
Software Architecture Modelling and Performance Analysis with Argo/MTE

Yuhong Cai1, John Grundy1, 2, John Hosking1 and Xiaoling Dai1
Department of Computer Science1 and Department of Electrical and Computer Engineering2,

University of Auckland, Private Bag 92019, Auckland, New Zealand
{rainbow,john-g,john}@cs.auckland.ac.nz

Abstract. We describe Argo/MTE, an extension of the
open-source Argo/UML CASE tool that incorporates
software architecture modelling facilities and
performance test-bed code generation. We illustrate its
application by example and explain the tool architecture
and our experience using and evaluating it to date.

1. Introduction

Software architecture design and evaluation have
become crucial in large scale systems development
[4],[6],[8]. Validation of non-functional requirements is
particularly critical and one of the most challenging of
these to validate is system performance [6], [16], [17].
Existing architecture modelling and performance
analysis tools are limited. Many modelling approaches
have been taken, from informal visual design
environments to formal architecture style specification
and verification [5],[8],[13]. Performance analysis
approaches range from simulation and rapid prototyping
to reference benchmarks [4],[6],[14],[16],[20],[21].
Most have limitations when used on large-scale projects,
such as scalability, integration with other development
tools, result accuracy, and flexibility.

We describe an architecture design environment
with performance analysis facilities which extends the
Argo/UML open source CASE tool [18] to provide an
integrated modelling environment. We added several
architecture modelling support features plus extensions
to the XMI UML representation to capture architecture
attributes. Performance analysis is based on test bed
code generation where test code is synthesised, and
performance tests run on real hardware and network
infrastructure to gain the performance measures.

In the following, we provide a motivating example
along with a survey of related research. We then
overview and illustrate usage of the Argo/MTE
architecture modelling and performance analysis
environment. We briefly describe the tool’s architecture
and implementation, and our experience with the tool.
We conclude with a summary and future research.

2. Motivation

Consider a complex architecture for internet micro-
payment allowing many customers to buy information
on the WWW on a pay-as-you-go basis, with many

small value transactions [2]. Fig. 1(a) shows an example
of such a micro-payment system (NetPay) built using a
component-based architecture [3].

When developing such software, architects must be
able to model architecture, including many abstractions
and their properties: clients, servers, machines,
networks, protocols, caching, databases, messages, user
interfaces etc in various levels of detail, from overview,
refining into successively more detailed designs. Our
interest is in how to support architects to gauge likely
design performance, even from early, high-level designs
[8]. Our approach focuses on generating executable
code from architecture specifications and deploying this
code on real hardware, to capture realistic timing
information supporting incremental design refinement.

Many approaches have been used for performance
estimation. Benchmarking [4],[6] uses reference
architectures and load-testing simple implementations.
Relative performances of different technologies used in
reference implementations are compared. Benchmarks
provide accurate measures for the benchmark
application used, but are only a rough performance
guide for related applications [6]. Rapid prototyping
[11] develops partial software applications
implementing performance-critical parts of the code e.g.
network-centric and database-intensive. Much effort is
often expended for even simple prototypes. If the
architecture evolves prototypes must be modified and
tests repeated, which is time-consuming and error-
prone. Simulation approaches use models of distributed
applications to estimate performance. Performance over-
head estimates are based on architecture [1],[16] or
middleware [12],[17] choices. As these approaches
simulate performance, their accuracy varies widely and
it is very difficult to obtain performance models for 3rd
party applications such as databases.

3. Our Approach

In earlier work we developed a custom architecture
modelling tool, retrofitting support for performance test-
bed generation and analysis [7],[8]. Our new approach
provides improved modelling and performance test-bed
based analysis support within a standard CASE tool.
This provides better integrated modelling and analysis
support, uses existing model representation formats, and
allows simpler refinement of architecture designs to OO

jgrundy
2004 Conference on Software Engineering and Knowledge Engineering, Baniff, Canada, June 20-24 2004.

Customer PCs

Browser+EWallet

HTTP

 SQL DB Server

Vendor1

SQL DB Server

Vendor2

HTTP

HTTPS HTTP Server

 Staff PCs

SQL DB Server

Broker

Application
 Server

SQL

SQL

SQL

 J2EE Server

EJB container
(EJBs)

 Web Container
(JSPs)

SQL
CORBA

CORBA

CORBA

 HTTP Server

Application
 Server - C++

socket

Authorisation

Bank

CORBA

EDI; CORBA; Custom

Customer

Perl CGIs

 (a)

2. Model architecture
designs (from
requirements)

1. Create Domain-
specific meta-

model(s)

3.Generate XML
(Extended XMI Format)

4.Transform XML
to test bed code,
.BAT files etc

5.Run performance
analysis tests

6.Visualise test
results/modify

architecture designs

System
Requirements

Results DB

Reusable
Meta-models

Extended
XMI

.java, .cpp, .bat,

.war, …

 (b)

Fig. 1 (a)The NetPay micro-payment system architecture (b) Using the Argo/MTE Environment

designs and vice-versa. We chose to extend the Argo/
UML CASE tool [18], [19] to develop Argo/MTE, but
the approach is applicable to other modelling tools e.g.
Rational Rose™, MS Visio™.

Fig. 1(b) shows how our environment is used by
architects. (1) Multiple Argo/MTE domain-specific
meta-models can be defined, each providing different
modelling abstractions and code generators e.g. for web-
based or real-time systems, etc. (2) Architecture models
are developed using one or more meta-models and
multiple design views. System requirements and
specifications guide and constrain architecture design
choices. (3) An extended XMI model format is used. (4)
The model is transformed into files and scripts for code,
compilation, database initialisation and deployment. (5)
The generated test-bed code is compiled and deployed
to multiple host machines and performance tests run. (6)
Results are queried and visualised using various graphs
which architects use to refine architecture designs and
re-generate and run further performance tests. Our
approach thus automates the rapid prototyping approach
to architecture performance analysis.

4. An Overview of Argo/MTE Usage

We illustrate use of Argo/MTE using the NetPay
architecture. This is a complex architecture and here we
consider only part of its design and one aspect of its
performance. Fig. 3(a) shows Argo/MTE modelling an
architecture meta-model i.e. a set of modelling
abstractions for a particular domain. This example is a
web-based enterprise system meta-model, including
client, database and, application servers, remote object
abstractions, and others. Argo/MTE uses Argo/UML
view layout: menu and tool bars (1,2), tree view of
model elements (3), diagram editing pane (4), and
tabbed property sheet pane (5). The architecture meta-
model comprises element types (rectangular icons with

names, stereotypes and properties), element type
associations (solid lines), hosting associations (dashed
lines), and refinements (solid/dashed black line with one
end point). Modelling elements define abstractions that
can be composed in a model and their properties. An
example of such types and properties is shown in Fig. 2.
Associations specify how elements can be related,
hosting associations specify how one element type relies
on the existence of its host element, and refinements
specify how one element type can be refined to a more
detailed one.
Element Type Main Attributes Property Description
Client ClientType (AP, TP)

Threads(TP)

Type of a client e.g. browser,
CORBA client.
Number of con-current
clients run for tests.

RemoteRequest RemoteServer (AP, TP)
RemoteObject(AP, TP)
RemoteMethod(AP, TP)
RecordTime(TP)
TimesToCall(TP)
PauseBetweenCalls(TP)

Name of remote server to call
The name of remote object
The name of remote service
Record time for this?
Repetitions
Pause duration between calls

AppServer …
RemoteService …
DBRequest …
DBTable …

Fig. 2. Meta-model type and attribute examples.

Architects choose one or more meta-models to use to
create views of their architecture design. An Argo/MTE
model view comprises elements (rectangles), element
requests and services (labels), associations (solid black
lines), message interactions (blue lines and highlights),
hosting associations (dashed lines), and refinements
(solid or dashed black line with one end point).
Stereotypes indicate meta-model type correspondences.
Each element has a property set derived from its meta-
model abstraction. A high-level view for NetPay is
shown in Fig. 3(a). NetPay comprises a customer PC-
hosted browser and payment client (“E-wallet”) (1), a
broker (2), and several vendor sites (3). The vendor here
is a multi-tier architecture: the client browser accesses

Fig. 3. (a) A domain-specific meta-model in Argo/MTE; (b) example architecture model in Argo/MTE.

web pages (4), which access application server
components via CORBA (5), and a database (6). Each

abstraction links to other abstractions via relationships.
Properties/parameters for <<Client>>Reader component

are at the bottom. Architectural parameters (AP in Fig.
2) support architecture modelling e.g. types and
relationships. Testing parameters (TP in Fig. 2) support
performance code generation, including number of
client threads, timing information to record, number of
request iterations, and pause between requests. We use a
UML class icon-like architecture abstraction notation
rather than UML deployment diagram shapes as we
found the latter cumbersome and inflexible.

Multiple model views are supported for complex
specifications. Fig. 4 shows three views of NetPay.
Collaboration relationships between client requests and
server services (1) visualise/specify message-passing
relationships between elements. (2) shows just the
message passing relationships between elements.
Refinement of higher-level abstractions is shown in (3),
where CustomerRegistrationPage service “register
Customer()” is refined to constituent operations (each
realised by business logic and database operations).

(1)

(2)

(3)

Fig. 4. Message associations in Argo/MTE designs

and a simple refinement example.

Once an architect wants to assess performance of the
modelled architecture, Argo/MTE generates test-bed
code and runs these tests. A basic assumption in our
approach is that code in a component has minimal
overhead, and hence performance is dominated by
message passing etc through middleware and database
access allowing a stub generation approach to still
provide good performance data. Fig. 5 shows this
process. An extended XMI format represents the design
(1). XSLT scripts are run to generate Java, JSP, EJB,
ASP and C# code files, and database initialisation,
compilation and deployment script files (2). A
deployment tool copies, installs, and runs these files on
multiple client and server host machines (3). Either
thick-client testing applications are generated or
Microsoft™ Application Centre Test scripts, used to run
thin-client (web) tests. Performance information is

captured in a database (4), which can be queried and
graphed in various ways to compare results for different
models and implementation parameters.

<Ar chO per Hos t>
 <A rc hi t ec t ur al Par ame ter s>
 < Nam e t ype=" String" >Ec oinInterf ac e</N am e>
 < Ty pe ty pe= "S tr ing ">J a vaB ean</Ty pe>
 < Hos t ty pe="T om c at">B rok er</H os t>
 </Ar chi t ec tur a lPara m eters >
 <T es tingP ar am eters >
 </Tes tingP aram eter s>
 <A rc hO perations >
 < Arc hO peration>
 <A rc hi t ec t ur al Par ame ter s>
 <N am e ty pe= "S tring">d oG ener ateEc oin< /N am e>
 </Ar chi t ec tur a lPara m eters >
 <T es tingP ar am eters >
 <N am e ty pe= "boolea n" >R ec or dingTim e</N am e>
 <R epeti ti on t y pe=" int"> 20< /R epe ti tio n>
 </Tes tingP aram eter s>
 <A ct ual Para meters >
 </Ac tualP aram eters >
 <S ubO per >
 <Ar chi tec tura l Para meters >
 <U s ing Re mS erv er t ype=" String" >R em oteEc oinM a nagerS er ver </U s ingR em S erv er>
 <U s ing Re mO bjec t ty pe=" String" >R em oteEc oinM a nager< /U singR em O bjec t>
 <U s ing M iddl ewar e t yp e= "M iddlew are">c or ba</Us i ng M iddle ware>
 <U s ing Re mM e th od ty pe="S tr ing"> generateE coi n< /U s ingR em M ethod>
 </Ar chi tec tur a lP aram et er s >
 <Tes tingPar am eters >
 </Tes tingP ar am eters >
 <Ac tualP ar am eters >
 </Ac tualP aram eters >
 </Su bO per>
 <S ubO per >
 <Ar chi tec tura l Para meters >
 <U s ing Re mS erv er t ype=" String" >R em oteEc oinM a nagerS er ver </U s ingR em S erv er>
 <U s ing Re mO bjec t ty pe=" String" >R em oteEc oinM a nager< /U singR em O bjec t>
 <U s ing M iddl ewar e t yp e= "M iddlew are">c or ba</Us i ng M iddle ware>
 <U s ing Re mM e th od ty pe="S tr ing"> generateT an dI< /U singR em M eth od>
 </Ar chi tec tur a lP aram et er s >
 <Tes tingPar am eters >
 </Tes tingP ar am eters >
 <Ac tualP ar am eters >
 </Ac tualP aram eters >
 </Su bO per>
 < /Arc hO peration>
 < Arc hO peration>
 <A rc hi t ec t ur al Par ame ter s>
 <N am e> doR egister< /N am e>
 </Ar chi t ec tur a lPara m eters >
 <T es tingP ar am eters >
 <R ecor ding Tim e ty pe=" bool ea n">tru e< /R ec or di ngTim e>
 <R epeti ti on t y pe=" int"> 20< /R epeti tio n>
 </Tes tingP aram eter s>
 <A ct ual Para meters >
 </Ac tualP aram eters >
 <S ubO per >
 <Ar chi tec tura l Para meters >
 <U s ing Re mS erv er t ype=" String" >R em oteC ust om erM anager Ser v er </Us ingR em S erv er >
 <U s ing Re mO bjec t ty pe=" String" >R em oteCus to m erM anager </Us ingR em O bjec t>
 <U s ing M iddl ewar e t yp e= "M iddlew are">c or ba</Us i ng M iddle ware>
 <U s ing Re mM e th od ty pe="S tr ing"> ins ertC us tom er </Us ingR em M eth od>
 </Ar chi tec tur a lP aram et er s >
 <Tes tingPar am eters >
 </Tes tingP ar am eters >
 <Ac tualP ar am eters >
 </Ac tualP aram eters >
 </Su bO per>
 <S ubO per >

X SLT Code
G eneration

Scrip ts

X S LT engine

1. E xtended X M I
Save Form at

pa c ka g e Bro k e r;

im p or t j a va .u til.* ;
im p or t j a va .io .*;

im p or t o r g.o m g .Co sN a m ing .* ;
im p or t o r g.o m g .Co sN a m ing .N am in g C on te x tPa c ka g e .* ;

im p or t R em ote Ec o inM an a g er Ser ve r .* ;
im p or t R em o te Cu s tom er Ma na g e rSe rv er .*;
pu b lic cla ss Ec oi nI n te r fa ce e x ten d s Br o ke r._ Ec o in In ter fa c eI m p lB as e
{

 p riv a te R em o te Ec o inM an a g er _R em ote Ec o inM an a g er =n u ll;
 p riv a te R em o te Cu st om er Ma na g e r _ Re m o te Cu s to m e rM an a g e r=n u ll;
 p riv a te o rg .o m g .CO RB A.O RB or b ;
 p riv a te o r g.o m g .CO RB A.O b je ct o b jRe f;
 p riv a te N a m ing Co nte x t nc Re f;

 p riv a te v o id in itOr b()
 {
 try
 {
 o rb = or g .o m g .CO R BA .O R B.in it();
 o bj Re f = o rb .re so lv e _in itial _ re fe re n ce s ("N am e Se rv ice ");
 n cR ef = Na m in g Co n te x tH elp e r.n a rro w (o b jRe f) ;
 } c a tc h (Ex ce p tio n e) {
 e .p r in tStac k Tra c e ();
 }
 }

pr iv ate v oid g e tRe m o teE co in Ma n ag e r()
{
 if(_ Re m ote Ec o in Man a g e r!= nu ll)
 re tu rn ;
 try
 {
 if(o rb == nu ll)
 initO rb () ;

 Na m e Co m p o n en t n c = ne w Na m e Co m po n e n t("Re m o te Ec o in Ma n a ge r ", "");
 Na m e Co m p o n en t p a th [] = { nc } ;
 _ Re m ote Ec o in Man a g e r = Re m o te Ec oin Ma n ag e rSe rv e r.Re m o te Ec oin Ma n a ge rH e lp er .na rr o w(nc Re f .re so lv e (p a th));
 } c a tc h (Ex ce p tion e) {
 e .p rin tSta c kTr ac e () ;
 }
}

D eploym ent
Tool

Client
H osts Java

A pps A C T
Tool

Server
H osts

W eb/J2EE/D atabase
Servers

JSPs EJBs D Bs

Results Database

A nalysis/
G raphs

2 . Generated Code &
Scrip ts

3. Deployed C om ponents Initialised
and Tests R un

4. Test R esults Queried
and G raphed

Fig. 5. Running, analysing and presenting results.

Fig. 6. Example performance analysis results.

Fig. 6 shows performance result presentation.
Elements have a small circle at left top as a “result
available” indicator. Fig. 6(1) shows several such
elements, including “Reader” which has evaluation
results displayed as a table (2) and bar chart (3). The
table shows that each instance of “Reader” issues 10
requests each of tasks doRegister and doGenerateEcoin,
taking 510ms (1990ms) to finish the requests, so on
average it takes 51ms (199ms) to finish an individual
task. The same results as a bar chart are in (3)

5. Design and Implementation

Fig. 7 shows key components of our extension of
Argo/UML. A meta-modelling tool allows architects to
define abstractions for different domains. The meta-
model extends the existing Argo/UML XMI-based data
representation. We chose to extend XMI as this was the
approach used within Argo to represent models, but also
to allow our saved architecture models to be partially
read by other XMI-capable tools. Modelling tools were
developed by specialising the Argo/UML class and
collaboration diagramming tools.

The Xalan XSLT engine generates code and scripts.
We modified a previously developed deployment tool to
upload generated files to remote hosts and provide test
co-ordination. Generated code captures timing data and
stores this in a Microsoft™ Access database. MS Access
forms and reports support test database browsing and
visualisation. These facilities can readily be extended
without modifying Argo/MTE itself. For some tests we
generate thick-client applications to act as server
invocation and data capture components. For thin-client
systems, we generate configuration scipts for
Microsoft™ Application Centre Test (ACT), which is
instructed to carry out the tests and provide basic result
visualisation, useful for load testing web applications.

Argo/UML CASE Tool

XMI Model Class, Collaboration
Diagram Views

Extended XMI
Architecture
Meta-Model

Architecture
Modeller

XMI File

XSLT Code
Generation Scripts

XSLT
Engine

Code,
Scripts

Deployment
Tool Client

Results
Display

Remote Hosts

Remote
Servers

Results DB

Fig. 7. The architecture of Argo/MTE.

6. Discussion and Conclusions

We have used Argo/MTE to model and test several
software architectures and have compared generated
performance results against that of actual implemented
applications for accuracy. Applications modelled

include several variants of thick and thin-client versions
of an on-line video application [8], a Java Pet Shop
application [15], substantial parts of NetPay [3], and
several architectural approaches to an enterprise
application integration (EAI) support system [9].

Argo/MTE successfully modelled these diverse
architectures. The meta-modelling tool permitted us to
define allowable modelling abstractions tailoring meta-
models for thin-client and thick-client application
modelling. We predominantly used the structural
architecture modelling facilities to define clients and
their requests, multi-tier servers, server objects, web
components and relationships, and databases and tables.
More complex architectures like the EAI and NetPay
systems used multiple views with collaboration and sub-
structural abstractions to manage the modelling
complexity. Modelling abstractions of Argo/MTE were
mostly sufficient. Exceptions included complex, multi-
element arguments to remote functions e.g. CORBA
sequences and complex transactional logic e.g. multi-
checkpoint transactions. Collaboration diagrams were
useful for specifying dynamic behaviour but UML-style
sequence diagrams would be useful to better capture
operation sequencing.

We successfully generated for J2EE and .NET test
bed code for each system. We performance tested these
applications using one or more SQL Server 2000
database servers. Some applications had pre-existing
implementations in both J2EE and .NET (video system
and Pet Shop), others had implementations in Java,
J2EE, Java Messaging Service and CORBA (NetPay
and the EAI application). We ran the same generated
performance tests on the original, hand-implemented
applications as were run on the generated test-beds.
Some hand modification of these generated tests was
needed to add correct argument values to properly drive
hand-implemented servers. In general, performance
results obtained from the generated test-bed code are
accurate, with detailed Argo/MTE models producing
performance results within 20-40% of the hand-
implemented applications. Larger variances occurred
with systems with complex business logic (conditional
execution of substantial remote object and database
services) and complex transaction processing logic as
these violate our assumption of low overhead of such
code. For some implementation technologies, including
Java Messaging Service and .NET web services, we had
only rudimentary code generators, resulting in
inaccurate generated code. We also discovered
implementation deficiencies in the hand-implemented
video and micro-payment systems which needed
correction to sensibly compare their performance to the
test-beds (a useful result in its own right). Our
performance test database proved useful to capture all

test results in one place and allow complex analysis and
result visualisation.

Implementing and modifying XSLT code generators
proved relatively time-consuming and improved support
for this is needed. We envisage a small IDE within the
tool to specify XSLT constructs and corresponding
Argo/MTE extended XMI data, with ability to run parts
of the code generator over test cases. The performance
visualisation support is basic and needs improving. The
XMI extensions are arbitrary, although they are a
significant improvement on the proprietary architecture
model format our previous work used. The format used
may require revision as standardisation occurs in the
representation of architecture information in UML and
XMI. One final area for improvement is to permit users
to specify ranges of values for testing parameters e.g.
number of concurrent users and server threads. Ranges
of averaged performance values could then be collected
rather than a single average performance measure.

We have described extensions to a CASE tool for
software architecture modelling and performance test
bed generation. Argo/MTE provides graphical views for
specifying performance test bed meta-models and
architecture design diagrams stored as an extended XMI
representation. This is used to generate a performance
test bed, which, when run, produces relatively accurate
performance results. We have demonstrated utility of
the environment by modelling several architectures and
favourably compared generated test-bed performance to
that of hand-implemented versions of these systems.

References

[1] Balsamo, S., Simeoni, M., Bernado, M. Combining
Stochastic Process Algebras and Queuing Networks for
Software Architecture analysis, Proc 3rd Intl Wkshp
Software & Performance, 2002, ACM Press.

[2] Dai, X. and Grundy, J.C. Customer perceptions of a thin-
client micro-payment system: issues and experiences, J.
End User Computing, 15, No. 4.

[3] Dai, X. and Grundy, J.C. Architecture for a Component-
based, Plug-in Micro-payment System, Proc 5th Asia-
Pacific Web Conference, Sept 27-29 2003, Xi’an, China,
LNCS 2642, pp. 251-262.

[4] ECPerf Performance Benchmarks, August 2002,
ecperf.theserverside.com/ecperf.

[5] Gomaa, H., Menascé, D., and Kerschberg, L. A Software
Architectural Design Method for Large-Scale Distributed
Information Systems, Distributed Systems Engineering J.,
Sept. 1996, IEE/BCS.

[6] Gorton, I. And Liu, A. Evaluating Enterprise Java Bean
Technology, In Proc Software - Methods and Tools,
Wollongong, Australia, Nov 6-9 2000, IEEE.

[7] Grundy, J.C. and Hosking, J.G. SoftArch: Tool support
for integrated software architecture development,
IJSEKE, Vol. 13(2), 2003,. 125-152.

[8] Grundy, J.C., Cai, Y. and Liu, A. Generation of
Distributed System Test-beds from High-level Software

Architecture Descriptions, Proc 2001 IEEE Intl Conf on
Automated Software Engineering, San Diego, CA, Nov
26-29 2001.

[9] Grundy, J.C., Bai, J., Blackham, J., Hosking, J.G. and
Amor, R. An Architecture for Efficient, Flexible
Enterprise System Integration, Ptoc 2003 Intl Conf on
Internet Computing, Las Vegas, June 23-26 2003,
CSREA Press, pp. 350-356.

[10] Grundy, J.C., Wei, Z., Nicolescu, R. and Cai, Y. An
Environment for Automated Performance Evaluation of
J2EE and ASP.NET Thin-client Architectures, Proc 2004
Australian Conference on Software Engineering,
Melbourne, April 14-16 2004, IEEE CS Press.

[11] Hu, L., Gorton, I. A performance prototyping approach to
designing concurrent software architectures, In Proc of
the 2nd International Workshop on Software Engineering
for Parallel and Distributed Systems, IEEE, pp. 270 –
276.

[12] Juiz, C., Puigjaner, R. Performance modelling of pools in
soft real-time design architectures, Simulation Practice &
Theory, 9, 2002, 215-40.

[13] Kazman, R. Tool support for architecture analysis and
design, In Proc 2nd International Workshop on Software
Architectures, ACM Press, 94-97.

[14] McCann, J.A., Manning, K.J. Tool to evaluate
performance in distributed heterogeneous processing.
Proc 6th Euromicro Wkshop Parallel & Distributed
Processing, IEEE, 1998, 180-185.

[15] MSDN, Using .NET to implement Sun Microsystem’s
Java Pet Store J2EE BluePrint application, October 2002,
http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/dnbda/html/psimp.asp.

[16] Nimmagadda, S., Liyanaarachchi, C., Gopinath, A.,
Niehaus, D. and Kaushal, A. Performance patterns:
automated scenario based ORB performance evaluation,
Proc 5th USENIX Conf on OO Technologies & Systems,
USENIX, 1999, 15-28.

[17] Petriu, D., Amer, H., Majumdar, S., Abdull-Fatah, I.
Using analytic models for predicting middleware
performance. In Proc 2nd Intl Wkshop on Software and
Performance, ACM 2000, pp.189-94.

[18] Robbins, J.E. and Redmiles, D.F. Cognitive Support,
UML Adherence, and XMI Interchange in Argo/UML,
Proc CoSET’99, Los Angeles, May 1999, University of
South Australia, pp. 61-70.

[19] Robbins, J. Hilbert, D.M. and Redmiles, D.F. Extending
design environments to software architecture design,
Automated Software Engineering, vol. 5, No. 3, July
1998, 261-390.

[20] Subraya, B.M., Subrahmanya, S.V. Object driven
performance testing of Web applications, Proc 1st Asia-
Pacific Conf Quality Software, IEEE, 17-26

[21] Web Application Testing, WAPT Version 2.0,
http://www.loadtestingtool.com/.

