
Distributed Component Engineering using a Decentralised, Internet-based
Environment

John Grundy

Department of Computer Science, University of Auckland
Private Bag 92019, Auckland, New Zealand

john-g@cs.auckland.ac.nz

Abstract

Engineering component-based software systems in a distributed fashion is challenging. Particular issues to address
include software process and work co-ordination, sharing and collaborative editing of component specifications, designs
and implementations, and appropriate sharing of reusable components. This paper describes our approach to tool
support for distributed component engineering. Several tools are integrated for each developer, and a decentralised,
multi-user work environment established. Key characteristics of this environment include flexible process management
and process-based tool co-ordination, collaborative editing support, distributed work co-ordination and 3rd party tool
integration agents, and distributed component storage and retrieval support. We illustrate some of these tools in use
during multi-user development, and discuss the architectural realisation of these tools and their integration.

1. Introduction

Component-based systems engineering shares many commonalities with traditional software systems engineering,
and uses many common modelling and implementation approaches and tools. However, it brings some new challenges
as well as preserving some common problems relating to managing distributed software development projects [36, 37,
19, 40]. These include the use of new, often highly dynamic and weakly defined software processes, the need to heavily
leverage existing software component designs and implementations in a consistent way, and while it often allows
developers to work more independently, at various times still requires developers to tightly collaborate and co-ordinate
their work.

We have been working for some time on developing flexible, open, internet-based software engineering
environments [14, 19]. Recently we have been developing tools to help support large-scale component-based systems
engineering, which themselves are complex component-based applications [13, 19, 20]. Assembling these tools into a
component engineering environment enables multiple, potentially widely distributed developers to incrementally build
and assemble complex applications using component technology. Such an environment needs to provide a range of
capabilities to component engineers. These include:
x Process modelling and enactment. Software process management is necessary to both guide developers and track

the work they have done by in a geographically and temporally distributed fashion. Even developers working
together locally can greatly benefit from such support to better plan, manage and co-ordinate their work [1, 5, 14].

x Collaborative editing. Developers need to exchange software development artifacts and collaboratively edit these
in various ways, ranging from fully synchronous to asynchronous editing [6, 13]. They also need support to version
artifacts and manage component-based systems configurations made up from multiplely versioned artifacts [13,
29].

x Distributed work co-ordination and tool integration. Developers need to co-ordinate their tool usage with their
personal software process i.e. have local tool integration and process co-ordination support. They also need the
assistance of “software agents” which help them effectively manage distributed work and tool co-ordination [1, 5,
12].

x Component management. Component-based systems leverage existing software artifacts (components) heavily. A
shared repository of such artifacts is necessary to facilitate distributed component-based systems development [20,
24, 30].

We describe the development of a component engineering environment made up of several tools: a component analysis,
design and implementation tool; a software process management tool; a software architecture modelling tool; a
component implementation and testing tool; and various 3rd party tools integrated by the use of component technology.
We focus on the internet-based support features of these tools, particularly the recent work we have done enhancing
their distributed usage and tool integration facilities. These include the integrated process support, collaborative editing,
distributed work co-ordination and component repository facilities. We briefly summarise our experiences to date in
developing and deploying these tools, presenting an improved model for a distributed tool integration architecture.

jgrundy
3rd ICSE Workshop on Software Engineeering over the Internet, ICSE 2000 Workshop, Limerick, Ireland, June 6 2000, pp. 20-29.

jgrundy

2. Related Work

A wide variety of work has been done in building Internet-based software engineering tools and environments.
Some of the earliest approaches focused on asynchronous work with version control and configuration management
facilities provided by tools like SCCS and RCS, across networked file systems. Tools like FIELD [31] and DEC FUSE
[23] extended this paradigm to support some aspects of synchronous or semi-synchronous work, with message-passing
used to support tool integration and user interface wrappers to achieve the appearance of a single environment. Such
approaches tended to work reasonably well, though rather restrictive limitations were imposed on the degree of
synchronous support offered, the extensibility of the environments and the degree of process co-ordination support
possible [15].

Another early approach was to develop synchronous editors for design-level or even code-level collaborative work
support. Examples included Mercury [25], ConversationBuilder [27], and COAST [35]. Many of these systems didn’t
originally work over internet-based communication mechanisms, although recent examples do [2]. Various toolkits to
support building such applications have been developed, including GroupKit [34] and Suite [6]. Unfortunately most
collaborative editing tools and toolkits lack adequate support for process management and work co-ordination, and
often focus heavily on synchronous work whereas most software development activity tends to be asychronous.

Process-centred environments aim to guide or enforce the use of a codified software process to control software
development. Examples include EPOS [5], SPADE [1], Serendipity-II [14] and Oz [2]. Many of these environments do
not integrate well with other tools for performing collaborative software development, however, though some have had
collaborative editing support [1, 3] and tool integration support [39] added.

Shared software artifact repositories have been important in supporting primarily asynchronous work. These are also
needed in order to support component-based software engineering where a large library of reusable components need to
be centralised for shared retrieval. Examples of such systems include document-centric ones like and BSCW [4], and
software component libraries like CodeFinder [24], and that of Pai and Bai [30]. One of the main problems we have
found with many of these existing approaches is their reliance on either too simple indexing strategies, or use of very
complex and restrictive formal program semantics [20, 24]. Integration of a component repository with other
development tools and a consistent, agreed mechanism to index and retrieve components are further challenges [20].

Various systems have taken an integrated approach to supporting distributed software development, where one tool
supports a wide range of collaborative work capabilities, or multiple tools are integrated to provide a sophisticated
environment. Those adopting the former approach include Argo/UML [32], Serendipity-II/JComposer [19], MOOSE
[10], and TeamWave [33]. Others providing an architecture into which other tools can be integrated using flexible
mechanisms include Oz [26, 39], CoCoaDoc [38], and the BA environment [9]. Many of these approaches result in
either monolithic, difficult to maintain and extend environments, or limit the kinds of tools that can be added into an
environment. CHIME [] takes an alternative approach to integration by providing developers with integrated browsing
and hyperlinking facilities to software aritifacts, but leaves artifacts under the control and locality of the tools that
modify them [7].

Various toolkits and meta-CASE tools have been developed to assist tool developers and integrators in developing
distributed software development environments. These include Xanth [26], COAST [35], CocoaDoc [38], MetaEDIT+
[28], MetaMOOSE [11], and JViews [19], as well as more general-purpose technologies such as CORBA [8]. Most of
these approaches focus on a limited domain of software development, such as COAST and CocoaDoc on document
editing. Others such as MetaMOOSE, Xanth and JViews provide general-purpose infrastructures, but may require tool
developer considerable effort to achieve a desired degree of tool integration. Limitations of their architectural
approaches may also restrict the ways tool developers can achieve collaborative work support, data persistency and
distribution, process co-ordination and tool integration.

3. Overview of Our Component Engineering Environment

We have developed a distributed component engineering environment by integrating several tools, both our own and
3rd party. Figure 1 illustrates this environment. The main tools comprising this environment are outlined below:
x Process management. Software process management is necessary to both guide developers and track the work they

have done by in a geographically and temporally distributed fashion. We use our Serendipity-II process
management environment to provide distributed process modelling and enactment support, along with user-
programmable and deployable task automation and tool integration agents [14].

x Software Architecture design. The architectures of complex component-based systems require careful design and
analysis. SoftArch provides software architecture modelling and analysis facilities, including reusable software
architecture templates and analysis agents [22].

x Component design. Software component designs must be captured, and suitable component implementations
realised. Our JComposer CASE tool provides component specification, design and basic code generation support
[19].

x Component implementation. Component implementation and low-level debugging must be supported, along with
higher-level component visualisation support. We allow developers to use their own preferred development tools,
such as JDK, Forte or JBuilder. Our component visualisation tool, JVisualise, can be used to view running

components, and we have added high-level dynamic architecture analysis tools to SoftArch to support dynamic
system visualisation [19, 22].

x Component storage and retrieval. A component repository allows multiple developers to share components in
JComposer, and also supports the sharing Serendipity-II software agent components [20].

x Other applications. We have integrated these tools with Argo/UML [32] via XML-based import/export
mechanisms [22], several desktop applications (including Word™ and Netscape™), and a file server (a simple
form of RCS) [14].

Figure 1. The basic architecture of our component engineering environment.

The basic approach we have taken to developing an integrated, distributed component management environment is
shown in Figure 2. This illustrates the architectures of our decentralised software engineering environments, built using
our JViews component-based framework [19]. JViews provides abstractions for building tools supporting multiple
views, component-based integration mechanisms, local persistency, and distributed event and data exchange. JViews-
implemented tools are integrated on a developer’s local machine using JViews infrastructure abstractions (basically
component event and data interchange mechanisms). All data used by these tools is stored locally, with other users’
tools also storing data they use locally. Any shared data replicated on all machines, producing a decentralised
architecture for the overall system [14, 19]. Such an architecture supports a robust software development environment,
tolerant of network and machine failure, provides improved security for private work data, and scales up well to large
multi-person projects.

Distributed software development is support across any internet communications medium (LAN or WAN) by event
and data exchange between users’ environments. This involves tools exchanging events via JViews event distribution
abstractions to reconcile updated data, notify of interesting events etc. Data can be exchanged with a version control and
configuration management mechanism used to manage alternate versions [13, 19]. Local and remote 3rd party tool
access is support by wrapping tools (e.g. desktop applications like Word™ and Netcape™, or servers like RCS and
http) with JViews components. Local and remote “software agents” provide both tool integration and task automation
support. These allow the behaviour and composition of an environment to be extended and configured by developers as
they require [14, 16, 19].

Figure 2. Basic architecture of our decentralised environments.

Our component engineering environment is supported by collaborative editing facilities plugged into our JViews-
based tools, decentralised work and process co-ordination tools built and deployed in Serendipity-II, a (currently
centralised) component repository, and a (currently centralised) distributed document (file) management tool. In the
following sections we illustrate the process management, collaborative editing, distributed work co-ordination and
distributed component management facilities provided by this environment. We briefly discuss the architectures and
implementation of these facilities, particularly focusing on recent work we have done in enhancing these. We conclude
with an overview of possible future research directions in this area.

4. Process Management

Figure 3. (a) Example of enacted process views and (b) Serendipity-II architecture.

Figure 3 shows an example of a simple component engineering process (top view) and one of the process stages
expanded (bottom view) in Serendipity-II. This is part of the Aspect-oriented Component Engineering (AOCE)
methodology we have been developing [20]. Serendipity-II provides multiple, visual views of software processes and

project plans which can be collaboratively edited. Process stages are enacted by each developer collaborating on a
project, with automation of enactment as stages are completed or by software agents monitoring work done in
development tools. Serendipity-II can monitor software artifact editing being carried out in tools are store these events
(or synthesised summaries of multiple events) against process stages, providing a work tracking mechanism.

We originally built Serendipity-II’s collaborative enactment, editing and distributed tool monitoring mechanisms
using custom socket-based protocols. Process model and enactment state information was stored by a custom
component persistency mechanism [14, 19]. This approach worked reasonably well, but suffered from performance,
scalability and difficultly in coding for developers. Recently we have modified this mechanism to utilise a local object
store (PSE Pro™) to manage local environment data storage. This provides a much improved mechanism for tool
developers to use, and provides users much better performance and scalability, particularly when large process models
are in use. Exchange of editing events and enactment events is now achieved by using the Java Remote Method
Invocation API. This also is a much easier mechanism for tool developers to use, and provides a more efficient, scalable
and robust data communications mechanism. Keeping process model and enactment engine information cached locally
allows Serendipity-II to tolerate network or remote host failure, with developers still able to continue work. Serendipity-
II manages reconciliation of enactment events when network connection is re-established.

Co-ordination of local tools by the use of Serendipity-II is achieved using a component-based event monitoring
facility provided by JViews [14, 18]. Non-JViews implemented tools are wrapped by a JViews component which
provides control over the tool to the degree that can be achieved by the developer given the 3rd party tool’s provided
interface mechanisms.

5. Collaboratively Editing Views

Developers collaboratively edit views in various tools in our environment, ranging from Serendipity-II process
models, to SoftArch and JComposer architecture, analysis and design-level views, to JDK .java source code files. The
only support we provide for source code file editing is asynchronous editing of different versions of the source code,
checked out of a RCS-based distributed file management server [18]. This has proved adequate, as developers almost
always edit implementation code independently. This is particularly true for component-based systems, where use of a
component is ideally always via a well-defined interface specification, characterised at component design-time.

Higher-level views of software development, such as process models, architectures and designs, sometimes need to
be more tightly shared and collaboratively edited. Our JViews-based tools provide a flexible collaborative editing
mechanism that allows developers to share views and edit them synchronously or asynchronously [13, 19]. For
example, Figure 4 shows a JComposer component design view being semi-synchronously edited. Changes made by one
user, ‘john’, are displayed as they are made but not immediately applied to the view (as with synchronous editing). The
user whose view this is will at some stage select one or more changes and then ask JComposer to apply them to his/her
view incrementally. Inconsistencies, such as syntactic or semantic errors that occur, generate error messages that are
displayed in another dialogue. The user can also edit such views asynchronously, and have JComposer send them to
collaborating developers at some later stage, where they can be incorporated or further discussed/refined. Whole views
can also be exhanged, creating alternative versions for developers to edit and merge further changes with [13].

Figure 4. (a) Example of collaborative editing in JComposer and (b) its architecture.

We originally implemented our collaborative editing mechanism using custom socket-based event and data
exchange [19, 16]. Due to problems identified in the previous section, we recently replaced with this with an RMI-based
mechanism, to provide a more robust, faster and easier to program implementation. Figure 4 (b) illustrates the
architecture of the JViews components implementing this collaborative editing mechanism. Any JViews-based
environment can have these components plugged into it (dynamically), and will then support this flexible collaborative
editing mechanism over any internet-capable communications link.

Each JViews environment maintains event and data sender/receiver components. It also has a Java RMI registry,
with receivers registering themselves for remote object access. When sending events or view component data, the
sender component contacts the RMI registry on the collaborating user(s) host and locates the remote recveiver(s) to
send the events/data to. When receiving the events/data, the receiver component maps object IDs to local object IDs
(recall all shared data is replicated) using a JViews-provided object registry, and merges changes into the remote view
or presents to the other user(s). When other users edit a shared view, changes are sent to a user’s change receiver, which
presents or merges changes appropriately. Our collaborative editing mechanism is tolerant to network failure, with
events marked so they can be resent when a network connection is re-established. Users can continue to asynchronously
edit any shared view if a connection fails, then merge and/or review changes made by others, illustrating the advantage
of a decentralised architecture.

6. Distributing Task Automation Agents

Local tool co-ordination and local process-based task automation agents are programmed using JViews components.
These are driven by events produced by JViews-based tools (or wrapped 3rd party tools) and act on local tool data.
Distributed work co-ordination and tool integration is necessary when multiple developers need to be made aware of
work others are doing/have been doing, or when a remote server needs to be used to centralise data or processing. For
example, the Serendipity-II work co-ordination agent shown in Figure 5 (a) is an example of a task automation agent
implementing a simple notification mechanism. In this example, when editing events made by user “john” occur while
the process stage “4b. Determine Design ” is enacted, they are filtered to see if they apply to the component
"CIGItenary", and if so are stored so user “mark” can review them later.

Figure 5. (a) Work co-ordination using distributed task automation agents and (b) its architecture.

Such task automation agents are programmed using a visual agent programming language in Serendipity-II, and may
include components corresponding to remote tools or named software agent. Events need to be detected from these
remote components and sent to the local JViews environment. Some local components making up the task automation
agent specification may also need to send events/operation invocation messages to remote tools and/or agents. Security
must be maintained, ensuring task automation agents can not corrupt remote data or incorrectly invoke remote tool and
agent operations. Similarly, the decentralised nature of our overall environment is something we wish to preserve,
meaning agents must be built tolerant to the possibility of network failure occuring. Any remote data ideally should be
replicated locally where possible to ensure the agent can function during network failure and to minimise network
traffic.

Our original implementation of remote task automation and tool integration agents used our custom socket-based
protocol and component serialisation/deserialisation mechanism built into JViews [18, 19]. This proved to be difficult to
use and program, and suffered not so much from scalability and performance problems, as our originally developed
collaborative editing components did, but from a lack of open systems integration. We have recently prototyped some
new task automation agents using CORBA-based remote object communication. Our CORBA-based remote task

automation agents use a remote CORBA ORB (again, each users host runs an ORB) to locate and invoke remote agent
operations, and to request remote agents send them events. 3rd party tools and components which provide a CORBA-
compliant remote object interface can be integrated without JViews wrapper components. The naming and remote
operation invocation facilities of an ORB give improved performance and ease-of-development for our remote agents
than our previous implementation approach.

We do not use remote CORBA objects for data access, as these are problematic both in terms of performance (if a
large number of remote agents need access to this data) and when network connections/hosts fail. Instead we use
JViews’ data replication infrastructure support and local persistency mechanism to decentralise data access whenever
possible. CORBA-based operation invocation is used to support this replication, and is used as the communication
medium for event broadcasting when reconciling distributed data.

7. Distributed Component Storage and Retrieval

We have recently developed a component repository (currently using a centralised, rather than decentralised data
management mechanism). This allows distributed developers to share components, particularly commonly reused
infrastructure components for building applications. In order for developers to effectively share components, a common
language or ontology for characterising and describing components must be used. We have developed a development
methodology for component engineering that we call aspect-oriented component engineering [17]. This provides, in
addition to a process, design notation and implementation framework, a standardised way of characterising components.
Aspects capture horizontal perspectives of a component-based system, such as user interface, persistency, distribution,
collaborative work, security, component configuration etc. characteristics. They can also capture domain-specific
vertical perspectives, such as process modelling and enactment, data modelling, processing and storage, and so on.

Figure 6 (a) shows an example of a developer searching our repository for a component supporting event
broadcasting over the internet (from [20]). The developer formulates a query using aspect, aspect detail and aspect
detail properties of the component they are searching for. Retrieved components are displayed, and aspect-organised
information about these components can be browsed by the developer. In this example, the developer has reused a
socket-implementing collaborative editing component (actually part of the JViews infrastructure). A validation function
has been run and the component is indicating it currently lacks a required relationship to another component in order to
be able to function.

The architecture of this component repository is illustrated in Figure 7 (b). Currently the component repository
client uses a centralised component repository server, which access a relational database in which component
information is stored. Component descriptions in the database provide component implementation and design
documentation links (in our systems, components are JavaBeans, and thus have .class bytecode files implementing the
component, sometimes .java source code files are available, and sometimes Word™, UML or JComposer OOD models
documenting them are available). We are planning to extend this architecture to allow environments to have a local
RDBMS server storing component information. A component query will then traverse the local repository first, using
other users’ and other distributed repositories for further component searches. Developers can add components to a
repository, with JViews’ aspect extensions used to automate indexing of components [20].

Figure 6. (a) Distributed component retrieval and (b) its architecture.

8. Future Work
To date our component engineering tools and overall environment has proved useful for various small-to-medium

system development tasks [14, 19]. We are in the process of evaluating some of the recent architectural enhancements
we have made, in addition to new tools like SoftArch. This is likely to indicate new tools that may be needed, or
existing tools which can usefully be integrated into the environment, as well as existing tool enhancements. Some
current enhancements to the environment we are planning include distributed running system visualisation and testing
support in SoftArch [22], adaptable user interface component design and development [21], and improved support for
aspect-oriented component engineering [17].

Our recent work has indicated that we also need to further investigate the infrastructural support for building and
integrating internet-based software engineering tools. Various enhancements we have built have improved the ability of
tool developers to build and deploy software tools, but have made our JViews framework rather complex and unwieldy.
Developers must still be aware of local vs distributed components when developing tools, use different naming and
operation invocation services for RMI and CORBA-based distributed components, and are forced to adhere to various
application-specific constraints when using PSE Pro™ and RDBMS (via JDBC) persistency mechanisms for tools and
the component repository. In addition, as tools must inherit or aggregate most distributed support facilities from JViews
classes, this limits the ability for distributed support infrastructure to be dynamically modified, as it is “hard-coded” into
tools. We would like to make the various distributed work facilities described in this paper far more transparent to tool
developers as well as tool users, and allow it to me more flexible.

Figure 7 gives a high-level illustratation of our proposed improved infrastructure. Various software engineering
tools, such as Serendipity-II, JComposer, SoftArch and our component repository utilise facilities provided by an event-
based tool integration infrastructure (the E-bus). This infrastructure allows each tool to communicate with other tools
using events, including converting operation invocation requests and returns into events. This allows much more
freedom in integrating tools and accessing them across the internet, as well as modifying their behaviour and the tool
composition of an environment [19, 18]. Various facilities are provided transparently by this infrastructure, with each a
“horizontal tool” in its own right. This includes local persistency and distributed component replication mechanisms,
local and distributed software agents (components), document management facilities (including reusable component
management), collaborative editing and event broadcasting, and 3rd party tool and service integration support. This is in
contrast to tools making use of framework class capabilities as in JViews, which tends to limit their degree of
flexibility, extensibility and does not support evolving infrastructure facilities well.

As part of this work we plan to investigate the use of the new Jini distributed component support infrastructure for
Java. We plan to use our component aspect characterisation approach to characterise E-bus services for advertising and
access over a Jini-based infrastructure, using event exchange. Local and remote software agents, process engines and
editable views will appear the same to clients, with the E-bus and service tool components dynamically resolving local
and remote component access. A unified approach to document management, including indexing and hyper-linking
support, will enable us to build templates (in Serendipity-II and SoftArch), a component repository and documentation
for components (including aspect characterisation) in a uniform manner. Use of PSE Pro™ for the component
repository, as well as tool local persistency management, will be included as part of this work.

Figure 7. Future internet-based software engineering environment architecture.

9. Summary

We have developed an integrated environment for component engineering. This includes tools to support process
management and local tool integration and task automation, flexible collaborative editing, distributed work co-
ordination, and a distributed component repository. Some 3rd party tools have been integrated into this environment,
including a programming environment and distributed file repository. These tools can all be used over the internet to
support distributed software development of component-based systems. Most utilise a decentralised software
architecture, which is fault-tolerant and provides good performance over a range of internet communication
technologies. Further enhancements to this environment include the addition of distributed testing and monitoring tool
support, distributed user interface development tools, and further work codifying the processes, notations and
implementation technologies for our aspect-oriented component engineering methodology. Infrastructural
enhancements are aimed at providing tool developers with a cleaner, more extensible architecture on which to build
and integrate tools and tool services.

References

1. Bandinelli, S. and DiNitto, E. and Fuggetta, A., Supporting cooperation in the SPADE-1 environment, IEEE Transactions on
Software Engineering, vol. 22, no. 12, December 1996, 841-865.

2. Begole, J., Struble, C.A., Shaffer, C.A. and Smith, R.B. Transparent Sharing of Java Applets: A Replicated Approach. In Proc.
ACM UIST ’97, pages 55-64. ACM Press, 1997.

3. Ben-Shaul, I.Z., Heineman, G.T., Popovich, S.S., Skopp, P.D. amd Tong, A.Z., and Valetto, G. Integrating Groupware and
Process Technologies in the Oz Environment, in 9th International Software Process Workshop, IEEE CS Press, Airlie, VA,
October 1994, pp. 114-116.

4. Bentley, R., Horstmann, T., Sikkel, K., and Trevor, J. Supporting collaborative information sharing with the World-Wide Web:
The BSCW Shared Workspace system, in Proceedings of the 4th International WWW Conference, Boston, MA, December
1995.

5. Conradi, R. Hagaseth, M., Larsen, J., Nguyen, M.N., Munch, B.P., Westby, P.H., Zhu, W. and Jaccheri, M.L., EPOS: Object
Oriented Coopeartive Process Modeling, In Software Process Modeling & Technology, Finkelstein, A., Kramer, J. and
Nuseibeh, B. Eds, Research Studies Press, 1994.

6. Dewan, P. and Choudhary, R. A High-Level and Flexible Framework for Implementing Multiuser User Interfaces. ACM TOIS,
vol. 10, no. 4, October 1992, ACM Press, 345-380.

7. Dossick, S.E. and Kaiser, G.E. Distributed Software Development with CHIME, In Proceedings of the 1999 ICSE Workshop on
Software Engineering over the Internet, http://sern.cpsc.ucalgary.ca/~maurer/ICSE99WS/ICSE99WS.html.

8. Emmerich, W., “ CORBA and ODBMSs in Viewpoint Development Environment Architectures.,” in Proceedings of the 4th
International Conference on Object-Oriented Information Systems, Springer Verlag, 1997, pp. 347-360.

9. Emmerich, W., Arlow, J., Madec, J., and Phoenix., M., “Tool Construction for the British Airways SEE with the O2 ODBMS,”
Theory and Practice of Object Systems, vol. 3, no. 3, 213-231, 1997.

10. Ferguson R.I., Parrington N.F. & Dunne P., 1994. MOOSE: A Method Designed for Ease of Maintenance. In Proceedings of the
International Conference on Quality Software Production 1994 (ICQSP 94), Hong Kong, IFIP.

11. Ferguson, R.I., Parrington, N.F., Dunne, P. Hardy, C., Archibald, J.M. and Thompson, J.B. MetaMOOSE - an Object-Oriented
Framework for the construction of CASE tools, Information and Software Technology, vol. 42, no. 2, January 2000.

12. Fernström, C. ProcessWEAVER: Adding process support to UNIX, In 2nd International Conference on the Software Process:
Continuous Software Process Improvement, Berlin, Germany, February 1993, IEEE CS Press, pp. 12-26.

13. Grundy, J.C. Human Interaction Issues for User-configurable Collaborative Editing Systems, In Proceedings of APCHI’98,
Tokyo, Japan, July 15-17 1998, IEEE CS Press, pp. 145-150.

14. Grundy, J.C., Hosking, J.G., Mugridge, W.B. and Apperley, M.D. An architecture for decentralised process modelling and
enactment, IEEE Internet Computing, Vol. 2, No. 5, September/October 1998, IEEE CS Press.

15. Grundy, J.C., Hosking, J.G. and Mugridge, W.B. Inconsistency Management for Multiple-View Software Development
Environments, IEEE Transactions on Software Engineering, vol. 24, no. 11, November 1998, IEEE CS Press, pp. 960-981.

16. Grundy, J.C., Mugridge, W.B., Hosking, J.G., and Apperley, M.D., Tool integration, collaborative work and user interaction
issues in component-based software architectures, In Proceedings of TOOLS Pacific '98, Melbourne, Australia, 24-26
November, IEEE CS Press.

17. Grundy, J.C. Aspect-oriented Requirements Engineering for Component-based Software Systems, In Proceedings of the 4th

IEEE Symposium on Requirements Engineering, Limerick, Ireland, June 8-11 1999, IEEE CS Press, pp. 84-91.
18. Grundy, J.C. Visual specification and monitoring of software agents in decentralised process-centred environments,

International Journal on Software Engineering and Knowledge Engineering: Special Issue on Visual Programming for Parallel
and Distributed Computing, Vol. 9, No. 4, World Scientific Publishing Company, August 1999, pp. 425-444.

19. Grundy, J.C., Hosking, J.G., and Mugridge, W.B. Constructing component-based software engineering environments: issues and
experiences, Information and Software Technology, vol. 42, no. 2, January 2000, Elsevier.

20. Grundy, J.C. Component storage and retrieval using aspects, In Proceedings of the 2000 Australian Computer Science
Conference, Canberra, Australia, Jan 31-Feb 3 2000, IEEE CS Press.

21. Grundy, J.C. and Hosking, J.G. Developing Adaptable User Interfaces for Component-based Systems, In Proceedings of the 1st

Australian User Interface Conference, Canberra, Australia, Jan 30-Feb 3 2000, IEEE CS Press.
22. Grundy, J.C. Software Architecture Modelling, Analysis and Implementation with SoftArch, Technical Report, Department of

Computer Science, University of Auckland, December 1999.
23. Hart, R.O. and Lupton, G., “DECFUSE: Building a graphical software development environment from Unix tools,” Digital

Tech Journal, vol. 7, no. 2, 5-19, 1995.

24. Henninger, S. Supporting the Construction and Evolution of Component Repositories, In Proceedings of the 18th International
Conference on Software Engineering, Berlin, Germany, 1996, IEEE CS Press, pp. 279-288.

25. Kaiser, G.E., Kaplan, S.M., and Micallef, J. (1987a). “Multiuser, Distributed Language-Based Environments,” IEEE Software,
vol. 4, no. pp. 11, 58-67.

26. Kaiser, G.E. and Dossick, S. Workgroup middleware for distributed projects, in Proceedings of IEEE WETICE’98, Stanford,
June 17-19 1998, IEEE CS Press, pp. 63-68.

27. Kaplan, S.M., Tolone, W.J., Bogia, D.P., and Bignoli, C., “Flexible, Active Support for Collaborative Work with
ConversationBuilder,” in 1992 ACM Conference on Computer-Supported Cooperative Work, ACM Press, 1992, pp. 378-385.

28. Kelly, S., Lyytinen, K., and Rossi, M., “Meta Edit+: A Fully configurable Multi-User and Multi-Tool CASE Environment,” In
Proceedings of CAiSE’96, Lecture Notes in Computer Science 1080, Springer-Verlag, Heraklion, Crete, Greece, May 1996, pp.
1-21.

29. Magnusson, B. and Asklund, U. and Minör, S. Fine-grained Revision Control for Collaborative Software Development, In
Proceedings of the1993 ACM SIGSOFT Conference on Foundations of Software Engineering, LA, 1993, pp. 7-10.

30. Pai, Y. and Bai, P. Retrieving software components by execution, In Proeedings of the. 1st Component Users Conference,
Munich, July 14-18 1996, SIGS Books, pp. 39-48.

31. Reiss, S.P., “Connecting Tools Using Message Passing in the Field Environment,” IEEE Software, vol. 7, no. 7, 57-66, July
1990.

32. Robbins, J. Hilbert, D.M. and Redmiles, D.F. Extending design environments to software architecture design, Automated
Software Engineering, vol. 5, No. 3, July 1998, 261-390.

33. Roseman, M. and Greenberg, S. TeamRooms: Network Places for Collaboration. In Proceedings of ACM CSCW 96, pp. 325-
333, 1996.

34. Roseman, M. and Greenberg, S. Building Real Time Groupware with GroupKit, A Groupware Toolkit, ACM Transactions on
Computer-Human Interaction, vol 3, no. 1, 1-37, March 1996.

35. Shuckman, C., Kirchner, L., Schummer, J. and Haake, J.M. Designing object-oriented synchronous groupware with COAST, in
Proceedings of the 1996 ACM Conference on Computer Supported Cooperative Work, ACM Press, November 1996, pp. 21-29.

36. Sessions, R. COM and DCOM: Microsoft’s vision for distributed objects, John Wiley & Sons 1998.
37. Szyperski, C.A. Component Software: Beyond Object-oriented Programming, Addison-Wesley, 1997.
38. t er Hofte, G.H. and H.J. van der Lugt, 'CoCoDoc : A framework for collaborative compound document editing based on

OpenDoc and CORBA'. In Proceedings of the IFIP/IEEE international conference on open distributed processing and
distributed platforms, Toronto, Canada, May 26-30, 1997. Chapman & Hall, London, 1997, p. 15-33.

39. Valetto, G. and Kaiser, G.E. (1995). Enveloping Sophisticated Tools into Computer-Aided Software Engineering Environments,
in IEEE Seventh International Workshop on Computer-Aided Software Engineering, July, 1995, pp. 40-48.

40. Weyuker, E.J. Testing Component-based Sotware: A Cautionary Tale, IEEE Software, Sept/Oct 1998, pp. 54-59.

