby producing
clusters that consist of requests/responses with similar message
characters sequences. Our approach focuses on the distance ma-
trix reordering as the first step to achieve the clustering. The
BEA [18] and VAT [1] clustering algorithms were selected for this
purpose. These algorithms do not require us to define the number
of clusters or a distance threshold value in advance, as is needed
with some other clustering methods, such as K-Means.

The BEA (Bond Energy Algorithm) was proposed in 1972 [18],
and is often adopted to cluster large data sets [29]. Given a dis-
tance matrix, it can group similar items along the matrix diagonal
by permutating rows and columns in way of which is able to max-
imise the following global measure equation (2), denoted by GM ,

GM =
n∑

i=1

n∑

j=1

(1−DMij)(2−DMi,j−1 −DMi,j+1) (2)

where DMij denotes the distance between msgi and msgj . The
detailed of this algorithm can be found in [27].

The VAT (Visual Analysis of Cluster Tendency) is a visual method,
which works on a pairwise distance matrix D. This algorithm
utilise a modified version of Prim’s minimal spanning tree to re-
order the rows and columns of the distance matrix (cf. [1] for a
detailed description). The reordered matrix is then displayed as
a gray-scale image.

Using either the BEA algorithm or VAT algorithm to reorder the
distance matrix DM enables users to classify messages based on
the matrix image rather than underlying protocol expertise.

3.4 Selecting Cluster Centres for Matching Func-
tion and Translation Function

The last step in our approach is to select a representative centre,
denoted by centrei, for every clusteri, which is able to minimise∑n

k=1 dist(centrei,msgk), where n denotes the number of mes-
sages in clusteri and msgk represents one of them. When a re-
quest is observed , the Matching Function is able to best decide
which cluster the incoming request belongs to in the way of com-
paring this request with representative centres using the distance
measure introduced in 3.2.

After the cluster centre is selected, we are able to search the most
similar request for an incoming request with two methods: 1)
Centre Only and 2) Whole Cluster. Specifically, given an incom-
ing request, the Centre Only method directly uses the selected
cluster centre to be its most similar request, while Whole Cluster
method means that Matching Function needs to further searches
for its most similar request in the selected cluster.

The Translation Function is to synthesize a response for the in-
coming request, exploiting the commonalities between the incom-
ing request, its best match, as well as the associated recorded
response(cf. [7] for a detailled description).

3.5 Implementation

We have developed a proof-of-concept realisation of this trace
analysis approach, including the Needleman-Wunsch algorithm
and using two clustering algorithms (BEA and VAT). We have
integrated this with our prior interaction analysis and response
generation prototype [7]. This prototype interaction analysis and
response generation environment was implemented in the Java
programming language. We used the Wireshark tool to capture
network traffic and exported this into a format suitable for input
into our Java implementation.

4. EVALUATION
In this section, we evaluate both the effectiveness and the effi-
ciency of our response generation approach when it uses our new
trace analysis function to preprocess a large number of interac-
tions. We then discuss the key results from our experiments.

4.1 Experimental Setup
For evaluation purposes we used two commonly used application-
layer protocols as case studies, the Simple Object Access Proto-
col (SOAP) [2] and the Lightweight Directory Access Protocol
(LDAP) [24]. SOAP is a light-weight protocol designed for ex-
changing structured information in a decentralised, distributed
environments whereas LDAP is widely used in large enterprises
for maintaining and managing directory information. The exper-
iment was running on a HP Z800 Workstation using Intel Xeon
X5660 2.80GHz CPU, with 48GB of RAM.

The interaction trace for SOAP used for our evaluation was gen-
erated based on a recording of a banking example using the LISA
tool [20]. This SOAP trace contains 6 different request types, each
with a varying number of parameters, encoding “typical” transac-
tions one would expect from a banking service. From a pre-defined
set of account id’s, account names etc, we then randomly gener-
ated an interaction trace containing 1, 000 request/response pairs.
Among those we had 548 unique requests 1(with 25 different re-
quests occurring multiple times to compose the rest) , 714 unique
responses (the replicated ones are predominantly due to the fact
that the deleteTokenResponse message only had true or false as
possible return values), and 22 duplicated request/response pairs.
For the purpose of our evaluation, we considered this a sufficiently
diverse “population” of messages to work with.

The following shows one of the recorded requests:

<?xml version="1.0"?>
<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<ns2:getAccount xmlns:ns2="http://bank/">
<accountId>867-957-31</accountId></ns2:getAccount>

</S:Body>
</S:Envelope>

with the following the corresponding response:

<?xml version="1.0"?>
<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<ns2:getAccountResponse xmlns:ns2="http://bank/">
<return>
<accountId>867-957-31</accountId>
<fname>Steve</fname>
<lname>Hine</lname>

1Unique request/response refers to either requests or responses
occur once in the trace library



</return>
</ns2:getAccountResponse>

</S:Body>
</S:Envelope>

This example illustrates that besides the structural SOAP infor-
mation encoded in both messages, there is specific information
that appears in both the SOAP request and the SOAP response,
such as the account-ID in the example above.

LDAP is a binary protocol that uses an ASN.1 encoding to encode
and decode text-based message information to and from its binary
representation, respectively. For the purpose of our study, we
used a corresponding decoder in order to translate recorded LDAP
messages into a text format and an encoder to check whether the
synthesized responses were well-formed (cf. Section 4.2).

The LDAP interaction trace used for our evaluation consisted of
1000 unique interactions containing the core LDAP operations,
such as adding, searching, modifying etc. applied to CA’s Demo-
Corp sample directory [3]. The trace did not contain any dupli-
cated requests or responses, and the search responses contained a
varying number of matching entries, ranging from zero to 12.

The following briefly illustrates the textual representation of a
search request:

Message ID: 15
ProtocolOp: searchRequest

ObjectName: cn=Juliet LEVY,ou=Administration,
ou=Corporate,o=DEMOCORP,c=AU

Scope: 0 ( baseObject )

and the corresponding response, consisting of the merge of a
search result entry and a search result done message:

Message ID: 15
ProtocolOp: searchResEntry

ObjectName: cn=Juliet LEVY,ou=Administration,
ou=Corporate,o=DEMOCORP,c=AU

Scope: 0 ( baseObject )
Message ID: 15
ProtocolOp: searchResDone

resultCode: success

This example LDAP request contains a (unique) message identi-
fier (Message ID: 15) and a specific object name (ObjectName:
. . .) as the root node for the search to be used. The corresponding
responses use the same message identifier (to indicate the request
they are in response to) and the searchResEntry message refers
to the same object name as the request. For our approach to syn-
thesize correct LDAP responses, the corresponding information
needs to be copied across from the incoming request to the most
similar response to be modified.

4.2 Cross-Validation Approach and Evaluation C-
riteria

Cross-validation [6] is one of the most popular methods for as-
sessing how the results of a statistical analysis will generalise to
an independent data set. For the purpose of our evaluation, we
applied the commonly used 10-fold cross-validation approach [19]
to both the recorded SOAP and LDAP messages.

As shown in Figure 3, we randomly partitioned the original inter-
action data set into 10 groups. Of these 10 groups, group i (cf.
top-left rectangle in Figure 3) is considered to be the evaluation

Group i Emulator
Group 1 to i-1
Group i+1 to 10Response(s)

Request

Group1

10
Gr
ou
ps

. .
. .

Interaction 
recordings

Figure 3: 10-fold Cross Validation Approach

group for testing our approach, and the remaining 9 groups con-
stitute the training set. The process is then repeated 10 times
(the same as the number of groups), so that each of the 10 groups
will be used as the evaluation group once.

We investigated both the effectiveness and efficiency of our pro-
posed approach for response synthesis. For effectiveness investiga-
tion we defined the following criteria to evaluate the synthesized
responses:

1. Identical: the synthesized response is identical to the recor-
ded response if all characters in the synthesized response are
the same as those in the recorded response

2. Protocol Conformant2: this criterion indicates that the
responses conform to the temporal interaction properties of
the given protocol, that is, the temporal consistency between
request and response is preserved.

3. Well-Formed: this criterion requires that the synthesized
responses correspond to the structure required for responses
as defined by the underlying protocol.

4. Ill-Formed: Synthesized responses do not meet above cri-
teria.

For the efficiency investigation, for each message in the evalua-
tion group, we record how much time was taken to synthesize a
response for an incoming request.

4.3 Evaluation Results
For the purpose of our evaluation, we used our prior “whole-
interaction-trace-based” approach [7], referred to as the No Clus-
ter method, to benchmark both the effectiveness and efficiency of
the proposed cluster-based approach for synthesizing responses.
In our experiment, in the pre-processing stage, we apply the BEA
clustering algorithm and VAT clustering algorithm to cluster in-
teractions; and then, at the runtime stage, we further use the
Centre Only method and Whole Cluster method (cf. Section 3.4)
to synthesize responses.

2We use a weaker notion of protocol comformant as the order in
which the requests are selected from the evaluation set is ran-
dom and, as a consequence, unlikely to conform to the temporal
sequence of request-response pairs.



Experiment Cluster Method No. Valid Ident. Conf. 1 Well-form. 2 Ill-form.

No Cluster None 1,000 1,000 85 915 0 0

Whole Cluster
VAT 1,000 1,000 90 910 0 0
BEA 1,000 1,000 82 918 0 0

Centre Only
VAT 1,000 1,000 87 913 0 0
BEA 1,000 1,000 92 908 0 0

Table 1: Validity of Synthesized SOAP Responses
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Figure 4: SOAP Responses Generation Time

In Table 1 and Table 2, we summarise the number of generated
SOAP responses and LDAP responses, which were categorised
according to the criteria introduced in Section 4.2. In addition,
we also list the number of valid responses, that is, the sum of
responses falling in the Identical and Protocol-conformant cate-
gories, for both protocol examples.

Figure 4a and Figure 5a outline the amount of time that was taken
to generate responses for incoming requests of different lengths,
i.e. the number of characters per incoming request, by using
the No Cluster method, the Centre Only method and the Whole
Cluster method. For both the Centre Only method and theWhole
Cluster, we further compare the response generation times of the
VAT generated clusters versus the BEA generated clusters, as
shown in Figure 4b and Figure 5b.

4.3.1 Evaluation results for SOAP
Table 1 and Figure 4 compare the different outcomes of the No
Cluster method and cluster-based approaches. From Table 1 we
can see that neither the Centre Only method nor the Whole Clus-
ter method generate ill-formed SOAP responses, which produce
the same outcomes as using the No Cluster method. This shows
that for the SOAP case study used, our cluster-based approach

has the same effectiveness as the No Cluster method in synthe-
sizing accurate responses.

From the Figure 4, we can see that whatever approach we use
to generate a response (i.e. either No Cluster method or cluster-
based methods), more time is consumed to synthesize responses
for longer incoming requests. However, a significant improve-
ment of the generation time is observed by using cluster–based
approaches. Specifically, response generation time of using Whole
Cluster methods is at least 5 times quicker than using the No
Cluster method; using Centre Only is able to further accelerate
response message synthesis by approximately 120 times than that
of using the No Cluster method. By further investigating cluster-
based approaches in Figure 4b, we can see that although there is
more fluctuation in the response generation time when using the
BEA algorithm to cluster messages, the selection of clustering ap-
proaches does not impact the response generation time too much.
Based on these observations, we conclude that for the SOAP pro-
tocol, the Centre Only method is able to provide a good response
message synthesis.

4.3.2 Evaluation results for LDAP
Table 2 gives a summary of the result of our LDAP experiments.
For the No Cluster method, 451 (out of 1, 000) generated response
messages are identical to the the corresponding recorded responses
(45.1%), and an additional 457 of the generated responses met
the protocol conformant criterion (45.7%). Therefore, a total of
908 (or 90.8%) of all generated responses were considered to be
valid. In contrast, Cluster-based approaches generate less valid
responses, the number of which decrease by 14.7% to around 761
(out of 1000). By observing valid responses of cluster-based ap-
proaches, we identify that the VAT algorithm performs better
than the BEA algorithm. However, there is no distinguishable
difference between results of the Centre Only method and the
Whole Cluster method.

Figure 5 also shows an increasing trend of response generation
time when the length of incoming requests becomes longer. As
the length of the majority of incoming requests is shorter than the
SOAP incoming requests, the LDAP response generation time is
shorter than SOAP response generation time, shown in Figure 4.
Specifically, compared with the average response generation time
of using No Cluster method (about 53.28ms), usingWhole Cluster
method is able to produce responses about 9 times faster (about
5.46ms), while using Centre Only method can further improve the
generation time to around 0.79ms. As we can see from the Figure
5b, the response generation time of using Whole cluster method
fluctuates significantly. This is because the sizes of the clusters
generated by the clustering algorithms are different. Therefore,
the time taken when using them to generate responses are accord-
ingly different. In contrast, as the number of clusters is stable,

3We exclude the number of identical messages in the column Conf.
4We exclude the number of valid responses in the Well-form. col-
umn.



Experiment Cluster Method No. Valid Ident. Conf. 3 Well-form. 4 Ill-form.

No Cluster None 1,000 908 451 457 89 3

Whole Cluster
VAT 1,000 751 360 391 246 3
BEA 1,000 753 383 370 241 6

Centre Only
VAT 1,000 751 296 455 235 14
BEA 1,000 761 330 431 232 7

Table 2: Validity of Synthesized LDAP Responses
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Figure 5: LDAP Responses Generation Time

the response generation time of using the Centre Only method is
observed to have only a slight fluctuation.

4.4 Discussion
Based on summaries of both the SOAP and LDAP experimental
results in Table 3, we can see that the cluster-based approach is
able to generate valid responses much more efficiently than search-
ing the entire trace library. However, as illustrated in the results
for LDAP, the cluster-based approaches generate fewer valid re-
sponses. This is attributed to differences between the SOAP and
LDAP protocols. Most application-level protocols define message
structures containing some form of operation or service name in
their request, followed by a payload, containing the data the ser-
vice is expected to operate upon [11]. In LDAP, some messages
contain much more payload information than operation informa-
tion. Two LDAP messages of different operation types, but with
a similar payload, may be found to be the closest matching mes-
sages. In such a case, a response of the wrong operation type may
be sent back, which would not be a valid protocol conforment
response.

In Table 3, we can see that the time cost of generating responses
depends on the number of distance calculations. In our prototype,
we use the Needleman-Wunsch algorithm as the distance function,
which has a relatively high time complexity of O(MN), where M
and N denote the length of pairwise messages.

Experiment
Cluster
Method(VAT)

Response
Time(ms)

Dist.
Calcs.

Accuracy

SOAP
No Cluster 128.6 899 100%
Whole 22.92 156 100%
Centre 0.90 6 100%

LDAP
No Cluster 53.28 899 90.8%
Whole 5.46 96 75.1%
Centre 0.79 11 75.1%

Table 3: Average Response Times, Number of Distance
Calculations and Accuracy

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have utilised data mining techniques in a large
enterprise software emulation environment to efficiently generate
system responses. Specifically, we utilized two popular cluster-
ing algorithms, the BEA algorithm and the VAT algorithm, to
pre-process recorded interaction traces. Using these clustered re-
sults we then facilitated the mimicking of software interaction
behaviours in a runtime fashion. As our proposed approach does
not require explicit knowledge of the protocols that the target
software components uses to communicate, it eliminates the hu-
man effort of manually specifying interaction models. Moreover,
by utilizing data mining techniques, the efficiency of response gen-
eration in the emulation environment has been greatly improved.
Experimental results conducted on LDAP and SOAP protocols
demonstrate that the response generation time has been reduced
by 99% on average compared to our prior approach, while the ac-
curacy of response generation (the valid response rate) was 100%
for SOAP and 75% for LDAP.

Future work will omit the format transformation to build di-
verse interaction models. We will devise better cluster centre
selection methods to automatically summarize the most common
characters of all messages within a cluster, which will be further
used for synthesizing representative cluster centres. Possible ap-
proaches include multiple sequence alignment algorithms in the
area of bio-informatics [15], or using hierarchical clustering to
group responses/requests into a tree which can help to infer the
most common characters among requests/responses. In our proof
of concept implementation, we use the Needleman-Wunsch algo-
rithm as the edit distance calculation, which has relatively high
time complexity. Future work will also include improving the ef-
ficiency of distance calculations by using parallel processing and
using an approximation of the Needleman-Wunsch edit distance.
Finally, there is a need to test our methods on much bigger trace
collections and on a wider range of protocols. For example, pro-
prietary protocols on legacy mainframe systems, which are often
poorly documented, are a particularly interesting category to test.
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