
TestMEReq: Generating Abstract Tests for Requirements
Validation

Nor Aiza Moketar, Massila
Kamalrudin, Safiah Sidek

Innovative Software System and
Services Group,

Universiti Teknikal Malaysia Melaka,
Melaka, Malaysia

nor.aiza09@gmail.com,
{massila,safiahsidek}@utem.ed

u.my

Mark Robinson
Fulgent Corporation,

USA
marcos@fulgentcorp.com

John Grundy
School of Information Technology

Deakin University
Melbourne, Australia

j.grundy@deakin.edu.au

ABSTRACT
This paper introduces TestMEReq, an automated tool for early
validation of requirements. TestMEReq supports requirements
engineers (REs) in the validation of the correctness, completeness
and consistency of elicited requirements with minimum effort and
time through generated abstract tests components: test
requirements and test cases, and a mock-up prototype of the user
interface (UI). Abstract tests are derived from abstract models
called Essential Use Cases (EUCs) and the Essential User
Interface (EUI). Our evaluation results show that TestMEReq is
useful in the requirements validation process: it reduces the effort
and time spent to ensure good quality requirements.

CCS Concepts
• Software and its engineering�Software Creation and
Management�Designing Software�Requirements Analysis
• Software and its engineering�Software Creation and
Management�Software verification and validation�Process
validation�Acceptance testing

Keywords
Abstract test, Essential Use Cases, Essential User Interface,
requirement-based testing, requirements validation

1. INTRODUCTION
Requirements are the main source of knowledge for software
development and they are often elicited and specified in natural
language (NL). However, NL requirements are error-prone due to
misunderstanding, miscommunication and misinterpretation
during elicitation and negotiation [1][2]. Imprecise requirements
are very risky to software project development [2][3] as they may
lead to incorrect implementation of software that does not meet
the needs and expectations of users. These requirements defects
can also result in time and cost overruns to rectify the software at
a later stage, and can eventually lead to the failure of a software
project. Therefore, it is important to properly validate
requirements at an early stage in the development process. The
purpose of requirements validation is to confirm that the
requirements are correct, complete, consistent and agreed by

client-stakeholders prior to the implementation of the software
project [4][5].

For this, requirements testing and prototyping have been found to
be useful techniques to validate requirements. The technique of
requirements testing defines test cases from the requirements.
This allows REs to ensure that each requirement is testable, thus
providing a means to determine when a requirement is satisfied.
By suggesting possible tests for requirements, this technique is an
effective way to detect problems such as incompleteness,
inconsistency and ambiguity [4]. Furthermore, the generated test
cases are reusable during testing activities [4][5]. The use of a
requirements prototype helps REs to detect defects by visualising
the realised requirements. The prototype is also reusable in other
activities, such as system design and user interface development
[4][5]. Although these two techniques are capable of detecting
defects, they are expensive and time consuming.

Motivated by the usefulness and the expense of requirements
testing and prototyping, we have created TestMEReq, an
automated requirements validation tool that is able to
automatically generate a combination of abstract test cases and
mock-up UI prototypes from semi-formalised EUC and EUI
models. Our automated approach assists requirements engineers in
validation of requirements with stakeholders, and helps to reduce
the expense of generating and designing test cases and UI
prototypes.

2. BACKGROUND
We use the term ‘abstract tests’ to refer to our test requirements
and test cases that are generated from the semi-formalised abstract
model called the Essential Use Cases (EUC) and Essential User
Interface (EUI) model. An abstract test is a high-level test
requirement and test case that represents a requirements scenario.
In contrast to concrete tests, an abstract test does not contain any
details of the test environment, test protocol, or configuration for
the test component.

An EUC is a structured narrative, expressed in the language of the
application domain and the users. It is composed of a simplified,
abstract, technology-free and implementation-independent
description of a single task or interaction [6][7]. An EUC is a
complete, meaningful, and well-designed interaction from the
point-of-view of users. It represents a particular role in relation to
a system and embodies the purpose or intentions underlying the
interaction. EUCs enable users to ask fundamental questions such
as "what's really going on" and "what do we really need to do"
without letting implementation decisions get in the way. These
questions often lead to critical realisations that allow users to

3rd International Workshop on Software Engineering Research and Industrial Practice (SER&IP), May 2016.

rethink, or reengineer the aspects of the overall business process.
Figure 1 shows an example of natural language requirements (left
hand side) and an example of an EUC (right hand side) while
capturing the requirements (adapted from [7]). The natural
language requirements from which the important phrases are
extracted (highlighted) are shown on the left hand side of Figure
1. From the natural language requirements, a specific key phrase
(essential requirement) is abstracted and is shown in the EUC on
the right hand side of Figure 1. As shown in Figure 1, the EUC
depicts two interrelated sets of information: the user intentions
and system responsibility.

An EUI prototype is a type of abstract prototype or paper
prototype that is a low-fidelity model. Also known as a “UI
prototype” for a software system, it represents the general ideas
rather than the exact details of the UI [7][8]. An EUI prototype
represents the user interface requirements in a technology
independent manner; just as the EUC models do for the
behavioural requirements. An EUI prototype is particularly
effective during the initial stages of user interface prototyping for
a system. It models user interface requirements that are evolved
through analysis and design to the final user interface of a system
[8]. It also allows some exploration of the usability aspects of a
system. Figure 2 shows an example of an EUI prototype
developed from EUC model. The possible UI functionality at a
high level of abstraction is captured from the user
intention/system responsibility dialogues.

Figure 1. Example of a natural language requirement (left

hand side) and example of EUC (right hand side).

Figure 2. Example of a EUI prototype from the EUC model.

Both EUC and EUI play important roles in our work. The EUC
provides a simpler and shorter form of dialogue between the user
and the system compared to the conventional use case. This
dialogue provides the key information of the input and output
(expected results) for our test cases. An interaction (input and

output) between the user and the system can generate one or more
test requirements. This dialogue also provides information for the
test procedures/steps in our test cases. The EUI prototype model
provides a guide for the important elements to be included in our
mock-up UI prototype. These two models are crucial to ensure the
correctness, completeness and consistency of generated abstract
tests and mock-up UI prototypes for users’ requirements.

3. OUR TOOL: TESTMEREQ
We have developed an automated support tool, called
TestMEReq, to assist requirements engineers (REs) in validation
of requirements captured from the client-stakeholders. Our tool
integrates the abstract models: EUC and EUI, with requirements-
based testing and rapid prototyping techniques. TestMEReq aims
to assist in an early requirements validation process by
automatically generating abstract tests and a mock-up UI
prototype from EUC and EUI models. This work is an extension
of our previous work [9][10][11]. Previously we have described
our approach and automated tool called MEReq to support
translation of natural language (NL) requirements into semi-
formal abstract interaction and EUC models. For this we have
developed two supporting libraries: Essential Interactions and
EUC Interaction pattern library. In this new work, we adopt the
same approach to develop new pattern libraries: test requirements
and test cases pattern libraries to help in automatic generation of
abstract tests from EUC model. This automatic approach could
help to lessen human intervention in writing tests and make it
possible to detect defects at the initial stage of software
development. In addition, prevention action can also be planned,
which will lead to cost-effective software development.

Figure 3 presents an overview of our approach. To employ our
approach, we suggest that every client-stakeholders get involved
in the requirements validation process, especially between
client/end user, requirements engineer, domain experts, developer
and tester. Implementing the RBT methodology, our approach is
divided into three main validation processes: initial ambiguity and
requirements models (EUC and EUI) review [A], abstract tests
consistency review [B] and design and codes review [C].

The first stage of validation is the initial ambiguity and
requirements models review as labeled as [A] in Figure 3. The
process starts by capturing the client-stakeholder requirements as
a user story or use case scenario. Next, the requirements are
transformed into EUCs model using TestMEReq (1). The
requirements are analysed with the EUC pattern library to
generate an EUC model. A low-fidelity EUI prototype is then
derived from the EUC model using the EUI pattern library (2).
Here, the domain expert can perform initial ambiguity reviews by
checking the correctness and completeness of the generated EUC
and EUI models in relation to the textual requirements.

In the second stage of validation (labelled as [B]), a set of test
requirements are generated from the EUC model (3). In order to
accomplish the automatic inference of test requirements, we have
created a test requirements pattern library. We have set the test
requirements syntax for development of the pattern library. This is
to ensure consistency and uniformity of our test requirements
statements. Next, a set of test cases is derived from the test
requirements using our test case pattern library (4). The
requirements authors, domain experts, software developer and
tester may review and validate the generated test requirements and
test cases. They can rectify the requirements associated with the
test cases of any error found in the generated test cases. At the
same time, the test cases can be corrected and redesigned. This

process can also help developers to gain a better insight of the
software to be developed by reviewing the test cases.

In the final stage of validation, design and code review (labelled
as [C]), the associated mock-up UI prototype is generated from
the test requirements (5). To do this, a set of defined test scripts to
execute the test cases are developed and stored in the library. The
client-stakeholder may use the test cases in the design review to
validate the requirements and determine if the UI prototype meets
the requirements. The test cases also can be used to validate that
each code module (test scripts) delivers what is expected.
Currently the test scripts are not accessible to the user/develop to
review. However, the client-stakeholder may experiment with the
mock-up UI prototype by referring to the generated test cases and
comparing the actual behaviour with the expected behaviour of
the requirements. At this point, the client-stakeholder may
validate and confirm their requirements by indicating a testing
result. If the client-stakeholder accepts the executed test cases, it
indicates that 100 per cent of the requirements have been verified
and validated, providing a higher level of confidence to make
decisions during the design and development phase.

We also have embedded a traceability function to allow the user
to trace back and forth between the textual requirements, the EUC
and EUI models, the test requirements, and the test cases to ensure
their correctness, completeness and consistency. Figure 7
illustrates the use of the traceability function from test case to
textual requirements. When a test case’s ID is clicked, our tool
will highlight the related test requirements (in yellow). In this
example, the test case ID “001” is mapped to the first test
requirement. The test requirement is mapped to the EUC model
“Identify Self”, which is linked to the keyword “login” from the
textual requirements. The RE also can trace-back from the EUI
model to the textual requirements. Figure 7 shows that the EUI of
“ID” is mapped to the EUC of “Identify Self” and to the same
keyword in the textual requirements.

3.1 Test Requirements and Test Cases
Pattern Libraries
We have developed test requirements and test cases pattern
libraries to support generating our abstract tests. Previously, we
collected and categorized phrases from various types of natural
language requirements and stored them as essential interaction.
These phrases are stored in our EUC pattern libraries [10]. To
date, we have expanded the library by adding approximately 400
new phrases from various requirements domains such as
healthcare, car rental, payroll system, purchasing order system
and e-Learning. From here we come up with about 120 patterns of
abstract interaction. For this, we have approximately 208 abstract
interaction (EUC) patterns in total. We further enhanced this
pattern library and categorised the abstract interaction into two
categories: “Input” and “Output”. The “Input” abstract interaction
represents the action of the actor (user or system). Meanwhile, the
“Output” abstract interaction represents the expected output for
the test case. From this input-output relationship, we have
identified about 300 test requirements and 624 test cases. Our
abstract test patterns have been verified and evaluated by experts
that include practicing test engineers, requirements engineers and
software validation and verification lecturers. Our test
requirements patterns were written in “action” verbs and words,
such as “Validate that ...”, “Verify that …” and “Test that …”. In
order to store the test requirements in the pattern library, we have
defined the syntax rules for the sentence structure as the
following:
<Action verbs> [Actor]<Auxiliary verbs> [Action] [Condition]
The items in square bracket are compulsory. The “actor” describes
who is interacting with the system. It can be the user (student,
customer, machine) or the system itself. The “action” states what
is the user want/intended to do. The “condition” describes the
circumstances of the action. This is to determine whether the test
requirements are for positive or negative tests.

Figure 3. The Overview of Our Proposed Approach

From the syntax rules, we have defined the phrase structure tree
(PSTs) for the test requirements as described in Figure 4. Some
examples of sentences that follow our test requirements’ sentence
structure are:

1. Validate (VB) that (Art) user (NN) can (MD) login (VB)
with (Prep) valid (Adj) user name and password (NN).

2. Validate (VB) that (Art) user (NN) can (MD) withdraw (VB)
the correct (Adj) amount (NN).

We then created the pattern library for the test cases, which
consists of a few main components; such as test case ID, test
requirements, test description, pre-condition, input/test data, steps,
and expected result. Table 1 describes the detail description of
each component for our test case pattern library. Our EUC model,
test requirements and test cases are dependent to each other.
Figure 5 and 6 describes the dependency in detail.
As depicted in Figure 5, one abstract requirement in the form of
an EUC model can generate many test requirements. Each test
requirements can generate one or many test cases, and one test
script can execute one or many test cases. In this sample
requirements (refer appendix), the EUC of “Identify self” can
generate three test requirements and each test requirements can
generate one or many test cases. Table 2 reflects the relationship
of each component as depicted in Figure 5. This dependency is
important to ensure each component can be trace-back and forth
as depicted in Figure 7.
Figure 6 illustrates dependencies between the generated EUC and
EUI model, test requirements and test cases that were considered
while developing our pattern libraries. The item labeled with [1] is
the EUC model, [2] is the EUI prototype model, [3] is the test
requirements and [4] is the test case. As mention earlier, the EUC
model is categorised into “Input” [A] and “Output” [B]. In this
example the EUC of “Identify Self” is the “input” where it
represents the action of the actor (user or system). This is reflected
in the test requirements statement “user is able to login”.
Meanwhile the “Output” [B] from the EUC model is reflected in
the “Expected Result” of the test case. Then we defined the
input/test data of the test case based on stated condition, which is
“valid username and password”. The rule to define the test data is
that it should be able to stress the expected application
weaknesses. For example, we defined the test data for the
password of the login module as Admin00!. This test data reflect
to the common security password rules, where it combined the
upper and lower cases, numbers and special characters.

Figure 6 also shows the dependency between the mock-up UI
prototypes design with the EUI model. In this example, the EUI of
“ID” is linked to the mock-up UI that labeled with (a).
Meanwhile, the EUI model of “verify identity” and “offer choice”
are linked to the same mock-up UI and labeled with (b) and (c)
respectively. From here we defined the “Steps” or the test
procedure for the test case.

We also provide a template editor to allow the user to modify the
essential interaction of the EUC model, test requirements and test
cases. However, this is not available for the mock-up UI
prototypes pattern. Currently the mock-up UI prototypes are
limited and linked to its relevant test requirements and test cases.
Therefore, for each new test requirements and test cases inserted
we have to design and develop the mock-up UI prototypes. To
overcome this issue, we plan to integrate our tool with an
integrated development environment (IDE) to allow for the source
code and UI editing. This IDE is also expected to help the
developer to review and update the generated test scripts.

Table 1. Our test case pattern library component

TC Component Description

Test case ID This is the test case identification number.
Each number must be unique.

Test
requirements

The related test requirements to the test
cases. It is a statement that identifies what
need to be tested and validated.

Test description
Defines the test cases/scenarios based on
the test requirements. The statement can be
with or without samples of input test data.

Pre-condition
Lists of conditions other than test case or
system state that must be in place for this
test case to run/execute.

Steps The list of steps/flow of actions to execute
the test case.

Expected result

Specifies all of the output and features from
the indicated test requirements and also
from the list of EUC and EUI prototype
model.

Table 2. Sample of our abstract tests pattern

EUC Model Test Requirements Test Cases/Scenarios

Identify self Validate that user is
able to login with
valid username and
password.

Valid username and
valid password.

 Validate that user is
not able to login if
username or
password is invalid.

Valid username and
invalid password.

 Invalid username and
valid password.

	 	 Invalid username and
invalid password.

Figure 4. Phrase Structure Tree (PST) for our test

requirements pattern library.

Figure 5. The dependency relationship between EUC model, test requirements, test cases and test scripts

Figure 6: The dependency between EUC model, test requirements and test cases

4. USAGE EXAMPLE
Figure 7 illustrates the use of our prototype tool with a sample set
of requirements for login behaviour (refer to Appendix A). Nancy,
a requirements engineer would like to validate the requirements
specification provided by the client-stakeholder. As shown in
Figure 7, she inserts the requirements in the form of user scenario
or use case narrative in the text editor (1). Then, she updates the
model to generate the EUC model (2) from the textual
requirements (1). From there, she clicks the “Create EUI” button
to generate the low-fidelity EUI model (3). Here, she can perform
the initial ambiguity review to validate the correctness of the
generated EUC and EUI models. She also can perform the
traceability check by clicking on the EUC and EUI model
component. She clicks on the EUI of “ID” to trace-back to its
relevant EUC model. Then, she clicks on the EUC of “Identify
self” to trace-back its essential interaction. In this example the
essential interaction for the EUC model of “Identify self” is
“login”.

Next, she clicks the “Generate TR” button to generate the
associated test requirements (4). She then clicks the “Generate
Test Case” button to generate the related test cases (5). Here, she
can review correctness of the generated test requirements and test
cases. Then, she clicks one of the test requirements to populate the
associated mock-up UI prototype (6). She tests the UI prototype
by providing the input data given in the test case and see the
expected results. She can then indicate the result of the testing in

the “Testing Status” column (7). Test results are saved in a
database and can be retrieved for future reference. This process
can be performed in collaboration with all client-stakeholders.
Any incomplete or inconsistent requirements or test cases
generated in this process can be expressed during the process.

5. EVALUATION
We have conducted evaluations to investigate the utility of our
TestMEReq tool in validating requirements. First we evaluated
the accuracy of the tool in extracting accurate abstract tests from
15 requirements sample of various software application systems.
Then we conducted a usability study and interview with three
requirements engineers as well as 79 undergraduate students.

5.1 Accuracy of the Abstract Tests Pattern
We evaluated the ability of TestMEReq in producing accurate
abstract tests. We calculated the ratio and the average in order to
see the performance of the tool to extract the abstract test. We
evaluated its accuracy when applied to nearly 100 requirements
scenarios from requirements sample of 15 software application
such healthcare, banking and rental system.

Figure 8 shows the correctness ratio for TestMEReq for each
software application system. This shows some variability across
the range of scenarios, but the average correctness across all
scenarios and interactions is approximately 84%. Our automated
tool does not (and cannot) produce 100% correct answers due to
the incomplete generated EUC and EUI models as they depend on

the correct extraction from textual requirements which, as
demonstrated in our earlier work, may face some issues due to
language and sentence structures. This implies that users must
have knowledge of how to write good user scenarios or use case
narratives in order to generate a complete EUC and EUI model.

5.2 Expert Review
We conducted interviews with three expert requirements
engineers in order to get their opinions regarding the usability of
our prototype tool. All of them have more than five years working
experience in the information technology (IT) industry. During
the interview, we briefed the experts (identified below as E1, E2,
and E3) on the purpose of the interview, and defined the different
terminologies and definitions used in our interview questions to
enhance consistency of responses. We provided a brief description
and explained the main objectives of our prototype tool and gave
them access to a link for them to explore the tool with sample
requirements.

From the interview, all of the reviewers were agreed that our
prototype tool is helpful in validating and clarifying users
requirements through the generated abstract tests and mock-up UI
prototype. The automatic approach helps to reduce time and effort
to generate the abstract test. The generated abstract tests also help
to trigger ideas to the client-stakeholders on what they want to test
and achieve with the requirements. They also agreed that the tool
is simple, easy to use and learn. However, they pointed out some
limitations and gave suggestions for us to improve the tool. The
first expert (E1) suggested that an animation preview of our tool
should be included. This may help the user with an initial
overview of the running prototype based on the generated test
cases. Expert E2, commented that “It is a good approach as the
tester can participate at the earlier phase of SDLC. In current
practice, testers are not involved until at the later stage of the
development process.” For further improvement, he suggested
that we define the rules or language pattern for the textual
requirements entered by the user. This may help to avoid
ambiguity in the initial requirements. Expert E3, recommended
that we add another feature to our tool: a template of test

requirements and test cases. He noted that this feature may help
users to modify and add new test requirements and test cases that
are not in our pattern library. This also may help to further
improve and expand our test requirements and test case pattern
library.

5.3 Usability Study
We conducted a usability evaluation with 79 final year
undergraduate students, majoring in Software Engineering and
enrolled in a Software Testing course. This study is to evaluate the
usability of our tool to generate abstract test for validating
requirements. The participants were requested to perform two
tasks: the first task is to explore the tool with a provided sample
requirement (refer Appendix A), and the second task is to
complete a survey questionnaire. The participants were informed
that they would be observed and encouraged to speak aloud their
views of the tool while completing the task. The purpose of the
observation was to identify problems and misconceptions faced by
the participants when using the tool. The verbal evaluation of the
tool provided us with the users’ spontaneous responses and
suggestions for improvement as they use the tool. After the
completion of the task, students were requested to answer five
questions related to the usability of the tool. They responded to
five questions regarding the usefulness, ease of use, ease of
learning, and satisfaction of the tool based on a five-level Likert
scale.

Figure 9 shows the results of the participant survey of the tool
usefulness, ease of use, ease of learning and satisfaction. In terms
of the usefulness of the tool, 86% of the participants found that
the tool is useful, 89% agreed the tool is easy to use, 87% agreed
that the tool is easy to learn and 80% were satisfied with the tool.
Overall, the usability results indicate that our prototype tool is
useful, easy to use, easy to understand, and able to satisfy users.
Although they also agreed that the tool is simple and easy to use,
they would like to have a better user interface and a simple user
guide to use the tool. A small number of the students encountered
some difficulty with the tool’s test case pattern library due to the
inability of the tool to handle more complex requirements.

Figure 7. Usage example of TestMEReq. The red arrow shows the traceability check between test cases, test requirements, EUC

and EUI model and textual requirements

Figure 8. Results of tool correctness

Figure 9. Usability study result

6. CONCLUSION AND FUTURE WORK
TestMEReq is a tool that assists the requirements validation
process between RE and client-stakeholder. Our tool integrates
the semi-formalised abstract EUC and EUI models with
requirements-based testing and rapid prototyping techniques. Our
tool automatically generates the abstract tests and the mock-up UI
prototypes from EUC and EUI models. The generated abstract
tests describe the tested functionality of the requirements.
Meanwhile, the UI prototype provides a visualisation of the
requirements based on the generated test cases. These two main
components help the RE and other stakeholders to gain a better
understanding of their requirements. Our studies suggest that the
automated support provided by our tool helps to reduce the time
and effort in validating requirements through the generation of the
abstract test cases and visualisation of the UI.
For future work, we plan to embed a requirements prioritisation
method to our tool for prioritising generated tests. This will help
the user to organize the validation of the requirements based on
the generated test cases. Furthermore, we intend to enhance this
tool as a collaborative validation tool to allow better
communication and discussion between the client-stakeholders
and REs across different geographical locations.

7. ACKNOWLEDGMENTS
This research is funded by Ministry of Higher Education Malaysia
(MOHE), Universiti Teknologi Mara (UiTM), Fulgent
Corporation and FRGS grant:
FRGS/2/2013/ICT01/FTMK/02/2/F00185.

8. REFERENCES
[1] M. Kamalrudin, “Automated software tool support for

checking the inconsistency of requirements,” ASE2009 - 24th
IEEE/ACM Int. Conf. Autom. Softw. Eng., pp. 693–697,
2009.

[2] C. Denger, D. M. Berry, and E. Kamsties, “Higher quality
requirements specifications through natural language
patterns,” in International Conference on Software Science,
Technology and Engineering (SwSTE), 2003, pp. 1–11.

[3] F. Fabbrini, M.Fusani, S.Gnesi, and G.Lami, “The Linguistic
Approach to the Natural Language Requirements Quality:
Benefit of the use of an Automatic Tool,” Softw. Eng. Work.
2001. Proceedings. 26th Annu. NASA Goddard , pp. 95–105,
2001.

[4] S. B. Saqi and S. Ahmed, “Requirements Validation
Techniques practiced in industry : Studies of six companies,”
Blekinge Institute of Technology, Sweden, 2008.

[5] U. A. Raja, “Empirical studies of requirements validation
techniques,” in 2009 2nd International Conference on
Computer, Control and Communication, IC4 2009, 2009, pp.
1–9.

[6] R. Biddle, J. Noble, and E. Tempero, “From Essential Use
Cases to Objects,” in forUSE 2002 Proceedings, 2002, vol. 1,
no. 978.

[7] L. L. Constantine and L. A. D. Lockwood, “Structure and
Style in Use Cases for User Interface Design,” vol. 1, no.
978. Addison-Wesley Longman Publishing Co., Boston,
MA, 2001.

[8] S. W. Ambler, “Essential (Low Fidelity) User Interface
Prototypes,” 2003. [Online]. Available:
http://www.agilemodeling.com/artifacts/essentialUI.htm.

[9] M. Kamalrudin, J. Hosking, and J. Grundy, “Improving
requirements quality using essential use case interaction
patterns,” 2011 33rd Int. Conf. Softw. Eng., pp. 531–540,
2011.

[10] M. Kamalrudin, J. Grundy, and J. Hosking, “Tool support for
essential use cases to better capture software requirements,”
Proc. IEEE/ACM Int. Conf. Autom. Softw. Eng. - ASE ’10, p.
255, 2010.

[11] M. Kamalrudin, N. A. Moketar, J. Grundy, and J. Hosking,
“Automatic Acceptance Test Case Generation From
Essential Use Cases,” in 13th International Conference on
Intelligent Software Methodologies, Tools and Techniques,
2014, pp. 246–255.

Appendix A: Sample of Requirements (System Use Case)

1. User needs to login with his user ID and password.
2. System will validate the user ID and password.
3. Upon successful validation, the system will display the
application menu.

