
Automating Performance and Energy Consumption
Analysis for Cloud Applications

Feifei Chen, John Grundy, Jean-Guy Schneider, Yun Yang and Qiang He

School of Software & Electrical Engineering
Swinburne University of Technology

Melbourne, Australia 3122
{feifeichen, jgrundy, jschneider, yyang, qhe}@swin.edu.au

Abstract— In cloud environments, IT solutions are delivered to

users via shared infrastructure, enabling cloud service providers
to deploy applications as services according to user QoS (Quality
of Service) requirements. One consequence of this cloud model is
the huge amount of energy consumption and significant carbon
footprints caused by large cloud infrastructures. A key and
common objective of cloud service providers is thus to develop
cloud application deployment and management solutions with
minimum energy consumption while guaranteeing performance
and other QoS specified in Service Level Agreements (SLAs).
However, finding the best deployment configuration that
maximises energy efficiency while guaranteeing system
performance is an extremely challenging task, which requires the
evaluation of system performance and energy consumption under
various workloads and deployment configurations. In order to
simplify this process we have developed StressCloud, an
automatic performance and energy consumption analysis tool for
cloud applications in real-world cloud environments. StressCloud
supports the modelling of realistic cloud application workloads,
the automatic generation of load tests, and the profiling of system
performance and energy consumption. We demonstrate the
utility of StressCloud by analysing the performance and energy
consumption of a cloud application under a broad range of
different deployment configurations.

Keywords—Cloud Computing, Green Computing, Performance

Analysis, Form Chart, Load Test

I. INTRODUCTION
Cloud computing is a relatively new paradigm where users

lease cloud infrastructure and services rather than buy them
outright [1]. This allows users to: 1) achieve elastic
computation and storage, i.e. the ability to dynamically scale
those resources up and down according to real-time needs; 2)
pay for only what they currently need; 3) avoid high up-front
purchase and on-going infrastructure and service maintenance;
4) avoid in-house need for skills sets for specific IT platforms;
and 5) for small and medium enterprises (SMEs) in particular -
leverage IT security, scalability, reliability and robustness that
are difficult to obtain with purely in-house solutions.

However, two major challenges of the cloud model are the
huge energy consumption of large-scale cloud data centres and
the need to meet ever-increasing system performance and other
Quality of Service (QoS) requirements for the cloud
applications. High energy consumption directly contributes to
data centres’ operational costs, especially as the energy unit
cost continues to rise significantly. Currently, power

consumption contributes up to 42% of a data centre’s total
expense [2]. In addition, the huge amount of power
consumption of data centres potentially accelerates global
warming [3]. On the other hand, cloud service providers must
provide their users with satisfactory system performance,
usually measured in throughput and response time. For
instance, even a 100ms extra delay of cloud service response
time can cause a 1% drop in sales [4]. Thus, cloud service
providers must develop cloud application deployment and
management solutions with minimum energy consumption
while guaranteeing system performance and Service Level
Agreements (SLAs).

However, finding the best deployment configuration that
maximises energy efficiency while guaranteeing system
performance is an extremely challenging task, due to the
complexity and heterogeneity of cloud applications and
deployment platforms. It thus requires the evaluation of system
performance and energy consumption under various
combinations of application workloads and platform
configurations. There are however numerous different
application workloads and platform configurations, even for a
small cloud application like JPetStore1. Manual generation of
load test plans, changes of system configurations and running
of load tests are tedious and error-prone. In addition, the
collection of accurate system performance and energy
consumption data of cloud applications relies on the use of load
tests based on a realistic user behaviour model and running the
load tests in a real-world cloud environment.

A lot of research effort has been devoted to building
performance evaluation tools for cloud systems [5-10].
However, most existing approaches provide only a fairly basic
model for user behaviour: a sequence of user requests on cloud
servers arranged into repeating groups with multiple threads (to
mimic large number of cloud users) [5, 6, 10]. Thus, a rich and
realistic cloud application workload model is required before
reliable performance and energy consumption evaluation can
be conducted. Moreover, most of the existing performance
evaluation tools utilise simulated cloud environments,
providing approximations of cloud system performance [5, 7-
9]. The key limitation of simulation-based modelling is that test
results may be inaccurate because of the imperfection in the
assumptions, input data, work tasks, energy usage and
performance in the simulation environment [11].

1 http://java.sun.com/developer/releases/petstore/

jgrundy
IEEE SERVICES 2015 Visionary Track: The Future of Software Engineering FOR and IN Cloud, New York, USA, July 31 2015 © IEEE.

jgrundy

In order to address the above issues, we have developed
StressCloud, a novel performance and energy consumption
analysis tool for cloud applications in real-world cloud
environments. StressCloud offers the following features: 1) the
ability to model realistic cloud application workloads at
varying levels of detail; 2) the ability to model cloud
application deployment configurations at varying levels of
detail; 3) automatic generation of detailed load test plans; 4)
support for automatic load tests; and 5) automatic monitoring,
profiling and analysis of system performance and energy
consumption.

Key novel contributions of our StressCloud approach are:
• Supporting user-defined high-level architecture and

workload models for complex cloud applications;
• Fully automatic generation and deployment of large-

scale cloud application workload test services and cloud
application model prototype implementations;

• Ability to realistically energy and performance stress
test existing cloud applications and potential cloud
application models;

• Automatic profiling of system performance and energy
consumption of the cloud application;

• Analytical support for pre-test model energy and
performance weaknesses and post-test energy and
performance metric analysis.

The reminder of this paper is organised as follows. Section
II briefly summarises the state-of-the-art in cloud performance
and energy consumption profiling and analysis approaches, and
reviews existing load test tools for cloud systems. Section III
gives an overview of StressCloud, our tool for profiling and
analysing performance and energy consumption of cloud
applications. Section IV describes the system architecture of
StressCloud. Section V introduces the StressCloud testing
procedure. In Section VI, we demonstrate the effectiveness of
StressCloud by presenting the test results of the system
performance and energy consumption of JPetStore under
different deployment configurations. The key advantages and
limitations of StressCloud are discussed in SectionVII. We
conclude by summarising the main contributions of this
research and key areas of our future work in Section VIII.

II. RELATED WORK
Some research has attempted to leverage the trade-off

between the performance and energy consumption of cloud
applications. Metri et al. [12] investigated the energy
efficiency of data centres by running benchmark applications
on cloud servers. However, they focused on a black box in
benchmarking the performance and energy consumption of
cloud applications without looking into the parameters of the
cloud applications. Lee and Zomaya analysed energy-efficient
resource utilisation of cloud applications [3]. They concluded
that energy consumption can be reduced when two or more
tasks are consolidated rather than solely deployed on one
resource. However, they did not consider the performance
aspect of such applications. Chen et al. [13] profiled and
analysed the performance and energy consumption of cloud
applications based on individual task types. They aimed to

investigate the impact of cloud application workloads and
resources allocation strategies on energy consumption and
system performance. However, they did not take into account
the user behaviours in the workload model.

A wide range of load test tools have been developed for
cloud systems. CloudSim [5] is a self-contained cloud platform
that allows modelling and simulation of cloud infrastructures
containing data centres, users and user workloads. It can be
used to simulate a transactional, continuous workload such as a
web server. However, it lacks a detailed model of the
application and thus its analysis results are limited. iCanCloud
[14] is a simulation framework for large storage networks. It
provides the ability to evaluate the performance of a particular
application on a specific hardware. However, no energy
consumption model has been considered.

Some cloud load test tools have taken into account the
energy consumption of data centres. GreenCloud [8] is focused
on simulating the communications between processes running
in a cloud at packet level. It is specially designed to simulate
energy consumption of the components of data centre,
including servers, switches and links. MDCSim [15] is an
event-driven simulation platform which focuses on data centre
architecture and cluster configuration, measuring both
performance and power metrics. However, both GreenCloud
and MDCSim utilise simulation-based modelling. The key
limitation of simulation-based modelling is that test results may
be inaccurate because of the imperfection of environmental
configuration and input data in the simulation [11]. In contrast
to simulation-based modelling, model-based test-bed
generation [16] provides more accurate test results because a
test-bed is a more realistic representation of the real software
environments. Compared to simulation, less work has been
done in generating a model-based performance and energy test-
bed for cloud applications.

A form chart model is a technology-independent bipartite
state diagram used to simulate users’ request/response
behaviour [17]. The model describes at a high level what the
user sees as system output, and what he or she provides as
input to the system. It captures the structure of the target
system from the user’s perspective and can be augmented with
probabilities to capture user interactions with the target system.
A stochastic form chart model has been extended from the
basic form chart model with stochastic functions that generate
performance testing workloads of Web applications [17]. In the
stochastic form chart model, the pages of a web site are
represented as bubbles, the actions as boxes and the transitions
between them as arrows. Cloud users send service requests to
the cloud application and get responses from the cloud
application with service results. A cloud system can be
considered as a request/response system. Therefore, we adopt
the stochastic form chart models and extend it to model the
cloud application workloads of user-to-service and service-to-
service request/response path likelihood.

III. STRESSCLOUD OVERVIEW
Fig.1 shows how StressCloud is used to perform load test to

profile the performance and energy consumption of a cloud

application. First, the performance engineer defines the cloud
application workload model (1). The workload model is
composed of a set of tasks modelling the target cloud
application behaviour. Based on the major type of resource
consumed by a task, we categorise runtime tasks into three
types: computation-intensive, data-intensive and
communication-intensive [18]. In real-world applications,
cloud application services are made up of composite tasks that
consume multiple types of cloud resources, including CPU,
RAM, data storage and network devices. Thus, we introduce a
“composite task” in our workload model to represent such
composite tasks. This model is then further augmented by the
performance engineer with transition probabilities and
properties between tasks, forming a detailed, executable
workload model.

Deploy Load Test
Services

Deploy Load Test
Services

Load Test Scripts

Model Cloud
System Workload

Model Cloud
System Workload

Stored ResultsStored Results

Performance Engineer

Model Cloud
Architecture

Model Cloud
Architecture

Workload
Deployment Scripts

Generate Load
Test Scripts

Generate Load
Test Scripts

Generate Workload
Deployment Scripts
Generate Workload
Deployment Scripts

Workload
Model

Cloud System
Architecture

Model

Apply Load Tests
to Cloud

Apply Load Tests
to Cloud

Test Results

Collect Performance
and Energy Data

Collect Performance
and Energy Data

Visualise ResultsVisualise Results

1

2

4

35

6 7

StressCloud

Cloud

8

Fig.1. StressCloud Performance and Energy Data Profiling Process.

We have developed a collection of cloud services
configured by these application workload models in order to
provide a realistic target application for energy and
performance data collection. These services respond to user
requests by performing tasks defined in the workload model.
This allows for what-if energy consumption and system
performance analysis of planned systems and for modelling the
re-engineering of existing systems. For each task, a stochastic
form chart is created to specify detailed user requests and
required responses from the cloud system. These workload
models are deployed and run on real-world cloud hardware
platforms to produce a realistic performance and energy
consumption behaviours for measurement and comparison.

A cloud system architecture model is defined by the
performance engineer to specify the elements in the target
cloud system (2). Our cloud architecture model includes all
available resources in the target cloud system and their detailed
configurations. Resources of different types in the cloud can be
specified by different resource locations, such as physical
servers and virtual machines (VMs). After mapping the tasks
defined in the user workload model to corresponding resources
in the cloud system architecture model, workload deployment
scripts are generated (3). Based on the deployment scripts, load
test services are uploaded and deployed to the VMs in the
target cloud system (4). These load test services were

developed based on our previous research that incorporated
CPU, RAM and data-intensive tasks, and supported service-to-
service communication-intensive tasks [13]. Load test scripts
are then automatically generated based on the workload model
(5). Next, the specified load tests are performed automatically
in the target deployed cloud system based on the load test
scripts (6). The performance and energy consumption data of
the target cloud system are collected (7) and then visualised
using a variety of charts (8). The visualised system
performance and energy consumption data are updated at a
user-specified rate, by default every 20 seconds. Test results
are stored for future comparison with new tests running with
differing tasks, loads and deployment models.

IV. SYSTEM ARCHITECTURE
The high-level architecture of StressCloud is presented in

Fig.2. StressCloud is realised as a set of Eclipse IDE plug-ins.
A set of editors are used to support diagrammatic modelling of
workload and deployment platform (1). Three key diagram
types are used, i.e., the high-level workload model of the cloud
application, low-level workload model of each task and the
cloud platform architecture model (2). Diagrammatic editors
are instantiated for editing these models using the Eclipse
Graphical Modelling Framework. The “DiagramRe-
arrangeManager” component enables automatic layout in all
graphical components of the diagrams within the modelling
environment, to arrange the graphic model entities into
different layouts based on user selection. The workload models
are used to synthesize detailed load test scripts by the
“LoadTestScriptsTranslator” (3). The deployment model is
used to synthesize configuration scripts for deploying,
configuring and instantiating VMs, hosted applications and
services by the “DeploymentScriptsTranslator” (4). A set of
objects are created to traverse the cloud architecture and
workload models to generate these scripts.

StressCloudEditor
StressCloudModelGenerator

DeploymentEngine

StressCloudModels

StressCloudModelLibrary

DiagramGenerationManager

High-level Workload Model

Low-level Workload Model

Architecture Model

StressCloudLoadTestScripts
Generator
Algorithm

StressCloudLoadDeployment
ScriptsGenerator

DeploymentScriptsTranslator

(1)

(9)

LoadTestScriptsTranslator

Algorithm

LoadTestExecution
Engine

(2)

VisulisationEngine

(3)
(3)

(4)
(4)

(5)

(6)

(7)

(8)

Results
DataBase

DiagramRe-arrangeManager

Fig.2. High-level Architecture of StressCloud.

The deployment scripts are sent to a “DeploymentEngine”
(5). This component creates and instantiates VMs, runs
installation scripts on the VMs, distributes workload
configurations to VMs, and configures our workload services
hosted on the VMs. It can also retrieve the details of both
physical servers and VMs configured on these servers. The
engine is implemented as an agent that interacts with the target
cloud system manager. StressCloud now supports VMware as
the target cloud platform hypervisor. Creating templates of
deployment scripts to support more platforms is part of our
future work. Similarly, a “LoadTestExecutionEngine” invokes

the load tests on the deployed cloud application (6). This
component also manages database connections, captures real
time performance and energy consumption data from the target
cloud system, transforms the collected data into suitable
format, and stores those collected data into files for
visualisation (7). The “VisulisationEngine”, implemented using
Eclipse SWT (8), queries the stored performance and energy
data to provide periodic update. All models are saved in the
model library as XML files. The
“DiagramGenerationManager” component can automatically
retrieve the existing models and generate model entities,
associations and their visual icons (9).

V. USAGE EXAMPLE
We introduce the key functions of StressCloud using the

reference Java application JPetStore as an example in this
section.

A. Workload Modelling
A performance engineer first needs to define a high-level

workload model of cloud application using an extended
stochastic form chart. An example workload model of
JPetStore is shown in Fig.3. In this example, the client
(represented by bottom left icon) is modelled with a set of
requests (represented by large icons with sub-request
containers) linked together with transitions (represented by

grey arrowed lines) with probability annotations. Start (green)
and quit (red) circle icons define a state-chart-style model for
the workload. This example specifies that the user selects a task
(Signin, GetProduct, GetIndex, GetHelp, GetCategory,
GetCart, CreateNewAccount, GetProductDetail, or CheckOut)
with different probabilities after starting the workload. Multiple
workload profiles can be defined for each cloud application.

The performance engineer then defines the low-level
workload model of each task in the high-level workload model.
Each task is a call to a service in the cloud application. Each
such service is modelled as either a call to an existing deployed
cloud application service or one or more “basic” service task
types (data-intensive, computation-intensive or
communication-intensive). These task types are used to build a
model of a target cloud application’s services. A complex cloud
application is thus built up of services comprised of a mix of
different types of tasks and different workloads using these
tasks.

Each workload task may comprise of sub-tasks that allow
us to define in detail what the task does. We again use the
probability-based stochastic form chart formalism to model
these sub-tasks. Fig.4 shows an example of three JPetStore sub-
task models, (a) a communication intensive sub-task
(modelling client-to-server or service-to-service
communications); (b) a computation-intensive sub-task
(modelling information processing on a server node); and (c) a

Fig.3. A JPetStore High-level Workload Model in StressCloud.

Fig.4. Stochastic Form Chart Models of Communication-intensive Task (a), Computation-intensive Task (b) and Data-intensive Task (c).

data-intensive sub-task (modelling database or file processing
on a data storage server node). StressCloud allows the
performance engineer to specify a range of information about
each sub-task, as shown in the right parts of Fig.4.

B. Cloud Architecture Modelling
After defining the detailed workload of a target cloud

application, the performance engineer must define the
deployment platform for running the application. An example
of such a cloud architecture model is shown in Fig.5. A cloud
platform comprises of physical server hosts, VMs and
networks. Some VMs are optimised for data- or computation-
intensive tasks. VMs have configuration parameters, for
example, virtual memory size and number of compute cores, a
host operating system, and deployed application software
services such as web server, database server etc. Physical hosts
and networks have various characteristics, for example, server
type, number of CPU cores, amount of physical memory, VM
hypervisor type, bandwidth, etc. All the details and the
platform structure are captured in the cloud architecture model
in StressCloud. Different cloud architecture models can be
defined to model different physical servers, VM configurations,
arrangements of networks and servers, different application
software deployments and configurations, etc.

Fig.5. An example Cloud Architecture modelled in StressCloud.

Fig.5 (a) shows a high-level model of the cloud platform
architecture for running the JPetStore cloud application in our
example loading and energy analysis tests. This is a data centre
with one physical host and three VM groups on which different
tasks will be hosted. Various configuration parameters are
shown at the bottom of the figure.

These cloud platform specifications are used to model and
configure actual cloud hardware. Fig.5 (b) shows how the
performance engineer specifies a particular VM configuration
that has been created for the physical host machine and its
hypervisor, in this case a VMWare hypervisor. The

performance engineer may configure available parameters for
the selected VM type, shown at bottom.

C. Deployment Plan Generation
The model of the cloud platform is then used to generate

automated configuration scripts in order to configure the
platform for load test runs. The performance engineer can
assign various JPetStore services to different VMs on the
available deployment platform. Some machines may run on the
same host, some on different hosts. Those on different hosts
will communicate via the physical network, while those on the
same host will communicate via the virtual vSwitch provided
by the hypervisor. The generated scripts are uploaded to the
target servers and VMs by StressCloud and executed to
configure them. Within the StressCloud environment, the
performance engineer may save their deployment model and
define a new one, assign services to different servers/VMs in
the new deployment model, and generate and run new
deployment scripts.

D. Load Test Plan Generation
After generating and deploying the cloud platform and the

service configuration scripts, the performance engineer uses
StressCloud to generate the load test plans of the modelled
JPetStore application. The workload model presented in Fig.3
is used to synthesize a test script that will be run on a client
machine. This script models the state machine that describes,
the sequence of tasks, transitions between tasks, probabilities
that each task will be carried out, iterations of each task, and
the workload. Each task in the workload model is modelled
either by a call to a deployed real-world cloud application
service, or a model of that service. The service model is a set of
data-, computation- and communication-intensive sub-tasks.
These tasks are themselves organised into a probabilistic
model, designed to capture the data, computation and
communication intensive aspects in the cloud application
service respectively. A service may itself be modelled as a
workload model, making use of other services, thereby
modelling the service-oriented architecture of many cloud
applications.

Each task’s sub-model component includes the parameters
of the services involved in the task service model. These
parameters specify, for example, the number of iterations for
storage, compute, send and receive activities in the services, the
amount of data to store, process, send and receive in each
activity, the type of activity, such as insert, update, delete,
select on database, the number of cores to use in processing,
the amount of memory to use in processing, the number and
size of rows to return for the select activity, and so on.

E. Test Running and Results Visualisation
Once load test scripts have been generated they are

uploaded to one or more machines acting as “clients” and run.
The performance engineer may ask for many hundreds or even
thousands of instances of the “client” to be run simultaneously,
permitting large-scale stress tests to be performed. Clients
running the load tests can be hosted on the same or different
physical machines, depending on machine availability, to

enable analysis of network performance and energy
consumption under different loads.

The results of load tests are periodically collected and
interactive visualisations are provided to the performance
engineer Different collection intervals and parameters can be
set. Results can be saved for post-hoc analysis and comparative
analysis of different workload and deployment configurations.

VI. EVALUATION
To evaluate StressCloud’s utiltiy, we used JPetStore as a

representative cloud application and discuss results of a set of
energy usage evaluations and a user evaluation of StressCloud.

A. Experimental Setup
The experiments were conducted on SwinCloud. In order to

eliminate the impact of energy consumption and system
performance introduced by energy collection applications, a
PowerNode2 power monitor developed by GreenWave Reality
is connected directly to SwinCloud servers. It supports
measurement of both immediate and average power
consumption. The data collected by the PowerNode were
reported to a GreenWave Gateway. StressCloud retrieves
power consumption readings from the Gateway once every
second. The energy consumption of a cloud system includes
the energy consumed by the constituent servers and the
scheduling overhead across the servers. We focus on the
energy consumption of individual servers in our experiments as
it is the predominant component in cloud.

The server deployed was a HP Z400, the VM Manager
(VMM) used is a VMware ESX 4.1, and the operating systems
running on the VMs are Windows XP Professional SP3. The
server has 4 physical cores and 8GB of RAM. In our
experiments, VMs were assigned with 2GB, 4GB, 6GB or 8GB
of RAM. The number of virtual CPUs (vCPUs) of each VM
varied from 1 to 4 in steps of 1. The number of vCPUs
configured on a VM was equivalent to the number of physical
cores assigned to the VM.

StressCloud was installed on a client PC. All workloads
were modelled and generated using StressCloud and then sent
to SwinCloud servers. A series of web services for load tests
were deployed on VMs hosted on the cloud server. It was
configured by the StressCloud scripts generated from the cloud
application workload models. The system performance and
energy consumption data were collected and stored for analysis
and visualisation. For the modelled JPetStore, as presented in
Section V and named “MJPetStore”, we performed a number
of load and energy tests with different workload models and
platform deployment configurations. We conducted two major
sets of experiments. In the first set, we deployed MJPetStore on
a single VM and changed the workload. In the second set, we
kept the workload of the MJPetStore constant and changed the
deployment configurations.

B. Experiment Results
We first deployed MJPetStore on one VM with 3 CPUs and

6GB RAM. The initial number of users was set to 10. We then

2 http://www.greenwavereality.com/

increased the concurrent requests number of each user from 50
to 200 in steps of 50. The energy consumption and system
throughput are presented in Fig.6. As shown in Fig.6 (a), the
energy consumption increased with the number of concurrent
requests. The throughput, on the other hand, decreased
accordingly as shown in Fig.6 (b). Intuitively, more user
requests will introduce more scheduling and synchronising
overhead in the cloud application, which will result in an
increase in VM CPU usage and memory usage. Therefore, the
power consumption of the server will increase accordingly. In
addition, scheduling and synchronising overhead will also
introduce an increase in the processing time for each user
request. Thus, the energy consumption of the task increases and
throughput decreases.

0
2000
4000
6000
8000
10000

50 100 150 200

En
er
gy
.

Co
nu

m
pt
io
n.

(Jo
ul
e)

Number.of.User.Request.per.Second

90

100

110

120

50 100 150 200

Th
ro
ug
hp

ut
.in
.

Re
qe

st
.p
er
.

Se
co
nd

Number.of.User.Request.per.Second
Fig.6. Energy Consumption (a), Throughput (b).

5600

5650

5700

5750

5800

1Large 3Small(D) 3Small(S)

En
er
gy
6

Co
nu

m
pt
io
n6

(Jo
ul
e)

Deployment6Strategy

110
112
114
116
118
120

1Large 3Small(D) 3Small(S)

Th
ro
ug
hp

ut
6in
6

Re
qu

es
t6p

er
6

Se
co
nd

Deployment6Strategy
Fig.7. Energy Consumption (a), Throughput (b).

We then kept the workload of the MJPetStore constant and
changed the deployment configurations. The initial number of
users was set to 10 and the number of concurrent requests for
each user was set to 100. Three deployment configurations
were evaluated. We first deployed MJPetStore on one VM with
3 CPUs and 6GB RAM. This configuration was named
“1Large”. Then we deployed MJPetStore on three VMs, each
with 1 CPU and 2GB RAM. The data, computation and
communication tasks were deployed on different VMs. This
configuration was named “3Small(D)”. Then we deployed the
three types of tasks on the same VM with workloads evenly
distributed across all VMs. This configuration was named
“3Small(S)”. In order to understand the difference between the
energy consumption of the target cloud system and the
application, we first measured the power consumption of the
cloud server in idle state with one Large VM and then three
Small VMs. After that, we measured the power consumption of
the cloud server with workload under different deployment
configurations.

The energy consumption and system throughput under
different deployment strategies are presented in Fig.7 (a) and
(b) respectively. Although the total resources such as CPU and
RAM allocated were the same, the energy consumption
decreased when MJPetStore was deployed on multiple VMs
compared to a single VM, as shown in Fig.7 (a). The system
throughput increased accordingly as displayed in Fig.7 (b).
Although the power consumption of the server slightly
increased when MJPetstore was deployed on multiple VMs, the
service requests sent to MJPetStore could be processed by
more concurrent processes compared to one Large VM. This
reduced the execution time of the cloud application. As a result,
the energy consumption of the system decreased accordingly.

In addition, we observed that the energy consumption with
deployment configuration “3Small(S)” increased by 0.8%
compared to “3Small(D)”. The system throughput of
“3Small(S)” decreased by 2.1% compared to “3Small(D)”.
This is because in the client workload we have modelled in this
test, the majority of the tasks were communication-intensive.
Deploying all communication-intensive tasks on one single
VM greatly reduced the overhead of concurrent processes
across different VMs. In summary, better energy efficiency and
system performance were achieved when MJPetStore was
deployed on three VMs and different types of cloud services on
different VM.

C. User Evaluation
We carried out a user evaluation of StressCloud with 7

researchers. All selected participants had different backgrounds
and experience levels: 3 participants were postdoctoral research
fellows and the other 4 participants were PhD candidates; 2
participants had 2~7 years working experience in industry
related to software engineering; 2 participants had experiences
in performance engineering. All participants had a rough
understanding of cloud computing. Each participant was asked
to profile the energy consumption and system performance of a
simple modelled cloud application on one virtual machine. The
selected cloud application in this user evaluation contained one
computation-intensive task, one data-intensive task and one
communication-intensive task. Before starting the experiment,
each participant was given a 20 minutes introduction to
StressCloud. Then the participants were asked to complete the
following tasks: 1) Create the workload model and augment it
by specifying the properties of each workload model
component; 2) Create the cloud architecture model and
augment it by specifying properties of architecture model
components; 3) Deploy workload to target cloud platform; 4)
Generate load test scripts; and 5) Run load test and view
visualised data.

We then interviewed them to gain their perceptions of
StressCloud’s utility and usability. All participants found that
StressCloud was very useful for automating the energy and
performance profiling process of cloud applications. They also
found StressCloud was easy to use and understand.
Qualitatively, they stated that it was easy to use StressCloud to
model the application workload and cloud architecture, and
apply load tests. Particularly, 2 participants who had
experiences in performance engineering and used JMeter3
stated that StressCloud was much easier to use and more
efficient than JMeter in terms of test scripts generation.
StressCloud provides a visualised user interface for the
performance engineer to automatically generate load test
scripts while in JMeter all test scripts are manually specified.
However, most of them would like a better approach to
automate augmenting the workload model and architecture
model instead of manually specifying the properties of each
model element.

We compared the time taken to evaluate the system
performance and energy consumption of JPetStore manually to

3 https://jmeter.apache.org/

using StressCloud. This work efficiency comparison compares
the total effort to build workload and energy test-bed models,
conduct all the load tests, and profile the system performance
and energy data. All of the load tests were undertaken by an
experienced performance engineer who fully understood the
target cloud application and the evaluation process of system
performance and energy consumption before StressCloud
development. Manually completing the whole process took 2
months of full-time work while repeating this with StressCloud
only took 1.5 weeks. An additional one-off overhead of
approximately 2 hours was incurred for the engineer to become
familiar with StressCloud. However, extensive further analysis
activities with StressCloud can be performed within hours or
even minutes, i.e. changing deployment models, workload
probabilities and tasks, re-running tests. Conducting these
analysis activities manually would take extensive application
and test redevelopment running into weeks. We are currently
undertaking a more extensive user evaluation to achieve more
reliable results.

VII. DISCUSSION
Most current cloud application load test tools require

significant programming effort of performance engineers in
building prototypical cloud-side service components [7, 19].
This requires considerable knowledge of the cloud application
under test and a lot of effort to build and maintain the
prototypes, especially for large cloud applications or cloud
applications which the performance engineer is unfamiliar
with. In contrast, StressCloud provides the ability to build a
model of the cloud application under test by comprising a mix
of data, computation and communication tasks under different
workloads. In addition, StressCloud can also be used to stress a
deployed real-world cloud application. In this case, the
performance engineer needs to specify which deployed cloud
services to invoke, including parameter data to send to the
application services.

The key advantages of StressCloud include: 1) its use of a
formal model for user behaviour modelling; 2) the ability to
automatically generate the load tests scripts and cloud service
deployment scripts; and 3) the ability to automatically run load
test and profile system performance and energy data. Unlike
simulation-based modelling for such analysis [7], StressCloud
allows cloud services to be deployed and run in a real-world
cloud environment, resulting in more accurate and realistic
estimation of cloud application performance and energy
consumption. The stochastic form chart model used by
StressCloud allows the performance engineer to model user
behaviours as probabilistic interactions between user request
and cloud server response. The accuracy of using stochastic
form chart to model user behaviour has been presented and
discussed in [17]. Performance engineers can build different
workload models for all or part of a cloud application to
compare and contrast performance and energy consumption
under different user behaviours and deployment configurations.

The key limitation of StressCloud is the adequacy of the
stochastic form chart model to capture the “realistic” user
behaviours of cloud applications. StressCloud’s stochastic form

charts rely on the performance engineer specifying user
behaviours and probabilities of different user interactions with
cloud applications and parameters of invoked cloud services.
These are thus as sensitive to erroneous data as in any other
performance testing tool. One mitigating approach we have
adopted for StressCloud is to allow multiple form chart models
to be defined for the same target cloud application. This allows
the performance engineer to experiment with a variety of
different workload modes and compare cloud application’s
performance and energy under different conditions.

Currently, StressCloud only supports VMware as the cloud
platform hypervisor. A key piece of future work is creating a
set of templates to traverse the workload and cloud architecture
model in order to generate load test scripts and deployment
scripts for the selected cloud platform. This will allow a
performance engineer to add more templates to StressCloud to
support more cloud platforms.

VIII. CONCLUSION AND FUTURE WORK
Finding the best deployment configuration for cloud

applications to maximise energy efficiency and performance is
an extremely challenging task, due to the complexity and
heterogeneity of cloud applications and their deployment
platforms. In this paper, we presented StressCloud, a novel
performance and energy consumption analysis tool for cloud
applications in real-world cloud environments. StressCloud
supports: 1) modelling realistic cloud application workloads; 2)
automatic deployment of load test services; 3) automatic
generation of load tests; and 4) automatic profiling of the
performance and energy consumption of cloud applications.
We demonstrated the effectiveness of StressCloud by analysing
the performance and energy consumption of an example cloud
application with a range of different deployment
configurations. The experimental results demonstrated that,
with the support of StressCloud, the performance and energy
consumption of cloud applications in realistic cloud
environments can be collected and analysed in an effective and
efficient manner. Our key future work is creating templates for
traversing the workload and cloud architecture model to
support more cloud platforms.

ACKNOWLEDGMENT
We thank Professor Ryszard Kowalczyk for providing the

facilities of Swinburne Energy Research Lab. The authors wish
to acknowledge substantial support provided by NICTA, and
partial support from Australian Research Council under
Discovery Project DP110101340. NICTA is funded by the
Australian Government through the Department of
Communications and the Australian Research Council through
the ICT Centre of Excellence Program.

REFERENCES
[1] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., et al.:

"Above the clouds: a Berkeley view of cloud computing". UC Berkeley
Reliable Adaptive Distributed Systems Laboratory, USA, Technical
Report, UCB/EECS-2009-28, Feb 10, 2009.

[2] Hamilto, J.: "Cooperative expendable micro-slice servers (CEMS): low
cost, low power servers for internet-scale services". in the 4th Biennial

Conference on Innovative Data Systems Research(CIDR2009),
Asilomar, California, USA, 2009, pp. 1-8.

[3] Lee, Y.C., and Zomaya, A.Y.: "Energy efficient utilization of resources
in cloud computing systems", The Journal of Supercomputing, 2012,
60(2), pp. 268-280.

[4] Wang, Y.A., Huang, C., Li, J., and Ross, K.W.: "Estimating the
Performance of Hypothetical Cloud Service Deployments: A
Measurement-Based Approach". in the 30th IEEE International
Conference on Computer Communications(INFOCOM2011), Shanghai,
China, 2011, pp. 2372-2380.

[5] Calheiros, R.N., Ranjan, R., Beloglazov, A., Rose, C.A.F.D., and Buyya,
R.: "CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning
algorithms", Software - Practice and Experience, 2011, 41(1), pp. 23-50.

[6] Kamra, M., and Manna, R.: "Performance of Cloud-Based Scalability and
Load with an Automation Testing Tool in Virtual World". in IEEE the
8th World Congress on Services, Honolulu, HI, USA, 2012, pp. 57-64.

[7] Wickremasinghe, B., Calheiros, R.N., and Buyya, R.: "CloudAnalyst: A
CloudSim-based Visual Modeller for Analysing Cloud Computing
Environments and Applications". in the 24th IEEE International
Conference on Advanced Information Networking and Applications,
Perth, Australia, 2010, pp. 446-452.

[8] Kliazovich, D., Bouvry, P., and Khan, S.U.: "GreenCloud: a packet-level
simulator of energy-aware cloud computing data centers", The Journal of
Supercomputing, 2012, 62(3), pp. 1263-1283.

[9] Gupta, S.K.S., Gilbert, R.R., Banerjee, A., Abbasi, Z., Mukherjeey1, T.,
et al.: "GDCSim: A Tool for Analyzing Green Data Center Design and
Resource Management Techniques". in the 2011 International Green
Computing Conference and Workshops(IGCC2011), Orlando, FL, USA,
2011, pp. 1-8.

[10] Jayasinghe, D., Swint, G., Malkowski, S., Li, J., Wang, Q., et al.:
"Expertus: A Generator Approach to Automate Performance Testing in
IaaS Clouds". in 5th IEEE International Conference on Cloud
Computing (CLOUD2012), Honolulu, Hawaii, USA, 2012, pp. 115-122.

[11] Grundy, J., Cai, Y., and Liu, A.: "SoftArch/MTE: Generating Distributed
System Test-beds from High-level Software Architecture Descriptions",
Automated Software Engineering(ASE), 2005, 12(1), pp. 5-39.

[12] Metri, G., Srinivasaraghavan, S., Shi, W., and Brockmeyer, M.:
"Experimental Analysis of Application Specific Energy Efficiency of
Data Centers with Heterogeneous Servers". in the 5th IEEE
International Conference on Cloud Computing, Honolulu, Hawaii, USA,
2012, pp. 786-793.

[13] Chen, F., Grundy, J., Yang, Y., Schneider, J.-G., and He, Q.:
"Experimental Analysis of Task-based Energy Consumption in Cloud
Computing Systems". in the 4th ACM/SPEC International Conference
on Performance Engineering(ICPE2013), Prague, Czech Republic,
2013, pp. 295-306.

[14] Núñez, A., Vázquez-Poletti, J.L., Caminero, A.C., ·, G.G.C., Carretero,
J., et al.: "iCanCloud: A Flexible and Scalable Cloud Infrastructure
Simulator", Journal of Grid Computing, 2012, 10(1), pp. 185-209.

[15] Seung-Hwan, L., Sharma, B., Nam, G., Kim, E.K., and Das, C.R.:
"MDCSim: A Multi-tier Data Center Simulation Platform". in the 2009
IEEE International Conference on Cluster Computing(CLUSTER2009),
New Orleans, Louisiana, USA, 2009, pp. 1-9.

[16] Grundy, J., Cai, Y., and Liu, A.: "Generation of Distributed System Test-
beds from High-level Software Architecture Descriptions". in the 16th
Annual International Conference on Automated Software Engineering
(ASE 2001), San Diego, CA, USA, 2001, pp. 193-200.

[17] Draheim, D., Grundy, J., Hosking, J., Lutteroth, C., and Weber, G.:
"Realistic Load Testing of Web Applications". in the 10th European
Conference on Software Maintenance and Reengineering (CSMR'06),
Bari, Italy, 2006, pp. 70-81.

[18] Chen, F., Schneider, J.-G., Yang, Y., Grundy, J., and He, Q.: "An energy
consumption model and analysis tool for Cloud computing
environments". in the 1st International Workshop on Green and
Sustainable Software(GREENS2012), Zurich, Switzerland, 2012, pp. 45-
50.

[19] Sobel, W., Subramanyam, S., Sucharitakul, A., Nguyen, J., Hubert Wong,
et al.: "Cloudstone: Multi-Platform, Multi-Language Benchmark and
Measurement Tools for Web 2.0". in the 1st Workshop on Cloud
Computing and Its Applications(CCA), 2008, pp. 1-7.

