
Towards Self-securing Software Systems: Variability Spectrum

Mohamed Abdelrazek1, John Grundy2 and Amani Ibrahim1
1School of IT, Deakin University, Geelong, Australia

2Faculty of IT, Monash University, Melbourne, Australia
mohamed.abdelrazek@deakin.edu.au; amani.ibrahim@deakin.edu.au;

john.grundy@monash.edu

Abstract

We describe a new variability-intensive system idea, the “self-securing software system”. We
describe how such a system works using a multi-tenant cloud application as a motivating
example. This supports run-time composition, detects emergent attacks and vulnerabilities, and
supports run-time updating to mitigate problems. We describe recent work we have done in
architecting and proof-of-concept prototypes for aspects of such systems. We then describe
current limitations and future work plans to address these.

1. Introduction	

What can go wrong when a software system is under a cyberattack? The system becomes mal-
functional; this could happen in many ways - e.g. the system might become completely
unavailable due to service disruption, systems could be compromised, or confidential data
could be exfiltrated. Businesses economic conditions amplify the relentless challenge of
staying ahead of security vulnerabilities in their computing systems and infrastructure
[10,12,18]. Hence, the need to build smart, adaptive systems that are secure. Self-securing (also
called self-protecting or self-defending) is the ability of the software system to identify security
holes/bugs or detecting current/potential attacks and automatically patch or stop to guarantee
the availability, integrity and confidentiality aspects of the system and its data.

To enable self-securing systems, we need to: (i) package software security analysis and
automated software security engineering in one ecosystem, and (ii) engineer systems to allow
adaptability from the ground-up (architecture and design). Without adaptability, systems
become hardwired and hard to respond to adaptation triggers including proactively self-secure
[4,17]. Adaptiveness is achieved via engineering for variability points that allow for different
system components - at different complexity levels from a class method to a system component
- to be swapped in/out based on changes in the operational environment or customer needs and
goals.

From a security point of view, variability is not always a good practice. From a security analysis
perspective; it increases the potential of system vulnerabilities that might exist in these new
modules, or in the connectors/interfaces between the modules [8,16]. From a security
engineering perspective; variability is very useful, changes in user security requirements, risks,
or new vulnerabilities detected can be mitigated/patched easily at either design-time (due to
modularity nature of the system) as well as real-time adaptation [7,17].

In Software-as-a-Service (SaaS) applications – e.g. Salesforce.com – implementing a tenant-
oriented security is a must. This is needed to enable the SaaS application to weave in security
controls for different tenants depending on who is using the application/service – e.g. each
tenant might need a different set of authentication/authorization controls. This adds a new

John Grundy
Chapter 5 in Software Engineering for Variability-Intensive Systems,CRC Press/Taylor & Francis Group (c) 2018

dimension of SaaS application variability, which is SaaS application security variability
[14,15]. Other quality of service attributes can add more variability aspects to the system such
as reliability-specific modules and performance critical modules that sacrifice resource
efficiency for response time. This will eventually need to be managed through a SaaS
variability management module.

In this short chapter, we present a proposal for the “self-securing software system” based on
model-driven engineering using system-and-security description models for run-time
configuration and weaving using an aspect-oriented programming and online security
monitoring and analysis toolset. We also discuss how this model can be extended to SaaS
applications where the same service/application need to satisfy all tenants’ security
requirements.

2. Motivating	Scenario	

Imagine a software system - Galactic ERP, developed by the SwinSoft company. GalacticERP
is delivered as a SaaS application is hosted on a cloud platform called Blue Cloud and uses
external services delivered on Blue Cloud and another cloud provider called Green Cloud.
Galactic ERP is currently in use by three clients: Swin, Auck, and Super.

These three clients are operating in different domains, have different functional requirements,
and have to comply to different security policies and requirements due to criticality of their
business. Furthermore, imagine that the below threats have come true and vulnerabilities have
been detected – e.g.:
● A root-kit attack on its infrastructure as a service e.g. Green Cloud
● Injection attacks, from tainted requests to services such as Get Currency or Build

Workflow
● Poor isolation allowing compromise of one component to attack another e.g. between

SwinSoft platform and GalacticERP
● Excessive privileges for one component allowing access to services of another e.g.

between Green Cloud and Build Workflow

Figure 1. Example scenario of multi-tenant cloud application

Each system vulnerability or cyberattack needs to be mitigated promptly to protect the
underlying system. Currently, most systems require this to happen at design time – through

major changes to the source code - with a patch and update of deployed services. This leaves
systems vulnerable for a considerable period or requires them to be taken offline for fixing.

We have identified a set of key challenges in this domain:
● When we engineer cloud applications, we do not know what other applications and

services will be deployed within the system, what hardware will be deployed on, what
is the network underlying topology, etc.

● Stakeholder requirements change during deployment, especially for multi-tenant cloud
apps, allowing for emergent requirements.

● New threats and vulnerabilities to attack are continually emerging and evolving.
● Design-time patching/re-deploying is a slow process that could leave a system

vulnerable for a considerable period – even with the new DevOps practices, this still
needs thorough testing.

We have identified a set of key requirements to address these challenges, which include:
● Identify emergent threats - even as its environment changes.
● Identify mitigations to the threats i.e. changes to the system configuration, code,

deployment to mitigate the threat and protect it from attack.
● Self-adapt the application(s) using one (or more) mitigations while in use to counter the

threat.

We describe several partial approaches to this solution in the following sections. We group
these solutions as security analysis tools and capabilities including vulnerability analysis and
security monitoring, and security engineering tools and capabilities including design time and
runtime adaptations.

3. Static	Vulnerability	Detection	

This is a part of our larger “model-driven security engineering” platform body of work [4]. The
idea is to develop semi-formal definition (signatures) of OWSAP and CAPEC databases of
security vulnerabilities using a domain specific language – currently, this is done in Object
Constraint Language – OCL – enriched with constructs from the traditional software
architecture/design/code concepts. Then we use these signatures to search for matches in code
or in models associated with applications (e.g. configuration files and selection of application
software). This approach can handle code vulnerability detection e.g. design and architecture
vulnerability detection and several security “metrics” [2].

Figure 2 shows three different example code level vulnerabilities: Figure 2(a) code that is
vulnerable to SQL injection; Figure 2(b) code that is vulnerable to an authentication by-pass;
and Figure 2 (c) code that is vulnerable to improper authorization threat. Figure 3 shows
example semi-formal signatures written as OCL constraints. These signatures describe, using
a model of the target software system, how such vulnerabilities in Figure 2 can be found in the
code base using static analysis.

We have developed a toolset that can take source code, a signature database, and analyse the
source code for code locations vulnerable to the specified attacks in the semi-formal signatures.
Figure 4 shows the basic analysis process. We take a target program (left) and a set of
signatures (right) and then search for matching code or model signatures in the target. This
search is informed by the platform characteristics (top). We produce a set of vulnerabilities and

their locations in the code base/model (bottom) as output. We have extended this approach to
include design- and architecture-level model signatures, including configurations, architectural
choices, and deployment platforms and associated application packages.

(a) Code vulnerable to SQL Injection attack.

(b) Code vulnerable to authentication bypass.

(c) Code	vulnerable	to	improper	authorisation.	
Figure 2. Examples of common attacks

(from [2] © IEEE).

Figure 3. Example formal vulnerability

signatures (from [2] @ IEEE)

Figure 4. Vulnerability Analyzer (from [2] @ IEEE).

4. Dynamic	Application	Monitoring	

To detect system vulnerabilities and threats, we need to implement dynamic analysis solutions,
as well. One dynamic analysis approach is designed to better capture run-time metrics and
analyse these for evidence of incorrect application behaviour or usage from a security
perspective [3]. In an equivalent way to the static analysis above, we formalise a number of
metrics and security constraints of interest – similar to vulnerability signatures - using OCL.
Figure 5 illustrates some examples of such security-related metrics of interest [11,1]. Some of
these metrics are architecture and design-related metrics. Others, are runtime metrics – e.g.
how many requests have been authenticated, how many of these passed (valid) authentication
check, mean time between failed authenticated request, etc. We chose these as examples of the
kinds of metrics a security engineer would like to monitor in order to proactively judge the
current security status of multi-tenant cloud applications[1,13].

We then process a deployed application’s architecture and deployment model and code base to
determine where to add “probes” to gather the required run-time monitoring data. Figure 6
provides an outline of this process. A set of services are “wrapped” to provide access to their
run-time behaviour via a set of probes (top). A set of metrics specifications determine where
these probes need to be injected into the application at rum-time to monitor its behaviour (left).
A probe generator takes the specifications, application model and configures and/or generates
the probes (middle). The framework then captures the required run-time data, determines

exceptions based on the metrics specifications, and then determines possible attack and
vulnerability mitigations that can be actioned and reports these (right).

Figure 5. Examples of security monitoring metrics formal signatures (from [1] @ IEEE).

Figure 6. Run-time probe generation process (from [1] @ IEEE).

5. Run-time	Vulnerability	Mitigation	

Finally, we must secure our vulnerable or under threat applications. Once we have found a
vulnerability using one of the above techniques, we need to determine how to fix, mitigate or
raise an alarm. We identify feasible modifications to the target application to address the
vulnerability: these might be to inject code to fix an SQLI vulnerability e.g. input sanitisation
code; upgrade application software deployed with the services to ensure the latest version is
being used with it; reconfigure service end points to apply more secure encryption, key
management, auditing or other security services; make use of new, improved APIs, libraries
and/or third party security solutions. Figure 7 shows examples of code updates to mitigate some
of the code-level vulnerabilities illustrated earlier. In this example, we use an aspect-oriented

toolset, “re-aspects”, which describe code updates to make (add, remove, modify) using their
own formal OCL signatures [3].

We then update the application to address the discovered vulnerability, security flaws or
counter attack scenario. This may include making run-time code changes, making run-time
configuration changes, redirecting requests to different third-party security solutions, or
deploying different third-party security solutions. It may also in some cases mean restricting
access to parts of the system that remain vulnerable, raising alarms, or worst-case scenario,
taking a system or some services off-lime. We validate that the originally identified
vulnerability has been addressed using an appropriate testing framework e.g. by running attack
scenarios on the vulnerable service, re-running vulnerability analysis on the updated code base,
collecting new monitoring metrics etc.

Figure 8 (a) shows an example of the toolset we have developed to support these re-aspect run-
time code update and Figure 8 (b) an example of the tool in use. (1) We first convert a target
code base into Abstract Syntax Tree format (AST). (2,3) Formal signatures are constructed
using a modelling tool, an example shown in the screen dump in Figure 8(b). (4) We then use
this set of re-aspect formal signatures to locate parts of the code base to modify. (5) We then
determine the full impact analysis of making the code change, which may be at statement,
method, class or caller (system-wide) levels, to determine the full set of code changes needed.
(6) Finally we propagate changes to the code of the application. We have a .NET based tool
that is able to do this at run-time, modifying compiled CLI code of the application [3].

(a) Replacing authentication bypass vulnerable code (b) injecting code to fix improper

authorization

(c) Adding functions to sanitize inputs for SQLI (d) deleting obsolete security code.

Figure 7. Code updates to mitigate vulnerabilities (from [3] @ IEEE).

Figure 8. (a) code updating process; (b) SMART code analysis and updating tool.

The other way to update an application is to use its built-in variability support features. Figure
9 shows our run-time reconfiguration framework, MDSE@R (Model-Driven Security
Engineering @ Run-time), being used to modify configurations of a deployed system to
mitigate discovered security flaws. (1) Vulnerabilities are discovered using static or dynamic
analysis; (2) Mitigation actions are identified to correct the discovered problem; (3, 4) a set of
updates to our deployed application configuration are planned; (3, 5) a set of updates to our
deployed application security handling configurations are planned; (6, 7) these application
and/or application security configuration updates are made; and (8) the reconfigured
application makes use of appropriate security services as it is used.

Figure 9. Run-time configuration updates to mitigate vulnerabilities (from [6] @ Springer).

6. Outstanding	Challenges	

To date we have built several proof-of-concept tools that implement the above aspects of
variability intensive self-securing software systems. We have found some interesting
challenges we trying to adopt this approach. Firstly, run-time updating of applications is
inherently challenging. Running code/configured software applications must be modified with
care to ensure no catastrophic failure during update but also to handle partially completed
processes in sensible ways. Even design time modifications are very challenging when it comes

Re-aspect	Engine

Change	Propagator

Impact	Analyser

Re-aspect	Locator

AST	Generator

Target	Code	Base

Source	Code	Base
Re

-a
sp
ec
t		
M
od

el
le
r

Pe
rs
pe
ct
iv
e	
M
od

el
le
r

1

4

5

6

3 2

1 2

3 4

5

Target	code	in	
VB.Net Anti-aspect	in	C#

to statement level code modifications. Changes need to be thoroughly tested for both
functionality as well as security defects.

Security analysis is a very complex task. It covers threat analysis, attack analysis and
vulnerability analysis. Many techniques have been developed to detect vulnerabilities using
both static and/or dynamic analysis. The rule-based vulnerability analysis techniques are
effective but not enough given that every vulnerability has many ways to be present and many
ways to be detected. There is a trend to start using machine learning techniques to try and detect
security defects by learning what is best security practice and what is not.

Runtime security monitoring is always a necessary security capability recommended by most
of the security standards. Although, there is always a process to follow to develop security
metrics, but there is no recipe of a list of metrics to use, when to use these metrics, what to do
when a metric is not within norm or what would be a norm. This gets even complicated in a
SaaS application where we have multiple tenants, each have their own security requirements
and measures.

Comparing systems within the same domain across different security dimensions can be both
deceiving and inaccurate. Vulnerability counts vs security metrics vs actual meaning for the
vulnerability of the application varies greatly and the impact of the vulnerability on the
application and its users can vary greatly. For example, simple read of a highly confidential
but improperly protected data element may be far more damaging than complex exploits or
severe denial-of-service attacks. The scale of the system can also have major issues on the
viability of some of our techniques where they are computationally expensive to run at run-
time. This means some analyses are not real-time but can only detect vulnerabilities sometime
after the fact. A minor change to the configuration of the application or its deployment
environment e.g. a new service or tenant, can have a major impact on the outcome of the
security analysis. For example, a new tenant for the exact same multi-tenant cloud application
may wish to make use of their own preferred security service, which introduces a whole new
potential vulnerabilities or attack surfaces.

We have found run-time dynamic security analysis that are still an emergent area with it being
still unclear for many potential vulnerabilities what the “right” metrics are to capture, analyse
and determine threat. Security is a “cost” in that it introduces additional performance overhead
and complexity to the application. Run-time adaptation to mitigate detected threats introduces
further overheads and complexities into the system.

Finally, to implement run-time mitigation of emergent threats requires architectures, designs,
code and deployments that support this in highly flexible ways and yet maintain high
application performance and function. A highly variable system at run-time introduces its own
risks in that compromise of the variability supporting architecture components are their own
major security vulnerabilities.

We are working on several areas to help us realise the concept of the self-securing software
system. We are carrying out further formalisation of the OWSAP and CAPEC databases of
security vulnerabilities to enable us to detect further security flaws and vulnerabilities in target
applications. Similarly, we are working on further mitigations for these including formalised
models of the mitigations that can be automatically actioned at run-time.

We are applying deep learning to static and dynamic vulnerability detection vs our current rule-
based (DIGGER, SMART) approaches and are using statistical-based log analysis approaches
to compliment these. These will allow us to train vulnerability detection models from examples
and, we hope, to also allow us to update these trained models as new threats emerge. These
approaches imply we have good training sets and vector-based models for our applications,
both areas of our current work.

We believe that better supporting tenants to specify their security requirements is both essential
for multi-tenant cloud applications, but very challenging [5]. We are working on improved
tenant security modelling tools that will be used by the self-securing application to determine
the actual security requirements to enforce. Finally, zero-day threat detection at the IaaS level
extremely hard but we are working on how to apply this approach to IoT security analysis and
mitigation. This is needed to self-secure new IoT-based systems.

7. Threats	to	Validity	

To date we have built prototypes of our three approaches to static analysis, dynamic monitoring
and runtime adaptation frameworks [1,2,3]. We have evaluated these using a set of open source
cloud applications written in .NET. A major limitation of the static checking approach is its
use of rule-based signatures, requiring expert authoring, updating to new platforms and
configurations, and fragility when applied to new code patterns and programming languages.
We are exploring use of deep learning-based training of the vulnerability analyser where we
train the learner on the vectorised code base, enabling us to retrain it on new examples and
avoiding expert rule authoring [9]. Similarly our current dynamic monitoring approach may
benefit from an approach of training a recongizer on examples of trace data rather than a rule
based approach. Another limitation of the dynamic monitor is generating suitable probes and
integrating probes into the runtime environment of existing cloud applications. Many are not
architected to enable this level of monitoring nor runtime update of monitors. Overheads of
monitoring are a classic problem of such approaches which we also need to address. Finally,
our re-aspects framework has proven well suited to runtime adaptation of .NET platform multi-
tenant cloud applications but such runtime update is fraught with challenges. Not least is
handling update during processing of data by the target application and efficient update is a
further challenge. We are exploring use of micro-service based architectures to allow more
precise runtime modification of services and also because such architectures are designed for
such small scale, runtime modifications.

8. Summary	

We have described a concept of the “self-securing software system”. This is a variability
intensive system that (i) runs static and dynamic analysis techniques to determine if a running
multi-tenant cloud application is vulnerable to attack; (ii) identifies potential run-time
mitigations, or fix-ups to the application to counter the vulnerability; and (iii) carries out run-
time code and/or configuration updates of the application to force these mitigations.

Acknowledgements

Support for this research from Swinburne University of Technology, Deakin University,
Monash University and ARC Discovery projects DP170101932 and DP140102185 is
gratefully acknowledged by the authors.

References

1. Abdelrazek, Mohamed Almorsy, John Grundy, and Amani S. Ibrahim. "Improving Tenants' Trust in SaaS

Applications Using Dynamic Security Monitors." Engineering of Complex Computer Systems (ICECCS),
2015 20th International Conference on. IEEE, 2015.

2. Almorsy, Mohamed, John Grundy, and Amani S. Ibrahim. "Automated software architecture security risk
analysis using formalized signatures." Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press, 2013.

3. Almorsy, Mohamed, John Grundy, and Amani S. Ibrahim. "Supporting automated software re-engineering
using re-aspects." Proceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering. ACM, 2012.

4. Almorsy, Mohamed, John Grundy, and Amani S. Ibrahim. "Adaptable, model-driven security engineering
for SaaS cloud-based applications." Automated software engineering 21.2 (2014): 187-224.

5. Almorsy, Mohemed, John Grundy, and Amani S. Ibrahim. "Collaboration-based cloud computing security
management framework." Cloud Computing (CLOUD), 2011 IEEE International Conference on. IEEE,
2011.

6. Almorsy, Mohemed, John Grundy, Amani Ibrahim, “VAM-aaS: Online Cloud Services Security
Vulnerability Analysis and Mitigation-as-a-Service”, 2012 International Conference on Web Information
Systems Engineering (WISE 2012), Nov 28-30 2012, Paphos, Cyprus, LNCS, Springer.

7. Altekar, Gautam, et al. "OPUS: Online Patches and Updates for Security." USENIX Security Symposium.
2005.

8. Cetina, Carlos, et al. "Autonomic computing through reuse of variability models at runtime: The case of
smart homes." Computer 42.10 (2009).

9. Dam, Hoa Khanh, et al. "DeepSoft: A vision for a deep model of software." Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering. ACM, 2016.

10. Devanbu, Premkumar T., and Stuart Stubblebine. "Software engineering for security: a
roadmap." Proceedings of the Conference on the Future of Software Engineering. ACM, 2000.

11. Hayden, Lance. IT Security Metrics: A Practical Framework for Measuring Security & Protecting Data.
McGraw-Hill Education Group, 2010.

12. Krutz, Ronald L., and Russell Dean Vines. Cloud security: A comprehensive guide to secure cloud
computing. Wiley Publishing, 2010.

13. Luna, Jesus, et al. "A security metrics framework for the cloud." 2011 Proceedings of the International
Conference on Security and Cryptography (SECRYPT). IEEE, 2011.

14. Mellado, Daniel, Eduardo Fernandez-Medina, and Mario Piattini. "Security requirements variability for
software product lines." Availability, Reliability and Security, 2008. ARES 08. Third International
Conference on. IEEE, 2008.

15. Myllärniemi, Varvana, Mikko Raatikainen, and Tomi Männistö. "KumbangSec: An Approach for
Modelling Functional and Security Variability in Software Architectures." VaMoS. 2007.

16. Olaechea, Rafael, et al. "Modelling and multi-objective optimization of quality attributes in variability-rich
software." Proceedings of the Fourth International Workshop on Nonfunctional System Properties in
Domain Specific Modeling Languages. ACM, 2012.

17. Petkac, Mike, and Lee Badger. "Security agility in response to intrusion detection." Computer Security
Applications, 2000. ACSAC'00. 16th Annual Conference. IEEE, 2000.

18. Zissis, Dimitrios, and Dimitrios Lekkas. "Addressing cloud computing security issues." Future Generation
computer systems 28.3 (2012): 583-592.

