
Marama: an Eclipse meta-toolset for generating multi-view environments

John Grundy, John Hosking, Jun Huh, Karen Li
Departments of Computer Science and Electrical and Computer Engineering,

University of Auckland,
Private Bag 92019, Auckland, New Zealand

{john-g, john, jhuh003, karen}@cs.auckland.ac.nz

Abstract

We describe the Marama suite of meta-tools. This
Eclipse-based toolset permits rapid specification of
notational elements, meta-models, view editors and
view-model mappings. It has a novel set of behavioural
specification tools for both visual and model level
behaviours. An integrated mapping tool provides
model transformation and code generation support.
The toolset has been applied to several significant
application development tasks and has undergone a
variety of evaluations.

1. Introduction
Meta-tools are sets of software tools that support

rapid specification and implementation of other
software tools. They are often used to develop domain
specific visual languages for tasks such as
configuration (e.g. of frameworks and software product
lines) and end user oriented activity specification. They
are one element in broader Model Driven Engineering
approach to software development.

A wide range of meta-tools have been developed,
including MetaEdit+ [6], IPSEN [7], MetaMOOSE [5],
DiaGen [15], GME [8] and our own Pounamu [16].
Much recent attention has focussed on the Eclipse
GMF [4] and Microsoft’s DSL Tools toolsets [14].
Problems with these include difficulty dealing with
behaviour specification (all), model transformation (all,
but GMF has projects to address this), a compile edit
cycle (all except Pounamu), and non visual
specification (some parts of DSL Tools and GMF).

In this paper we describe Marama, an Eclipse based
meta-toolset that provides a more accessible approach
to domain specific visual language specification than
do other meta-tools. We begin by describing our high
level approach before examining Marama’s
architecture and core toolset. We then briefly describe
a tool developed using Marama, our approach to
evaluation and current research directions.

2. Our approach
Our goal for the Marama toolset was to make the

implementation of diagrammatic modelling/MDE tools
easy for experienced modellers, familiar with basic

modelling concepts, such as Extended Entity
Relationship (EER) models, OCL, and the notion of
meta-models. The aim was to permit such users to
construct basic visual modellers within 1 day, with
extra time for specification of backend code generators
and complex editing or behavioural constraints. Thus
unlike MS DSL tools, GMF and GEF/EMF, we wanted
a tightly integrated meta-tool environment with quick
and easy to use modelling tools. Specific requirements
for the toolset includes support for:
x Icon and connector and/or containment based

visual metaphors
x Specification/generation of: the tool meta-model;

icons and connectors (including containment
based); views, view editors and view-model
mappings and consistency mechanisms

x Behaviour, including model and view level
constraints and operations

x Model transformations, including code generation
x Tool integration mechanisms
In addition we aimed to preserve Pounamu’s liveness
characteristic, i.e. changes made to tool specifications
are reflected immediately in the realised models.

Eclipse IDE
Marama Meta-tool

Application
Specification Tools

Shape Designer

Meta-model
Designer

View Designer

Tool Specifcations
– XML documents

Tool specification
projects (XML)

Marama Plug-in
(GEF Editor)

Eclipse IDE
resource

management

Marama save files - Eclipse
workspace files (XMI)

Marama Plug-in
(EMF Model)

(2)
Adapter API

(3)
(5)

(7) (1)

Tool
config.
held in
DOMs

EMF OCL Plug-
in (OCL

Interpreter)

Event handler objects

(6)(4)

Figure 1: Marama architecture

3. Architecture and core toolset
Figure 1 shows a high level architecture diagram

for Marama. Marama is realised as a set of Eclipse
plugins. Tools are specified using shape, meta-model
and view tools and then implemented by interpretation

jgrundy
2007 Software Innovation and Engineering New Zealand Workshop (SIENZ’07), Auckland, 26-27 November, 2007

jgrundy

Figure 2: Marama meta-tools in use: meta-model (left) shape designer (centre) and view definer (right)

of the specifications using a set of plug-ins that
leverage the GEF and EMF frameworks. The meta-
tools are themselves implemented using these plug-ins.

Figure 2 shows the Marama meta-tools in use. The
meta-model tool (left) uses, for simplicity for our target
end-users, an EER representation, supplemented by
OCL constraints (specifying attribute calculations,
invariants, and cardinalities), specified using a novel
editor that mitigates many of the usual issues
associated with OCL use [11]. The visual shape
designer (centre) allows rapid specification of
composite icons and connectors. The view designer
(right) specifies which visual elements are in a view
type, their relationship to underlying model elements
(including attribute mappings) and additional
constraints (such as various composite icon
containment mechanisms).

Behaviour is specified in several ways. The model
and view level constraint mechanisms described above
provide a simple declarative approach to behaviour
specification. For view level behaviour, such as
alignment constraints, or auto-construction of
connectors or icons, an event/data flow-based visual
specification mechanism (Kaitiaki), originally
developed for Pounamu [10], is available. Figure 3
(top) shows the specification of an alignment
constraint. This is triggered by a shapeAdded event
(top). The filter immediately below checks whether the
shape is a TableShape. In this case, the new
TableShape is vertically aligned with the other
TableShapes in the diagram (accessed via the right
hand flow). The effect of the alignment is shown in the
bottom figure. The combination of these mechanisms
allows most required modelling behaviours to be
implemented simply and rapidly. For unusual cases,
escape to Java event handler code, with API
manipulation of the tool data, is possible. Such code
can be packaged into a reusable form for use as
primitives in the other behavioural mechanisms.

Figure 3: Kaitiaki visual alignment constraint

Figure 4: MaramaTorua mapping specification

[a]

[e]

[c] [b]

[d]

Model transformations are managed using our
MaramaTorua mapping specification tool. This tool,
originally developed as a standalone schema mapping
specification tool, has been adapted for and integrated
with our Marama meta-tools. The tool uses a tree based
metaphor to describe both the original tool model
schema and the target schema to transform the tool to
(e.g. for code transformation or for generating models
for use by another tool type). Figure 4 shows a partial
specification for a mapping from a custom process
business modelling tool to BPEL code. Mappings can
be hierarchically decomposed (a,b) and the schema are
themselves hierarchically arranged (c). Individual
element mappings are expressed using constraint
formulae (d) and XSLT code is generated to implement
the mapping (e). The tool also incorporates heuristic
assistance to suggest potential mappings in the case of
large schema. The generated XSLT code can be
incorporated back into the generated tool in the form of
a menu triggered event handler.

With the exception of compilation of event
handlers (an area we are still addressing), we have
retained Pounamu’s liveness level across the core
Marama toolset. If a tool specification is modified,
closing and reopening any diagram constructed using
the tool will cause the model to be updated as per the
new specification (eg icon/connector format changes,
additional attributes, additional icons/connectors in the
tool palette).

Figure 5: MaramaMTE performance modeller

4. Example tools
We have used Marama to construct a wide variety

of modelling tools. The Marama meta-tools
themselves, including MaramaTorua, are implemented

using Marama in a bootstrapped manner and were the
first substantial exemplars developed using Marama.

Figure 5 shows two screen dumps from
MaramaMTE, a performance engineering tool
implemented using Marama, in use. This is a
reimplementation (with refactoring) of the ArgoMTE
tool we had previously developed [2]. At top a
software architecture view describes the high level
architecture of a three tier travel planner system. This
view permits the various architectural components and
their properties (eg middleware implementation to be
used) in a high level visual manner. At bottom, a form
chart view is used to specify a probabilistic model for
user interaction with the proposed system.
MaramaMTE provides the ability to generate, from
these views, a testbed for the proposed system that can
be deployed on real hardware and exercised, according
to the stochastic formchart models, to obtain an
accurate estimate of the system if it were fully
constructed [3].

Figure 6: MaramaEML modeller in use

Figure 6 shows a screen dump of the MaramaEML
tool in use. This tool permits the specification of
business processes using a high level notation, the
Enterprise Modelling Language (EML) [9]. This
provides a tree based metaphor (right) for describing
hierarchical business services, together with overlaid
control flow oriented process modelling descriptions.
The tool also supports modelling of individual
processes using the BPMN notation (right) and
generation of BPEL code that can be deployed on a
BPEL engine to execute the specified processes. To
provide scalability for large service trees, a fisheye
view can be used to focus on specific components of
the service tree.

In addition to these examples, other applications we
have developed using Marama include tools for:
x Modelling health care plans, with the ability to

generate plan descriptions that are deployable on a
PDA and that provide reminders and other
assistance to patients following the plan.

x Specifying design patterns, their instantiation into

a design, and realisation as a UML class diagram
[12].

x Modelling goals, goal decomposition and their
realisation as coordinated distributed processes for
use in an SME based process planning application.

5. Evaluation
In addition to demonstrating Marama’s efficacy

through its use in development of substantial
applications, we have used a variety of more formal
evaluation approaches. We should, however, point out
that evaluation of a substantial toolset such as Marama
is not a straightforward task. Typically usability study
approaches, for example, are only able to focus on a
relatively constrained subset of the features available.
Accordingly we have adopted a set of overlapping
evaluation approaches to prove the utility of our toolset
and environment. These include use of:
x Cognitive Dimensions to both inform design and

undertake lightweight evaluation.
x Formative small group survey plus open ended

interview based usability evaluations. These are
primarily of generated tools (hence are an indirect
measure of the efficacy of Marama) but have also
been applied to individual Marama tool
extensions.

x Large group use with more than 120 participants
applying the toolset to a tool design and
development exercise of the participants’ choosing
with a survey based approach to understanding the
end user experience.

The results have been uniformly positive
[3][9][10][11], with the exception of the usual issues of
stability concerns that arise with leading edge proof of
concept software applications, and are consistent with
a similar series of surveys we undertook as part of the
Pounamu meta-tool development. The toolset has now
been released in an open source form [13] and is being
taken up by a number of research groups and industrial
partners for software tool prototyping.

6. Conclusions and future work
We have described Marama, an Eclipse based

meta-toolset for constructing multi-view multi notation
visual modelling tools. This builds on experience
gained in the previous Pounamu project. Eclipse has
been applied to a number of substantial software tool
development projects and has been evaluated using a
number of evaluation approaches.

In current work, we are extending the toolset to
include a number of additional features. These include:
a generic critic authoring tool [1]; a wider range of user
interface elements (including video) and layout
support; enhanced interaction capabilities, including
voice interaction; and thin and mobile client support.

7. References
[1] Ali, N.M. A generic critic authoring tool, Proc

VLHCC’07, IEEE CS Press, 260-2
[2] Cai, Y., Grundy, J.C. and Hosking, J.G. Experiences

Integrating and Scaling a Performance Test Bed
Generator with an Open Source CASE Tool, In
Proceedings of the 2004 IEEE International Conference
on Automated Software Engineering, Linz, Austria,
September 20-24, IEEE CS Press, pp. 36-45.

[3] Draheim, D., Grundy, J.C., Hosking, J.G., Lutteroth, C.
and Weber, G. Realistic Load Testing of Web
Applications, In Proceedings of the 10th European
Conference on Software Maintenance and Re-
engineering, Berlin, 22-24 March 2006.

[4] Eclipse Graphical Modelling Framework
http://www.eclipse.org/gmf/

[5] Ferguson R, Parrington N, Dunne P, Archibald J,
Thompson J, MetaMOOSE-an object-oriented
framework for the construction of CASE tools, Proc. Int
Symp on Constructing Soft. Eng. Tools, LA, May 1999

[6] Kelly, S., Lyytinen, K., and Rossi, M., Meta Edit+: A
Fully configurable Multi-User and Multi-Tool CASE
Environment, Proc. of CAiSE'96, LNCS 1080, 1996.

[7] Klein, P. and Schürr, A. Constructing SDEs with the
IPSEN Meta Environment, Proc. 8th Conf. on Software
Engineering Environments,1997, pp. 2-10.

[8] Ledeczi A., Bakay A., Maroti M., Volgyesi P.,
Nordstrom G., Sprinkle J., Karsai G.: Composing
Domain-Specific Design Environments, Computer, 44-
51, Nov, 2001.

[9] Li, L. Hosking, J.G. and Grundy, J.C. Visual Modelling
of Complex Business Processes with Trees, Overlays
and Distortion-Based Displays, Proc VLHCC’07, IEEE
CS Press, 137-144.

[10] Liu, N., Grundy, J.C. and Hosking, J.G. A visual
language and environment for specifying user interface
event handling in design tools, Proc AUIC 2007,
Ballarat, Australia, CRPIT Press

[11] Liu, N., Hosking, J.G. and Grundy, J.C., MaramaTatau:
extending a domain specific visual language meta-tool
with a declarative constraint mechanism, Proc
VLHCC’07, IEEE CS Press, 95-103.

[12] Maplesden, D., Hosking, J.G. and Grundy, J.C. A
Visual Language for Design Pattern Modelling and
Instantiation, Chapter 2 in Design Patterns
Formalization Techniques, Toufik Taibi (Ed), Idea
Group Inc., Hershey, USA, March 2007

[13] Marama http://www.cs.auckland.ac.nz/Nikau/marama/
[14] Microsoft Domain Specific Language Tools

http://msdn.microsoft.com/vstudio/DSLTools/
[15] Minas, M. and Viehstaedt, G. DiaGen: A Generator for

Diagram Editors Providing Direct Manipulation and
Execution of Diagrams, Proc. VL '95, 203-210 Sept.
1995

[16] Zhu, N., Grundy, J.C., Hosking, J.G., Liu, N., Cao, S.
and Mehra, A. Pounamu: a meta-tool for exploratory
domain-specific visual language tool development,
Journal of Systems and Software, Elsevier, vol. 80, no.
8, pp 1390-1407.

