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Abstract—Developing complex computational-intensive and 
data-intensive scientific applications requires effective utilization 
of the computational power of the available computing platforms 
including grids, clouds, clusters, multi-core and many-core 
processors, and graphical processing units (GPUs). However, 
scientists who need to leverage such platforms are usually not 
parallel or distributed programming experts. Thus, they face 
numerous challenges when implementing and porting their 
software-based experimental tools to such platforms. In this paper, 
we introduce a sequential-to-parallel engineering approach to help 
scientists in engineering their scientific applications. Our 
approach is based on capturing sequential program details, 
planned parallelization aspects, and program deployment details 
using a set of domain-specific visual languages (DSVLs). Then, 
using code generation, we generate the corresponding parallel 
program using necessary parallel and distributed programming 
models (MPI, OpenCL, or OpenMP). We summarize three case 
studies (matrix multiplication, N-Body simulation, and digital 
signal processing) to evaluate our approach. 

Keywords—component; Parallel Programming; High-
Performance Computing; Domain-specific Visual Languages; 
Model-driven Engineering 

I. INTRODUCTION 
The Australian Square Kilometer Array, which will 

enable astronomers to survey the radio universe with 
unprecedented speed, is expected to generate terabytes to 
petabytes of data per day of observations [1]. Processing 
such big data requires developing large-scale parallel 
programs that can fulfill the task and produce meaningful 
outcomes in a reasonable time. Before developing such 
parallel programs, scientists and HPC experts usually start 
with a sequential version that solves the problem on a small 
scale [2]. This is often relatively easy and helps to 
understand implementation details. However, scaling up 
such sequential programs to work on big datasets and 
utilizing the computational power of today’s heterogeneous 
platforms is a very challenging task for scientists because it 
requires special experience in HPC. On the other hand, the 
existing parallel programming models and languages, such 
as MPI, OpenMP, OpenCL, are suitable mainly for expert 
parallel programmers. Existing automated and user-aided 
parallelization efforts try to address this gap. However, they 
are either very low-level, too abstract, or very domain-
specific. We categorize these efforts in: 

(i) Compiler-based parallelization [3-5]: Try to 
pinpoint parallelizable code sections, usually loop 
unrolling, in the input program either automatic using static 
analysis, machine learning and profiling techniques, or 
explicitly via user specified compiler directives. Kravets et 
al. [4] introduce Graphite-OpenCL that automatically 
locates parallelizable loops. Such loops are turned into an 
OpenCL kernel, and all necessary OpenCL calls for 
creating and compiling kernels and copying data to/from 
the device are automatically generated. Similar work was 
introduced by compilers including Polaris [5], and SUIF 
[3]. These efforts lack context and program developers’ 
intension information. 

(ii) Abstract modeling or domain-specific languages: 
Deliver high level models and/or DSLs usually have 
implicit mappings to predefined parallel libraries without 
letting developers specify intended parallelization details 
[6] such as image processing [7], partial differential 
equations (PDE) [8] or machine learning [9]. Although, 
these efforts help in hiding parallelization details from the 
user, they are limited by the provided functionalities by 
such DSLs. Moreover, most are text-based with a specific 
syntax that the developer has to learn to use the language. 

(iii) Portable domain-specific languages [10-14]: Focus 
on capturing program parallelization aspects using models, 
then generating parallel code targeting one or more of the 
parallel programming models. Jacbo et al. [10] focus on 
using abstract models to help porting to different 
computing platforms – e.g. refactoring parallel programs to 
use MPI instead of OpenMP and switching between 
OpenCL and CUDA. Han et al. [11] introduce a directive-
based approach where developers can annotate their 
sequential program code. This looks very similar the 
OpenACC APIs. Dig et al [12] introduce a refactoring tool 
that help in automating the conversion of sequential 
programs into parallel program without defining any 
annotations. The tool is based on locating signatures of 
possible parallelization aspects (mainly three aspects were 
covered including the recursion). The approach is based on 
replacing such matched program constructs with their 
corresponding java parallel library implementations. 
Palyart et al. [13] introduce MDE4HPC approach a DSVL 
to help in specifying and modeling HPC applications. They 
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focus on specification of solution parallelism. However, no 
code generation included. Jacob et al. also [14] introduce 
an IDE plugin to help programmers select code blocks and 
specify the computation device to run on. No support for 
heterogneous computing platform.  

In this paper, we introduce a new approach to help 
programmers and scientists in effectively parallelizing their 
sequential programs. Our approach is based on a set of 
domain-specific visual languages to help in modeling 
program structure and input/output datasets. Two further 
DSVLs capture parallelization plans, and platform 
deployment details. Programmers/scientists do not need to 
have experience in parallel patterns and heterogeneous 
computing platforms. Using the parallel program model our 
toolset generates the necessary code utilizing these patterns 
and platform configurations. Generated code can be 
modified further, compiled and run on CPU grid and GPUs. 

Our approach saves considerable effort required to 
migrate parallel programs from one computing platform to 
another. Thus, programmers and scientists can write a 
program, model its parallel and deployment aspects, and 
then get it to run on different computing platforms either 
single core, multi-core, many-core, or hardware 
accelerators by primarily updating program deployment 
details and having target code regenerated. We have 
evaluated our approach using several different scientific 
computation case studies including: general-purpose matrix 
multiplication, N-Body simulation, digital signal 
processing. Our approach is supported by a web-based tool 
that provides different features including: scientific DSVL 
design, code generation, code editing, parallel patterns 
reuse, reverse engineering, and data visualization. 

A. Motivating Example 
Multiplication of large matrices is a common problem 

in scientific computing (e.g. 1 million elements each). Figure 
1 shows a sequential program model of the matrix 
multiplication developed using our parallel program 
designer tool. It initializes both A and B (init_matrixA, 
init_matrixB) and then comprises three nested loops (Row, 
Cols, element – Loop) applying the multiplication 
operation on rows and columns to calculate the value of 
Ci,j.. Finally, we print matrix_C. We discuss below how end 
users (scientists and programmers) using our approach can 
develop different parallel versions of such a program. 

 

Figure 1. Example sequential matrix multiplication program 

II. PARALLEL PROGRAM DESIGNER 
Our approach is based on capturing a sequential 

program definition such as the example in Figure 1, then 
developing parallelization plans and deployment details. 
These details are used to generate the modeled parallel 
version of the program for further development. Our 
approach has three key DSVLs, summarized in Figure 2: (i) 
SeqDSVL: a Sequential program description language. 
This includes: sequence, selection, repetition, tasks and 
data structures. These constructs are available for users to 
model sequential algorithms as well as developing reusable 
tasks frequently used in a given domain. (ii) ParaDSVL: 
Parallelization plan specification language. This includes 
operations necessary for data and task decomposition such 
as: split, join, parallel section, loop unrolling and parallel 
task. As discussed later, these basic constructs are sufficient 
in capturing parallelization plans used in different parallel 
patterns. (iii) DepDSVL: Deployment details specification 
language. This includes computing platform, node 
specification, and groupings of nodes (in terms of 
communications). Currently, we capture basic information 
of the deployment platform and nodes such as number of 
nodes, grouping of nodes, how many cores per node, 
number of GPUs per node, etc. In this section, we discuss 
the parallel and deployment constructs. The sequential 
program specification is the same as in most of scientific 
workflows (further details are in [15]). Figure 1 shows an 
example sequential program model. Figure 2 shows the key 
concepts of our parallel program designer and key 
relationships. Below, we discuss these constructs, 
functionality and attributes. 
A. Parallel Constructs  

These constructs enable developers and scientists to 
specify how they plan to transform their sequential program 
into a parallel version. We focus on visually modeling 
possible task and data decompositions to achieve intended 
parallelization regardless of which parallel patterns or 
parallel programming models required to achieve such 
parallelization. Our constructs for parallelism are data 
decomposition (split and join), or task decomposition 
(parallel section, loop unrolling, parallel task). 
• Data Decomposition: The first step in data 
decomposition is to think how input data could be split into 
smaller chunks where such smaller chunks can be 
processed faster and in parallel (divide-and-conquer). This 
implies that at some point we have to merge the outcomes 
of parallel tasks into one data structure. 

Split construct divides an input data item into 
slices/chunks. The way this is implemented depends on the 
data structure being used. The user specifies whether a data 
item is geometrically divisible such as a 1D array, 2D 
array, image, cubes, hashtables, etc., or recursively 
divisible such as graphs or trees. For the first type, the user 
specifies what dimensions to use in splitting the data object 
– e.g. if we have a matrix, we can split in one dimension 
e.g. rows or cols, or we could split in two dimension – i.e. 



rows and cols (sub-matrices), and so on. Then, the user 
specifies the size of the slice: could be decided based on the 
number of processing nodes available (usually called 
BLOCK policy) or could be repeated slicing (CYCLIC 
policy) according to a selected slice size (every n elements 
form one slice). On the other hand, recursive data structures 
can be split using a link pointer (that points to a next list 
entry) and the number of computing entities – e.g. in a 
linked list, we may divide every consecutive N elements 
into a chunk or according to specific attribute value which 
is more expensive in terms of computations. The split 
operation usually does not exist separately. The outcome of 
the split operation depends on the next node – e.g. it 
depends on the parallelization technology used in next 
program node to decide how and where the new slices can 
be communicated to such nodes. The next node is a parallel 
section. 

Join construct is the inverse of the split operation. It is 
usually preceded by a task parallelization construct 
(parallel section, loop unroll, or parallel task) that produces 
multiple slices of the intended outcome. The objective of 
the Join operation is to merge these pieces/results 
(generated by different threads or work items back to the 
output data structure. If the target data structure is a single-
value variable, then the user should state a reduction 
operation to apply – e.g. if each node calculates the sum of 
an array chunk, then the Join will compute the sum of 
sums. In the other case (merge), users specify the target 
output variable. 
• Task Decomposition: Program tasks can be 
parallelized either by decomposing a given task into 
multiple concurrent subtasks or applying the same task on 
small chunks of the input data, or both. The latter case 
usually involves breaking down (unrolling) task loops into 
subtasks where each subtask does less iterations.   

Parallel Section construct helps in grouping a set of 
operations in one code block (visually, a container) that we 
want to consider as one unit for parallelization. Scientists 
can select, according to nature of the available resources, 
the parallel model to be used in realizing a parallel section 
– e.g. using multi-core (OpenMP), using GPUs (OpenCL), 
or distributed nodes (MPI). Data items passed to a parallel 
section should be broadcasted to the target processing 

elements on which the parallel section runs. Copying data 
to/from a parallel section has different scenarios that we 
discuss below. 

In a multi-core model: the parallel section is translated 
into a code block. The data items declared inside a parallel 
section or passed directly from outside nodes to an 
enclosed entity (there is an edge coming from a task to a 
task enclosed inside the parallel section) are considered as 
private to threads (a parameter in OpenMP directives), 
whereas parallel section passed in parameters (edges go 
directly to the parallel section) are considered as shared 
between all threads. 

In clustered compute nodes: the parallel section is 
translated into a code block and the passed in data are 
distributed (if data are the outcome of a split operation), or 
broadcasted from the master node to slaves. The parallel 
section output data are copied from slave nodes back to the 
master node. This usually followed by a join operation to 
merge/reduce received data.  

We can nest multiple parallel sections, each reflecting a 
parallelization level and different nested technologies may 
be used when realizing contained tasks. This is helpful 
when dealing with heterogeneous computing that requires 
both distributed (e.g. MPI) and shared memory models (e.g. 
OpenCL).  
 Loop Unrolling construct helps in realizing loop 
parallelism patterns that focuses on unrolling program loop 
iterations for execution by separate threads (in the case of 
multiple-cores), work items (in the case of GPUs), slave-
based iterations (distributed nodes). Loop unrolling usually 
requires modifying loop header to run for fewer iterations. 

Parallel Task construct is used in two cases: modeling 
tasks that are already parallelized and do not need to be 
revised by our code generator – e.g. readymade libraries, 
user defined tasks; and with tasks to be executed as they are 
in parallel - i.e. we just need to convert it into e.g. GPU 
kernel code and use it as it is. If the task needs to be 
revisited for parallelization, the user replaces it with a 
parallel section and flush task details and required 
parallelization. 

 
Figure 2. Parallel program designer constructs and their key groups and relationships 
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B. Deployment Constructs 
These help developers and scientists to model a 

program’s underlying compute platform. Currently, we are 
mainly interested in capturing how many nodes to be used 
in the deployment model, specifications of each node 
(memory, CPU, storage) and number of accelerators 
plugged in each node. Each node has a group name 
attribute that is used when grouping nodes into sub-
clusters. This is helpful when mapping specific tasks for 
execution on a group of nodes – e.g. in the MapReduce 
model we have Map nodes and Reduce nodes. As a further 
extension of this we plan to include inter-node 
communication speed and bandwidth, and accelerator (e.g. 
GPUs) specification details. This helps in generating 
efficient code based on nodes capacity and tradeoffs 
between parallelization and communication overhead. 
C. Model Refinement 

A key problem with existing parallel programming 
models is the lack of a common model that can work with 
different, heterogeneous computing platforms. We have 
found many efforts proposing new common models that try 
to replace two or more existing parallel models with one 
platform [16]. In this section, we show that most of the 
parallel scenarios supported by these parallel programming 
models can be modeled using our approach.  

Message-Passing Interface - (MPI): A set of APIs that 
facilitate communication between different nodes in a 
distributed memory based supercomputers or clusters. MPI 
has APIs for communication (send/receive), 
synchronization between different nodes (Barriers), 
combining results from different nodes (gather, reduce), 
and sharing public information about the cluster (number of 
processes, current process id). The Split (realized as a loop 
over number of nodes while calling send API to send data 
to all slave nodes and another piece of code in the slave 
node to receive the data slice to work on), Join (realized as 
send by slave node and loop in the master node to receive 
data), and program/data flow edges cover the 
communication (code to run on the master node and code in 
slave nodes (parallel section)) and reduction operations. 
The deployment group covers the possible communicators 
(communication groups). The parallel section helps in 
consolidating code blocks run in parallel on different 
nodes. Elements outside the parallel sections represent data 
and tasks to be executed on the master node. The 
deployment nodes define the number of nodes to run the 
MPI program on – i.e. in the MpiRun command params. 

OpenMP: A set of compiler directives and APIs that 
help in parallelizing programs using multi-threading to 
utilize multi-core shared-memory architectures. OpenMP is 
based on the fork-join parallel pattern. Parallel Section can 
be used to group all instructions that we need to execute in 
parallel on multi-cores processors (using OpenMP). 
OpenMP usually has to specify the shared data between all 
threads and the private data for each thread. When 
multicore mode is selected: any data item declared inside a 

Parallel Section is declared as a private memory, while data 
sent to the Parallel Section are considered shared data 
between threads. This is the same with Parallel Section 
outgoing edges. Finally, the reduction of data generated by 
all threads is done using the Join construct. Necessary 
platform information is delivered as parallel section 
attributes – e.g. number of threads, current thread id, etc. 
Our Loop Unrolling construct captures the OpenMP 
parallel loop directive.  

Open Computing Language (OpenCL): A platform to 
help in heterogeneous computing using CPUs and/or GPUs. 
OpenCL is based on the Single Program Multiple Data 
(SPMD) computing model. It provides a set of APIs to help 
in creating kernels (programs) to be executed by GPU work 
items (threads). It also supports copying memory between 
host and accelerator device global memory. Another set of 
APIs provide current work item Id relative to local work 
group and global work items. To convert any program into 
the SPMD model, we have two options: if the tasks will be 
distributed, then we can leave the task unmodified and pass 
in a chunk of the data to each parallel thread or process. In 
the shared memory model we have to change the task to 
have each instance work on a portion of the shared data. 
Loop unrolling is usually a good candidate source of 
SPMD parallelism. In this case, we may consider each 
iteration as a separate thread (work item), so we replace the 
for loop header with a statement (loop variable = global 
thread id). Otherwise, we extend the loop header elements 
(initialization, condition, and update) with a dummy 
variable that counts how many iterations per thread – e.g. 
for (initial, unroll_var = 0; condition && unroll_var  < 
number_of_iterations ; update ,  unroll_var++). The 
Parallel section can be used to enclose elements that 
constitute a new kernel. All arrows directed into the parallel 
section are considered as kernel parameters and copied 
from host memory to device global memory. All arrows 
directed towards one of the internal operations in the 
parallel section are considered for further local memory 
copy. Parallel section also delivers global information such 
as get_global_id and get_local_id, etc. The user needs to 
specify the number of blocks and number of threads per 
block. These are parameters in the parallel construct. 

Combined MPI, OpenMP, and OpenCL: When 
targeting heterogeneous platforms we can use nested 
parallel sections. The outer section could be used for e.g. 
distributed nodes (MPI), while the inner sections for multi-
cores (OpenMP) or GPUs (OpenCL).   

III. CASE STUDIES 
To evaluate the effectiveness of our approach in 
parallelizing programs and improving developers’ 
capabilities in handling parallel programs, we have 
conducted a set of case studies with several scientists. We 
summarize three of them here: matrix multiplication, N-
Body simulation and digital signal processing. 



A. Parallel Matrix Multiplication  
In this section, we show how our approach can help in 

parallelizing the sequential matrix multiplication program 
from Figure 1. An initial thought to parallelize this program 
could be to split one of the matrices while keeping the other 
matrix as it is, or splitting both A and B. The later will have 
an impact on the calculations (sum of matrix A rows 
multiplied by matrix B cols). In either case, we need to take 
into consideration the deployment details: are we going to 
run this on a cluster or on a single node? Also we may have 
other computing devices – e.g. GPUs - that we might use in 
completing subtasks assigned to each node. 

 
Figure 3. Example parallel matrix multiplication model 

... 
int taskid, ntasks; 
MPI_Comm_rank(MPI_COMM_WORLD, &taskid); 
MPI_Comm_size(MPI_COMM_WORLD, &ntasks); 
... 
//@Splitter: A_Split 
 int offset0 = 0; 
 int aSplitbulkSize = 1*aRows aCols/ ntasks ; 
if( taskid == 0 ) { 
for (int dest = 1 ; dest <= ntasks ; dest++) { 
ierr = MPI_Send( A[offset0], aSplitbulkSize , MPI_DOUBLE, dest   
                            , 0 , MPI_COMM_WORLD);  
offset0 = offset0 + bulkSize; 
… 
else if( taskid != 0 ){ 
 ierr  = MPI_Recv( A,  aSplitbulkSize, MPI_DOUBLE, 0 ,  
                                       0 , MPI_COMM_WORLD , &status); … 
//@Parallel Section: MatrixKernel 
if( taskid != 0) { // Calculate C[i][j] } 
//@Join: Join 
if(taskid !=0) { 
       ierr = MPI_Send(&C[offset0], aSplitbulkSize, MPI_DOUBLE, 0 , 0 , 
MPI_COMM_WORLD); … } 
else if( taskid == 0 ) { 
      for (int i=1; i<=ntasks; i++) {  
           ierr = MPI_Recv(C[(i -1) * aSplitbulkSize], i * aSplitbulkSize, MPI_DOUBLE, i , 
0 , MPI_COMM_WORLD , &status); } ... 

Figure 4. A snippet of generated parallel matrix multiplication code 
modeled in Figure 3 

Figure 3 shows a scenario where we decided to split 
matrix A and distribute the slices to different cluster nodes 
and broadcast matrix B to all nodes. This should be done on 
the master node (tasks outside the parallel section 
“matrixkernel”). The parallel section defines that the 
enclosed tasks (loops & calculation) are to be executed in 
parallel on slave/worker nodes. The outcome of the matrix 
multiplication by each node is then sent back to the master 
node where we have a Join operation to merge results 

together into matrix_C. We have configured the splitter 
construct properties to split matrix A using block_policy 
according to number of nodes and then distribute each 
chunk to slave nodes. Another splitter could be added if we 
want to split matrix B as well, but will impact the 
calculations operation. Figure 4 shows a snippet of the 
generated parallel code for matrix multiplication. We show 
parts of the generated code reflecting the split, join and 
parallel section realization. The rest should be the same as 
in the sequential version. Using split and join with a cluster 
computing model is realized using the MPI master-slave 
pattern (one of the well-known parallel design patterns).  

//@Parallel Section: GPUKernel 
cl_program program;            
cl_kernel kernel;       
const char *KernelSource = "\ 
__kernel void ParallelSection( __global  double*  A,  __global  double* B) {\  
int i = get_global_id (0); {\ 
for(j = 0;j < aCols ; j++ ) {\ 
calculate_matrix_element();}\ 
} }"; 
program = clCreateProgramWithSource(context, 1, (const char **) & 
KernelSource, NULL, &err); 
err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL); 
kernel = clCreateKernel(program, "ParallelSection", &err); 
cl_mem memobjA = clCreateBuffer(context, CL_MEM_READ_WRITE, *, NULL, 
&ierr); 
ierr = clEnqueueWriteBuffer(command_queue, memobjA, CL_TRUE, 0, *, A, 0, 
NULL, NULL);  … 

Figure 5. A code snippet generated for GPU kernel 

Now, assume that each computing node has a GPU 
device so that we can use it to accelerate the computations 
assigned to nodes. In this case we need to add another 
parallel section inside “matrixkernel” and select “Run on 
GPU” property to encapsulate the computational tasks into 
kernel to be computed by GPU work groups and work 
items. The number of work items, work groups, and the 
dimensions of work items in work groups depend on the 
size and dimensions of the data being processed. Moreover, 
the data to be processed by the GPU device will be copied 
from the host node memory to GPU global memory. The 
same will be done after work items finish. 

Table 1. Performance results (in sec) of the generated MPI code 
with different matrix size and number of nodes 

Matrix 
Size 

1 node 3 nodes 5 nodes 7 nodes 

100 X 100 0.04 0.01 0.0017 0.0014 

300 X 300 0.16 0.04 0.025 0.017 

500 X 500 1 0.19 0.11 0.06 

 
Table 2. Performance results (in sec) of the generated 

MPI+OpenMP code with different matrix size, nodes, cores 

Matrix 
Size 

1 node 3 nodes 5 nodes 7 nodes 

100 X 100 0.04 0.006 0.008 0.005 

300 X 300 0.16 0.03 0.016 0.01 

500 X 500 1 0.14 0.09 0.04 
 



 
Figure 6. N-Body simulation models in our web-based IDE tool, Horus HPC

Tables 1, 2 shows the performance improvement (in 
secs) of the generated code using MPI and MPI+OpenMP 
against the sequential version of the matrix multiplication 
program. The time reported excludes matrices initialization 
tasks, because it is common in all scenarios. It is worth 
mentioning that the performance of the generated code 
depends heavily on the user-modelled transformation. We 
plan to build new plugins that can generate 
recommendations regarding the parallelization plan and 
number of nodes, blocks and threads to use. 
B. N-Body Case Study 

In this case study we asked a new PhD student who is 
working on molecular simulation to use our tool to 
transform her sequential program into MPI & OpenCL 
version. She did not have any previous experience in 
parallel programing. We conducted a 1-hour training to 
explain how the approach works. First, we asked her to 
model her sequential program using our sequential DSVL 
developed earlier (introduced in [15]). Then, we asked her 
to use the parallel construct to model how she wanted to 
parallelize her program. Figure 6-1 shows a snapshot of the 
parallel model. Figure 6-3 shows a part of the parallel 
program, using MPI and OpenCL, generated by our tool 
based on parallel model Figure 6-1. This took around four 
hours. On the other hand, we asked a HPC programmer to 
parallelize the same N-Body sequential program using, 
which was written by someone else, using MPI and 
OpenCL. The programmer reported that the initial working 
parallel version that is the same as our parallel model took 
around three weeks full-time. It took the same time to get 
an optimised version. 
C. DSPSR Case Study 

The third case study is reengineering the detection 
module in an existing digital signal processing for pulsar 
astronomy tool developed internally at Swinburne by 

astrophysics team (http://dspsr.sourceforge.net/). The core 
code of the detection module, a part of it is shown in Figure 
7, has mainly two nested loops: one on input signal 
channels (nchan=512) and the second nested loop is on 
input signal periods (ndat=1024) for every pairs of signals. 
The intended solution was to unroll both loops on 8 nodes 
(each work on 512/8=64 iterations). Each node has a GPU 
(should work on the inner loop, 1024 iterations). The 
solution was using two nested parallel section constructs: 
one for node distribution (MPI), and the other for GPU 
processing. The key problem we faced in this 
parallelization task was the dependency between iterations 
to advance array pointers. The scientist made a simple 
modification to link array indexes to loop variables instead 
of using pointers. Then we unrolled the inner loop in an 
OpenCL GPU kernel. 

for (unsigned ichan=0; ichan<nchan; ichan++) { 
    const float* p = input_base + ndat*ndim*npol*ichan; 
    const float* q = p + ndat*ndim; 
    r[0] = output_base + ndat*ndim*npol*ichan; 
    r[1] = r[0] + 1;… 
    for (j=0; j<ndat; j++)  { 
         p_r = *p; p++; 
          p_i = *p; p++; 
          pp = p_r * p_r + p_i * p_i; 
          qq = q_r * q_r + q_i * q_i; 
        
          *S0 = pp + qq;  S0 += span; 
          *S1 = pp - qq;  S1 += span; 
          … 
     

Figure 7. exerpt from the detection module to be reengineered 

IV. IMPLEMENTATION 
Figure 8 shows a high-level architecture of our toolset, 

Horus HPC, with its two main components: the model 
designers and code generators. Our parallel program 
designer is implemented using our Horus framework as a 
web application based on HTML5 and JavaScript [15]. It is 



built on an existing open source web modeling tool 
(https://www.draw.io/). The web-based platform allows 
developers and scientists to use, collaborate, and share 
models and solutions. We extended this tool with a DSVL 
designer to help in developing domain-specific visual 
languages (DSVLs). This helps scientists and developers in 
creating operations and data structures that are common to 
their domains without a need to redefine such operations or 
data structure when modeling new problems. Once a DSVL 
is defined, users can register it to be used from within the 
tool itself. 

The parallel program designer (Figure 8-1) is 
implemented as a DSVL with all constructs reflected in the 
meta-model discussed above. The code generator (Figure 8-
2) is implemented in JavaScript to complement the parallel 
DSVLs provided through our web-modeling tool. It simply 
parses the graph nodes (vertices and edges). For simple 
nodes in the program (those with no parallel impact, e.g. 
data, if, or task nodes), the core code generator outputs the 
corresponding realization code, which is currently in C 
language. For parallel operations – e.g. split, join, and 
parallel sections, etc. the code generator consults the 
corresponding parallel technology code generator – e.g. in a 
split node, if the distributed flag is set, then the MPI code 
generator is triggered, a sample MPI code generator is 
shown in Figure 9. This code snippet shows parts of the 
MPI initialization code, and split construct code generator. 
Otherwise, if the shared flag is set in a parallel section, the 
OpenCL generator is triggered. The resultant parallel 
program is then compiled and deployed on the target 
computing platform (Figure 8-3). To support reverse (and 
round-trip) engineering we use code annotations (The same 
annotation used in the generated code in Figure 4 and Figure 
5): where scientists can add annotations in code to guide the 
model reconstruction process. 

Our code generation component takes program models, 
as a set of nodes and edges developed with the parallel 
program designer discussed above, as input and generates a 
corresponding program with the necessary parallelization 
aspects as defined by users. The code generator has a 
sequential code generator as its core. This core code 
generator is responsible for generating a complete 
sequential version of the user specified model (without any 
parallelization). This is helpful when the user would like to 
build his initial program from the existing (predefined, or 
other users’ defined) building blocks. For parallelism, we 
have separate generators for different parallel programming 
model – i.e. we have MPI, OpenMP, OpenACC, and 
OpenCL code generators. This permits further 
improvements of such code generators separately without 
modifying the whole code generation component. 

The core code generator will issue calls to those 
specialized code generators whenever it finds a parallel 
construct used in the input model. According to the parallel 
model used in these constructs, the core code generator 
calls the corresponding generator – e.g. if a parallel 

construct is used with distributed model, the MPI code 
generator is called. The outcome of this code generation is 
weaved within the sequential program as needed. This 
approach improves extensibility in order to support further 
possible programming models and extension of individual 
code generators. Each code generator processes each 
construct in the designer meta-model taking into 
consideration that the meta-model may be extended in 
future (more details in the implementation section). 

 
Figure 8. A high-level architecture of our approach  

… 
MPICodeGenerator.prototype.Start = function(currentNode, graph, output, flags) { 
… 
 output.append(" int taskid, ntasks;"); 
output.append("MPI_Comm_rank(MPI_COMM_WORLD,&taskid);");    
output.append("MPI_Comm_size(MPI_COMM_WORLD,&ntasks);"); 
} 
MPICodeGenerator.prototype.Split =  function(currentNode, graph, output, flags) { 
 … 
  output.append(" int bulkSize = " + copySize + ";"); 
  output.append("if( taskid==0 ) {\n"); 
  output.append("\tfor (int dest = 1 ; dest <= ntasks ; dest++) { \n"); 
  var line = 'ierr = MPI_Send( ' + propertyName + copyIndex + ', bulkSize , ' 
                                           + dataType + ', dest , 0 , MPI_COMM_WORLD); '; 
 … 

Figure 9. Code snippet of the MPI Code Generator 

First, the code generator checks the specified 
deployment details: Is it a single node? a cluster? Do nodes 
have accelerators(GPUs)? Do we have multi-core CPUs? 
The answers to these questions are used in initializing the 
program runtime environment including MPI and/or 
OpenCL initialization as described in the fourth step. 
Second, we generate declarations for all data nodes to avoid 
“undeclared identifier” compilation errors that may arise 
when generating tasks that depend on data not declared in 
the program yet. This usually happens when a node has 
multiple edges and the edge order does not reflect the real 
dependency of the next nodes. Third, the core code 
generator builds a dependency list of the model nodes. This 
list is used to decide the order of graph nodes and edges to 
traverse for code generation. The code generation starts 
from the graph start node and keeps generating code for the 
rest of the graph elements until all nodes have been 
realized. Fourth, the code generator issues a call to 
technology-specific code generator according to the node 
currently being processed and technology reflected on the 
node, e.g. if the node is a start node, necessary code 
generators are called to perform necessary initialization 
tasks. If the node is a split with distributed memory model, 
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then the MPI code generator is called. The same applies on 
Join, Parallel section, and Loop graph nodes. Each function 
in the code generator has a predefined signature as follows 
(currentNode, programGraph, outputCode, flags). Figure 9 
shows a code snippet from MPI code generator. 

V. THREATS TO VALIDITY 
The number of experiments we have conducted so far is 

limited with regard to usability, expressiveness, 
performance and extensibility aspects. We plan to conduct 
more detailed performance and usability evaluations. 

Our code generation approach has some limitations, 
which we are currently working to address: (i) Memory 
Management: currently, we do not address optimized 
memory access when generating kernel code (memory 
coalescing techniques). (ii) Support for custom data type 
data communicated between nodes when using MPI. 
However, this should be easy to support. The same with 
OpenCL data types such as float2, float4, etc. Currently, 
this must be specified by developers. (iii) Recursive 
functions. This is a limitation of the underlying technology 
– e.g. CUDA does not support recursive kernels. (iv) Data 
dependency between parallelized iterations is not 
automatically resolved. It is still the developer/scientist 
responsibility to handle data dependencies. (v) We do not 
make use of the parallel programming platform special 
libraries such as CUDA cuFFT and cuBLAS-XT. This is a 
design limitation of our current approach implementation. 
We do not modify the core code of the sequential program. 
We do extend such code with parallel constructs. Users can 
add parallel task model element that refers to CUDA 
libraries. We plan to extend our parallel code generators 
with a collection of libraries and when to use them. Thus, 
the code generator can look for matches to replace with 
parallel library APIs. (vi) Deep modifications of the 
enclosed tasks to use threadId or work item Id is not 
supported. The readability of the generated code could 
facilitate fine-tuning activities.  

VI. SUMMARY 
We described a novel model-driven approach to help in 

transforming sequential programs to parallel versions 
through visualizing parallelization aspects and patterns. 
Our approach enables utilizing the underlying computing 
platforms without deep experience in parallel programming 
models. We capture sequential program details including 
data structures and tasks. Scientists and developers then 
extend this model with parallelization specifications and 
specify the deployment details of the program. These three 
aspects are used in generating a parallel version of the input 
sequential program. This approach facilitates updating any 
or all of these three aspects without modifying the other 
aspects in the model. Code generation supports different 
possible deployment models and programming models 
including distributed nodes using MPI, multi-cores using 
OpenMP, and GPU accelerator devices using the OpenCL 
and OpenACC programming model. We have applied our 

approach to several problem domains. Due to space 
limitations only three examples discussed in this paper 
including matrix multiplication, N-Body simulation and 
Digital Signal Processing. 
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