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Abstract 
 
We describe a new variability-intensive system idea, the “self-securing software system”. We 
describe how such a system works using a multi-tenant cloud application as a motivating 
example. This supports run-time composition, detects emergent attacks and vulnerabilities, and 
supports run-time updating to mitigate problems. We describe recent work we have done in 
architecting and proof-of-concept prototypes for aspects of such systems. We then describe 
current limitations and future work plans to address these. 
 
1. Introduction	
 
What can go wrong when a software system is under a cyberattack? The system becomes mal-
functional; this could happen in many ways - e.g. the system might become completely 
unavailable due to service disruption, systems could be compromised, or confidential data 
could be exfiltrated. Businesses economic conditions amplify the relentless challenge of 
staying ahead of security vulnerabilities in their computing systems and infrastructure 
[10,12,18]. Hence, the need to build smart, adaptive systems that are secure. Self-securing (also 
called self-protecting or self-defending) is the ability of the software system to identify security 
holes/bugs or detecting current/potential attacks and automatically patch or stop to guarantee 
the availability, integrity and confidentiality aspects of the system and its data.  
 
To enable self-securing systems, we need to: (i) package software security analysis and 
automated software security engineering in one ecosystem, and (ii) engineer systems to allow 
adaptability from the ground-up (architecture and design). Without adaptability, systems 
become hardwired and hard to respond to adaptation triggers including proactively self-secure 
[4,17]. Adaptiveness is achieved via engineering for variability points that allow for different 
system components - at different complexity levels from a class method to a system component 
- to be swapped in/out based on changes in the operational environment or customer needs and 
goals.  
 
From a security point of view, variability is not always a good practice. From a security analysis 
perspective; it increases the potential of system vulnerabilities that might exist in these new 
modules, or in the connectors/interfaces between the modules [8,16]. From a security 
engineering perspective; variability is very useful, changes in user security requirements, risks, 
or new vulnerabilities detected can be mitigated/patched easily at either design-time (due to 
modularity nature of the system) as well as real-time adaptation [7,17].  
 
In Software-as-a-Service (SaaS) applications – e.g. Salesforce.com – implementing a tenant-
oriented security is a must. This is needed to enable the SaaS application to weave in security 
controls for different tenants depending on who is using the application/service – e.g. each 
tenant might need a different set of authentication/authorization controls. This adds a new 
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dimension of SaaS application variability, which is SaaS application security variability 
[14,15]. Other quality of service attributes can add more variability aspects to the system such 
as reliability-specific modules and performance critical modules that sacrifice resource 
efficiency for response time. This will eventually need to be managed through a SaaS 
variability management module. 
 
In this short chapter, we present a proposal for the “self-securing software system” based on 
model-driven engineering using system-and-security description models for run-time 
configuration and weaving using an aspect-oriented programming and online security 
monitoring and analysis toolset. We also discuss how this model can be extended to SaaS 
applications where the same service/application need to satisfy all tenants’ security 
requirements. 
 
2. Motivating	Scenario	
 
Imagine a software system - Galactic ERP, developed by the SwinSoft company. GalacticERP 
is delivered as a SaaS application is hosted on a cloud platform called Blue Cloud and uses 
external services delivered on Blue Cloud and another cloud provider called Green Cloud. 
Galactic ERP is currently in use by three clients: Swin, Auck, and Super.  
 
These three clients are operating in different domains, have different functional requirements, 
and have to comply to different security policies and requirements due to criticality of their 
business. Furthermore, imagine that the below threats have come true and vulnerabilities have 
been detected – e.g.:  
● A root-kit attack on its infrastructure as a service e.g. Green Cloud 
● Injection attacks, from tainted requests to services such as Get Currency or Build 

Workflow 
● Poor isolation allowing compromise of one component to attack another e.g. between 

SwinSoft platform and GalacticERP 
● Excessive privileges for one component allowing access to services of another e.g. 

between Green Cloud and Build Workflow 
 

 
Figure 1. Example scenario of multi-tenant cloud application 

 
Each system vulnerability or cyberattack needs to be mitigated promptly to protect the 
underlying system. Currently, most systems require this to happen at design time – through 



major changes to the source code - with a patch and update of deployed services. This leaves 
systems vulnerable for a considerable period or requires them to be taken offline for fixing. 
 
 
We have identified a set of key challenges in this domain: 
● When we engineer cloud applications, we do not know what other applications and 

services will be deployed within the system, what hardware will be deployed on, what 
is the network underlying topology, etc. 

● Stakeholder requirements change during deployment, especially for multi-tenant cloud 
apps, allowing for emergent requirements. 

● New threats and vulnerabilities to attack are continually emerging and evolving. 
● Design-time patching/re-deploying is a slow process that could leave a system 

vulnerable for a considerable period – even with the new DevOps practices, this still 
needs thorough testing. 

 
We have identified a set of key requirements to address these challenges, which include: 
● Identify emergent threats - even as its environment changes. 
● Identify mitigations to the threats i.e. changes to the system configuration, code, 

deployment to mitigate the threat and protect it from attack. 
● Self-adapt the application(s) using one (or more) mitigations while in use to counter the 

threat. 
 
We describe several partial approaches to this solution in the following sections. We group 
these solutions as security analysis tools and capabilities including vulnerability analysis and 
security monitoring, and security engineering tools and capabilities including design time and 
runtime adaptations. 
 
3. Static	Vulnerability	Detection	
 
This is a part of our larger “model-driven security engineering” platform body of work [4]. The 
idea is to develop semi-formal definition (signatures) of OWSAP and CAPEC databases of 
security vulnerabilities using a domain specific language – currently, this is done in Object 
Constraint Language – OCL – enriched with constructs from the traditional software 
architecture/design/code concepts. Then we use these signatures to search for matches in code 
or in models associated with applications (e.g. configuration files and selection of application 
software). This approach can handle code vulnerability detection e.g. design and architecture 
vulnerability detection and several security “metrics” [2]. 
 
Figure 2 shows three different example code level vulnerabilities: Figure 2(a) code that is 
vulnerable to SQL injection; Figure 2(b) code that is vulnerable to an authentication by-pass; 
and Figure 2 (c) code that is vulnerable to improper authorization threat. Figure 3 shows 
example semi-formal signatures written as OCL constraints. These signatures describe, using 
a model of the target software system, how such vulnerabilities in Figure 2 can be found in the 
code base using static analysis. 
 
We have developed a toolset that can take source code, a signature database, and analyse the 
source code for code locations vulnerable to the specified attacks in the semi-formal signatures. 
Figure 4 shows the basic analysis process. We take a target program (left) and a set of 
signatures (right) and then search for matching code or model signatures in the target. This 
search is informed by the platform characteristics (top). We produce a set of vulnerabilities and 



their locations in the code base/model (bottom) as output. We have extended this approach to 
include design- and architecture-level model signatures, including configurations, architectural 
choices, and deployment platforms and associated application packages. 
  

 

 
(a) Code vulnerable to SQL Injection attack. 

 
(b) Code vulnerable to authentication bypass. 

 
(c) Code	vulnerable	to	improper	authorisation.	
Figure 2. Examples of common attacks 

(from [2] © IEEE). 
 

 

 
Figure 3. Example formal vulnerability 

signatures (from [2] @ IEEE) 
 

 
Figure 4. Vulnerability Analyzer (from [2] @ IEEE).  

 
 
4. Dynamic	Application	Monitoring	
 
To detect system vulnerabilities and threats, we need to implement dynamic analysis solutions, 
as well. One dynamic analysis approach is designed to better capture run-time metrics and 
analyse these for evidence of incorrect application behaviour or usage from a security 
perspective [3]. In an equivalent way to the static analysis above, we formalise a number of 
metrics and security constraints of interest – similar to vulnerability signatures - using OCL. 
Figure 5 illustrates some examples of such security-related metrics of interest [11,1]. Some of 
these metrics are architecture and design-related metrics. Others, are runtime metrics – e.g. 
how many requests have been authenticated, how many of these passed (valid) authentication 
check, mean time between failed authenticated request, etc. We chose these as examples of the 
kinds of metrics a security engineer would like to monitor in order to proactively judge the 
current security status of multi-tenant cloud applications[1,13]. 
 
We then process a deployed application’s architecture and deployment model and code base to 
determine where to add “probes” to gather the required run-time monitoring data. Figure 6 
provides an outline of this process. A set of services are “wrapped” to provide access to their 
run-time behaviour via a set of probes (top). A set of metrics specifications determine where 
these probes need to be injected into the application at rum-time to monitor its behaviour (left). 
A probe generator takes the specifications, application model and configures and/or generates 
the probes (middle). The framework then captures the required run-time data, determines 



exceptions based on the metrics specifications, and then determines possible attack and 
vulnerability mitigations that can be actioned and reports these (right). 
 
 

 
Figure 5. Examples of security monitoring metrics formal signatures (from [1] @ IEEE). 

 
 

 
Figure 6. Run-time probe generation process (from [1] @ IEEE). 

 
5. Run-time	Vulnerability	Mitigation	
 
Finally, we must secure our vulnerable or under threat applications. Once we have found a 
vulnerability using one of the above techniques, we need to determine how to fix, mitigate or 
raise an alarm. We identify feasible modifications to the target application to address the 
vulnerability: these might be to inject code to fix an SQLI vulnerability e.g. input sanitisation 
code; upgrade application software deployed with the services to ensure the latest version is 
being used with it; reconfigure service end points to apply more secure encryption, key 
management, auditing or other security services; make use of new, improved APIs, libraries 
and/or third party security solutions. Figure 7 shows examples of code updates to mitigate some 
of the code-level vulnerabilities illustrated earlier. In this example, we use an aspect-oriented 



toolset, “re-aspects”, which describe code updates to make (add, remove, modify) using their 
own formal OCL signatures [3]. 
 
We then update the application to address the discovered vulnerability, security flaws or 
counter attack scenario. This may include making run-time code changes, making run-time 
configuration changes, redirecting requests to different third-party security solutions, or 
deploying different third-party security solutions. It may also in some cases mean restricting 
access to parts of the system that remain vulnerable, raising alarms, or worst-case scenario, 
taking a system or some services off-lime. We validate that the originally identified 
vulnerability has been addressed using an appropriate testing framework e.g. by running attack 
scenarios on the vulnerable service, re-running vulnerability analysis on the updated code base, 
collecting new monitoring metrics etc.   
 
Figure 8 (a) shows an example of the toolset we have developed to support these re-aspect run-
time code update and Figure 8 (b) an example of the tool in use. (1) We first convert a target 
code base into Abstract Syntax Tree format (AST). (2,3) Formal signatures are constructed 
using a modelling tool, an example shown in the screen dump in Figure 8(b). (4) We then use 
this set of re-aspect formal signatures to locate parts of the code base to modify. (5) We then 
determine the full impact analysis of making the code change, which may be at statement, 
method, class or caller (system-wide) levels, to determine the full set of code changes needed. 
(6) Finally we propagate changes to the code of the application. We have a .NET based tool 
that is able to do this at run-time, modifying compiled CLI code of the application [3]. 
 

    
(a) Replacing authentication bypass vulnerable code (b) injecting code to fix improper 

authorization 
 

  
(c) Adding functions to sanitize inputs for SQLI (d) deleting obsolete security code. 
 

Figure 7. Code updates to mitigate vulnerabilities (from [3] @ IEEE). 
 



 
 

Figure 8. (a) code updating process; (b) SMART code analysis and updating tool. 
 

The other way to update an application is to use its built-in variability support features. Figure 
9 shows our run-time reconfiguration framework, MDSE@R (Model-Driven Security 
Engineering @ Run-time), being used to modify configurations of a deployed system to 
mitigate discovered security flaws. (1) Vulnerabilities are discovered using static or dynamic 
analysis; (2) Mitigation actions are identified to correct the discovered problem; (3, 4) a set of 
updates to our deployed application configuration are planned; (3, 5) a set of updates to our 
deployed application security handling configurations are planned; (6, 7) these application 
and/or application security configuration updates are made; and (8) the reconfigured 
application makes use of appropriate security services as it is used. 
 

 
Figure 9. Run-time configuration updates to mitigate vulnerabilities (from [6] @ Springer). 

 
6. Outstanding	Challenges	
 
To date we have built several proof-of-concept tools that implement the above aspects of 
variability intensive self-securing software systems. We have found some interesting 
challenges we trying to adopt this approach. Firstly, run-time updating of applications is 
inherently challenging. Running code/configured software applications must be modified with 
care to ensure no catastrophic failure during update but also to handle partially completed 
processes in sensible ways. Even design time modifications are very challenging when it comes 
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to statement level code modifications. Changes need to be thoroughly tested for both 
functionality as well as security defects. 
 
Security analysis is a very complex task. It covers threat analysis, attack analysis and 
vulnerability analysis. Many techniques have been developed to detect vulnerabilities using 
both static and/or dynamic analysis. The rule-based vulnerability analysis techniques are 
effective but not enough given that every vulnerability has many ways to be present and many 
ways to be detected. There is a trend to start using machine learning techniques to try and detect 
security defects by learning what is best security practice and what is not. 
 
Runtime security monitoring is always a necessary security capability recommended by most 
of the security standards. Although, there is always a process to follow to develop security 
metrics, but there is no recipe of a list of metrics to use, when to use these metrics, what to do 
when a metric is not within norm or what would be a norm. This gets even complicated in a 
SaaS application where we have multiple tenants, each have their own security requirements 
and measures. 
 
Comparing systems within the same domain across different security dimensions can be both 
deceiving and inaccurate. Vulnerability counts vs security metrics vs actual meaning for the 
vulnerability of the application varies greatly and the impact of the vulnerability on the 
application and its users can vary greatly. For example, simple read of a highly confidential 
but improperly protected data element may be far more damaging than complex exploits or 
severe denial-of-service attacks. The scale of the system can also have major issues on the 
viability of some of our techniques where they are computationally expensive to run at run-
time. This means some analyses are not real-time but can only detect vulnerabilities sometime 
after the fact. A minor change to the configuration of the application or its deployment 
environment e.g. a new service or tenant, can have a major impact on the outcome of the 
security analysis. For example, a new tenant for the exact same multi-tenant cloud application 
may wish to make use of their own preferred security service, which introduces a whole new 
potential vulnerabilities or attack surfaces.  
 
We have found run-time dynamic security analysis that are still an emergent area with it being 
still unclear for many potential vulnerabilities what the “right” metrics are to capture, analyse 
and determine threat. Security is a “cost” in that it introduces additional performance overhead 
and complexity to the application. Run-time adaptation to mitigate detected threats introduces 
further overheads and complexities into the system.  
 
Finally, to implement run-time mitigation of emergent threats requires architectures, designs, 
code and deployments that support this in highly flexible ways and yet maintain high 
application performance and function. A highly variable system at run-time introduces its own 
risks in that compromise of the variability supporting architecture components are their own 
major security vulnerabilities. 
 
We are working on several areas to help us realise the concept of the self-securing software 
system. We are carrying out further formalisation of the OWSAP and CAPEC databases of 
security vulnerabilities to enable us to detect further security flaws and vulnerabilities in target 
applications. Similarly, we are working on further mitigations for these including formalised 
models of the mitigations that can be automatically actioned at run-time.  
 



We are applying deep learning to static and dynamic vulnerability detection vs our current rule-
based (DIGGER, SMART) approaches and are using statistical-based log analysis approaches 
to compliment these. These will allow us to train vulnerability detection models from examples 
and, we hope, to also allow us to update these trained models as new threats emerge. These 
approaches imply we have good training sets and vector-based models for our applications, 
both areas of our current work.   
 
We believe that better supporting tenants to specify their security requirements is both essential 
for multi-tenant cloud applications, but very challenging [5]. We are working on improved 
tenant security modelling tools that will be used by the self-securing application to determine 
the actual security requirements to enforce. Finally, zero-day threat detection at the IaaS level 
extremely hard but we are working on how to apply this approach to IoT security analysis and 
mitigation. This is needed to self-secure new IoT-based systems. 
 
7. Threats	to	Validity	
 
To date we have built prototypes of our three approaches to static analysis, dynamic monitoring 
and runtime adaptation frameworks [1,2,3]. We have evaluated these using a set of open source 
cloud applications written in .NET. A major limitation of the static checking approach is its 
use of rule-based signatures, requiring expert authoring, updating to new platforms and 
configurations, and fragility when applied to new code patterns and programming languages. 
We are exploring use of deep learning-based training of the vulnerability analyser where we 
train the learner on the vectorised code base, enabling us to retrain it on new examples and 
avoiding expert rule authoring [9]. Similarly our current dynamic monitoring approach may 
benefit from an approach of training a recongizer on examples of trace data rather than a rule 
based approach. Another limitation of the dynamic monitor is generating suitable probes and 
integrating probes into the runtime environment of existing cloud applications. Many are not 
architected to enable this level of monitoring nor runtime update of monitors. Overheads of 
monitoring are a classic problem of such approaches which we also need to address. Finally, 
our re-aspects framework has proven well suited to runtime adaptation of .NET platform multi-
tenant cloud applications but such runtime update is fraught with challenges. Not least is 
handling update during processing of data by the target application and efficient update is a 
further challenge. We are exploring use of micro-service based architectures to allow more 
precise runtime modification of services and also because such architectures are designed for 
such small scale, runtime modifications. 
 
8. Summary	
 
We have described a concept of the “self-securing software system”. This is a variability 
intensive system that (i) runs static and dynamic analysis techniques to determine if a running 
multi-tenant cloud application is vulnerable to attack; (ii) identifies potential run-time 
mitigations, or fix-ups to the application to counter the vulnerability; and (iii) carries out run-
time code and/or configuration updates of the application to force these mitigations. 
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