
Vol.:(0123456789)

SN Computer Science (2023) 4:57
https://doi.org/10.1007/s42979-022-01449-7

SN Computer Science

ORIGINAL RESEARCH

A Comprehensive Requirement Capturing Model Enabling
the Automated Formalisation of NL Requirements

Mohamed Osama1 · Aya Zaki‑Ismail1 · Mohamed Abdelrazek1 · John Grundy2 · Amani Ibrahim1

Received: 15 September 2021 / Accepted: 10 October 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
Formalising natural language (NL) requirements is essential to have formal specifications that enable formal checking and
improve the quality of requirements. However, the existing formalisation techniques require engineers to (re)write the system
requirements using a set of requirements templates with predefined and limited structure and semantics. The main drawback
of using such templates, usually with a fixed format, is the inability to capture diverse requirements outside the scope of the
template structure. To address this limitation, a comprehensive reference model is needed to enable capturing key require-
ment properties regardless of their format, order, or structure. NLP technique can then be used to convert unrestricted NL
requirements into the reference model. Using a set of transformation rules, the reference model representing the require-
ments can be transformed into the target formal notation. In this paper, we introduce requirement capturing model (RCM)
to represent NL requirements by adapting to their key properties and without imposing constraints on how the requirements
are written. We also implemented a requirements formalisation approach that supports transforming RCM into temporal
logic (TL). In addition, we developed an automated similarity checking approach to check the correctness of the constructed
RCM structures against the source NL requirements. We carried out extensive evaluation of RCM by comparing it against
15 existing requirements representation approaches on a dataset of 162 requirement sentences. The results show that RCM
supports a much wider range of requirements formats compared to any of the existing approaches.

Keywords Requirement representation · Requirement modelling · Requirement engineering · Requirement formalisation

Introduction

Formal verification techniques require system requirements
to be expressed in formal notations [1]. However, the major-
ity of critical system requirements are still predominantly

written in informal notations—textual or natural languages
(NL)—which are inherently ambiguous and have incomplete
syntax and semantics [2, 3]. To automate the formalisation
process, several bodies of work within the literature focussed
on proposing predefined requirement templates, patterns
[4], boilerplates [5], and structured control English [6], to
express one system requirement sentence while eliminating
the ambiguities.

These templates need to have a complete syntax to ensure
the feasibility of transforming textual requirements into for-
mal notations using a suite of manually crafted, template-
specific transformation rules (e.g. [7]). However, some of
the predefined templates are domain dependent and are
hard to generalise [8], or can only capture limited subsets
of requirements structures [6]. In addition, most existing
formalisation algorithms are customised for transforming
system requirements to one target formal language. Thus, a
need to transform the same requirements into different for-
mal languages mandates significant rework of the formali-
sation algorithm. Requirements engineers are limited when

 * Mohamed Osama
 mdarweish@deakin.edu.au

 Aya Zaki-Ismail
 amohamedzakiism@deakin.edu.au

 Mohamed Abdelrazek
 mohamed.abdelrazek@deakin.edu.au

 John Grundy
 john.grundy@monash.edu

 Amani Ibrahim
 amani.ibrahim@deakin.edu.au

1 Information Technology, Deakin University, Burwood Hwy,
Melbourne, VIC 3125, Australia

2 Information Technology, Monash University, Wellington Rd,
Melbourne, VIC 3800, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01449-7&domain=pdf

 SN Computer Science (2023) 4:57 57 Page 2 of 22

SN Computer Science

using these pre-existing requirements templates and need to
learn to use them and use them accurately for requirements
formalisation tools based upon them to work.

Instead of considering introducing new sentence-based
templates covering a wider range of requirements and com-
plicating the requirements specification process, in [9] we
introduced a requirement capturing model (RCM), as a ref-
erence model that defines the key properties that make up
a system behavioural requirement sentence, regardless of
the syntactic structure of these properties, lexical words,
or their order. RCM separates the writing styles (format
and structure) from the abstract requirement properties and
the formal notations. Our new RCM model enables us to:
(1) represent a much wider range of requirements that have
differing count, order or types of properties, by identifying
the specific properties in the input requirement sentence to
generic RCM defined properties; (2) specify requirements in
a wide variety of different formats, extremely useful to avoid
re-writing existing requirements; (3) formalise requirements
into different formal notations through mapping RCM prop-
erties to those of the target formal notation; and (4) enable
use of NLP-based requirements extraction techniques to
transform textual requirements into the RCM-based require-
ments model. with the key elements to be extracted now
clearly defined and known.

The correctness of the generated formal notations mainly
depends on the correctness of the RCMs representing the
system requirements. Manually confirming the correctness
of RCMs against the corresponding system requirements
consumes a considerable amount of time and effort. In this
paper, we extend our previous work [9] by introducing an
automated approach to automatically check the correct-
ness of RCM structures according to the corresponding NL
requirements. We also add new experiments to the evalu-
ation section assessing the performance of the proposed
approach in checking the correctness of the automatically
constructed RCMs in [10] against their corresponding source
requirements. Key contributions of this work are:

• Present RCM as a new reference model and intermedi-
ate representation between informal and formal notations
that can be automatically validated.

• Describe a set of transformation rules from RCM to
Metric Temporal Logic (MTL), to demonstrate how an
RCM-based requirements can be transformed into a for-
mal notation.

• Introduce an RCM checking approach that automatically
assesses the correctness of RCM structures against their
source system requirements.

• Evaluate the expressiveness power of RCM by comparing
it to 15 other existing approaches using 162 behavioural
requirement sentences for critical systems. In addition,
we evaluated the proposed RCM checking approach on
the same dataset.

The rest of this paper is organised as follows. “Motivation”
provides a motivating example. “Related Work” covers the
key related work. “Requirement Capturing Model” presents
the details of RCM. “RCM Correctness Checking Approach”
discusses the automatic RCM checking approach. “Evalu-
ation” evaluates the expressiveness power of RCM and the
performance of the proposed checking approach. “Sum-
mary” concludes the paper.

Motivation

Consider Jen who is a systems engineer working for an auto-
motive company. She wants to specify the requirements of
one of the system modules—a small excerpt is shown in
Table 1—while making sure that these requirements can
be easily transformed into formal notations as a mandatory
compliance requirement. Jen decided to check the exist-
ing requirement specification techniques in the literature
to choose which one covers most of her requirements. Jen
researched the existing requirements formalisation tech-
niques, see the related work section for these techniques,
and outlined her trials to use these techniques to model her
requirements after rephrasing some of her requirements to
suit the existing templates.

Jen discovered that none of the existing techniques she
investigated could be used to cover all her requirements. She
then had to learn and use all these templates and have these
tools all running. Furthermore, Jen found that the majority

Table 1 Examples of critical system requirements and approaches representing them

RQ1: R_STATUS shall indicate the rain sensor. It shall be ON, when the external environment is raining
Techniques: Universal pattern [11], Structured English [12], Rup’s boilerplates [8], ACE [6], EARS [5], CFG [3] and BTC [4]
RQ2: When the external environment rains for 1 min, the wipers shall be activated within 30 s until the rain sensor equals OFF
Techniques: Universal pattern [11] and BTC [4]
RQ3: While the wipers are active, the wipers speed shall be readjusted every 20 s
Techniques: Structured English [12]

SN Computer Science (2023) 4:57 Page 3 of 22 57

SN Computer Science

of these solutions rely on predefined formats and structure of
requirements boilerplates. This mandates: (1) a fixed order
of requirement components/sub-components, (2) a fixed
English syntax for a specific component/sub-component, and
(3) a fixed/small set of English verbs or other lexical words.
Hence, Jen needs to rewrite her requirements to conform
to the predefined format which puts more overhead on her,
especially if such formats are limited and cannot be extended
to new scenarios.

Taking into consideration all the combinations of styling,
ordering, and omission/existence of different requirements
model properties increases the size of the defined formats.
Consequently, this increases the complexity of using them
by system engineers and the complexity of the parsing algo-
rithms needed to transform them into formal models.

Furthermore, most existing formalisation techniques
apply on-the-fly transformation on the given structured
requirement sentences to generate the corresponding formal
notation. These transformations are hard-coded or tightly
customised according to the target formal notation proper-
ties and formats. This type of transformation is customised
according to the target formal notation—mostly a version of
TL (e.g. CTL, MTL). Different versions of TL share some
notations (e.g. propositions/predicates). Thus, it is better to
compute the common parts only once and store them for
later usage (generating different versions of TL). Having
a rich model that supports storing the common parts, and
enables computing the distinct parts independent from the
common ones, can improve the formalisation performance.
It also enables the transformation into multiple TL versions
with minimal adjustments to the developed transformation
technique.

Related Work

Many requirements formalisation approaches assume the
requirements to be specified in a constrained natural lan-
guage (CNL) with specific style, format and structure to
be able to transform into formal notations (e.g. [13–19]).
These CNL approaches are meant to avoid natural-language-
related quality problems (e.g. ambiguity, and inconsistency)
and increase the viability of automating the formalisation
process.

CNL is a restricted form of NL especially created for
writing technical documents as defined in [20] with the
aim of reducing/avoiding NL problems (e.g. ambiguity,
inconsistency). CNL typically has a defined subset of NL
grammar, lexicon and/or sentence structure [21]. Different
forms of CNL are also provided as a reliable solution for

requirements representation. Schwitter and Fuchs [6] pro-
posed Attempto Controlled English (ACE) with a restricted
list of verbs, nouns and adjectives for the requirements set, in
addition to other restrictions on the structure of the sentence.
ACE can be transformed into Prolog. It can handle require-
ments with Condition and Action components. Inspired by
ACE, multiple CNLs have been proposed (e.g. Atomate lan-
guage [22], and PENG [23]) for formal generation purposes
and for other purposes (e.g. BioQuery-CNL [24]).

Similarly to ACE, Scott and Cook [25] presented Con-
text Free Grammars (CFGs) for requirements specifica-
tion. Although the formats of the requirement components
is more limited than ACE with additional restrictions on
words, it covers a broader range of requirement properties
(e.g. Valid-time for Action). Yan et al. [7] presented a more
flexible CNL with constraints on the word set such that a
clause should contain: (1) single-word noun as a subject and
a verb predicate with one of the following formats “verb|
be+(gerund|participle)| be+complement”, (2) the comple-
ment should be an adjective or an adverbial word, and (3)
prepositional phrases are not allowed except “in + time
point” at the end of the clause. This CNL does not consider
time information except for a Pre-elapsed-time.

Boilerplates are also widely used. They provide a fixed
syntax and lexical words with replaceable attributes. Boil-
erplates are more limited than CNL and require adaptation
to different domains. In [8], a constrained RUP’s boiler-
plate is provided to handle a limited range of requirements.
EARS [5] boilerplates are less restricted and can support a
wider range of requirements. Esser and Struss [26] proposed
a suite of requirement templates (TBNLS) with mapping
support to propositional logic with temporal relations. For
validating the conformity of the written requirement and the
boilerplate, checking techniques were introduced in [27, 28].

Requirement patterns provide a more flexible solution.
However, when a new requirement structure is added, a new
pattern must be created for it. This leads to a continuous
increase in the size of patterns. In [11], a universal pattern
is presented to support many requirements formats (Trigger
then Action). Additional time-based kernel patterns were
further introduced in [4]. Although these patterns cover
many requirement properties, they still do not cover all the
possible combinations of the supported properties eligi-
ble to a single requirement specification. In addition, the
approach lacks complex time properties (e.g. In-between-
time, and Pre-elapsed-time properties). Dwyer et al. [29]
proposed several patterns applicable for non-real-time
requirements specification. These patterns support scopes
(e.g. globally, before R, after R), and are categorised into
two major groups: (1) occurrence patterns, and (2) order

 SN Computer Science (2023) 4:57 57 Page 4 of 22

SN Computer Science

patterns. The work was later extended in [12] to cope with
real-time requirements specification. The real-time patterns
consider versions of the Pre-elapsed-time, In-between-time
and Valid-time information for the Action component.

Event-Condition-Action (ECA) was initially proposed in
active databases area to express behavioural requirements.
ECA became widely used by several researchers in diffident
areas. An ECA rule assumes that when an Event E occurs,
the Condition C is evaluated, and if it is true, the Action A
is executed. ECA notations have been extended to capture
time information in [30]. However, ECA rules do not sup-
port invariants (rules without preconditions), do not consider
Scopes for Action, and the defined time notations only apply
for the Events part.

Requirement Capturing Model

We first explain the process we followed to develop RCM as
a new comprehensive reference model. Then we describe the
RCM meta-model in details. Finally, we introduce an RCM
to formal notations transformation procedure.

RCM Development Process

To identify the key requirement properties needed to be
supported in a generic reference model for safety-critical
requirements, we examined a large number of natural
language-based critical system requirements curated from

Table 2 The supported properties and formats in the existing approaches

Property symbols → A:Action, C: Condition, T: Trigger, Hid: Hidden-constraint, SP: Precond StartUP-phase, EP: Precond EndUP-phase, SA:
Action StartUP-phase, EA: Action EndUP-phase, vt: Valid-time, pt: Pre-elapsed-time, rt: In-between-time

Approach Requirement properties

Source A A-vt A-rt A-pt C C-vt C-pt T T-vt T-rt SP SP-vt EP EP-vt SA SA-vt EA EA-vt Hid

A1 BTC [4, 11] 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

A2 EARS [5] 1 1 1
1 1 1
1 1 1

A3 EARS-CTRL [2] 1 1 1 1
A4 ECA [22] 1 1 1 1 1 1 1 1 1
A5 boilerplates [8] 1 1

1 1
A6 Safety templates [39] 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1

A7 Req Lang [40] 1 1 1 1 1 1
A8 CFG [3, 25] 1 1 1

1 1 1
1 1 1
1 1 1

A9 ACE [6] 1 1 1
A10 PENG [23] 1 1 1 1 1 1 1 1
A11 Struct.English [7] 1 1 1 1 1 1 1 1
A12 TBNLS [26] 1 1 1 1 1 1 1
A13 Real-time [12] 1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

A14 Dwyer [29] 1 1 1 1 1
A15 Pattern_based [41] 1 1 1 1 1

SN Computer Science (2023) 4:57 Page 5 of 22 57

SN Computer Science

several sources [2, 5, 6, 11, 31–38], in addition to 15 require-
ment representation approaches listed in Table 2.

We identified 19 distinct properties (17 from the existing
approaches and 2 from the analysis of the requirements).
Table 2 maps these properties to the investigated approaches
(outlined in the related work section of this paper). In the
table, the approaches are encoded as A1 to A15 and are
listed in the source column. The remaining columns repre-
sent the identified requirement properties. Each approach is
represented by one or more rows in the table depending on
the number of template or pattern variations of the approach.
This reflects that such approaches support multiple proper-
ties, but these properties cannot be used in the same require-
ment (i.e. each variation of the approach supports only a
certain combination of properties in one requirement). A cell
is filled with “1” if the property is supported in the template/
pattern represented by the row containing the cell.

The table shows that some properties are supported by
all or most of the investigated approaches, while some other
properties are not even supported by a single approach. For
example, the Action property “A” is supported by all the
investigated approaches, but the Valid-times of both the Pre-
cond StartUP-phase “SP-vt” and the Precond EndUP-phase
“EP-vt” are not supported by any of the approaches despite
being present in the analysed requirements. An example of
“SP-vt” is highlighted in bold in the following requirement
“After the switch is set to AUTO for 2s, if the headlights are
OFF and the light intensity falls below 60%, then the lights
should be turned ON.”.

Our analysis of this table shows that: (1) no approach
covers all the identified requirement properties (possi-
bly because this makes the approach too complex to use),
(2) all the approaches support the Action property, (3)
the approaches “A1” and “A11” are the most expressive
approaches as they cover the majority of the properties, and
(4) both the StartUP and EndUP Valid-time properties are
not supported by any of the approaches (despite their exist-
ence in the analysed requirements). In addition, this table
does not reflect the limitations or restrictions that these
approaches apply on the formatting and/or order of a given
property (e.g. a Condition must come before an Action, or a
Req-scope comes before a Condition). All These limitations
reflect the restricted focus of the investigated approaches.

To capture the roles and relations between the identi-
fied properties in a requirement sentence, we grouped them
the properties into eight abstract property types (4 com-
ponents and 4 sub-components). The properties that can
independently exist in a requirement are considered to be
components, while the properties that must be attached to
another property or can only be encapsulated within another
property are considered to be sub-components. For exam-
ple, the Action property (indicating a task to be executed
by the system) is considered to be a component. However,

the Valid-time property (indicating the time period for the
execution) is considered to be a sub-component. The eight
abstract property types are listed and described in Tables 3
and 4. The manually crafted requirement (containing most
of the components and sub-components), used as an example
in the table, is shown in Fig. 1.

RCM Meta Model

RCM is designed to capture the requirements properties
listed in Tables 3 and 4 while relaxing the ordering and
formatting restrictions imposed by the existing approaches.
Consider a system represented as a set of requirements
R. Each requirement Ri is represented by one RCM and
may have one or more primitive requirements PR where
{Ri = ⟨PRn⟩ and n > 0}. Each PRj represents only one
requirement sentence, and may include Condition(s),
Trigger(s), Action(s) and Requirement-scope(s) (i.e. the four
components in RCM).

Figure 2 presents the detailed meta-model of RCM for
one requirement Ri . The components are highlighted in
green. While the sub-components are highlighted in yellow.
The figure shows the relations between the components
and sub-components, where some sub-components can be
encapsulated in all the components while others can only
be linked to specific components (e.g. Pre-elapsed-time and
In-between-time). In addition, the Hidden-constraint sub-
component is directly linked to its relevant operand. As
shown in the figure, all the components and sub-components
are eventually represented as predicates and time structures.
These structures encapsulate the semi-formal semantics of
the requirement (highlighted in orange), in addition to some
formal semantics as well (highlighted in blue). The formal
semantics of a predicate has two different formats that are
dependant on the semi-formal semantics of the component.

The figure shows that a primitive requirement can be
composed of four requirement component types: Condition,
Trigger, Action and Requirement-scope. Except for Action,
the existence of each of these components is optional in
a primitive requirement (i.e. a requirement sentence must
contain at least one Action). Each requirement component
has a Core-segment that expresses the main portion of
the component, and can optionally also have a Valid-time
(the time length of the component being valid). The Pre-
elapsed-time sub-component can only appear with a Con-
dition or an Action component (based on the analysis of
requirements and the conceptual meaning of the properties).
An In-between-time sub-component can only appear with
Trigger or Action components (as per the reviewed require-
ments and representation formats). A Hidden-constraint is
an optional sub-component for an operand. To store this
information without loss, RCM stores the Hidden-constraint
inside the relevant operand object as indicated in Fig. 2. This

 SN Computer Science (2023) 4:57 57 Page 6 of 22

SN Computer Science

breakdown is carefully designed to allow nested Hidden-
constraints. For example, consider the following requirement
sentence “the entry of A1 whose index is larger than the
first value in A2 that is larger than S1 shall be set to 0”. In
this example, the text in bold is a Hidden-constraint “H1”
specified for the argument “the entry of A1” and is stored
inside of it. In addition, the underlined text is a Hidden-
constraint “H2” specified for the argument “the first value

in A2” and is stored inside of it. Since the argument encap-
sulating H2 is part of H1, H2 is stored (nested) inside H1.

All sub-components are instances of either Predicate or
Time structures. The Predicate structure consists of oper-
ands, an operator and a negation flag/property (e.g. in “if
X exceeds 1”, “X” and “1” are the operands and “exceeds”
is the operator in the semi-formal semantics and “>” is the
operator in the formal semantics). The Time structure stores

Table 3 A list of identified abstract component

Property Description

Component
Trigger Is an event that initiates Action(s). For example, consider the following part of the requirement shown in Fig. 1: “When the acous-

tical signals ⟨E⟩ turns to TRUE every 1 seconds, M shall transition to FALSE before ⟨Bsig⟩ is TRUE”. The Trigger (highlighted
in bold) automatically fires the Action (underlined text) to be executed. This component is ubiquitous throughout the require-
ments of most critical systems

Condition Is a constraint that should be satisfied to allow a specific system Action(s) to happen. For example, “After sailing termination, if X
is ON for 1 second or (Y is ON and Z is ON), M shall transition to TRUE after less than 2 seconds” in Fig. 1. The Condition is
highlighted in bold text in the requirement sentence. In contrast to Triggers, the satisfaction of the Condition should be checked
explicitly by the system. The system is not concerned with “when the constraint is satisfied” but with “is the constraint satisfied
or not at the checking time” to execute the Action (e.g. in the previous example “X” might remain “ON” for a while and have no
effect on the system until its value is checked)

Action Is a task that should be accomplished by the system in response to Triggers and/or constrained by Conditions. For example, “When
the acoustical signals ⟨E⟩ turns to TRUE every 1 seconds, M shall transition to FALSE before ⟨Bsig⟩ is TRUE” in Fig. 1. The
Action component is represented by the text in bold in the requirement. In case that a primitive requirement consists of an Action
component only, it is marked as a factual rule expressing factual information about the system (e.g. The duration of a flashing
cycle is 1 s [42])

Req-scope Determines the context under which (i) “Condition(s) and Trigger(s)” can be valid (called a Preconditional-Scope in this case as it
is linked to the Condition or Trigger), and (ii) “Action(s)” can occur (called an Action-Scope as it is applied only on the Action).
The bold text in “After sailing termination, if X is ON for 1 second or (Y is ON and Z is ON), M shall transition to TRUE
after less than 2 seconds.” in Fig. 1 shows an example of Preconditional-Scope. In this case, the Conditions should be checked
after the “sailing termination” event happens. In contrast, the bold text in “When the acoustical signals ⟨E⟩ turns to TRUE every
1 seconds, M shall transition to FALSE before ⟨Bsig⟩ is TRUE” in Fig. 1 shows an Action-Scope example where the Action
should occur before “ ⟨Bsig⟩ is TRUE”.. The scope may define the starting or the ending boundaries (e.g. “after sailing termina-
tion”, “before <B_sig> is True” in Fig. 1). The following figure presents the main variations for starting/ending a context: None,
after operational constraint is true, until operational constraint becomes true, and before operational constraint becomes true.
Other alternatives can be expressed by the main variations. For example, “while R is true” can be expressed by after and until as
“after R is true” and “until not R”. It is worth noting that “Before” and “Until” define the same end of the valid period which is
“R is true”. “Until” mandates the Precondition(s)/Action(s) to hold till “R is true”, but “Before” is not concerned with their status

SN Computer Science (2023) 4:57 Page 7 of 22 57

SN Computer Science

the unit, value and quantifying relation (e.g. in “for less than
2 seconds”, “2” and “seconds” are the unit and value, respec-
tively, “less than” is the semi-formal quantifying relation
whose formal semantics is “<”). Since the Predicate and Time
structures are the infrastructure of all the properties, they are

designed to encapsulate the semi-formal and formal seman-
tics allowing mappability to multiple TL. The details of formal
semantics are described in “RCM and Formal Semantics”.

In a primitive requirement, multiple components with
the same type (e.g. multiple conditions in the first sentence

Table 4 A list of identified abstract sub-components

Property Description

Sub-component
Valid-time Represents the valid time period of a given component (e.g. in the following requirement “the vehicle warns the driver by

acoustical signals ⟨E⟩ for 1 second”, the Action continues for 1 s [42]). Valid-time can be a part of any component
Pre-elapsed-time Is the consumed time length from an offset point—before an Action occurs or a Condition is checked (e.g. in the requirement

sentence “After sailing termination, if X is ON for 1 second or (Y is ON and Z is ON), M shall transition to TRUE after
less than 2 seconds” in Fig. 1, the Action should happen after at most 2 s). This type is only eligible for Action and Condi-
tion components

In-between-time Expresses the length of time between two consecutive occurrences in case of repetition. For example, in the sentence “When
the acoustical signals ⟨E⟩ turns to TRUE every 1 seconds, M shall transition to FALSE before ⟨Bsig⟩ is TRUE” in Fig. 1,
the text in bold represents an In-between-time sub-component for the repeated occurrence of the Trigger “the acoustical
signals ⟨E⟩ turns to TRUE”. This sub-component is eligible for Action and Trigger components as indicated in Fig. 2

Hidden-constraint Allows an explicit constraint to be defined on a specific operand within a component. For example, “if the camera recognises
the lights of an advancing vehicle, the high beam headlight that is activated is reduced to low beam headlight within
5 second” [42]. The text in bold (that is activated) is a constraint defined on the operand (the high beam headlight)

Fig. 1 Crafted multi-sentence
requirement “REQ”

Fig. 2 RCM meta-model (simplified)

 SN Computer Science (2023) 4:57 57 Page 8 of 22

SN Computer Science

in Fig. 1) are linked through (nested-)coordination relation
(i.e. and/or). In order to preserve this relation in RCM with-
out loss, we store these component in a tree data structure
(a suitable data structure to keep nested relations). In this
structure, the components are stored as leaf nodes and the
(nested-)coordination relations are stored in the interior
nodes of the tree. Figure 3 shows an example that visualises
the nesting relation in the tree representation for the Condi-
tions components existing in PR[1].

Figure 3 shows the RCM representation of the REQ
example. It has two primitive requirements: PR[1] and
PR[2]. The components of each primitive requirement are
presented in separate blocks in the figure. In each block,
the sub-components are separated by a horizontal line. Fig-
ure 3 highlights the encapsulation of semi-formal semantics
(in black) and formal semantics (in red). The figure also
provides the corresponding MTL representation (discussed
in details in “RCM Transformation Algorithm”) of the
requirement.

Fig. 3 An example presenting a multi-sentence requirement “REQ” and the corresponding RCM representation

SN Computer Science (2023) 4:57 Page 9 of 22 57

SN Computer Science

The following is a step-by-step analysis of the RCM rep-
resentation of PR[1] “(1) After sailing termination, (2) if
X is ON for 1 second or ((3) Y is ON and (4) Z is ON), (5)
M shall transition to TRUE after less than 2 seconds”. This
requirement sentence has five components as numbered in
the underlined text: one Preconditional-Scope, three Con-
ditions, and an Action. Only two of these components has
an attached sub-component: (1) the first Condition “if X is
ON for 1 second” (contains a Valid-time sub-component
“for 1 second”), and (2) the Action “M shall transition to
TRUE after less than 2 seconds” (contains a Pre-elapsed-
time “after less than 2 seconds”). Since the Conditions in
the sentence (part 2, 3, and 4) are connected according to
coordination relations, they are represented in RCM using a
tree data structure preserving the correct connection between
them. In Fig. 3, the black attributes show the semi-formal
details while the red ones show the corresponding formal
semantics. Our works in [10, 43, 44] discuss the details of
automatically transforming NL requirements into RCM.

RCM Transformation

In this subsection, we illustrate the transformation of RCM
into TL. We first illustrate: (1) the mapping from RCM to
TL, and (2) the formalisation of the RCM infrastructure (i.e.
Predicate and Time structures). Then, we discuss the trans-
formation process.

RCM and TL

In order to formally model a given requirement represented
by RCM in TL, we need to define a set of transformation
rules. A TL formula Fi is built from a finite set (AP) of
proposition letters by making use of Boolean operators (e.g.
“AND”, “OR”) and temporal modalities (e.g. U (until))
[45, 46]. Within such formula, each true/false statement
is expressed by a proposition letter and may be attached
with time notation in some versions of temporal logic (e.g.
MTL). Consider the following sentence: “After the button
is pressed, the light will turn red until the elevator arrives
at the floor and the doors open[46]”. This sentence can be
captured by the following TL formula:

where p, q, s, and v are proposition letter corresponding
to “the button being pressed”, “the light turning red”, “the
elevator arriving”, and “the doors opening”, respectively.

We apply the mapping between RCM and TL as follows:

1. Propositions and time notations: RCM components and
sub-components are expressed as predicates or time
structures as indicated in Fig. 2. These structures are

p ⟹ (qU(s ∧ v))

mapped to proposition and time notations in the cor-
responding TL formula (e.g. the Action component “M
shall transition to TRUE after less than 2 seconds” is
mapped to “ Ft<2(S) ”, where S and “ t < 2 ” represent the
predicate in bold and the underlined time phrase).

2. Coordination relations: The logical operators connecting
propositions can be obtained from the coordination rela-
tions connecting multiple components of the same type.
Such relations are represented by tree structure in RCM,
for each component type (as discussed before in “RCM
Meta Model”). For example, the Condition components
“X is ON for 1 second or (Y is ON and Z is ON)” are
mapped to “ (Gt=2(C1) ∨ (C2 ∧ C3))”.

3. Temporal modality: The temporal modalities can be
identified based on the component type (e.g. the type of
the component “After sailing termination” is “Precon-
ditional-Scope StartUP-phase” and is mapped to “ ⟹”

To demonstrate the flexibility of RCM and show that it can
be transformed into different formal notations, we provide
the mapping into two versions of TL (MTL [47] and CTL
[48]), as shown in Table 5. We targeted these notations
because they are widely used in model checking as indicated
in [49] and [45], respectively. We base our temporal-modal-
ity and time notation mapping on the mapping done in [12].

The first column in Table 5 shows the RCM properties
(components and sub-components), each attached with alter-
natives, if any (e.g. The Preconditions may be Conditions,
Triggers, or both, based on the given requirement). The
possible structures corresponding to each property version
are listed in the third column (the utilised keywords, like
“When”, are just placeholders, and can be replaced by other
keywords). The fourth column indicates which components
can be linked to each property type. The MTL and CTL
representations of each property are presented in the fifth
and sixth columns, respectively, where these notations are
grouped based on their formal types in the last column.

RCM and Formal Semantics

TL has multiple versions exhibiting slight differences. In
order to support the transformation to multiple versions
with minimal adjustments in the transformation technique,
RCM encapsulates formal semantics along with semi-formal
semantics. Design-wise, RCM stores the formal semantics in
basic units (predicate and time structures) as shown in Fig. 2.
Such units are mappable to TL as indicated in Table 5. The
formal semantics of a predicate covers three formats:

• Process format: Is suitable to predicates expressing
functions or process (e.g. “the monitor sends a request

 SN Computer Science (2023) 4:57 57 Page 10 of 22

SN Computer Science

Ta
bl

e
5

 R
C

M
 m

ap
pi

ng
 to

 M
TL

 a
nd

 C
TL

RC
M

TL
 m

ap
pi

ng

Pr
op

er
tie

s (
co

m
po

ne
nt

/s
ub

-c
om

po
ne

nt
s)

Ve
rs

io
ns

A
pp

lic
ab

le
 o

n
M

TL
C

TL

Te
m

po
ra

l m
od

al
ity

A
ct

io
n

1
A

: d
o

so
m

et
hi

ng
A

A
Pr

ec
on

di
tio

n
C

on
di

tio
n

2
If

 S
A

ct
io

n
(P

 in
 m

ap
pi

ng
)

G
(S

 ⟹
 P

)
AG

(S
 ⟹

 P
)

Tr
ig

ge
r

3
W

he
n

S
G

(S
 ⟹

 P
)

AG
(S

 ⟹
 P

)
C

on
di

tio
ns

 a
nd

 T
rig

-
ge

rs
4

W
he

n
S,

 IF
 Q

G
((

S
∧

 Q
) ⟹

 P
)

AG
((

S
∧

 Q
) ⟹

 P
)

Re
q-

Sc
op

e:
 (P

re
co

n-
di

tio
na

l-S
co

pe
 /

A
ct

io
n-

Sc
op

e)

St
ar

tU
P

5
A

fte
r S

Pr
ec

on
di

tio
n/

 A
ct

io
n

(P
 in

 m
ap

pi
ng

)
G

(S
 ⟹

 F
(P

))
AG

(S
 ⟹

 A
G

(A
F(

P)
))

En
dU

P
6

B
ef

or
e

S
F(

S)
 ⟹

 (F
(P

∨
S
)U

S
)

A
[(
(A
F
(P

∨
S
))
∨
A
G
(¬
S
))
W

S
]

7
U

nt
il

S
F(

P)
U

S
AF

(P
)U

S
St

ar
tU

P
an

d
En

dU
P

8
-A

fte
r Q

 &
 B

ef
or

e
S

-B
et

w
ee

n
Q

 a
nd

 S
G
((
Q
∧
¬
S
∧
F
(S
))

 ⟹

F
(P

∨
S
)U

S
))

A
G
((
Q
∧
¬
S
)
⟹

A
[(
(A
F
(P

∨
S
)
∨
A
G
(¬
S
))
W

S
])

9
-A

fte
r Q

 &
 U

nt
il

S
- W

hi
le

 Z
 {

Q
=

Z&

S=
¬

 Z
}

G
((
Q
∧
¬
S
) ⟹

F
(P
U
S
))

A
G
((
Q
∧
¬
S
)
⟹

A
[(
A
F
(P

∨
S
)W

S
])

Ti
m

e
no

ta
tio

n
Pr

e-
el

ap
se

d-
tim

e
10

A
fte

r c
 ti

m
e

C
on

di
tio

n/
A

ct
io

n
(P

 in

m
ap

pi
ng

)
F
t=
c
(P
)

11
A

fte
r a

t m
os

t c
 ti

m
e

F
t≤
c
(P
)

12
A

fte
r a

t l
ea

st
c

tim
e

F
t≥
c
(P
)

13
A

fte
r l

es
s t

ha
n

c
tim

e
F
t<
c
(P
)

14
A

fte
r g

re
at

er
 th

an
 c

F
t>
c
(P
)

Va
lid

-ti
m

e
15

Fo
r c

 ti
m

e
C

on
di

tio
n/

Tr
ig

ge
r/

A
ct

io
n

(P
 in

 m
ap

-
pi

ng
)

G
t=
c
(P
)

16
Fo

r a
t m

os
t c

 ti
m

e
G

t≤
c
(P
)

17
Fo

r a
t l

ea
st

c
tim

e
G

t≥
c
(P
)

18
Fo

r l
es

s t
ha

n
c

tim
e

G
t<
c
(P
)

19
Fo

r g
re

at
er

 th
an

 c
G

t>
c
(P
)

In
-b

et
w

ee
n-

tim
e

20
Ev

er
y

c
tim

e
A

ct
io

n/
Tr

ig
ge

r (
P

in

m
ap

pi
ng

)
G
(F

t=
c
(P
))

21
Ev

er
y

at
 m

os
t c

 ti
m

e
G
(F

t≤
c
(P
))

22
Ev

er
y

at
 le

as
t c

 ti
m

e
G
(F

t≥
c
(P
))

23
Ev

er
y

le
ss

 th
an

 c
 ti

m
e

G
(F

t<
c
(P
))

24
Ev

er
y

gr
ea

te
r t

ha
n

c
G
(F

t>
c
(P
))

Br
an

ch
H

id
de

n-
co

ns
tra

in
t

25
W

ho
se

 S
P

is
 A

ny
 c

om
po

ne
nt

A
G
(∃
S

 ⟹
 P

)

SN Computer Science (2023) 4:57 Page 11 of 22 57

SN Computer Science

REQ_Sig to the station” ⟶ “send(the_monitor, the_sta-
tion,REQ_Sig)”).

• Relational format with plain RHS: This type is suitable
for assignment predicates (e.g. “set X to True” ⟶ “X
= True”), comparison predicates (e.g. “If X exceeds Y”
⟶ “X > Y”) and changing state predicates (e.g. “the
window shall be moving up” ⟶“the_window = mov-
ing-UP”).

• Relational format with aggregated RHS: This format is
similar to the previous one but the RHS is expressed with
an aggregation function (e.g. “If the fuel level is less than
the min value of Thr1 and Thr2” ⟶”the_fuel_level <
“min(Thr1, Thr2)”).

Similarly, the formal semantics is added to the time structure
in which the technical time operator (e.g. { >,<,=,⩽,⩾ }) is
identified (e.g. “for at least 2 seconds” ⟶ “ t ⩾ 2”).

RCM Transformation Algorithm

To accomplish the automatic transformation from RCM to
MTL, we use the mapping rules provided in Table 5 on the
obtained formal semantics of the given primitive require-
ments. Algorithm 1 shows the automatic transformation
pseudo-code annotated in Fig. 4 with the output of each step
for PR[1] in Fig. 3.

Fig. 4 Step-by-step generation
of PR[1] in Fig. 3

 SN Computer Science (2023) 4:57 57 Page 12 of 22

SN Computer Science

First, we get the formal semantics of each component
according to “RCM and Formal Semantics”. Then, we
compute the formal semantics of the entire tree through the
recursive function aggRel. The leaf nodes represent compo-
nents and the inner nodes represent the logical relations of
each component type (discussed in “RCM Meta Model”).
After that, we construct the main parts of the formula (i.e.
preConditions, LHS and RHS) in Step3 and Step4 through
the RCM-to-MTL mapping rules listed in Table 5. Finally,
we generate the entire formula based on the populated sides
(either “LHS ⟶ RHS” or “RHS”) as in Step5.

RCM Correctness Checking Approach

The correctness of RCM can be assessed by confirming
the existing components, sub-components and their break-
downs against the corresponding source English sentences.
To achieve this, the source sentence and the correspond-
ing RCM should be expressed in the same notation (NL in
our case) to enable checking. The main challenges in this
approach is that the generated sentence from a given RCM
is not identical to the input requirement sentence. The main
reason is that the transformation is applied from a higher
level of formality (semi-formal level) into a lesser level
of formality (informal level) [50]. To overcome this, our
correctness checking approach generates NL sentence(s)
from the RCM structure, then measures the relational simi-
larity between the input requirement sentence(s) (used to
obtain the RCM structure) and the generated sentence(s).
This handles the textual mismatch between the sentences
and measures the correctness based on the identification of
components, sub-components, and their connecting relations
(i.e. internal and external). Our RCM correctness checking
approach consists of two main processes: (1) NL generation
(i.e. transforming RCMs into NL requirement sentences),
and (2) relational similarity checking (i.e. checking the simi-
larity between the original requirement sentence and the one
generated from RCM).

NL Generation

In this process, we transform a given RCM into a require-
ment sentence. We utilise our RCM-to-NL generation tech-
nique introduced in [50]. The technique consists of two
tasks:

• Realisation task: express each component (structured in
RCM as predicate) in a correct clause grammar. The real-

isation is achieved with the support of the Simple NLG
library [51]. In this task, a correct grammatical syntax is
assigned to the semi-formal breakdowns/elements of the
component core-segment. All of the component types are
assigned a present tense except for the Action – assigned
a future tense.

• Structuring task: arrange the sub-components within each
existing component in RCM and arrange the components
within the generated sentence. The ordering is achieved
based on priority indices assigned to each (sub-)com-
ponent in RCM. A lookup table that maps each (sub-)
component to a priority index is used in this task, where
each index preserves the location of the (sub-)compo-
nent in the generated sentence. First, priority indices are
assigned from the lookup table to all RCM components
and sub-components existing in a given RCM. Then,
these indices are used to structure the generated sentence
of the given RCM based on its (sub-)components.

Relational Similarity Checking

In this process, we propose a relational graph-based similar-
ity approach that captures and represents the constituting
components or clauses within the requirement sentence and
the relations among them. Within the proposed approach,
each clause (basic unit within the English sentence) is iden-
tified and the arguments within such clause are grouped
and linked. In addition, the relations between the consti-
tuting clauses are also captured and a link between every
two related clauses is added to the relational graph of the
requirement.

We also developed a component-aware formula measur-
ing the similarity between the constructed relational graphs
of the requirements that differentiates between internal and
external similarities within the constructed graphs. This
supports the understanding of how the requirements are
related and identifying the similarity aspects between the
requirements.

Our approach is primarily divided into two processes: (1)
Relational Graph Construction, and (2) Relational Graph
Similarity Measurement. In the first process, a relational
graph is constructed for each input requirement sentence.
The relational graph identifies the constituting clauses
within each sentence and represents each clause. The par-
ticipating words in the clause are represented as nodes and
linked to a central clause-representative word (identified
based on the semantic relations between the clause words).
External relations between the different clauses within each
sentence are also identified and a link or edge is constructed

SN Computer Science (2023) 4:57 Page 13 of 22 57

SN Computer Science

Fig. 5 Normalised sentences

 SN Computer Science (2023) 4:57 57 Page 14 of 22

SN Computer Science

Relational Graph Construction Process

The relational graph is responsible for visualising: (1) the
external relations between the clauses in the sentence, and
(2) the internal relation(s) within each clause. Each clause
is represented by a one-level tree where: (1) the nodes are
words/phrases of the clause, (2) the root is the tree repre-
sentative, and (3) the edges express the internal relation(s)
within the clause. Edges connecting the roots of such trees
represent the external relations in the relational graph. We
rely on the Stanford CoreNLP library to construct the rela-
tional graph of each input requirement. This process con-
sists of two main tasks (preprocessing and construction).
Figure 5 outlines the step-by-step construction process of
the relational graphs for two sample requirements (the final
constructed relational graphs are shown in Step-4).

Preprocessing task:
to provide a reliable and robust similarity measurement

performance, the preprocessing task focuses on handling the
interchangeable keywords and the coordination expression
issues. We rely on the parse tree provided by the Stanford
parser to resolve these issues. The two steps in this task are:

• Closed words unification: in this step, the closed words
within each input requirement are identified and replaced
with their respective class representative (e.g. “if”, “in
case of”, and “provided that” are replaced with “If”) as
shown in Step-1 in Fig. 5. This unifies the constructed
external relations and simplifies the assessment task.

• Coordination normalisation: in this step, we transform
the internal coordination within a clause into an external
coordination between clauses. This is done to normalise
the structures of the requirements involving coordina-
tion and standardise the constructed relational graph.
This maintains both the correctness and consistency of
the constructed internal and external relations. First, we
obtain the parse trees of the clauses containing inter-
nal coordination. Second, each coordination clause is

Table 6 Roles of TDs relations in relational graph

RG roles TDs relations

NP Aggregation amod, nummod, det, nmod
Root Nodes mark, nsubj, nsubjpass, dobj, iobj
Internal Relation nsubj, nsubjpass, nmod, obl, obj, iobj
External Relation acl, advcl, ref, conj

linking the central clause word. In the second process, a
newly developed similarity measurement formula is used to
compute the degree of similarity (a value between 0 and 1)
between the constructed relational graphs.

In addition to capturing the contributing components
of each requirement and their relations, we designed our
approach to overcome five main challenges inherent to sup-
porting NL similarity measurement. These challenges are
summarised as follows:

• Different clauses order: two requirements may be com-
pletely similar (i.e. identical in meaning) but have dif-
ferent order for their constituting clauses. For example,
“The light shall be turned ON if the button is pressed”
and “If the button is pressed the light shall be turned
ON”.

• Interleaved clauses: having nested or interleaved clauses
(i.e. a clause within another clause) can be challeng-
ing when measuring similarity. For example, “The IDC
before termination shall be set to False” and “Before ter-
mination, the IDC shall be set to False”. Our graph con-
struction can successfully resolve this case by correctly
identifying the involved clauses within the requirement.

• Excess words: words within a requirement sentence that
do not affect the meaning of the sentence are not con-
sidered in the graph construction. For example, “If the
error signal is active, an alarm shall be sent to the driver”
and “If the error signal is still active, an alarm shall be
sent to the driver”. Here, the word “still” does not show
in the constructed graph and does not affect the similar-
ity between the two requirements. This is done by ana-
lysing the Typed Dependencies (TDs) relations (will be
discussed in details in the relational graph construction
subsection).

• Interchangeable keywords: our approach supports the
identification of closed words in the English language.
For example, “If the button is pressed the light shall be
turned ON” and “In case the button is pressed the light
shall be turned ON”. In these requirements, “if” and “in
case” are closed words of the same class. More details
about this are provided in the preprocessing task.

• Coordination expression: some requirements may con-
tain coordination (e.g. and) between their clauses. For
example, “If Btn_1 or Btn_2 is pressed, the light shall be
turned ON” and “If Btn_1 is pressed or Btn_2 is pressed,
the light shall be turned ON”. We provide details on how
this is handled in the preprocessing task.

SN Computer Science (2023) 4:57 Page 15 of 22 57

SN Computer Science

repeated according to its number of coordination (i.e.
count of coordinated arguments). Each repetition con-
tains one of the different coordinated arguments. Third,
the sentence fragments (repeated clauses) are grouped
together with their respective conjunction. Finally, the
grouped clauses replace the original coordination clause.
These four steps are repeated for all clauses containing
internal coordination. Step-2 in the preprocessing task in
Fig. 5 shows the normalisation of Sent-A.

Construction task: The construction task relies on the
Typed dependencies (TDs) extracted using the Stanford
CoreNLP library. We analyse the identified relations within
the TDs to group and relate the arguments for each clause
within the sentence, and construct the external relations
between the identified clauses. This is achieved through the
following four steps:

• Relation adaptation: to support the construction of the
desired relational graph, we modify the TDs involving
copular verbs (e.g. am, is, are). When copular verbs are
the main verbs in the sentence, the TDs do not iden-
tify their relations in the same manner as normal verbs.
Instead, the mention “cop(o?, v?)” in the TDs (mentions
are the structures of TDs in Stanford CoreNLP) is used
to identify the verb as a copular verb to its related object
(“o” in the mention). In addition, the subject is linked to
the object not the verb itself using the mention “nsubj(o?,
s?)”. To adapt and standardise the identified relations, we
first identify all “cop(o?, v?)” and “nsubj(o?, s?)” men-
tions, where the first argument (o?-refers to the object) is
the same (i.e. the mentions are for the same object). Then
all the mentions with the argument “o?” are replaced
with “v?” (similar annotations as in the case of a nor-
mal verb). Finally, the mention “obj(v?, o?)” is appended
to the typed dependencies to establish an object-verb
relation. Step-1 in the construction in Fig. 5 shows the
updated TDs and the replaced ones for both Sent-A and
Sent-B.

• Noun phrase aggregation: noun phrase relations are iden-
tified through the mention headers “amod”, “nummod”,
“det”, and “nmod” in the TDs of the CoreNLP library.
We analyse these mentions to obtain an aggregated noun
phrase (NP). Then, the mentions contributing in the NP
aggregation are removed from the TDs. Next, for any
mention containing the last word in the aggregated NP
(the word initially used to refer to the entire NP), we
replace this word with the corresponding aggregated NP.

Step-2 in the construction in Fig. 5 shows the final TDs
after aggregation while highlighting the aggregated noun
phrases, the updated TDs, and the removed TDs. This
step aims at simplifying the constructed relational graph
by referring to each identified NP as a single entity or
node.

• Roots identification: in this step, we identify the roots that
will be used to refer to each identified clause within the
sentence. We use the unique words of the first argument
in the mentions with headers “mark”, “nsubj”, “nsub-
jpass”, “dobj”, and “iobj” (mentions that identify the
internal relations to the main verbs within the clauses).
The extracted first argument is used as the “Root” of the
clause as highlighted in Step-3 in the construction in
Fig. 5.

• Relation identification: in this step, we identify both the
internal relations in the extracted clauses and the exter-
nal relations between these clauses. A relation “rel(A2?,
A1?)” is identified as an internal relation for any non-root
argument “A1” related to the Root argument “A2”. Exter-
nal relations are identified when a Root argument “A2?”
has a relation to either another Root argument or a non-
root argument in another sub-tree. Step-4 in the construc-
tion in Fig. 5 shows the constructed relational graphs
for both sentences. The final constructed relational graph
follows the mapping between the TDs mentions and the
relational graph roles shown in Table 6 (e.g. “mark” TD-
>Root).

Relational Graph Similarity Measurement Process

In this process, the relational graphs constructed previously
for each sentence are compared against one another to meas-
ure the similarity between the corresponding requirements
as indicated in Algorithm 2. Two main tasks are involved in
this process: (1) Internal Relation Similarity, and (2) Exter-
nal Relation Similarity. The developed formula we utilise for
the calculation of both the internal and external similarity
of the relational graphs gives a value between zero and one
(zero being completely different, and one being identical or
similar requirements). In this measurement, two trees are
similar, if all of their internal and external relations are the
same. Algorithm 3 computes the common internal and exter-
nal relations between two graphs.

 SN Computer Science (2023) 4:57 57 Page 16 of 22

SN Computer Science

Internal similarity measurement: The internal similarity
is calculated using the developed formula shown in Eq. 1.
This formula gives a value between zero and one for the
variable X representing the internal similarity between two
requirements j, and k. The main idea is to get a ratio of the
matching internal relations to the maximum number of rela-
tions within the relational graphs. InternalMatching(j, K)
represents the number of identical Roots having identical
internal relations and arguments between two requirements
j and k. For example, Sent-A and Sent-B in Fig. 5 have four
internal matchings because the four identified Root nodes
and their internal relations (their arguments) are all identi-
cal. “InternalRel(j)” and “InternalRel(k)” represent the total
number of identified Roots in each relational graph (also four
in case of Sent-A and Sent-B).

External similarity measurement: similarly, the devel-
oped formula in Eq. 2 shows how the entire external simi-
larity of two graphs is calculated. ExternalMatching(j, k)
represents the number of matching external Root links or
edges between two requirements j and k. A matching is
counted only if the link and the connected Roots are iden-
tical. ExternalRel(j) and ExternalRel(k) represent the total
number of external Root links in each relational graph. It is
worth noting that, in case the number of the external rela-
tions of the two requirements being compared is zero. the

external similarity variable Y will be set to the value of the
internal similarity. This is done to avoid dividing by zero and
keep the correctness of the normalised combined similarity
value.

We combine both values to provide a single measure or
indication of the similarity between two requirements by
taking the average of the internal and external similarities
as in Eq. 3. Getting a combined similarity measurement of
one means that the two requirements are redundant, and
zero means they are completely different within the scope
of our measurement. Values in between zero and one give
an insight into the degree of inter-dependency or inter-rela-
tionship between the two requirements.

(1)X =
InternalMatching(j,K)

Max(InternalRel(j), InternalRel(k))

(2)Y =
ExternalMatching(j,K)

Max(ExternalRel(j), ExternalRel(k))

(3)Similarity(j, k) =
(X + Y)

2
.

SN Computer Science (2023) 4:57 Page 17 of 22 57

SN Computer Science

Evaluation

Dataset Description

We evaluate the coverage of our proposed RCM on 162
requirement sentences. These requirements are collected
from: (1) papers that introduced different requirement tem-
plates and formats in different domains considering different
writing styles in [2, 4–6, 11, 31–36], (2) papers that intro-
duced requirement formalisation techniques [7, 13], and (3)
online available critical system requirements [42]. The data-
set is available online in 1.

Figure 6 presents the percentages of each of the 19
requirement properties (components/sub-components)
within the entire dataset. The figure shows that time-based
and Hidden-constraints exist in few requirements compared

1 Dataset: https:// github. com/ ABC-7/ RCM- Model/ tree/ master/ dataS
et.

to the key requirement components such as Action, Trigger,
and Condition. Overall, the distribution of the properties
is biased towards the popular properties that exist in most
approaches.

Figure 7 shows the complexity of the 162 requirements
(when the number of properties per requirement increases
↑ , its complexity increases ↑). We grouped the requirements
based on the count of their existing properties. The fol-
lowing examples show two requirements with one and six
properties, respectively, where each property is separately
underlined:

• the monitor mode shall be initialised to INIT.

https://github.com/ABC-7/RCM-Model/tree/master/dataSet
https://github.com/ABC-7/RCM-Model/tree/master/dataSet

 SN Computer Science (2023) 4:57 57 Page 18 of 22

SN Computer Science

Fig. 6 Properties frequency within the entire requirements

• after X becomes TRUE for 2 seconds, when Z turns to 1
for 1 second, Y shall be set to TRUE every 2 seconds.

In Fig. 7, each group represents the count of properties
regardless of their type (e.g. R1: requirement with Condition
and Action, and R2: requirement with Trigger and Action,
both have 2 properties). For each group, we calculated the
percentage of requirements. Figure 7 presents the properties
count used for each requirements group on the X-axis and
the corresponding requirements percentage on the Y-axis.
This shows that a large portion of the entire requirements
sentences (49% and 22%), only consists of two and three
properties, respectively. In contrast, only 20% of the require-
ments sentences consist of more than three properties. This

indicates that most requirements in the dataset are not
complex.

Experiments

Experiment1. RCM expressiveness: We evaluated the abil-
ity of RCM to capture and represent the requirements in our
test dataset compared to 15 exiting approaches in Table 2.
To do this, we manually labelled all the requirements in the
dataset against the 19 requirement properties we identified in
“RCM Development Process”. Then, we wrote a Java script
to check each requirement (the types of the existing prop-
erties) against all the existing approaches to assess if the
approach provides a boilerplate or a template that supports

Fig. 7 Frequency rate of requirements per properties count

SN Computer Science (2023) 4:57 Page 19 of 22 57

SN Computer Science

Fig. 8 Percentage of captured requirements per approach (RCM is represented by A16 and the other approaches are represented by the same
symbols used in “RCM Meta Model”)

Table 7 Measured performance of the proposed approach

Evaluation-type Correct RCMs Incor-
rect
RCMs

Old-manual assessment 122 40
New-manual assessment 132 30
Automatic assessment 126 36

2 Approaches representations, and evaluation: https:// github. com/
ABC-7/ RCM- Model/ blob/ master/ Appro aches- Evalu ation. xlsx.

representing the requirement or not. The results are avail-
able online.2 Figure 8 summarises the results of our analy-
sis showing percentage of the test requirements that each
approach supports.

This shows that none of the existing 15 approaches is
able to represent the entire dataset of requirements. This is
mainly for two reasons: (1) missing properties in the used
templates (e.g. A1 does not support StartUP-phase Precon-
ditional-Scope (SP)), or (2) restrictions on the included
properties in a requirement format (e.g. A2:EARS does
not support the existence of a Trigger (core-segment) and
a Req-Scope (core-segments) using the same format). In
addition, ≈ 4% of the test requirements were not covered
by any of these approaches combined. An example require-
ment is “if the maximum deceleration is [insufficient] before
a collision with the vehicle ahead, the vehicle warns the
driver by acoustical signals for 1 seconds every 2 seconds”,
where the existing properties are: Condition (core-segment),
StartUP-phase Preconditional-Scope (SP core-segment),

Action (core-segment), Action valid time (Vt), and Action
In-between-time (Rt). These properties do not exist together
in the same representation of any of the 15 approaches, see
Table 2.

In contrast, our proposed RCM can represent all of the
162 requirements sentences. This is because it covers all
the properties that exist in the other approaches and puts no
restriction on the included properties in one requirement (i.e.
any property can exist in the requirement format).

To use any of the existing approaches, they may require to
be extended in two cases: (1) supporting a new requirement
property, and (2) supporting a new format (i.e. allowing set
of properties to exist together in one requirement sentence
regulated by customised grammatical rules). In contrast,
RCM covers all the properties of the other approaches and
more, and puts no constraints on the properties used in
requirements. Hence, it is more expressive and can repre-
sent all the requirements that can be represented by the other
approaches. It can also be used in other scenarios that are not
currently supported by any of the other approaches (because
it does not enforce any restrictions on the input requirement
formats). Nevertheless, the main limitation of RCM is that it
is designed for behavioural requirements of critical systems.

Experiment2: RCM to formal notations: We applied
our RCM-to-MTL and RCM-to-CTL transformation rules
to the dataset of 162 requirements. In this experiment, we
used our NLP-approach proposed in [10] to extract RCM
from the 162 requirements. We then manually reviewed all

https://github.com/ABC-7/RCM-Model/blob/master/Approaches-Evaluation.xlsx
https://github.com/ABC-7/RCM-Model/blob/master/Approaches-Evaluation.xlsx

 SN Computer Science (2023) 4:57 57 Page 20 of 22

SN Computer Science

the extracted RCM models, and fixed all the broken RCM
extractions manually. Once we had the full list of 162 RCM
structures, we applied the automatic RCM-to-Formal trans-
formation as outlined in “RCM Transformation Algorithm”.
The full list of RCMs and the corresponding automatically
generated MTL and CTL formulas are available online.3

We successfully transformed 156 out of the 162 require-
ment RCM models into MTL notations. The other 6 require-
ments were partially correct. These 6 requirements turned
out to involve Hidden-constraints expressed with ∃ and ∀
properties with a branching structure that is not supported
by MTL, since it is a linear version of temporal logic. For
example, the requirement “the cognitive threshold of a
human observer shall be set to a deviation that is less than
5 [42]” was correctly represented in RCM, but the gener-
ated MTL is partially correct “G(the cognitive threshold of
a human observer = the deviation)”. A correct generation
can be “AG((∃ deviation<5) ⟹ (the cognitive threshold of
a human observer = deviation))” in CTL notation.

In contrast, CTL can represent requirements with Hid-
den-constraints correctly, but it provides partial solutions
for requirements with time notation (e.g. Valid-time, Pre-
elapsed-time and In-between-time). In total, it is capable of
representing 120 requirements correctly and provides partial
solutions 42 ones due the inclusion of time notation (e.g.
the requirement “if air_ok signal is low, auto control mode

is terminated within 3 sec” has a partially correct generated
CTL formal “AG([air_ok signal = low] ⟹ [auto control
mode.crrStatus = terminated])”, but a correct formula can
be “G([air_ok signal = low] ⟹ [Ft=3(auto control mode.
crrStatus = terminated)]” in MTL notation).

RCM Correctness Evaluation

In this experiment, we automatically evaluate the correctness
of the automatically constructed RCMs in [9] for the same
162 input requirements dataset. To decide whether a derived
RCM is a correct RCM (i.e. conforming to the input require-
ment), we utilised the same generation approach proposed
in [50]. Then, we applied our proposed similarity approach
as follow:

• A relational graph is constructed for each of the two sen-
tences (i.e. the source sentence and the generated one).

• The internal and external similarities of the two con-
structed graphs are measured and compared. Two sen-
tences A and B are equivalent if all the internal relations
within each tree and the external relations between the
Root nodes are the same.

First, The conducted experiment to transform NL require-
ments into RCMs in [10] uses StanfordNLP 3.9.1. In this
paper we use StanfordNLP 4.2.0. Hence, we rerun the trans-
formation and manually assessed the obtained results. Then,
we utilised the proposed similarity approach for assessing
the obtained RCMs automatically through the illustrated two
process (relational graphs construction and relational graphs
similarity measurements). Table 7 shows the old and new
manual assessment for the RCMs compared to the automatic
assessment. It shows that the automatic similarity checking
identified 126 out of the 132 correct RCMs, in addition to
identifying the entire incorrect RCMs.

Table 8 lists the measures for the proposed checking
approach:

• TP: # of defected RCMs correctly identified as defected.
• FP: # of correct RCMs identified as defected.
• TN: # of correct RCMs identified as correct.
• FN: # of defected RCMs identified as correct.

Table 8 Measured performance
of the proposed approach

TP FP TN FN Recall Precision F-measure

30 12 120 0 100% 83% 91%

Table 9 Failed requirements analysis

Id Matched In-Rel Matched
Ex-Rel

Similarity Reason of failure

1 0.5 0 0.25 Stanford interpretation
failure

2 1 0 0.5 Meaning changed as a
result of the ordering
step in sentence gen-
eration algorithm

3 1 0 0.5 Meaning changed as a
result of the ordering
step in sentence gen-
eration algorithm

4 0.33 0 0.17 Stanford interpretation
failure

5 0.67 0.5 0.58 Stanford interpretation
failure

6 0.5 0 0.25 Stanford interpretation
failure

3 RCM-Representation and formal notation: https:// github. com/ ABC-
7/ RCM- Model/ tree/ master/ RCM- Auto- Trans forma tion.

https://github.com/ABC-7/RCM-Model/tree/master/RCM-Auto-Transformation
https://github.com/ABC-7/RCM-Model/tree/master/RCM-Auto-Transformation

SN Computer Science (2023) 4:57 Page 21 of 22 57

SN Computer Science

The table shows that none of the defected RCMs are
marked as correct (i.e. FN = 0), achieving 100% recall. This
shows the effectiveness of our approach, where the user does
not have to review the RCMs marked as correct. In addition,
the approach achieved good performance as only six correct
RCMs are marked incorrect (i.e. FP = 6). There are two
main reasons behind this failure: (1) Stanford interpreta-
tion failure, and (2) meaning mismatch resulting from the
RCMs to NL transformation technique [50] as indicated in
Table 9. The table shows that, four requirements have mis-
match because of Stanford wrong interpretation, while the
remaining 2 are because of the NL generation algorithm. It
also worth noting that, the reason behind the decrease in pre-
cision to 83% is because the total number of incorrect RCMs
is relatively small (i.e. TP = 30). Overall, the F-measure of
the approach is 91%.

Summary

We introduced a new requirement capturing model—
RCM—for representing safety-critical system requirements.
RCM defines a wide range of key requirement properties
that may exist in an input requirement. The model allows
for standardising the textual requirements extraction process
and simplifies the transformation rules to convert require-
ments into formal notations. We compared the coverage
of our RCM model to 15 existing requirements modelling
approaches using 162 diverse requirements. Our results
show that RCM can capture a wider range of requirements
compared to the other approaches because its properties can
be customised according to the input requirement. In addi-
tion, we provided a suite of RCM-to-MTL transformation
rules and presented the corresponding automatically gener-
ated MTL and CTL representation of the evaluation dataset.

Acknowledgement Osama and Zaki-Ismail are supported by Deakin
PhD scholarships. Grundy is supported by ARC Laureate Fellowship
FL190100035.

Funding Not applicable.

Declarations

Conflict of Interest The authors declare that they have no conflict of
interest.

References

 1. Buzhinsky I. Formalization of natural language requirements into
temporal logics: a survey. In: 2019 IEEE 17th international con-
ference on industrial informatics (INDIN), vol. 1. IEEE; 2019. p.
400–6.

 2. Lúcio L, Rahman S, Cheng C-H, Mavin A. Just formal enough?
Automated analysis of ears requirements. In: NASA formal meth-
ods symposium. Berlin: Springer; 2017. p. 427–34.

 3. Sládeková V. Methods used for requirements engineering. Mas-
ter’s thesis, Univerzity Komenského; 2007.

 4. Justice B. Natural language specifications for safety-critical sys-
tems. Master’s thesis, Carl von Ossietzky Universität; 2013.

 5. Mavin A, Wilkinson P, Harwood A, Novak M. Easy approach to
requirements syntax (ears). In: Requirements engineering con-
ference, 2009. RE’09. 17th IEEE international. Aug 31-Sep 4;
Atlanta, USA; Piscataway; 2009. p. 317–22.

 6. Fuchs NE, Schwitter R. Attempto controlled English (ACE). In:
CLAW 96, first international workshop on controlled language
applications; Leuven, BE, March, 1996.

 7. Yan R, Cheng C-H, Chai Y. Formal consistency checking over
specifications in natural languages. In: 2015 Design, automation
& test in Europe conference & exhibition (DATE). IEEE; 2015.
p. 1677–82.

 8. Rupp C. Requirements-Engineering und-Management: Profes-
sionelle, Iterative Anforderungsanalyse Für die Praxis. Munich:
Hanser Verlag; 2009.

 9. Zaki-Ismail A, Osama M, Abdelrazek M, Grundy J, Ibrahim A.
RCM: requirement capturing model for automated requirements
formalisation. In: Proceedings of the 9th International Conference
on Model-Driven Engineering and Software Development; —vol-
ume 1: MODELSWARD. SciTePress; 2021. INSTICC.

 10. Zaki-Ismail A, Osama M, Abdelrazek M, Grundy J, Ibrahim A.
RCM-extractor: automated extraction of a semi formal representa-
tion model from natural language requirements. In: Proceedings of
the 9th international conference on model-driven engineering and
software development—volume 1: MODELSWARD. SciTePress;
2021. p. 270–7. https:// doi. org/ 10. 5220/ 00102 70602 700277.
INSTICC

 11. Teige T, Bienmüller T, Holberg HJ. Universal pattern: formaliza-
tion, testing, coverage, verification, and test case generation for
safety-critical requirements. In 19th GI/ITG/GMM Workshop
Methoden und Beschreibungssprachenzur Modellierung und
Verifikation von Schaltungen und Systemen (MBMV’16),p. 6–9.
Albert-Ludwigs-Universit¨at Freiburg, 2016.MBMV.

 12. Konrad S, Cheng BH. Real-time specification patterns. In: Pro-
ceedings of the 27th international conference on software engi-
neering. New York, NY, USA: ACM; 2005. p. 372–81.

 13. Ghosh S, Elenius D, Li W, Lincoln P, Shankar N, Steiner W.
Arsenal: automatic requirements specification extraction from
natural language. In: NASA formal methods symposium. Berlin:
Springer; 2016. p. 41–6.

 14. Nelken R, Francez N. Automatic translation of natural language
system specifications into temporal logic. In: International confer-
ence on computer aided verification. Berlin: Springer; 1996. p.
360–71.

 15. Michael JB, Ong VL, Rowe NC. Natural-language processing sup-
port for developing policy-governed software systems. In: TOOLS
39. 39th international conference and exhibition on technology of
object-oriented languages and systems, Santa Barbara, CA: 2001.
IEEE; 2001. p. 263–74.

 16. Holt A, Klein E. A semantically-derived subset of English for
hardware verification. In: Proceedings of the 37th annual meeting
of the association for computational linguistics on computational
linguistics. Association for Computational Linguistics; Maryland,
USA; 1999. p. 451–6.

 17. Ambriola V, Gervasi V. Processing natural language requirements.
In: Automated software engineering, 1997. Proceedings, 12th
IEEE international conference. Lake Tahoe, NV; 1997. p. 36–45.

 18. Sturla G. A two-phased approach for natural language parsing into
formal logic. PhD thesis, Massachusetts Institute of Technology;
2017.

https://doi.org/10.5220/0010270602700277

 SN Computer Science (2023) 4:57 57 Page 22 of 22

SN Computer Science

 19. R. Poli, M. Healy, A. Kameas (Eds.). Controlled English to logic
translation. In: Theory and applications of ontology: computer
applications. Berlin: Springer; 2010. p. 245–58.

 20. Kittredge RI. Sublanguages and controlled languages. In Ruslan-
Mitkov (ed.). The Oxford handbook of computational linguistics,
2nd edn. Oxford: Oxford University Press; 2003.

 21. Kuhn T. A survey and classification of controlled natural lan-
guages. Comput Linguist. 2014;40(1):121–70.

 22. Van Kleek M, Moore B, Karger DR, André P, Schraefel M. Ato-
mate it! end-user context-sensitive automation using heterogene-
ous information sources on the web. In: Proceedings of the 19th
international conference on world wide web; 2010. p. 951–60.

 23. Schwitter R. English as a formal specification language. In: Pro-
ceedings. 13th international workshop on database and expert
systems applications. Aix-en-Provence, France: IEEE; 2002. p.
228–32.

 24. Erdem E, Yeniterzi R. Transforming controlled natural language
biomedical queries into answer set programs. In: Proceedings of
the BioNLP 2009 workshop; Boulder, CO. 2009. p. 117–24.

 25. Scott W, Cook SC, et al. A context-free requirements grammar to
facilitate automatic assessment. PhD thesis, UniSA; 2004.

 26. Esser M, Struss P. Obtaining models for test generation from
natural-language-like functional specifications. In: International
workshop on principles of diagnosis; 2007. p. 75–82.

 27. Arora C, Sabetzadeh M, Briand L, Zimmer F, Gnaga R. Rubric:
a flexible tool for automated checking of conformance to require-
ment boilerplates. In: Proceedings of the 2013 9th joint meeting
on foundations of software engineering. ACM; 2013. p. 599–602.

 28. Arora C, Sabetzadeh M, Briand LC, Zimmer F. Requirement boil-
erplates: transition from manually-enforced to automatically-ver-
ifiable natural language patterns. In: 2014 IEEE 4th international
workshop on requirements patterns (RePa). IEEE; 2014. p. 1–8.

 29. Dwyer MB, Avrunin GS, Corbett JC. Patterns in property speci-
fications for finite-state verification. In: Proceedings of the 21st
international conference on software engineering; Los Angeles,
1999. p. 411–20.

 30. Qiao Y, Zhong K, Wang H, Li X. Developing event-condition-
action rules in real-time active database. In: Proceedings of the
2007 ACM symposium on applied computing; 2007. New York,
p. 511–6.

 31. Jeannet B, Gaucher F. Debugging embedded systems require-
ments with stimulus: an automotive case-study. In: 8th European
Congress on embedded real time software and systems (ERTS);
Toulouse, France, Jan 2016.

 32. Thyssen J, Hummel B. Behavioral specification of reactive
systems using stream-based I/O tables. Softw Syst Model.
2013;12(2):265–83.

 33. Fifarek AW, Wagner LG, Hoffman JA, Rodes BD, Aiello MA,
Davis JA. Spear v2. 0: formalized past LTL specification and
analysis of requirements. In: NASA formal methods symposium.
Berlin: Springer; 2017. p. 420–6.

 34. Lúcio L, Rahman S, bin Abid S, Mavin A. EARS-CTRL: generat-
ing controllers for dummies. In: MODELS (satellite events); 2017.
p. 566–70.

 35. Dick J, Hull E, Jackson K. Requirements engineering. Berlin:
Springer; 2017.

 36. Bitsch F. Safety patterns-the key to formal specification of safety
requirements. In: International conference on computer safety,
reliability, and security. Berlin: Springer; 2001. p. 176–89.

 37. Rolland C, Proix C. A natural language approach for requirements
engineering. In: International conference on advanced information
systems engineering. Berlin: Springer; 1992. p. 257–77.

 38. Macias B, Pulman SG. A method for controlling the production of
specifications in natural language. Comput J. 1995;38(4):310–8.

 39. Fu R, Bao X, Zhao T. Generic safety requirements description
templates for the embedded software. In: 2017 IEEE 9th inter-
national conference on communication software and networks
(ICCSN). IEEE; 2017. p. 1477–81.

 40. Marko N, Leitner A, Herbst B, Wallner A. Combining xtext and
oslc for integrated model-based requirements engineering. In:
2015 41st Euromicro conference on software engineering and
advanced applications. IEEE; 2015. p. 143–50.

 41. Berger P, Nellen J, Katoen J-P, Abraham E, Waez MTB, Rambow
T. Multiple analyses, requirements once: simplifying testing &
verification in automotive model-based development; 2019. arXiv
preprint. arXiv: 1906. 07083.

 42. Houdek F. System requirements specification automotive system
cluster (elc and acc). Munich: Technical University of Munich;
2013.

 43. Zaki-Ismail A, Osama M, Abdelrazek M, Grundy J, Ibrahim A.
RCM-extractor: an automated NLP-based approach for extracting
a semi formal representation model from natural language require-
ments. Autom Softw Eng. 2022;29(1):1–33.

 44. Zaki-Ismail A, Osama M, Abdelrazek M, Grundy J, Ibrahim A.
ARF: automatic requirements formalisation tool. In: 2021 IEEE
29th international requirements engineering conference (RE).
Notre Dam, South Bend, USA; 2021. p. 440–1.

 45. Haider A. A survey of model checking tools using LTL or CTL
as temporal logic and generating counterexamples. https:// doi. org/
10. 13140/ RG.2. 1. 3629. 1925

 46. Brunello A, Montanari A, Reynolds M. Synthesis of LTL formulas
from natural language texts: state of the art and research direc-
tions. In: 26th International symposium on temporal representa-
tion and reasoning (TIME 2019) 2019. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik; 2019.

 47. Alur R, Henzinger TA. Real-time logics: complexity and expres-
siveness. Inf Comput. 1993;104(1):35–77.

 48. Clarke EM, Emerson EA. Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic. In: 25 Years
of model checking. Berlin: Springer; 2008. p. 196–215.

 49. Konur S. A survey on temporal logics for specifying and verifying
real-time systems. Front Comput Sci. 2013;7(3):370–403.

 50. Zaki-Ismail A, Osama M, Abdelrazek M, Grundy J, Ibrahim A.
Requirements formality levels analysis and transformation of for-
mal notations into semi-formal and informal notations. In: Pro-
ceedings of the 33rd international conference on software engi-
neering and knowledge engineering; Pittsburgh, USA, Jul 2021.

 51. Gatt A, Reiter E. SimpleNLG: a realisation engine for practical
applications. In: Proceedings of the 12th European workshop
on natural language generation (ENLG 2009); Stroudsburg, PA,
USA, 2009. p. 90–93.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://arxiv.org/abs/1906.07083
https://doi.org/10.13140/RG.2.1.3629.1925
https://doi.org/10.13140/RG.2.1.3629.1925

	A Comprehensive Requirement Capturing Model Enabling the Automated Formalisation of NL Requirements
	Abstract
	Introduction
	Motivation
	Related Work
	Requirement Capturing Model
	RCM Development Process
	RCM Meta Model
	RCM Transformation
	RCM and TL
	RCM and Formal Semantics
	RCM Transformation Algorithm

	RCM Correctness Checking Approach
	NL Generation
	Relational Similarity Checking
	Relational Graph Construction Process
	Relational Graph Similarity Measurement Process

	Evaluation
	Dataset Description
	Experiments
	RCM Correctness Evaluation

	Summary
	Acknowledgement
	References

