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Abstract— In cloud environments, IT solutions are delivered to 

users via shared infrastructure, enabling cloud service providers 
to deploy applications as services according to user QoS (Quality 
of Service) requirements. One consequence of this cloud model is 
the huge amount of energy consumption and significant carbon 
footprints caused by large cloud infrastructures. A key and 
common objective of cloud service providers is thus to develop 
cloud application deployment and management solutions with 
minimum energy consumption while guaranteeing performance 
and other QoS specified in Service Level Agreements (SLAs). 
However, finding the best deployment configuration that 
maximises energy efficiency while guaranteeing system 
performance is an extremely challenging task, which requires the 
evaluation of system performance and energy consumption under 
various workloads and deployment configurations. In order to 
simplify this process we have developed StressCloud, an 
automatic performance and energy consumption analysis tool for 
cloud applications in real-world cloud environments. StressCloud 
supports the modelling of realistic cloud application workloads, 
the automatic generation of load tests, and the profiling of system 
performance and energy consumption. We demonstrate the 
utility of StressCloud by analysing the performance and energy 
consumption of a cloud application under a broad range of 
different deployment configurations. 
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I. INTRODUCTION 
Cloud computing is a relatively new paradigm where users 

lease cloud infrastructure and services rather than buy them 
outright [1]. This allows users to: 1) achieve elastic 
computation and storage, i.e. the ability to dynamically scale 
those resources up and down according to real-time needs; 2) 
pay for only what they currently need; 3) avoid high up-front 
purchase and on-going infrastructure and service maintenance; 
4) avoid in-house need for skills sets for specific IT platforms; 
and 5) for small and medium enterprises (SMEs) in particular - 
leverage IT security, scalability, reliability and robustness that 
are difficult to obtain with purely in-house solutions. 

However, two major challenges of the cloud model are the 
huge energy consumption of large-scale cloud data centres and 
the need to meet ever-increasing system performance and other 
Quality of Service (QoS) requirements for the cloud 
applications. High energy consumption directly contributes to 
data centres’ operational costs, especially as the energy unit 
cost continues to rise significantly. Currently, power 

consumption contributes up to 42% of a data centre’s total 
expense [2]. In addition, the huge amount of power 
consumption of data centres potentially accelerates global 
warming [3]. On the other hand, cloud service providers must 
provide their users with satisfactory system performance, 
usually measured in throughput and response time. For 
instance, even a 100ms extra delay of cloud service response 
time can cause a 1% drop in sales [4]. Thus, cloud service 
providers must develop cloud application deployment and 
management solutions with minimum energy consumption 
while guaranteeing system performance and Service Level 
Agreements (SLAs). 

However, finding the best deployment configuration that 
maximises energy efficiency while guaranteeing system 
performance is an extremely challenging task, due to the 
complexity and heterogeneity of cloud applications and 
deployment platforms. It thus requires the evaluation of system 
performance and energy consumption under various 
combinations of application workloads and platform 
configurations. There are however numerous different 
application workloads and platform configurations, even for a 
small cloud application like JPetStore1. Manual generation of 
load test plans, changes of system configurations and running 
of load tests are tedious and error-prone. In addition, the 
collection of accurate system performance and energy 
consumption data of cloud applications relies on the use of load 
tests based on a realistic user behaviour model and running the 
load tests in a real-world cloud environment. 

A lot of research effort has been devoted to building 
performance evaluation tools for cloud systems [5-10]. 
However, most existing approaches provide only a fairly basic 
model for user behaviour: a sequence of user requests on cloud 
servers arranged into repeating groups with multiple threads (to 
mimic large number of cloud users) [5, 6, 10]. Thus, a rich and 
realistic cloud application workload model is required before 
reliable performance and energy consumption evaluation can 
be conducted. Moreover, most of the existing performance 
evaluation tools utilise simulated cloud environments, 
providing approximations of cloud system performance [5, 7-
9]. The key limitation of simulation-based modelling is that test 
results may be inaccurate because of the imperfection in the 
assumptions, input data, work tasks, energy usage and 
performance in the simulation environment [11].  

                                                             
1 http://java.sun.com/developer/releases/petstore/ 
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In order to address the above issues, we have developed 
StressCloud, a novel performance and energy consumption 
analysis tool for cloud applications in real-world cloud 
environments. StressCloud offers the following features: 1) the 
ability to model realistic cloud application workloads at 
varying levels of detail; 2) the ability to model cloud 
application deployment configurations at varying levels of 
detail; 3) automatic generation of detailed load test plans; 4) 
support for automatic load tests; and 5) automatic monitoring, 
profiling and analysis of system performance and energy 
consumption. 

Key novel contributions of our StressCloud approach are: 
• Supporting user-defined high-level architecture and 

workload models for complex cloud applications; 
• Fully automatic generation and deployment of large-

scale cloud application workload test services and cloud 
application model prototype implementations;   

• Ability to realistically energy and performance stress 
test existing cloud applications and potential cloud 
application models; 

• Automatic profiling of system performance and energy 
consumption of the cloud application; 

• Analytical support for pre-test model energy and 
performance weaknesses and post-test energy and 
performance metric analysis. 

The reminder of this paper is organised as follows. Section 
II briefly summarises the state-of-the-art in cloud performance 
and energy consumption profiling and analysis approaches, and 
reviews existing load test tools for cloud systems. Section III 
gives an overview of StressCloud, our tool for profiling and 
analysing performance and energy consumption of cloud 
applications. Section IV describes the system architecture of 
StressCloud. Section V introduces the StressCloud testing 
procedure. In Section VI, we demonstrate the effectiveness of 
StressCloud by presenting the test results of the system 
performance and energy consumption of JPetStore under 
different deployment configurations. The key advantages and 
limitations of StressCloud are discussed in SectionVII. We 
conclude by summarising the main contributions of this 
research and key areas of our future work in Section VIII. 

II. RELATED WORK 
Some research has attempted to leverage the trade-off 

between the performance and energy consumption of cloud 
applications.  Metri et al. [12] investigated the energy 
efficiency of data centres by running benchmark applications 
on cloud servers. However, they focused on a black box in 
benchmarking the performance and energy consumption of 
cloud applications without looking into the parameters of the 
cloud applications. Lee and Zomaya analysed energy-efficient 
resource utilisation of cloud applications [3]. They concluded 
that energy consumption can be reduced when two or more 
tasks are consolidated rather than solely deployed on one 
resource. However, they did not consider the performance 
aspect of such applications. Chen et al. [13] profiled and 
analysed the performance and energy consumption of cloud 
applications based on individual task types. They aimed to 

investigate the impact of cloud application workloads and 
resources allocation strategies on energy consumption and 
system performance. However, they did not take into account 
the user behaviours in the workload model. 

A wide range of load test tools have been developed for 
cloud systems. CloudSim [5] is a self-contained cloud platform 
that allows modelling and simulation of cloud infrastructures 
containing data centres, users and user workloads. It can be 
used to simulate a transactional, continuous workload such as a 
web server. However, it lacks a detailed model of the 
application and thus its analysis results are limited. iCanCloud 
[14] is a simulation framework for large storage networks. It 
provides the ability to evaluate the performance of a particular 
application on a specific hardware. However, no energy 
consumption model has been considered. 

Some cloud load test tools have taken into account the 
energy consumption of data centres. GreenCloud [8] is focused 
on simulating the communications between processes running 
in a cloud at packet level. It is specially designed to simulate 
energy consumption of the components of data centre, 
including servers, switches and links. MDCSim [15] is an 
event-driven simulation platform which focuses on data centre 
architecture and cluster configuration, measuring both 
performance and power metrics. However, both GreenCloud 
and MDCSim utilise simulation-based modelling. The key 
limitation of simulation-based modelling is that test results may 
be inaccurate because of the imperfection of environmental 
configuration and input data in the simulation [11]. In contrast 
to simulation-based modelling, model-based test-bed 
generation [16] provides more accurate test results because a 
test-bed is a more realistic representation of the real software 
environments. Compared to simulation, less work has been 
done in generating a model-based performance and energy test-
bed for cloud applications. 

A form chart model is a technology-independent bipartite 
state diagram used to simulate users’ request/response 
behaviour [17]. The model describes at a high level what the 
user sees as system output, and what he or she provides as 
input to the system. It captures the structure of the target 
system from the user’s perspective and can be augmented with 
probabilities to capture user interactions with the target system. 
A stochastic form chart model has been extended from the 
basic form chart model with stochastic functions that generate 
performance testing workloads of Web applications [17]. In the 
stochastic form chart model, the pages of a web site are 
represented as bubbles, the actions as boxes and the transitions 
between them as arrows. Cloud users send service requests to 
the cloud application and get responses from the cloud 
application with service results. A cloud system can be 
considered as a request/response system. Therefore, we adopt 
the stochastic form chart models and extend it to model the 
cloud application workloads of user-to-service and service-to-
service request/response path likelihood. 

III. STRESSCLOUD OVERVIEW 
Fig.1 shows how StressCloud is used to perform load test to 

profile the performance and energy consumption of a cloud 



application. First, the performance engineer defines the cloud 
application workload model (1). The workload model is 
composed of a set of tasks modelling the target cloud 
application behaviour. Based on the major type of resource 
consumed by a task, we categorise runtime tasks into three 
types: computation-intensive, data-intensive and 
communication-intensive [18]. In real-world applications, 
cloud application services are made up of composite tasks that 
consume multiple types of cloud resources, including CPU, 
RAM, data storage and network devices. Thus, we introduce a 
“composite task” in our workload model to represent such 
composite tasks. This model is then further augmented by the 
performance engineer with transition probabilities and 
properties between tasks, forming a detailed, executable 
workload model. 
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Fig.1. StressCloud Performance and Energy Data Profiling Process. 

We have developed a collection of cloud services 
configured by these application workload models in order to 
provide a realistic target application for energy and 
performance data collection. These services respond to user 
requests by performing tasks defined in the workload model. 
This allows for what-if energy consumption and system 
performance analysis of planned systems and for modelling the 
re-engineering of existing systems. For each task, a stochastic 
form chart is created to specify detailed user requests and 
required responses from the cloud system. These workload 
models are deployed and run on real-world cloud hardware 
platforms to produce a realistic performance and energy 
consumption behaviours for measurement and comparison.   

A cloud system architecture model is defined by the 
performance engineer to specify the elements in the target 
cloud system (2). Our cloud architecture model includes all 
available resources in the target cloud system and their detailed 
configurations. Resources of different types in the cloud can be 
specified by different resource locations, such as physical 
servers and virtual machines (VMs). After mapping the tasks 
defined in the user workload model to corresponding resources 
in the cloud system architecture model, workload deployment 
scripts are generated (3). Based on the deployment scripts, load 
test services are uploaded and deployed to the VMs in the 
target cloud system (4). These load test services were 

developed based on our previous research that incorporated 
CPU, RAM and data-intensive tasks, and supported service-to-
service communication-intensive tasks [13]. Load test scripts 
are then automatically generated based on the workload model 
(5). Next, the specified load tests are performed automatically 
in the target deployed cloud system based on the load test 
scripts (6). The performance and energy consumption data of 
the target cloud system are collected (7) and then visualised 
using a variety of charts (8). The visualised system 
performance and energy consumption data are updated at a 
user-specified rate, by default every 20 seconds. Test results 
are stored for future comparison with new tests running with 
differing tasks, loads and deployment models. 

IV. SYSTEM ARCHITECTURE 
The high-level architecture of StressCloud is presented in 

Fig.2. StressCloud is realised as a set of Eclipse IDE plug-ins.  
A set of editors are used to support diagrammatic modelling of 
workload and deployment platform (1). Three key diagram 
types are used, i.e., the high-level workload model of the cloud 
application, low-level workload model of each task and the 
cloud platform architecture model (2). Diagrammatic editors 
are instantiated for editing these models using the Eclipse 
Graphical Modelling Framework. The “DiagramRe-
arrangeManager” component enables automatic layout in all 
graphical components of the diagrams within the modelling 
environment, to arrange the graphic model entities into 
different layouts based on user selection. The workload models 
are used to synthesize detailed load test scripts by the 
“LoadTestScriptsTranslator” (3). The deployment model is 
used to synthesize configuration scripts for deploying, 
configuring and instantiating VMs, hosted applications and 
services by the “DeploymentScriptsTranslator” (4). A set of 
objects are created to traverse the cloud architecture and 
workload models to generate these scripts. 
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Fig.2.  High-level Architecture of StressCloud. 

The deployment scripts are sent to a “DeploymentEngine” 
(5). This component creates and instantiates VMs, runs 
installation scripts on the VMs, distributes workload 
configurations to VMs, and configures our workload services 
hosted on the VMs. It can also retrieve the details of both 
physical servers and VMs configured on these servers. The 
engine is implemented as an agent that interacts with the target 
cloud system manager. StressCloud now supports VMware as 
the target cloud platform hypervisor. Creating templates of 
deployment scripts to support more platforms is part of our 
future work. Similarly, a “LoadTestExecutionEngine” invokes 



the load tests on the deployed cloud application (6). This 
component also manages database connections, captures real 
time performance and energy consumption data from the target 
cloud system, transforms the collected data into suitable 
format, and stores those collected data into files for 
visualisation (7). The “VisulisationEngine”, implemented using 
Eclipse SWT (8), queries the stored performance and energy 
data to provide periodic update. All models are saved in the 
model library as XML files. The 
“DiagramGenerationManager” component can automatically 
retrieve the existing models and generate model entities, 
associations and their visual icons (9). 

V. USAGE EXAMPLE 
We introduce the key functions of StressCloud using the 

reference Java application JPetStore as an example in this 
section. 

A. Workload Modelling 
A performance engineer first needs to define a high-level 

workload model of cloud application using an extended 
stochastic form chart. An example workload model of 
JPetStore is shown in Fig.3. In this example, the client 
(represented by bottom left icon) is modelled with a set of 
requests (represented by large icons with sub-request 
containers) linked together with transitions (represented by 

grey arrowed lines) with probability annotations. Start (green) 
and quit (red) circle icons define a state-chart-style model for 
the workload. This example specifies that the user selects a task 
(Signin, GetProduct, GetIndex, GetHelp, GetCategory, 
GetCart, CreateNewAccount, GetProductDetail, or CheckOut) 
with different probabilities after starting the workload. Multiple 
workload profiles can be defined for each cloud application. 

The performance engineer then defines the low-level 
workload model of each task in the high-level workload model. 
Each task is a call to a service in the cloud application. Each 
such service is modelled as either a call to an existing deployed 
cloud application service or one or more “basic” service task 
types (data-intensive, computation-intensive or 
communication-intensive). These task types are used to build a 
model of a target cloud application’s services. A complex cloud 
application is thus built up of services comprised of a mix of 
different types of tasks and different workloads using these 
tasks. 

Each workload task may comprise of sub-tasks that allow 
us to define in detail what the task does. We again use the 
probability-based stochastic form chart formalism to model 
these sub-tasks. Fig.4 shows an example of three JPetStore sub-
task models, (a) a communication intensive sub-task 
(modelling client-to-server or service-to-service 
communications); (b) a computation-intensive sub-task 
(modelling information processing on a server node); and (c) a 

 
Fig.3. A JPetStore High-level Workload Model in StressCloud. 

 
Fig.4. Stochastic Form Chart Models of Communication-intensive Task (a), Computation-intensive Task (b) and Data-intensive Task (c). 

     



data-intensive sub-task (modelling database or file processing 
on a data storage server node). StressCloud allows the 
performance engineer to specify a range of information about 
each sub-task, as shown in the right parts of Fig.4. 

B. Cloud Architecture Modelling 
After defining the detailed workload of a target cloud 

application, the performance engineer must define the 
deployment platform for running the application. An example 
of such a cloud architecture model is shown in Fig.5. A cloud 
platform comprises of physical server hosts, VMs and 
networks. Some VMs are optimised for data- or computation-
intensive tasks. VMs have configuration parameters, for 
example, virtual memory size and number of compute cores, a 
host operating system, and deployed application software 
services such as web server, database server etc. Physical hosts 
and networks have various characteristics, for example, server 
type, number of CPU cores, amount of physical memory, VM 
hypervisor type, bandwidth, etc. All the details and the 
platform structure are captured in the cloud architecture model 
in StressCloud. Different cloud architecture models can be 
defined to model different physical servers, VM configurations, 
arrangements of networks and servers, different application 
software deployments and configurations, etc. 

 
Fig.5. An example Cloud Architecture modelled in StressCloud. 

Fig.5 (a) shows a high-level model of the cloud platform 
architecture for running the JPetStore cloud application in our 
example loading and energy analysis tests. This is a data centre 
with one physical host and three VM groups on which different 
tasks will be hosted. Various configuration parameters are 
shown at the bottom of the figure. 

These cloud platform specifications are used to model and 
configure actual cloud hardware. Fig.5 (b) shows how the 
performance engineer specifies a particular VM configuration 
that has been created for the physical host machine and its 
hypervisor, in this case a VMWare hypervisor. The 

performance engineer may configure available parameters for 
the selected VM type, shown at bottom. 

C. Deployment Plan Generation 
The model of the cloud platform is then used to generate 

automated configuration scripts in order to configure the 
platform for load test runs. The performance engineer can 
assign various JPetStore services to different VMs on the 
available deployment platform. Some machines may run on the 
same host, some on different hosts. Those on different hosts 
will communicate via the physical network, while those on the 
same host will communicate via the virtual vSwitch provided 
by the hypervisor. The generated scripts are uploaded to the 
target servers and VMs by StressCloud and executed to 
configure them. Within the StressCloud environment, the 
performance engineer may save their deployment model and 
define a new one, assign services to different servers/VMs in 
the new deployment model, and generate and run new 
deployment scripts. 

D. Load Test Plan Generation 
After generating and deploying the cloud platform and the 

service configuration scripts, the performance engineer uses 
StressCloud to generate the load test plans of the modelled 
JPetStore application. The workload model presented in Fig.3 
is used to synthesize a test script that will be run on a client 
machine. This script models the state machine that describes, 
the sequence of tasks, transitions between tasks, probabilities 
that each task will be carried out, iterations of each task, and 
the workload. Each task in the workload model is modelled 
either by a call to a deployed real-world cloud application 
service, or a model of that service. The service model is a set of 
data-, computation- and communication-intensive sub-tasks. 
These tasks are themselves organised into a probabilistic 
model, designed to capture the data, computation and 
communication intensive aspects in the cloud application 
service respectively. A service may itself be modelled as a 
workload model, making use of other services, thereby 
modelling the service-oriented architecture of many cloud 
applications. 

Each task’s sub-model component includes the parameters 
of the services involved in the task service model. These 
parameters specify, for example, the number of iterations for 
storage, compute, send and receive activities in the services, the 
amount of data to store, process, send and receive in each 
activity, the type of activity, such as insert, update, delete, 
select on database, the number of cores to use in processing, 
the amount of memory to use in processing, the number and 
size of rows to return for the select activity, and so on.  

E. Test Running and Results Visualisation 
Once load test scripts have been generated they are 

uploaded to one or more machines acting as “clients” and run. 
The performance engineer may ask for many hundreds or even 
thousands of instances of the “client” to be run simultaneously, 
permitting large-scale stress tests to be performed. Clients 
running the load tests can be hosted on the same or different 
physical machines, depending on machine availability, to 



enable analysis of network performance and energy 
consumption under different loads.  

The results of load tests are periodically collected and 
interactive visualisations are provided to the performance 
engineer Different collection intervals and parameters can be 
set. Results can be saved for post-hoc analysis and comparative 
analysis of different workload and deployment configurations. 

VI. EVALUATION 
To evaluate StressCloud’s utiltiy, we used JPetStore as a 

representative cloud application and discuss results of a set of 
energy usage evaluations and a user evaluation of StressCloud. 

A. Experimental Setup 
The experiments were conducted on SwinCloud. In order to 

eliminate the impact of energy consumption and system 
performance introduced by energy collection applications, a 
PowerNode2 power monitor developed by GreenWave Reality 
is connected directly to SwinCloud servers. It supports 
measurement of both immediate and average power 
consumption. The data collected by the PowerNode were 
reported to a GreenWave Gateway. StressCloud retrieves 
power consumption readings from the Gateway once every 
second. The energy consumption of a cloud system includes 
the energy consumed by the constituent servers and the 
scheduling overhead across the servers. We focus on the 
energy consumption of individual servers in our experiments as 
it is the predominant component in cloud. 

The server deployed was a HP Z400, the VM Manager 
(VMM) used is a VMware ESX 4.1, and the operating systems 
running on the VMs are Windows XP Professional SP3. The 
server has 4 physical cores and 8GB of RAM. In our 
experiments, VMs were assigned with 2GB, 4GB, 6GB or 8GB 
of RAM. The number of virtual CPUs (vCPUs) of each VM 
varied from 1 to 4 in steps of 1. The number of vCPUs 
configured on a VM was equivalent to the number of physical 
cores assigned to the VM.  

StressCloud was installed on a client PC. All workloads 
were modelled and generated using StressCloud and then sent 
to SwinCloud servers. A series of web services for load tests 
were deployed on VMs hosted on the cloud server. It was 
configured by the StressCloud scripts generated from the cloud 
application workload models. The system performance and 
energy consumption data were collected and stored for analysis 
and visualisation. For the modelled JPetStore, as presented in 
Section V and named “MJPetStore”, we performed a number 
of load and energy tests with different workload models and 
platform deployment configurations. We conducted two major 
sets of experiments. In the first set, we deployed MJPetStore on 
a single VM and changed the workload. In the second set, we 
kept the workload of the MJPetStore constant and changed the 
deployment configurations. 

B. Experiment Results 
We first deployed MJPetStore on one VM with 3 CPUs and 

6GB RAM. The initial number of users was set to 10. We then 

                                                             
2 http://www.greenwavereality.com/ 

increased the concurrent requests number of each user from 50 
to 200 in steps of 50. The energy consumption and system 
throughput are presented in Fig.6. As shown in Fig.6 (a), the 
energy consumption increased with the number of concurrent 
requests. The throughput, on the other hand, decreased 
accordingly as shown in Fig.6 (b). Intuitively, more user 
requests will introduce more scheduling and synchronising 
overhead in the cloud application, which will result in an 
increase in VM CPU usage and memory usage. Therefore, the 
power consumption of the server will increase accordingly. In 
addition, scheduling and synchronising overhead will also 
introduce an increase in the processing time for each user 
request. Thus, the energy consumption of the task increases and 
throughput decreases. 
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We then kept the workload of the MJPetStore constant and 
changed the deployment configurations. The initial number of 
users was set to 10 and the number of concurrent requests for 
each user was set to 100. Three deployment configurations 
were evaluated. We first deployed MJPetStore on one VM with 
3 CPUs and 6GB RAM. This configuration was named 
“1Large”.  Then we deployed MJPetStore on three VMs, each 
with 1 CPU and 2GB RAM. The data, computation and 
communication tasks were deployed on different VMs. This 
configuration was named “3Small(D)”. Then we deployed the 
three types of tasks on the same VM with workloads evenly 
distributed across all VMs. This configuration was named 
“3Small(S)”. In order to understand the difference between the 
energy consumption of the target cloud system and the 
application, we first measured the power consumption of the 
cloud server in idle state with one Large VM and then three 
Small VMs. After that, we measured the power consumption of 
the cloud server with workload under different deployment 
configurations.  

The energy consumption and system throughput under 
different deployment strategies are presented in Fig.7 (a) and 
(b) respectively. Although the total resources such as CPU and 
RAM allocated were the same, the energy consumption 
decreased when MJPetStore was deployed on multiple VMs 
compared to a single VM, as shown in Fig.7 (a). The system 
throughput increased accordingly as displayed in Fig.7 (b). 
Although the power consumption of the server slightly 
increased when MJPetstore was deployed on multiple VMs, the 
service requests sent to MJPetStore could be processed by 
more concurrent processes compared to one Large VM. This 
reduced the execution time of the cloud application. As a result, 
the energy consumption of the system decreased accordingly. 



In addition, we observed that the energy consumption with 
deployment configuration “3Small(S)” increased by 0.8% 
compared to “3Small(D)”. The system throughput of 
“3Small(S)” decreased by 2.1% compared to “3Small(D)”. 
This is because in the client workload we have modelled in this 
test, the majority of the tasks were communication-intensive. 
Deploying all communication-intensive tasks on one single 
VM greatly reduced the overhead of concurrent processes 
across different VMs. In summary, better energy efficiency and 
system performance were achieved when MJPetStore was 
deployed on three VMs and different types of cloud services on 
different VM. 

C. User Evaluation 
We carried out a user evaluation of StressCloud with 7 

researchers. All selected participants had different backgrounds 
and experience levels: 3 participants were postdoctoral research 
fellows and the other 4 participants were PhD candidates; 2 
participants had 2~7 years working experience in industry 
related to software engineering; 2 participants had experiences 
in performance engineering. All participants had a rough 
understanding of cloud computing. Each participant was asked 
to profile the energy consumption and system performance of a 
simple modelled cloud application on one virtual machine. The 
selected cloud application in this user evaluation contained one 
computation-intensive task, one data-intensive task and one 
communication-intensive task. Before starting the experiment, 
each participant was given a 20 minutes introduction to 
StressCloud. Then the participants were asked to complete the 
following tasks: 1) Create the workload model and augment it 
by specifying the properties of each workload model 
component; 2) Create the cloud architecture model and 
augment it by specifying properties of architecture model 
components; 3) Deploy workload to target cloud platform; 4) 
Generate load test scripts; and 5) Run load test and view 
visualised data.  

We then interviewed them to gain their perceptions of 
StressCloud’s utility and usability. All participants found that 
StressCloud was very useful for automating the energy and 
performance profiling process of cloud applications. They also 
found StressCloud was easy to use and understand. 
Qualitatively, they stated that it was easy to use StressCloud to 
model the application workload and cloud architecture, and 
apply load tests. Particularly, 2 participants who had 
experiences in performance engineering and used JMeter3  
stated that StressCloud was much easier to use and more 
efficient than JMeter in terms of test scripts generation. 
StressCloud provides a visualised user interface for the 
performance engineer to automatically generate load test 
scripts while in JMeter all test scripts are manually specified. 
However, most of them would like a better approach to 
automate augmenting the workload model and architecture 
model instead of manually specifying the properties of each 
model element. 

We compared the time taken to evaluate the system 
performance and energy consumption of JPetStore manually to 

                                                             
3 https://jmeter.apache.org/ 

using StressCloud. This work efficiency comparison compares 
the total effort to build workload and energy test-bed models, 
conduct all the load tests, and profile the system performance 
and energy data. All of the load tests were undertaken by an 
experienced performance engineer who fully understood the 
target cloud application and the evaluation process of system 
performance and energy consumption before StressCloud 
development. Manually completing the whole process took 2 
months of full-time work while repeating this with StressCloud 
only took 1.5 weeks. An additional one-off overhead of 
approximately 2 hours was incurred for the engineer to become 
familiar with StressCloud. However, extensive further analysis 
activities with StressCloud can be performed within hours or 
even minutes, i.e. changing deployment models, workload 
probabilities and tasks, re-running tests. Conducting these 
analysis activities manually would take extensive application 
and test redevelopment running into weeks. We are currently 
undertaking a more extensive user evaluation to achieve more 
reliable results. 

VII. DISCUSSION  
Most current cloud application load test tools require 

significant programming effort of performance engineers in 
building prototypical cloud-side service components [7, 19]. 
This requires considerable knowledge of the cloud application 
under test and a lot of effort to build and maintain the 
prototypes, especially for large cloud applications or cloud 
applications which the performance engineer is unfamiliar 
with. In contrast, StressCloud provides the ability to build a 
model of the cloud application under test by comprising a mix 
of data, computation and communication tasks under different 
workloads. In addition, StressCloud can also be used to stress a 
deployed real-world cloud application. In this case, the 
performance engineer needs to specify which deployed cloud 
services to invoke, including parameter data to send to the 
application services. 

The key advantages of StressCloud include: 1) its use of a 
formal model for user behaviour modelling; 2) the ability to 
automatically generate the load tests scripts and cloud service 
deployment scripts; and 3) the ability to automatically run load 
test and profile system performance and energy data. Unlike 
simulation-based modelling for such analysis [7], StressCloud 
allows cloud services to be deployed and run in a real-world 
cloud environment, resulting in more accurate and realistic 
estimation of cloud application performance and energy 
consumption. The stochastic form chart model used by 
StressCloud allows the performance engineer to model user 
behaviours as probabilistic interactions between user request 
and cloud server response. The accuracy of using stochastic 
form chart to model user behaviour has been presented and 
discussed in [17]. Performance engineers can build different 
workload models for all or part of a cloud application to 
compare and contrast performance and energy consumption 
under different user behaviours and deployment configurations.  

The key limitation of StressCloud is the adequacy of the 
stochastic form chart model to capture the “realistic” user 
behaviours of cloud applications. StressCloud’s stochastic form 



charts rely on the performance engineer specifying user 
behaviours and probabilities of different user interactions with 
cloud applications and parameters of invoked cloud services. 
These are thus as sensitive to erroneous data as in any other 
performance testing tool. One mitigating approach we have 
adopted for StressCloud is to allow multiple form chart models 
to be defined for the same target cloud application. This allows 
the performance engineer to experiment with a variety of 
different workload modes and compare cloud application’s 
performance and energy under different conditions.  

Currently, StressCloud only supports VMware as the cloud 
platform hypervisor. A key piece of future work is creating a 
set of templates to traverse the workload and cloud architecture 
model in order to generate load test scripts and deployment 
scripts for the selected cloud platform. This will allow a 
performance engineer to add more templates to StressCloud to 
support more cloud platforms.  

VIII. CONCLUSION AND FUTURE WORK 
Finding the best deployment configuration for cloud 

applications to maximise energy efficiency and performance is 
an extremely challenging task, due to the complexity and 
heterogeneity of cloud applications and their deployment 
platforms. In this paper, we presented StressCloud, a novel 
performance and energy consumption analysis tool for cloud 
applications in real-world cloud environments. StressCloud 
supports: 1) modelling realistic cloud application workloads; 2) 
automatic deployment of load test services; 3) automatic 
generation of load tests; and 4) automatic profiling of the 
performance and energy consumption of cloud applications. 
We demonstrated the effectiveness of StressCloud by analysing 
the performance and energy consumption of an example cloud 
application with a range of different deployment 
configurations. The experimental results demonstrated that, 
with the support of StressCloud, the performance and energy 
consumption of cloud applications in realistic cloud 
environments can be collected and analysed in an effective and 
efficient manner. Our key future work is creating templates for 
traversing the workload and cloud architecture model to 
support more cloud platforms. 
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