Proceedings of the Software Innovation and Engineering New Zealand Workshop (SIENZ’07), Auckland, 26-27 November, 2007

Taming the Complexity of Software Design Process
in Industrial Automation

Valeriy Vyatkin, John Grundy, Partha Roop
The University of Auckland, New Zealand

Abstract. In this paper we discuss the challenges
raised by the growing complexity of software in
industrial automation systems. This trend is
combined with the diminishing border between
embedded systems and industrial automation. The
solution is sought in wusing open standard
component architecture, combined with object-
oriented design patterns and model-based
engineering. A new open-source tool FBench that
implements these ideas is presented and discussed.

L INTRODUCTION

Industrial automation has been long associated with
Programmable Logic Controllers (PLCs) which, as the
title suggest, are computing devices capable of being
programmed. The spectrum of languages used for
programming PLCs includes some languages very
similar to the traditional high and low level procedural
languages (Structured Text language is similar to
Pascal and C, Instruction List resembles Assembly
language), along with others, which are quite strange
‘animals’, which are graphical and resemble electric
circuitry. The family of graphical languages is
represented by Relay Ladder Logic, Function Block
Diagrams, and Sequential Function Charts.

Most common PLCs are microprocessor based
devices with a modular architecture of peripherals,
interfacing industrial environments. Their size,
performance and interface capabilities vary greatly.
There are PLCs capable of controlling huge machines
with thousand of sensors and actuators, and there are
micro-PLCs implementations on a chip, or on
customized integrated circuits. However, the
programming architecture makes these devices similar
despite the huge visible differences.

The spectrum of physical systems where
Industrial Automation technologies apply is huge. It
covers all sectors of production systems, energy
generation and distribution, material handling,
transport (ships, trains), work machines (e.g. in
mining), civil engineering (building automation,
wastewater ~ management), space exploration
(launching pads), etc.

Recently the automation business has changed
significantly. Automated products and systems need to
be more flexible, both in their ability of manufacturing
new products with a minimum re-configuration (run-
time flexibility), and in terms of their own structure

(design time flexibility) enabling their vendors to
create new similar systems by re-using design solution
from previous projects.

As a result, PLCs need to be networking, the
software design needs a higher degree of re-use, and
the role of standards is increasing in order to improve
interoperability. Naturally, with the growing
complexity of projects, the need for efficient higher
level design tools and architectures is increasing as
well.

IL OVERVIEW OF THE CURRENT TRENDS IN
INDUSTRY

The market of automation hardware is shared by a
number of large vendors, the biggest of which are:
SIEMENS, Rockwell Automation, Schneider Electric,
Mitsubishi Electric and OMRON. They also supply
full range of software tools required to develop and
maintain projects. Also, there are some independent
software tool vendors, such as ICS Triplex ISaGRAF,
and 3S software.

There is a major standard for PLC programming
IEC 61131-3 [1] which has been tremendously
successful. The standard defines a programming
architecture of PLCs and provides five programming
languages. All major providers of automation devices
and tools support this architecture, at least, in part.

I1I. CHALLENGES

A. Distributed systems
As the automation hardware becomes more distributed
and the software, consequently, is getting executed on
networking computing devices, the importance of
architecture independent languages, preserving
semantics after being mapped to a particular
distributed architecture, is growing.

The situation is aggravated by the mix of PLCs
and embedded chips (programmed in an arbitrary
way), and the mix of event-triggered and time-
triggered networks.

B. Higher level design
System integrators and machine vendors need a design
and implementation language of a sufficiently high
level, supporting efficient encapsulation of intellectual
property with its subsequent re-use.

C. Domination of the bottom-up approach

jgrundy
Proceedings of the Software Innovation and Engineering New Zealand Workshop (SIENZ’07), Auckland, 26-27 November, 2007

jgrundy

Software projects in automation tend to be designed in
the bottom-up way. The reason of that is the need to
re-use machines and mechanisms with existing
software functions.

D. Flexible systems
Current markets dictate adaptability of automated
manufacturing to ever changing product orders,
produced in small batches. Besides, in many cases
automated production machinery is surrounded by
teams of workers and both adaptability and safety
become the paramount concern.

Iv. NEW GENERATION OF ARCHITECTURES AND
DESIGN METHODOLOGIES

A. Similarities and Differences with Business

applications
There are many similarities in the process of software
design in business applications and automation.

The most essential differences have their roots in
the nature of processes being dealt in automation.
Direct interaction with machines asks for reactivity,
response under hard real-time constraints, compliance
with various industry-specific requirements (like the
“operating mode support in chemical industries
defined by the ISA-88 standard”), safety requirements,
etc.

B. Component architectures

As an obvious solution to the accumulated problems,
component architectures have been considered in the
last decade. An example of a proprietary component
architecture is Component Based Automation (CBA)
of SIEMENS, which uses DCOM as an underlying IT
architecture and PROFINET (a combination of
Profibus and EtherNet) as a communication
mechanism. This architecture, however, has not
become hugely successful for many reasons.

An alternative open approach has been formulated
as the IEC 61499 reference architecture [2], which is
in early stages of adoption. A comprehensive
description of the IEC61499 concepts can be found in
[3]. Some concepts related to IEC61499 are briefly
described as follows.

Basic Function Block is an atomic program unit.
Basic function blocks are used to encapsulate
algorithms written in one or several programming
languages. Execution sequence and semantics of the
algorithms depend only on the internal state of the
block and on the input events but not on the properties
of a particular execution platform. Thus, Basic
Function blocks will exhibit equivalent execution
semantics on different computing platforms,
regardless of a sequence they are listed or called in the
program. An example of a Basic Function Block
description is shown in Figure 1. Every function block
consists of an interface, an execution control chart
(ECC) and of a set of algorithms that are invoked in
specific states of the ECC. The interface is explicitly
separated on the event and data parts.

Interface Execution Control Chart

REQ CNF START |

REQ 1
X2Y2 s
B-x ouT—H IREO HRE'Q I CNFI
m Y m '
= = ALGORITHM REQ IN ST:
S OUT := (X-Y)*(X+Y);

END_ALGORITHM

Figure 1. An example of a function block according to
IEC 61499.

The event inputs and outputs are connected to the
head part of the interface shape, while the data are
connected to the lower body part. Basic function
blocks are activated by event inputs. The ECC is a
state machine that decides in each state which
algorithms to call and which output events to emit.

Composite Function Block is an encapsulation of
a network of other function blocks (a set of function
blocks that are interconnected using their respective
interfaces in a point-to-point fashion). The example in
Figure 2 implements the same computation as the
block in the previous example, and has exactly the
same interface. Its internal logic, however, is defined
as a network of three interconnected function blocks,
each performing basic arithmetic operations instead of
ECC and algorithms.

ADDER

Figure 2. Network of function blocks instances - its
behaviour is completely defined by the event
interconnections.

An application in IEC61499 is also a network of
function blocks. A distributed application is a number
of applications allocated across different computing
devices. The inter-block connections in an application
are extended across boundaries of devices in
distributed application using communication function
blocks.

Thanks to explicit event connections between
function blocks the execution semantics of the
distributed application does not depend on a particular
number and topology of computational resources or
on the order of components’ execution as heavily as in
the case of networking cyclically scanned PLCs
(certainly some dependencies caused by different
speed of the resources and networks still will remain).
As a consequence of this no additional
synchronization between devices would be required to

ensure consistency of the data transmitted between
them. This will be true also for more complex
applications that are represented as hierarchical
networks of function blocks. Thus, system
development can now be done in a high-level platform
independent form of function block applications
which can be mapped to different distributed
structures of devices (and used computing platforms)
and any legitimate mapping will preserve the
semantics of the original application.

C. Design patterns

The growing complexity of automation systems and
their safety-critical nature make especially beneficial
the use of design patterns. In particular, the modified
Model-View-Control (MVC) object-oriented design
pattern adapted by Christensen in [8] to industrial
control has proven its usability in conjunction with the
IEC 61499 architecture. The pattern is represented
graphically in Figure 3. The core part of the pattern is
the closed loop object — controller interconnection. In
software an object is represented an interface to its
data sources (say sensors) and signal consumers
(actuators). The object can be substituted by its
model — a software entity having the same interface
and simulating object’s behaviour. Several models can
be used depending on the required accuracy and the
purpose of modelling.

/ AR |

N owoe)11

N 174
N L7
TS

Figure 3. Components used in the MVC design.

The model and the object are sources of data for a
number of other optional components, such as View —
implementing rendering, Diagnostics and Database
logger. Contrary, the human-machine interface (HMI)
is connected in closed loop with the controller.

D. Object-Oriented Design and Model-driven
engineering

In industrial automation the idea of object-oriented

design has been explored in two forms:

a) In the classic software engineering sense (i.e. the
combination of encapsulation, polymorphism and
inheritance)

b) Suggesting architectures where structure of
software can resemble the structure of physical
components of the machinery being controlled.
Taking this idea to extremes, an appropriate
architecture must be applicable to any automated

machine: from a complex production cell that
consists of several machining centres, robotic
arms, etc. down to very basic pneumatic cylinders,
with a couple of position sensors, as illustrated in
Figure 4.

FStorage
Storage

Feeder

Tower notEmpty Drive Sensor_s
PosSensor sSensi PosSensor
FIFO10 PosSensol C.j,'lmdt\r PosSensor PosSensol
i i
e e :
NCME’ENEEP OR '
Status Position frea conr)- €1 E0fcwe
nrT T T T INTO)] I: - |
REQ-{REQ che cuk cHo Sansor] E
RESUME RESUME] POS VALUE[-RET_Enp | [E_MERGE]
FAULT ~{FAULT LINEAR 0.5] ZONE
s pos
END_SENSOR
MavingStatus =vr !
EXT_COM-{PWD FORCE | 0 _FREC i fpea cwr
RET_COM—{REV FORCE_BACK EV_fRC]
e e Seneor | o !}
C 08 VALUEExT_END
[95.100] -ZONE

Figure 4. Physical structure of a mechatronic object is
directly reflected in the structure of the software
(function blocks) controlling and simulating it.

The idea of model-driven engineering in industrial
automation has been explored from different
perspectives, such as the use of the Unified Modelling
Language (UML) and development of Automation
profile for UML 2.0, the use of Petri net-like
formalisms for program prototyping, code-generation
and verification, developing of languages based on
state machines (e.g. HiGraph of SIEMENS [6]).

V. FIRST EXPERIENCES AND NEW CHALLENGES

A. Experiences
The author is dealing with the IEC 61499 architecture
for the past 8 years and has accumulated a few
experiences and observations. A few small to medium
size automation projects have been completed using
the FB technology and the design methodology
described above.

In particular, recently in Auckland the control of
the reconfigurable manufacturing testbed (see Figure
5) has been implemented using the MVC pattern with
function blocks.

While applying the abovementioned software

design approach the following problems were
encountered and identified:
a) “Spaghetti” of inter blocks connections — explicit
drawing of all links makes the schema unreadable. A
solution is known and described in [3], but requires
seamless tool support;

Figure 5. Reconfigurable manufacturing testbed in the
infoMechatronics lab of the University of Auckland.

b) A new component is created for every slight
modification in interface, structure or functionality. A
sort of “inheritance” dependency within a group of
‘relative’ components would be desirable;

¢) As in the general programming, the question of an
optimal component size (especially in terms of
provided methods) is open;

d) Migration from the legacy systems (IEC 61131) to
the new (61499) architecture is a challenging research
issue.

B. Some solution ideas
The concept of software product line [4] seems to be
promising. Keeping a family of components related to
each other via the design-time inheritance can be
supported by the engineering tool. This can provide
for easier variation of “parts”. The FB architecture of
IEC 61499 provides a good mechanism to subdivide
this issue on categories. Thus for a basic FB the
categories may include:
o Interface elements:
= Blocks of Inputs/Outputs
= Extra attributes of I/Os
o Algorithms
o State machines

C. Tools development
The IEC 61499 standard is already almost 2 years old.
There have been enormous amount of research done
worldwide, however, industrial adoption is still very
limited (although the dynamics during the last 2 years
is encouraging).

Given the considerable expertise on IEC 61499
accumulated in academia, it seems feasible to develop
a mature tool as an open source software. Such a
project has been started in 2006 by o3neida — the
international community for intelligent industrial
automation.

The first version of the tool called FBench was
released in Auckland in 2006 [7], and as of October,
2007 the tool (Figure 6) is open-source on the
Sourceforge.

I Remate device where the FB Runs |

k

Active Event

-
i
0 T O 1

Al

Figure 6. FBench provides a full set of remote
debugging services: status of the program executed in
a remote control device is rendered.

VL

—

CONCLUSIONS

The domain of industrial automation software faces
similar challenges to the business software design.
Application of advanced software engineering
techniques can be beneficial there.

However, the engineering techniques cannot be
simply planted, they need to be modified according to
the strong legacy and traditions of automation systems
design.

VII. REFERENCES

IEC 61131-3 International Standard, International
Electrotechnical Commission, Geneva, 1993

1IEC 61499 - Function blocks for industrial-process
measurement and control systems - Part 1:
“Architecture”, International Electrotechnical
Commission, Geneva, 2005

Vyatkin V., IEC 61499 Function Blocks For
Embedded and Distributed Control Systems
Design, 297p., Instrumentation, Systems and
Automation society publishers, USA, 2007
Software Product Line:
http://biglever.com/overview.html

ISaGRAF Workbench: www.isagraf.com, access
May, 2007

SIEMENS S7-Hi-Graph,
http://www.automation.siemens.com/simatic/indust
riesoftware/html_76/produkte/software-s7-
higraph.htm , online, October 2007

W. Dai, A. Shih and V. Vyatkin, Development of
distributed industrial automation systems and
debugging functionality based on the Open Source
OOONEIDA Workbench, Australasian Conference
on Robotics and Industrial Automation, ACRA
2006, Auckland

8. J. Christensen, “Design patterns for systems

engineering with IEC 61499, Verteilte
Automatisierung - Modelle und Methoden fiir
Entwurf, Verifikation, Engineering und
Instrumentierung, Ch. Doschner, ed. Magdeburg,
Germany: Otto-von-Guericke-Universitit, 2000.

