
Static and Dynamic Visualisation of Software Architectures for Component-based
Systems

John C. Grundy†, Warwick B. Mugridge†† and John G. Hosking††

Department of Computer Science†

University of Waikato
Private Bag 3105, Hamilton, New Zealand

jgrundy@cs.waikato.ac.nz

Department of Computer Science††

University of Auckland
Private Bag 92019, Auckland, New Zealand

{rick, john}@cs.auckland.ac.nz

Abstract

Component-based software architectures are
increasingly being adopted as solutions for various
software engineering problems. We describe a
component-based software architecture and its
supporting CASE tool we have been developing. Our tool
supports both static and dynamic visualisation of
component-based systems, together with end-user
configuration of such systems by user extension of these
visualisations. We describe the application of this tool to
the development of component-based design
environments, focusing on visualisations developed when
specifying a process modelling tool.

1. Introduction

Component-based software architectures are
becoming more common as software developers realise
these have greater potential for improved reusability,
robustness and end-user configuration than conventional
software systems. Example domains include user
interfaces, databases, client-server architectures, design
tools and visualisation tools. The central idea of
component-based software architectures is the
composition of software systems from discrete, usually
highly reusable "components" - units of data and
functionality that can be connected together to produce a
complete software package. Event propagation between
components is often used to facilitate their
intercommunication, in addition to conventional
procedure and method invocation. Often components can
be "plugged into" running systems to enhance them, and
components easily replaced with others as appropriate.

This is in contrast to conventional software systems,
which usually require recompilation and often
rearchitecturing when doing such enhancements.

We have been using software components to build
design tools, such as software development systems, data
modelling tools, and process modelling environments.
We chose a components-based approach as it allows us
to reuse significant aspects of such tools, such as
multiple view management, repository management,
cooperative work support and a variety of user interface
components. A component-based architecture for such
tools also makes for easier integration with third-party
tools. However, developers building such component-
based tools require supporting design notations, static
visualisation tools and dynamic visualisation and
querying tools to assist them. These visualisation tools
may include techniques employed for conventional
software, but additional capabilities for visualising
component interconnection schemes, event propagation
and handling, and allowing dynamic modification of
component structures are required.

We describe an example component-based software
architecture, and a design environment which we have
built using this. We then describe JComposer, a tool
which supports the static specification and visualisation
of systems developed with our architecture, and describe
and illustrate JVisualise, a complementary tool utilising a
similar visual notation for dynamic component-based
system visualisation. A comparison of JComposer and
JVisualise to related approaches is given.

2. Component-based Architectures

Component-based systems are comprised of units of
data and functionality called "components", linked

jgrundy

jgrundy
10th International Conference on Software Engineering and Knowledge Engineering, San Francisco, June 18-20 1998, KSI Press, pp. 426-433.

jgrundy

together to build a complete software product. The
difference between component-based systems and more
conventional software systems (e.g. using function
libraries and class frameworks) is that component-based
systems allow components to be "plugged" in at run-
time, or unplugged and interchanged with other
components. This supports user-configuration of systems,
reusbility of components, and a more versatile and
potentially robust "building block" approach to system
architectures.

Component1

Component2 Component3

Relationship
Component

Listen before/after
changes sent by Comp1

Listen before/after Comp2
receives changes from RelComp

Listen before/after
changes sent by RelComp

"change descriptions" sent
from Comp1 to RelComp
before and/or after change effected

Figure 1. The JViews component-based architecture.

JViews is a component-based software architecture
we have been developing to support the construction of
component-based design environments [10]. JViews
exploits and extends the Java Beans componentware API
of Java 1.1 [15]. The basic structure of a JViews
component-based system is illustrated in Figure 1.
Components (rectangles) are linked by relationship
components (ovals) or simple reference links (solid
lines). When a component undergoes a state change, it
sends a "change description" object describing this
change to "interested" linked components and
relationship components. Interested components can
choose to listen before and/or after the state change

occurs, or can even listen when other components receive
change description objects. Change descriptions can be
stored and used to implement a wide range of system
functionality, including undo/redo for diagrams, attribute
recalculation and constraint enforcement, versioning and
collaborative editing [8]. JViews-based environments
also support multiple views of work artefacts via "view
relationships" between repository components and view
components. View components are rendered in graphical
or textual forms, and provide appropriate editing
functionality.

Figure 2 shows two examples of JViews-based
environments in use. The view on the left hand side is
from JComposer, a JViews-implemented CASE and
meta-CASE tool. New JViews-based systems are
specified in JComposer using an adaption of the notation
in Figure 1, and JViews-based implementations of these
tools are generated. The view shown on the right hand
side is from the Serendipity-II process modelling
environment. The Serendipity-II process model view
shows stages in a software process, enactment event
flows between stages, and start and end stages of this
simple process model [12].

When designing and implementing a component-
based system, developers need to specify and visualise:

• the components that make up such systems (i.e.
name, attributes, methods). Users should be able
to selectively show, hide, define, modify and
delete such components and their basic
characteristics.

• the inter-component structure i.e. how the
components are "wired" together to build a
software system, and how methods in one
component utilise methods in others.

Figure 2. An example of JComposer and a JComposer-generated environment.

• the flow of events between components, as one
characteristic of component-based systems is
their strongly event-based nature [11]. This
includes seeing when component-generated
events are propagated and the nature of these
events.

• the way events propagated to a component are
handled i.e. acted upon by the receiving
component. This may be coded in a low-level
programming language or specified using higher-
level constructs.

Similar issues arise when trying to visualise running
component-based systems. Visualisation of running
systems is often desired by users and/or developers, in
order to determine how such systems work, to locate and
correct errors, and possibly to extend the running system
by adding, removing or modifying components. Users of
such systems are likely to want to be able to visualise:

• running component states i.e. attribute values and
component structural interconnections. Users may
even want the ability to modify such running
component states, including being able to create
and link in new components.

• event propagation between running components,
to monitor how they behave.

• event-handling of running components, and be
able to modify this in limited ways, to
dynamically change the behaviour of the system.

• queries on the component structures that make up
the system, with running component instances
visualised using these query structures.

Our experiences with component-based software
architectures has indicated that utilising similar, if not
the same, notations to visualise static and dynamic
aspects of such systems is preferred by users of these
visualisations [11]. In the following sections we show
how we have addressed some of the above issues for
component-based systems utilising the JViews software
architecture.

3. Static Structure Visualisation

In order to facilitate the specification and static
visualisation of JViews-based software architectures, we
developed a visual Architecture Description Language
(ADL) for the JViews architecture. This ADL evolved
from earlier work with event-based software
architectures, and is a unification of these ideas in the
domain of component-based systems [9]. Figure 3
illustrates the basic components of this ADL for
specifying in several views different aspects of the
Serendipity-II environment.

JComposer uses the same notation as introduced for
JViews in Figure 1: rectangles represent components;
ovals relationship components; and arrowed lines with
name and arity represent intercomponent links. Some
links indicate aggregation of several component
instances by another component. Component
specifications contain a name, superclass and some
attributes and methods of the component. The user of
JComposer can selectively hide or show component
attributes and methods.

Figure 3. Specifying and navigating static component structures in JComposer.

The front view in Figure 3 (also shown in Figure 2)
uses this notation to describe the basic Serendipity-II
repository components, including a "base layer" (i.e.
repository) component, process model stage components,
a hashtable relationship linking stages to the repository
component, and event flow components, which link
stages in the process model. Such static visualisations are
created by users of JComposer either interactively adding
component and relationship specifications in views, or
expanding existing components from the JComposer
repository into views. Pop-up menus are used to facilitate
navigation between views, specifying component
information, adding, modifying and deleting attributes
and methods, and creating new views.

An important part of JViews-based (and component-
based systems in general) is the propagation of events
between components. JViews uses the structural inter-
component links and relationship components as event
propagation paths. Only specified links are used in this
fashion, however, and links are annotated (if the user so
requests) to indicate the kind of event propagation.
JViews allows connected components to listen before and
after events are actioned by the propagating component,
and also allows components to listen before and after
propagated events are actioned by a receiving
component. We call this event "listening" and "handling"
respectively.

Figure 4. Event propagation annoataions.

These additional link characteristics are visualised in
JComposer views via appropriate annotation of link
labels, as shown in Figure 4. We indicate such event
dependency between components with lb ("listen
before"), la ("listen after"), hb ("handle before"), ha
("handle after"), and agg ("aggregate") annotations. We
tried using extra iconic annotations, as we used in the
ViTABaL event-based ADL [7], but this became
unwieldy. Users may visualise intercomponent event
dependency and aggregation using these annotations, but
specify such behaviour for a tool under design in

JComposer using a dialogue box. The dialogue box in
Figure 4 is used to configure dependencies between the
repository component and base stages relationship
component.

In this example, the repository component is sent
events from the hashtable component after they occur
and the hashtable aggregates linked base stages with the
repository (hence the "(la, agg)" annotation). The
hashtable relationship is sent base stage component
events both before and after these are actioned, so it can
check base stages have unique IDs and that if stages IDs
are changed, the hashtable key is updated. The event
flow component is sent base stage events after they have
been actioned by the generating base stage component,
so it can enact the base stage linked to it by the "inEvent"
link.

4. Static Event Handling Visualisation

In addition to visualising static component-based
system structure and event propagation, there is a need to
visualise how received events are handled by receiving
components. Most component-based systems and tools
require low-level programmatic coding of such
behaviour. In our experience, such low-level handling of
received events is difficult to visualise in a manner that
assists users and developers of component-based systems
to understand their behaviour.

We have developed a complementary visual notation
in JComposer for JViews-based systems which uses a
simple, visual "filter" and "action" model of event
processing. This language consists of reusable "filter"
components which pattern match events or sequences of
events of interest, and "action" components, which on
receiving an event carry out some specified processing.
This language is based on an earlier event handling
language we developed for a predecessor of Serendipity-
II [12, 13]. While it does not completely replace the need
for textually-coded event responses, it does allow both
novice and experienced users of JViews-based systems to
readily visualise and understand event handling.

Figure 5 shows this language being used to statically
specify an event handler for the Serendipity-II process
modelling tool under construction. The user has
connected action components (shaded ovals) to the
hashtable and base event flow components. The
"EnsureUniqueNames" action component listens before
changes are made to the hashtable, with change events
flowing into the top entry point of this action, defined in
the right hand view. If the change is the addition of a
new base stage (EstablishRel), or the change to a base
stage ID (the hashtable key), the corresponding filters
(square icons) checking for theis passes the event to the
"NonUnique" filter.

Figure 5. Visualising event handling using JComposer filters and actions.

 This queries the hashtable to ensure the new base
stage component ID is unique. If not, the change is
rejected by passing the event onto the "NotifyError" and
the "AbortOperation" actions. If the ID is unique the
event is passed to the “Change Ok” exit point.

The "EnactStage" action, attached to the
BaseEventFlow component, handles events sent to the
enactment flow component from base stage components.
This action determines if a base stage has been
completed, and if so it enacts the base stage linked to the
enactment flow component by the "inEvent" link. Low-
level filters and actions have their functionality
programmed in Java, but may be reused via the visual
filter and action language in many places in a JViews-
based system as required.

5. Dynamic Structure Visualisation

When using a component-based system implemented
using JViews there is often a need to visualise running
components. For example, the developer of a system may
wish to observe the system in use for debugging
purposes, a user may wish to query a tool repository to
locate particular components, or the user may wish to
extend the functionality of the environment.

We have developed the JVisualise tool which, for any
JViews-based system, allows users of the system to
visualise running JViews component structures.
JVisualise uses a similar notation to the static JComposer
ADL illustrated in previous sections. Figure 6 shows a
Serendipity-II process model view (left hand view) being
visualised using JVisualise (right hand view). In this
dynamic visualisation the view component itself is
shown at the top, with three view components (the "p1"
and "p2" process stages and the event flow which links
them). Some of the attributes of these components have
been displayed, along with the "Parent" and "Child" links
between the event flow "arrow" and the stage "icons".

We use a slightly modified form of the JComposer
notation, where component "IDs" are shown in place of
the component name, and the type (component class) is
shown in place of the superclass name. All links are
shown as ovals ("relationship components" in
JComposer). As links may be one-to-many, using this
approach allows JVisualise to show only some dynamic
link instances and allows users to interact with links.
Relationship, filter and action components can be
visualised using their JComposer notation (oval,
rectangle, shaded oval respectively) or using the
component icon so their attribute values can be viewed.

Figure 6. Visualising components using JVisualise.

To construct such dynamic visualisations, the user of
JVisualise first specifies which initial JViews component
they want added to a new or existing JVisualise view, via
a pop-up menu item in any JViews view. The component
is initially visualised showing only its ID and class name,
and the user can then interact with this visualisation
using a pop-up menu to specify attribute values to show,
links to expand, etc. A simple automatic layout algorithm
places visualised components, but users can then
interactive move components to produce visualisations
that best fit their cognitive model of the system.

The composition and layout of dynamic visualisations
can also be saved as "templates", and reused to visualise

different component instances with the same structure.
Users reload a saved visualisation structure and indicate
which running component they want the first visualised
component replaced by. The other components in the
visualisation are then updated to reflect the actual
running state of the newly visualised system. Any links
and components which no longer match actual running
components are drawn in pale grey.

JVisualise dynamic visualisations change when any
component's attribute values change, or one of the
visualised components or links is deleted. Users can also
specify they want links highlighted when change
descriptions are propagated between the components
being visualised, to aid in debugging and understanding
event flow in a JViews system.

Figure 7. User enhancement of a JViews-based system.

Users of JVisualise can extend the visualised
component structures by creating and linking
components into the visualisation themselves. This
permits end-user enhancement of environments, again
utilising a similar notation to that of JComposer. For
example, figure 7 shows another visualisation of the
Serendipity model of Figure 6. The user has specified
additional filter and action component instances by
interactively adding them to visualised JViews
components which have been interactively expanded into
the view. When a component visualisation is
interactively added in this way, JVisualise attempts to
create a new instance of the component. When
components are joined by links interactively by the user,
JVisualise attempts to establish relationships between the
running, visualised components.

In Figure 7, the new filters and actions the user has
created specify that when the “p1” process stage icon is
modified, the user is informed by highlighting the icon in
the view. The change description (modification event)
generated indicating the change is also stored in a
“version record” component. The latter is used to provide
a dialogue box for viewing a history of changes. The user
can interact with the newly created components in the
same manner as ones which have been expanded into the
view, to visualise them in other views, connect them to
other components and so on. We have found the ability

of users of JViews-based environments to dynamically
modify the state of a running system via our dynamic
JVisualise tool, especially to add additional event
handling behaviour, greatly enhances the power of users
to tailor systems to the individual needs. Using a similar
notation to the static visualisations in JComposer also
allows users to work with models of a running system
they are familiar with.

6. Dynamic Structure-based Querying

The dynamic visualisations in the previous section are
produced under tight user control; users incrementally
extend the visualisation of a JViews component via pop-
up menus and direct manipulation until they gain a
satisfactory visualisation of a group of running
component structures. Users may also specify multiple
visualisations of containing common structures as
required. However, while this approach is useful for
localised component structures, we have found it poor for
large collections of components, such as the repositories
of Serendipity-II and JComposer-style tools. To allow
users to better construct appropriate visualisations in
such situations, we have incorporated a visual query
component into JVisualise.

Figure 8 shows a JVisualise visual query applied to
the Serendipity-II repository to select all process model
stages which have an output event flow named
"finished". We use the JVisualise notation to formulate
this query, constructed by direct manipulation. Instead of
showing particular dynamic component and link
instances, this query is run to link component and link
icons to component instances and links in the
Serendipity-II repository matchinf the query constraints.
In this example, the user has specified they want any
base stage component which is linked to an event flow
named "finished". Users specify optional links to match
(0:1 or 0:n), AND/OR conditions, and attribute names to
be shown in the result.

When such queries are run, JVisualise locates all
components which match those specified in the query.
These are not all displayed at once, however, as a great
many components and links may match a query. Instead,
an exact copy of the query visualisation is made , which
is used to display the query result. The first component
matching the first component specification in the query is
visualised, with other matching components (if any)
added to a pop-up menu item for the component icon in
the query result. For each component specification linked
to this first component visualised, the first matching
component in this "subquery" is visualised, with other
components matched added to pop-up menus. The user
may then successively select differently-matched
component instances for each component icon in the
query result, viewing different subquery results as they
do so. This is illustrated in Figure 8. One base stage

matches the query, and it is visualised in the query result
by linking the query view icons to the matching
component instances. If more than one base stage were
matched, the user can select other matches via the pop-
up menu item. Instances of the event flow component
and the base stage linked to the event flow by the
"inEvent" link change if the user selects a different base
stage.

Figure 8. A dynamic JVisualise component query.

7. Discussion

Many systems have been developed which attempt to
provide static and dynamic visualisations of event-based
and/or component-based systems. For example,
VisualAge for Java [16] and Jbuilder [24] provide limited
Java Beans component static visualisation capabilities to
support the generation of Java Beans classes. Similarly,
ClockWorks [6] provides a tool for specifying and
generating Clock components. Such tools do not
generally provide a range of different kinds of
component visualisations, such as JComposer's filters,
actions and relationship components.

Dynamic visualisation of component-based systems
are often used to allow end-users to configure such
systems themselves. Examples include BeanMachine
[14], MET++ [21], and VisualJavaScript [18]. These
systems allow users to compose systems by combining

prebuilt components in an appropriate manner. They do
not however provide visual event-handling configuration.

Visual query languages have been developed for both
database and CASE tool repository inspection. Examples
include graphical querying of ER models [4, 20], and
CASE tool repository querying [17, 1]. Such approaches
to visual querying usually attempt to fully formulate
queries visually [17, 4], but often present results in a
conventional textual manner. We took the approach of
allowing users to use the JVisualise notation for queries,
with component structures queried visually but attribute
constraints done textually. We have found this more
convenient to use for end-users than (often cumbersome)
fully visual query languages. We also use the visual
query structure to present the results of the query to
users, which provides a more easily navigated
visualisation of matching software components than
textual output. An alternative would be to visualise ALL
matching software components, resulting in potentially
very large component interconnection graphs. While
various approaches exist to visualise such output [2, 5],
we have found the use of the JVisualise queries most
useful in our application domain.

Other event-based software system visualisation
techniques include those of ViTABaL [7], Zhang et al
[23, 19], and Wirtz [22], and those of dataflow
languages, such as Prograph [3]. We have found the use
of simple annotation techniques in JComposer to be less
cumbersome and cluttered than visual annotations. The
visualisation of running component event propagation is
currently simplistic in JVisualise, but can be
straightforwardly enhanced by filters and actions.

8. Summary

We have described a variety of novel static and
dynamic visualisation techniques for component-based
software systems. Developers of such systems need
facilities to statically specify the components, component
interconnections and event handling of such systems. Our
JComposer tool provides for systems utilising the JViews
component-based software architecture. JVisualise
provides dynamic visualisation capabilities for JViews-
based systems, including component inspection,
component interconnection visualisation, event handling
enhancement and visual querying of JViews component
structures.

We are enhancing JComposer and JVisualise with
additional notation, for example distinguishing between
reused and built-from-scratch components, inherited and
user-specified component interconnections, and allowing
change description events to be visually displayed on
diagrams. We are also adding method calling links to our
notation to allow intercomponent method calls to be
distinguished from event propagation. These
enhancements will allow developers to more easily

understand complex aspects of component-based systems
with significant numbers of reused components and
disparate change descriptions being propagated. We are
also investigating the use of improved automatic layout
algorithms for JVisualise views, and the use of large
graph structure visualisation using VR techniques to
assist in understanding of very large component-based
software.

References

[1] Bird, B., “An Open Systems SEE Query Language,” in
Proc. of 7th Conference on Software Engineering
Environments, IEEE CS Press, Netherlands, 1995.

[2] Consens, M., Medelzon, A., and Ryman, A., “Visualising
and querying software structures,” in Proc. 14th
International Conference on Software Engineering, IEEE
CS Press, Australia, May 1992.

[3] Cox, P.T., Giles, F.R., and Pietrzykowski, T., “Prograph:
a step towards liberating programming from textual
conditioning, , IEEE Computer Society Press,” in Proc.
1989 IEEE Workshop on Visual Languages, 1989, pp.
150-156.

[4] Czejdo, B., Elmasri, R., Rusinkiewicz, M., and Embley,
D.W., “A Graphical Data Manipulation Language for an
Extended Entity-Relationship Model,” COMPUTER, vol.
23, no. 3, 26-36, 1990.

[5] Eades, P. and Feng, Q., “Drawing very large graphs
using clustering,” in Proc. 1997 Workhop on Software
Visualisation, Department of Computer Science, Flinders
University, Australia, Dec 1997.

[6] Graham, T.C.N., Morton, C.A., and Urnes, T.,
“ClockWorks: Visual Programming of Component-
Based Software Architecture,” Journal of Visual
Languages and Computing, 175-19, July 1996.

[7] Grundy, J.C. and Hosking, J.G., “ViTABaL: A Visual
Language Supporting Design By Tool Abstraction,” in
Proc. 1995 IEEE Symposium on Visual Languages, IEEE
CS Press, Darmsdart, Germany, September 1995, pp. 53-
60.

[8] Grundy, J.C., Venable, J.R., Hosking, J.G., and
Mugridge, W.B., “Coordinating collaborative work in an
integrated Information Systems engineering
environment,” in Proc. 7th Workshop on the Next
Generation of CASE tools, Crete, 20-21 May 1996.

[9] Grundy, J.C., Hosking, J.G., and Mugridge, W.B.,
“Towards a Unified Event-based Software Architecture,”
in Proc. SIGSOFT'96 Workshops, ACM Press, October
14-15 1996, pp. 121-125.

[10] Grundy, J.C., Mugridge, W.B., and Hosking, J.G., “A
Java-based toolkit for the construction of multi-view
editing systems,” in Proc. Second Component Users
Conference, Munich, Germany, July 1997.

[11] Grundy, J.C., Hosking, J.G., and Mugridge, W.B.,
“Visualising Event-based Software Systems: Issues and
Experiences,” in Proceedings of SoftVis'97, Dept. of
Computer Science, Flinders University, Australia,
December 11-12 1997.

[12] Grundy, J.C. and Hosking, J.G., “Serendipity: integrated
environment support for process modelling, enactment
and work coordination,” Automated Software
Engineering, vol 5, no 1, 1998.

[13] Grundy, J.C., Hosking, J.G., and Mugridge, W.B.,
“Support for end user specification of workflows, work
coordination and tool integration,” Journal of End User
Computing, vol. 10, no. 2, May, 1998.

[14] Lotus BeanMachine™, Lotus`Inc.,
http://www.lotus.com/beanmachine, 1997.

[15] Java Beans 1.0 Specification, Sun Microssystems Inc,
http://www.javasoft.com/beans/, 1996.

[16] IBM Visual Age for Java™, IBM,
http://www.software.ibm.com/ad/vajava, 1997.

[17] Liu, H., “A Visual Interface for Querying a CASE
Repository,” in Proc. 1995 IEEE Symposium on Visual
Languages, IEEE CS Press, 1995, pp. 21-28.

[18] Netscape Visual JavaScript™, Netscape`Inc.,
http://www.netscape.com/compprod/products/, 1998.

[19] Stankovic, N. and Zhnag, K., “Graphical composition of
messgae-passing programs,” in Proc. 1997 Workshop on
Software Visualisation, Department of Computer
Science, Flinders University, Australia, Dec 11-12 1997.

[20] Teorey, T.J., Yang, D., and Fry, J.P., “A Logical Design
Methodology for Relational Databases Using the
Extended Entity-Relationship Model,” Computing
Surveys, vol. 18, no. 2, 197-222, 1986.

[21] Wagner, B., Sluijmers, I., Eichelberg, D., and Ackerman,
P., “Black-box Reuse within Frameworks Based on
Visual Programming,” in Proc. 1st Component Users
Conference, SIGS Books, 1997.

[22] Wirtz, G., “A Visual Approach for Developing,
Understanding and Analyzing Parallel Programs,” in
Proc. 1993 IEEE Symposium on Visual Languages,
IEEE CS Press, 1993, pp. 261-266.

[23] Zhang, D.Q. and Zhang, K., “A Visual Programming
Environment for Distributed Systems,” in Proc. 1995
IEEE Symposium on Visual Languages, IEEE CS Press,
Darmsdadt, Germany, 1995.

[24] Borland JBuilder™, Borland Inc.,
http://www.borland.com/jbuilder, 1997.

