
Supporting Scientists in Re-engineering Sequential
Programs to Parallel Using Model-driven

Engineering

Mohamed Almorsy and John Grundy
Centre for Computing and Engineering Software and Systems

Swinburne University of Technology, Hawthorn, Australia
malmorsy@swin.edu.au, jgrundy@swin.edu.au

Abstract—Developing complex computational-intensive and
data-intensive scientific applications requires effective utilization
of the computational power of the available computing platforms
including grids, clouds, clusters, multi-core and many-core
processors, and graphical processing units (GPUs). However,
scientists who need to leverage such platforms are usually not
parallel or distributed programming experts. Thus, they face
numerous challenges when implementing and porting their
software-based experimental tools to such platforms. In this paper,
we introduce a sequential-to-parallel engineering approach to help
scientists in engineering their scientific applications. Our
approach is based on capturing sequential program details,
planned parallelization aspects, and program deployment details
using a set of domain-specific visual languages (DSVLs). Then,
using code generation, we generate the corresponding parallel
program using necessary parallel and distributed programming
models (MPI, OpenCL, or OpenMP). We summarize three case
studies (matrix multiplication, N-Body simulation, and digital
signal processing) to evaluate our approach.

Keywords—component; Parallel Programming; High-
Performance Computing; Domain-specific Visual Languages;
Model-driven Engineering

I. INTRODUCTION
The Australian Square Kilometer Array, which will

enable astronomers to survey the radio universe with
unprecedented speed, is expected to generate terabytes to
petabytes of data per day of observations [1]. Processing
such big data requires developing large-scale parallel
programs that can fulfill the task and produce meaningful
outcomes in a reasonable time. Before developing such
parallel programs, scientists and HPC experts usually start
with a sequential version that solves the problem on a small
scale [2]. This is often relatively easy and helps to
understand implementation details. However, scaling up
such sequential programs to work on big datasets and
utilizing the computational power of today’s heterogeneous
platforms is a very challenging task for scientists because it
requires special experience in HPC. On the other hand, the
existing parallel programming models and languages, such
as MPI, OpenMP, OpenCL, are suitable mainly for expert
parallel programmers. Existing automated and user-aided
parallelization efforts try to address this gap. However, they
are either very low-level, too abstract, or very domain-
specific. We categorize these efforts in:

(i) Compiler-based parallelization [3-5]: Try to
pinpoint parallelizable code sections, usually loop
unrolling, in the input program either automatic using static
analysis, machine learning and profiling techniques, or
explicitly via user specified compiler directives. Kravets et
al. [4] introduce Graphite-OpenCL that automatically
locates parallelizable loops. Such loops are turned into an
OpenCL kernel, and all necessary OpenCL calls for
creating and compiling kernels and copying data to/from
the device are automatically generated. Similar work was
introduced by compilers including Polaris [5], and SUIF
[3]. These efforts lack context and program developers’
intension information.

(ii) Abstract modeling or domain-specific languages:
Deliver high level models and/or DSLs usually have
implicit mappings to predefined parallel libraries without
letting developers specify intended parallelization details
[6] such as image processing [7], partial differential
equations (PDE) [8] or machine learning [9]. Although,
these efforts help in hiding parallelization details from the
user, they are limited by the provided functionalities by
such DSLs. Moreover, most are text-based with a specific
syntax that the developer has to learn to use the language.

(iii) Portable domain-specific languages [10-14]: Focus
on capturing program parallelization aspects using models,
then generating parallel code targeting one or more of the
parallel programming models. Jacbo et al. [10] focus on
using abstract models to help porting to different
computing platforms – e.g. refactoring parallel programs to
use MPI instead of OpenMP and switching between
OpenCL and CUDA. Han et al. [11] introduce a directive-
based approach where developers can annotate their
sequential program code. This looks very similar the
OpenACC APIs. Dig et al [12] introduce a refactoring tool
that help in automating the conversion of sequential
programs into parallel program without defining any
annotations. The tool is based on locating signatures of
possible parallelization aspects (mainly three aspects were
covered including the recursion). The approach is based on
replacing such matched program constructs with their
corresponding java parallel library implementations.
Palyart et al. [13] introduce MDE4HPC approach a DSVL
to help in specifying and modeling HPC applications. They

jgrundy
1st ICSE Workshop on Software Engineering for High Performance Computing in Science (SE4HPCS 2015), Florence, Italy, May 19 2015. © IEEE 2015

jgrundy

focus on specification of solution parallelism. However, no
code generation included. Jacob et al. also [14] introduce
an IDE plugin to help programmers select code blocks and
specify the computation device to run on. No support for
heterogneous computing platform.

In this paper, we introduce a new approach to help
programmers and scientists in effectively parallelizing their
sequential programs. Our approach is based on a set of
domain-specific visual languages to help in modeling
program structure and input/output datasets. Two further
DSVLs capture parallelization plans, and platform
deployment details. Programmers/scientists do not need to
have experience in parallel patterns and heterogeneous
computing platforms. Using the parallel program model our
toolset generates the necessary code utilizing these patterns
and platform configurations. Generated code can be
modified further, compiled and run on CPU grid and GPUs.

Our approach saves considerable effort required to
migrate parallel programs from one computing platform to
another. Thus, programmers and scientists can write a
program, model its parallel and deployment aspects, and
then get it to run on different computing platforms either
single core, multi-core, many-core, or hardware
accelerators by primarily updating program deployment
details and having target code regenerated. We have
evaluated our approach using several different scientific
computation case studies including: general-purpose matrix
multiplication, N-Body simulation, digital signal
processing. Our approach is supported by a web-based tool
that provides different features including: scientific DSVL
design, code generation, code editing, parallel patterns
reuse, reverse engineering, and data visualization.

A. Motivating Example
Multiplication of large matrices is a common problem

in scientific computing (e.g. 1 million elements each). Figure
1 shows a sequential program model of the matrix
multiplication developed using our parallel program
designer tool. It initializes both A and B (init_matrixA,
init_matrixB) and then comprises three nested loops (Row,
Cols, element – Loop) applying the multiplication
operation on rows and columns to calculate the value of
Ci,j.. Finally, we print matrix_C. We discuss below how end
users (scientists and programmers) using our approach can
develop different parallel versions of such a program.

Figure 1. Example sequential matrix multiplication program

II. PARALLEL PROGRAM DESIGNER
Our approach is based on capturing a sequential

program definition such as the example in Figure 1, then
developing parallelization plans and deployment details.
These details are used to generate the modeled parallel
version of the program for further development. Our
approach has three key DSVLs, summarized in Figure 2: (i)
SeqDSVL: a Sequential program description language.
This includes: sequence, selection, repetition, tasks and
data structures. These constructs are available for users to
model sequential algorithms as well as developing reusable
tasks frequently used in a given domain. (ii) ParaDSVL:
Parallelization plan specification language. This includes
operations necessary for data and task decomposition such
as: split, join, parallel section, loop unrolling and parallel
task. As discussed later, these basic constructs are sufficient
in capturing parallelization plans used in different parallel
patterns. (iii) DepDSVL: Deployment details specification
language. This includes computing platform, node
specification, and groupings of nodes (in terms of
communications). Currently, we capture basic information
of the deployment platform and nodes such as number of
nodes, grouping of nodes, how many cores per node,
number of GPUs per node, etc. In this section, we discuss
the parallel and deployment constructs. The sequential
program specification is the same as in most of scientific
workflows (further details are in [15]). Figure 1 shows an
example sequential program model. Figure 2 shows the key
concepts of our parallel program designer and key
relationships. Below, we discuss these constructs,
functionality and attributes.
A. Parallel Constructs

These constructs enable developers and scientists to
specify how they plan to transform their sequential program
into a parallel version. We focus on visually modeling
possible task and data decompositions to achieve intended
parallelization regardless of which parallel patterns or
parallel programming models required to achieve such
parallelization. Our constructs for parallelism are data
decomposition (split and join), or task decomposition
(parallel section, loop unrolling, parallel task).
• Data Decomposition: The first step in data
decomposition is to think how input data could be split into
smaller chunks where such smaller chunks can be
processed faster and in parallel (divide-and-conquer). This
implies that at some point we have to merge the outcomes
of parallel tasks into one data structure.

Split construct divides an input data item into
slices/chunks. The way this is implemented depends on the
data structure being used. The user specifies whether a data
item is geometrically divisible such as a 1D array, 2D
array, image, cubes, hashtables, etc., or recursively
divisible such as graphs or trees. For the first type, the user
specifies what dimensions to use in splitting the data object
– e.g. if we have a matrix, we can split in one dimension
e.g. rows or cols, or we could split in two dimension – i.e.

rows and cols (sub-matrices), and so on. Then, the user
specifies the size of the slice: could be decided based on the
number of processing nodes available (usually called
BLOCK policy) or could be repeated slicing (CYCLIC
policy) according to a selected slice size (every n elements
form one slice). On the other hand, recursive data structures
can be split using a link pointer (that points to a next list
entry) and the number of computing entities – e.g. in a
linked list, we may divide every consecutive N elements
into a chunk or according to specific attribute value which
is more expensive in terms of computations. The split
operation usually does not exist separately. The outcome of
the split operation depends on the next node – e.g. it
depends on the parallelization technology used in next
program node to decide how and where the new slices can
be communicated to such nodes. The next node is a parallel
section.

Join construct is the inverse of the split operation. It is
usually preceded by a task parallelization construct
(parallel section, loop unroll, or parallel task) that produces
multiple slices of the intended outcome. The objective of
the Join operation is to merge these pieces/results
(generated by different threads or work items back to the
output data structure. If the target data structure is a single-
value variable, then the user should state a reduction
operation to apply – e.g. if each node calculates the sum of
an array chunk, then the Join will compute the sum of
sums. In the other case (merge), users specify the target
output variable.
• Task Decomposition: Program tasks can be
parallelized either by decomposing a given task into
multiple concurrent subtasks or applying the same task on
small chunks of the input data, or both. The latter case
usually involves breaking down (unrolling) task loops into
subtasks where each subtask does less iterations.

Parallel Section construct helps in grouping a set of
operations in one code block (visually, a container) that we
want to consider as one unit for parallelization. Scientists
can select, according to nature of the available resources,
the parallel model to be used in realizing a parallel section
– e.g. using multi-core (OpenMP), using GPUs (OpenCL),
or distributed nodes (MPI). Data items passed to a parallel
section should be broadcasted to the target processing

elements on which the parallel section runs. Copying data
to/from a parallel section has different scenarios that we
discuss below.

In a multi-core model: the parallel section is translated
into a code block. The data items declared inside a parallel
section or passed directly from outside nodes to an
enclosed entity (there is an edge coming from a task to a
task enclosed inside the parallel section) are considered as
private to threads (a parameter in OpenMP directives),
whereas parallel section passed in parameters (edges go
directly to the parallel section) are considered as shared
between all threads.

In clustered compute nodes: the parallel section is
translated into a code block and the passed in data are
distributed (if data are the outcome of a split operation), or
broadcasted from the master node to slaves. The parallel
section output data are copied from slave nodes back to the
master node. This usually followed by a join operation to
merge/reduce received data.

We can nest multiple parallel sections, each reflecting a
parallelization level and different nested technologies may
be used when realizing contained tasks. This is helpful
when dealing with heterogeneous computing that requires
both distributed (e.g. MPI) and shared memory models (e.g.
OpenCL).
 Loop Unrolling construct helps in realizing loop
parallelism patterns that focuses on unrolling program loop
iterations for execution by separate threads (in the case of
multiple-cores), work items (in the case of GPUs), slave-
based iterations (distributed nodes). Loop unrolling usually
requires modifying loop header to run for fewer iterations.

Parallel Task construct is used in two cases: modeling
tasks that are already parallelized and do not need to be
revised by our code generator – e.g. readymade libraries,
user defined tasks; and with tasks to be executed as they are
in parallel - i.e. we just need to convert it into e.g. GPU
kernel code and use it as it is. If the task needs to be
revisited for parallelization, the user replaces it with a
parallel section and flush task details and required
parallelization.

Figure 2. Parallel program designer constructs and their key groups and relationships

Concept

Operation Data

Input Output AttributeCommand

Parallel Section Split Join

Deployment Node

Parallel Operation Loop Unroll

Deployment
Platform

Control Flow

Parallel

CoreDeployment

Program

Deploym
ent

Group

Visual Element

Loop

Start

Control Operation

IF

End

B. Deployment Constructs
These help developers and scientists to model a

program’s underlying compute platform. Currently, we are
mainly interested in capturing how many nodes to be used
in the deployment model, specifications of each node
(memory, CPU, storage) and number of accelerators
plugged in each node. Each node has a group name
attribute that is used when grouping nodes into sub-
clusters. This is helpful when mapping specific tasks for
execution on a group of nodes – e.g. in the MapReduce
model we have Map nodes and Reduce nodes. As a further
extension of this we plan to include inter-node
communication speed and bandwidth, and accelerator (e.g.
GPUs) specification details. This helps in generating
efficient code based on nodes capacity and tradeoffs
between parallelization and communication overhead.
C. Model Refinement

A key problem with existing parallel programming
models is the lack of a common model that can work with
different, heterogeneous computing platforms. We have
found many efforts proposing new common models that try
to replace two or more existing parallel models with one
platform [16]. In this section, we show that most of the
parallel scenarios supported by these parallel programming
models can be modeled using our approach.

Message-Passing Interface - (MPI): A set of APIs that
facilitate communication between different nodes in a
distributed memory based supercomputers or clusters. MPI
has APIs for communication (send/receive),
synchronization between different nodes (Barriers),
combining results from different nodes (gather, reduce),
and sharing public information about the cluster (number of
processes, current process id). The Split (realized as a loop
over number of nodes while calling send API to send data
to all slave nodes and another piece of code in the slave
node to receive the data slice to work on), Join (realized as
send by slave node and loop in the master node to receive
data), and program/data flow edges cover the
communication (code to run on the master node and code in
slave nodes (parallel section)) and reduction operations.
The deployment group covers the possible communicators
(communication groups). The parallel section helps in
consolidating code blocks run in parallel on different
nodes. Elements outside the parallel sections represent data
and tasks to be executed on the master node. The
deployment nodes define the number of nodes to run the
MPI program on – i.e. in the MpiRun command params.

OpenMP: A set of compiler directives and APIs that
help in parallelizing programs using multi-threading to
utilize multi-core shared-memory architectures. OpenMP is
based on the fork-join parallel pattern. Parallel Section can
be used to group all instructions that we need to execute in
parallel on multi-cores processors (using OpenMP).
OpenMP usually has to specify the shared data between all
threads and the private data for each thread. When
multicore mode is selected: any data item declared inside a

Parallel Section is declared as a private memory, while data
sent to the Parallel Section are considered shared data
between threads. This is the same with Parallel Section
outgoing edges. Finally, the reduction of data generated by
all threads is done using the Join construct. Necessary
platform information is delivered as parallel section
attributes – e.g. number of threads, current thread id, etc.
Our Loop Unrolling construct captures the OpenMP
parallel loop directive.

Open Computing Language (OpenCL): A platform to
help in heterogeneous computing using CPUs and/or GPUs.
OpenCL is based on the Single Program Multiple Data
(SPMD) computing model. It provides a set of APIs to help
in creating kernels (programs) to be executed by GPU work
items (threads). It also supports copying memory between
host and accelerator device global memory. Another set of
APIs provide current work item Id relative to local work
group and global work items. To convert any program into
the SPMD model, we have two options: if the tasks will be
distributed, then we can leave the task unmodified and pass
in a chunk of the data to each parallel thread or process. In
the shared memory model we have to change the task to
have each instance work on a portion of the shared data.
Loop unrolling is usually a good candidate source of
SPMD parallelism. In this case, we may consider each
iteration as a separate thread (work item), so we replace the
for loop header with a statement (loop variable = global
thread id). Otherwise, we extend the loop header elements
(initialization, condition, and update) with a dummy
variable that counts how many iterations per thread – e.g.
for (initial, unroll_var = 0; condition && unroll_var <
number_of_iterations ; update , unroll_var++). The
Parallel section can be used to enclose elements that
constitute a new kernel. All arrows directed into the parallel
section are considered as kernel parameters and copied
from host memory to device global memory. All arrows
directed towards one of the internal operations in the
parallel section are considered for further local memory
copy. Parallel section also delivers global information such
as get_global_id and get_local_id, etc. The user needs to
specify the number of blocks and number of threads per
block. These are parameters in the parallel construct.

Combined MPI, OpenMP, and OpenCL: When
targeting heterogeneous platforms we can use nested
parallel sections. The outer section could be used for e.g.
distributed nodes (MPI), while the inner sections for multi-
cores (OpenMP) or GPUs (OpenCL).

III. CASE STUDIES
To evaluate the effectiveness of our approach in
parallelizing programs and improving developers’
capabilities in handling parallel programs, we have
conducted a set of case studies with several scientists. We
summarize three of them here: matrix multiplication, N-
Body simulation and digital signal processing.

A. Parallel Matrix Multiplication
In this section, we show how our approach can help in

parallelizing the sequential matrix multiplication program
from Figure 1. An initial thought to parallelize this program
could be to split one of the matrices while keeping the other
matrix as it is, or splitting both A and B. The later will have
an impact on the calculations (sum of matrix A rows
multiplied by matrix B cols). In either case, we need to take
into consideration the deployment details: are we going to
run this on a cluster or on a single node? Also we may have
other computing devices – e.g. GPUs - that we might use in
completing subtasks assigned to each node.

Figure 3. Example parallel matrix multiplication model

...
int taskid, ntasks;
MPI_Comm_rank(MPI_COMM_WORLD, &taskid);
MPI_Comm_size(MPI_COMM_WORLD, &ntasks);
...
//@Splitter: A_Split
 int offset0 = 0;
 int aSplitbulkSize = 1*aRows aCols/ ntasks ;
if(taskid == 0) {
for (int dest = 1 ; dest <= ntasks ; dest++) {
ierr = MPI_Send(A[offset0], aSplitbulkSize , MPI_DOUBLE, dest
 , 0 , MPI_COMM_WORLD);
offset0 = offset0 + bulkSize;
…
else if(taskid != 0){
 ierr = MPI_Recv(A, aSplitbulkSize, MPI_DOUBLE, 0 ,
 0 , MPI_COMM_WORLD , &status); …
//@Parallel Section: MatrixKernel
if(taskid != 0) { // Calculate C[i][j] }
//@Join: Join
if(taskid !=0) {
 ierr = MPI_Send(&C[offset0], aSplitbulkSize, MPI_DOUBLE, 0 , 0 ,
MPI_COMM_WORLD); … }
else if(taskid == 0) {
 for (int i=1; i<=ntasks; i++) {
 ierr = MPI_Recv(C[(i -1) * aSplitbulkSize], i * aSplitbulkSize, MPI_DOUBLE, i ,
0 , MPI_COMM_WORLD , &status); } ...

Figure 4. A snippet of generated parallel matrix multiplication code
modeled in Figure 3

Figure 3 shows a scenario where we decided to split
matrix A and distribute the slices to different cluster nodes
and broadcast matrix B to all nodes. This should be done on
the master node (tasks outside the parallel section
“matrixkernel”). The parallel section defines that the
enclosed tasks (loops & calculation) are to be executed in
parallel on slave/worker nodes. The outcome of the matrix
multiplication by each node is then sent back to the master
node where we have a Join operation to merge results

together into matrix_C. We have configured the splitter
construct properties to split matrix A using block_policy
according to number of nodes and then distribute each
chunk to slave nodes. Another splitter could be added if we
want to split matrix B as well, but will impact the
calculations operation. Figure 4 shows a snippet of the
generated parallel code for matrix multiplication. We show
parts of the generated code reflecting the split, join and
parallel section realization. The rest should be the same as
in the sequential version. Using split and join with a cluster
computing model is realized using the MPI master-slave
pattern (one of the well-known parallel design patterns).

//@Parallel Section: GPUKernel
cl_program program;
cl_kernel kernel;
const char *KernelSource = "\
__kernel void ParallelSection(__global double* A, __global double* B) {\
int i = get_global_id (0); {\
for(j = 0;j < aCols ; j++) {\
calculate_matrix_element();}\
} }";
program = clCreateProgramWithSource(context, 1, (const char **) &
KernelSource, NULL, &err);
err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
kernel = clCreateKernel(program, "ParallelSection", &err);
cl_mem memobjA = clCreateBuffer(context, CL_MEM_READ_WRITE, *, NULL,
&ierr);
ierr = clEnqueueWriteBuffer(command_queue, memobjA, CL_TRUE, 0, *, A, 0,
NULL, NULL); …

Figure 5. A code snippet generated for GPU kernel

Now, assume that each computing node has a GPU
device so that we can use it to accelerate the computations
assigned to nodes. In this case we need to add another
parallel section inside “matrixkernel” and select “Run on
GPU” property to encapsulate the computational tasks into
kernel to be computed by GPU work groups and work
items. The number of work items, work groups, and the
dimensions of work items in work groups depend on the
size and dimensions of the data being processed. Moreover,
the data to be processed by the GPU device will be copied
from the host node memory to GPU global memory. The
same will be done after work items finish.

Table 1. Performance results (in sec) of the generated MPI code
with different matrix size and number of nodes

Matrix
Size

1 node 3 nodes 5 nodes 7 nodes

100 X 100 0.04 0.01 0.0017 0.0014

300 X 300 0.16 0.04 0.025 0.017

500 X 500 1 0.19 0.11 0.06

Table 2. Performance results (in sec) of the generated

MPI+OpenMP code with different matrix size, nodes, cores

Matrix
Size

1 node 3 nodes 5 nodes 7 nodes

100 X 100 0.04 0.006 0.008 0.005

300 X 300 0.16 0.03 0.016 0.01

500 X 500 1 0.14 0.09 0.04

Figure 6. N-Body simulation models in our web-based IDE tool, Horus HPC

Tables 1, 2 shows the performance improvement (in
secs) of the generated code using MPI and MPI+OpenMP
against the sequential version of the matrix multiplication
program. The time reported excludes matrices initialization
tasks, because it is common in all scenarios. It is worth
mentioning that the performance of the generated code
depends heavily on the user-modelled transformation. We
plan to build new plugins that can generate
recommendations regarding the parallelization plan and
number of nodes, blocks and threads to use.
B. N-Body Case Study

In this case study we asked a new PhD student who is
working on molecular simulation to use our tool to
transform her sequential program into MPI & OpenCL
version. She did not have any previous experience in
parallel programing. We conducted a 1-hour training to
explain how the approach works. First, we asked her to
model her sequential program using our sequential DSVL
developed earlier (introduced in [15]). Then, we asked her
to use the parallel construct to model how she wanted to
parallelize her program. Figure 6-1 shows a snapshot of the
parallel model. Figure 6-3 shows a part of the parallel
program, using MPI and OpenCL, generated by our tool
based on parallel model Figure 6-1. This took around four
hours. On the other hand, we asked a HPC programmer to
parallelize the same N-Body sequential program using,
which was written by someone else, using MPI and
OpenCL. The programmer reported that the initial working
parallel version that is the same as our parallel model took
around three weeks full-time. It took the same time to get
an optimised version.
C. DSPSR Case Study

The third case study is reengineering the detection
module in an existing digital signal processing for pulsar
astronomy tool developed internally at Swinburne by

astrophysics team (http://dspsr.sourceforge.net/). The core
code of the detection module, a part of it is shown in Figure
7, has mainly two nested loops: one on input signal
channels (nchan=512) and the second nested loop is on
input signal periods (ndat=1024) for every pairs of signals.
The intended solution was to unroll both loops on 8 nodes
(each work on 512/8=64 iterations). Each node has a GPU
(should work on the inner loop, 1024 iterations). The
solution was using two nested parallel section constructs:
one for node distribution (MPI), and the other for GPU
processing. The key problem we faced in this
parallelization task was the dependency between iterations
to advance array pointers. The scientist made a simple
modification to link array indexes to loop variables instead
of using pointers. Then we unrolled the inner loop in an
OpenCL GPU kernel.

for (unsigned ichan=0; ichan<nchan; ichan++) {
 const float* p = input_base + ndat*ndim*npol*ichan;
 const float* q = p + ndat*ndim;
 r[0] = output_base + ndat*ndim*npol*ichan;
 r[1] = r[0] + 1;…
 for (j=0; j<ndat; j++) {
 p_r = *p; p++;
 p_i = *p; p++;
 pp = p_r * p_r + p_i * p_i;
 qq = q_r * q_r + q_i * q_i;

 *S0 = pp + qq; S0 += span;
 *S1 = pp - qq; S1 += span;
 …

Figure 7. exerpt from the detection module to be reengineered

IV. IMPLEMENTATION
Figure 8 shows a high-level architecture of our toolset,

Horus HPC, with its two main components: the model
designers and code generators. Our parallel program
designer is implemented using our Horus framework as a
web application based on HTML5 and JavaScript [15]. It is

built on an existing open source web modeling tool
(https://www.draw.io/). The web-based platform allows
developers and scientists to use, collaborate, and share
models and solutions. We extended this tool with a DSVL
designer to help in developing domain-specific visual
languages (DSVLs). This helps scientists and developers in
creating operations and data structures that are common to
their domains without a need to redefine such operations or
data structure when modeling new problems. Once a DSVL
is defined, users can register it to be used from within the
tool itself.

The parallel program designer (Figure 8-1) is
implemented as a DSVL with all constructs reflected in the
meta-model discussed above. The code generator (Figure 8-
2) is implemented in JavaScript to complement the parallel
DSVLs provided through our web-modeling tool. It simply
parses the graph nodes (vertices and edges). For simple
nodes in the program (those with no parallel impact, e.g.
data, if, or task nodes), the core code generator outputs the
corresponding realization code, which is currently in C
language. For parallel operations – e.g. split, join, and
parallel sections, etc. the code generator consults the
corresponding parallel technology code generator – e.g. in a
split node, if the distributed flag is set, then the MPI code
generator is triggered, a sample MPI code generator is
shown in Figure 9. This code snippet shows parts of the
MPI initialization code, and split construct code generator.
Otherwise, if the shared flag is set in a parallel section, the
OpenCL generator is triggered. The resultant parallel
program is then compiled and deployed on the target
computing platform (Figure 8-3). To support reverse (and
round-trip) engineering we use code annotations (The same
annotation used in the generated code in Figure 4 and Figure
5): where scientists can add annotations in code to guide the
model reconstruction process.

Our code generation component takes program models,
as a set of nodes and edges developed with the parallel
program designer discussed above, as input and generates a
corresponding program with the necessary parallelization
aspects as defined by users. The code generator has a
sequential code generator as its core. This core code
generator is responsible for generating a complete
sequential version of the user specified model (without any
parallelization). This is helpful when the user would like to
build his initial program from the existing (predefined, or
other users’ defined) building blocks. For parallelism, we
have separate generators for different parallel programming
model – i.e. we have MPI, OpenMP, OpenACC, and
OpenCL code generators. This permits further
improvements of such code generators separately without
modifying the whole code generation component.

The core code generator will issue calls to those
specialized code generators whenever it finds a parallel
construct used in the input model. According to the parallel
model used in these constructs, the core code generator
calls the corresponding generator – e.g. if a parallel

construct is used with distributed model, the MPI code
generator is called. The outcome of this code generation is
weaved within the sequential program as needed. This
approach improves extensibility in order to support further
possible programming models and extension of individual
code generators. Each code generator processes each
construct in the designer meta-model taking into
consideration that the meta-model may be extended in
future (more details in the implementation section).

Figure 8. A high-level architecture of our approach

…
MPICodeGenerator.prototype.Start = function(currentNode, graph, output, flags) {
…
 output.append(" int taskid, ntasks;");
output.append("MPI_Comm_rank(MPI_COMM_WORLD,&taskid);");
output.append("MPI_Comm_size(MPI_COMM_WORLD,&ntasks);");
}
MPICodeGenerator.prototype.Split = function(currentNode, graph, output, flags) {
 …
 output.append(" int bulkSize = " + copySize + ";");
 output.append("if(taskid==0) {\n");
 output.append("\tfor (int dest = 1 ; dest <= ntasks ; dest++) { \n");
 var line = 'ierr = MPI_Send(' + propertyName + copyIndex + ', bulkSize , '
 + dataType + ', dest , 0 , MPI_COMM_WORLD); ';
 …

Figure 9. Code snippet of the MPI Code Generator

First, the code generator checks the specified
deployment details: Is it a single node? a cluster? Do nodes
have accelerators(GPUs)? Do we have multi-core CPUs?
The answers to these questions are used in initializing the
program runtime environment including MPI and/or
OpenCL initialization as described in the fourth step.
Second, we generate declarations for all data nodes to avoid
“undeclared identifier” compilation errors that may arise
when generating tasks that depend on data not declared in
the program yet. This usually happens when a node has
multiple edges and the edge order does not reflect the real
dependency of the next nodes. Third, the core code
generator builds a dependency list of the model nodes. This
list is used to decide the order of graph nodes and edges to
traverse for code generation. The code generation starts
from the graph start node and keeps generating code for the
rest of the graph elements until all nodes have been
realized. Fourth, the code generator issues a call to
technology-specific code generator according to the node
currently being processed and technology reflected on the
node, e.g. if the node is a start node, necessary code
generators are called to perform necessary initialization
tasks. If the node is a split with distributed memory model,

Sequential Program

Parallel C# Program

Parallel Program Designer

Code Generator

OpenMP Code GeneratorMPI Code
Generator OpeCL Code Generator

Parallel Model

Parallel Java Program

Multi-CoreMany-Core GPU

Shared Memory
Distributed

Memory

Parallel C Program

Compile and Deploy

Reverse Engineer 1

2

3

4

then the MPI code generator is called. The same applies on
Join, Parallel section, and Loop graph nodes. Each function
in the code generator has a predefined signature as follows
(currentNode, programGraph, outputCode, flags). Figure 9
shows a code snippet from MPI code generator.

V. THREATS TO VALIDITY
The number of experiments we have conducted so far is

limited with regard to usability, expressiveness,
performance and extensibility aspects. We plan to conduct
more detailed performance and usability evaluations.

Our code generation approach has some limitations,
which we are currently working to address: (i) Memory
Management: currently, we do not address optimized
memory access when generating kernel code (memory
coalescing techniques). (ii) Support for custom data type
data communicated between nodes when using MPI.
However, this should be easy to support. The same with
OpenCL data types such as float2, float4, etc. Currently,
this must be specified by developers. (iii) Recursive
functions. This is a limitation of the underlying technology
– e.g. CUDA does not support recursive kernels. (iv) Data
dependency between parallelized iterations is not
automatically resolved. It is still the developer/scientist
responsibility to handle data dependencies. (v) We do not
make use of the parallel programming platform special
libraries such as CUDA cuFFT and cuBLAS-XT. This is a
design limitation of our current approach implementation.
We do not modify the core code of the sequential program.
We do extend such code with parallel constructs. Users can
add parallel task model element that refers to CUDA
libraries. We plan to extend our parallel code generators
with a collection of libraries and when to use them. Thus,
the code generator can look for matches to replace with
parallel library APIs. (vi) Deep modifications of the
enclosed tasks to use threadId or work item Id is not
supported. The readability of the generated code could
facilitate fine-tuning activities.

VI. SUMMARY
We described a novel model-driven approach to help in

transforming sequential programs to parallel versions
through visualizing parallelization aspects and patterns.
Our approach enables utilizing the underlying computing
platforms without deep experience in parallel programming
models. We capture sequential program details including
data structures and tasks. Scientists and developers then
extend this model with parallelization specifications and
specify the deployment details of the program. These three
aspects are used in generating a parallel version of the input
sequential program. This approach facilitates updating any
or all of these three aspects without modifying the other
aspects in the model. Code generation supports different
possible deployment models and programming models
including distributed nodes using MPI, multi-cores using
OpenMP, and GPU accelerator devices using the OpenCL
and OpenACC programming model. We have applied our

approach to several problem domains. Due to space
limitations only three examples discussed in this paper
including matrix multiplication, N-Body simulation and
Digital Signal Processing.

VII. ACKNOWLEDGMENT
This research is supported by the Australian Research

Council under Discovery Project DP120102653.

REFERENCES
[1] S. Johnston, M. Bailes, N. Bartel, C. Baugh, M. Bietenholz, C.

Blake, et al., "Science with the Australian square kilometre array
pathfinder," Publications of the Astronomical Society of Australia,
vol. 24, pp. 174-188, 2007.

[2] T. G. Mattson, B. A. Sanders, and B. L. Massingill, Patterns for
parallel programming: Pearson Education, 2004.

[3] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, et al.,
"Maximizing Multiprocessor Performance with the SUIF
Compiler," Computer, vol. 29, pp. 84-89, 1996.

[4] A. Kravets, A. Monakov, and A. Belevantsev, "GRAPHITE-
OpenCL: Generate OpenCL Code from Parallel Loops," presented
at the GCC Summit 2010, 2010.

[5] W. Blume, R. Eigenmann, J. Hoeflinger, D. Padua, P. Petersen, L.
Rauchwerger, et al., "Automatic Detection of Parallelism: A grand
challenge for high performance computing," IEEE Parallel &
Distributed Technology: Systems & Applications, vol.2, p. 37, 1994.

[6] A. K. Sujeeth, T. Rompf, K. J. Brown, H. Lee, H. Chafi, V. Popic,
et al., "Composition and Reuse with Compiled Domain-Specific
Languages," in Proc. European Conference on Object-Oriented
Programming, Montpellier, France, 2013.

[7] J. Ragan-Kelley, C. Barnes, et al., "Halide: a language and compiler
for optimizing parallelism, locality, and recomputation in image
processing pipelines," in Proc. 34th ACM Conf. on Programming
language design and implementation, Seattle, USA, 2013.

[8] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M.
Barrientos, et al., "Liszt: a domain specific language for building
portable mesh-based PDE solvers," presented at the Proceedings of
2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, Seattle, Washington, 2011.

[9] A. K. Sujeeth, H. Lee, K. J. Brown, T. Rompf, H. Chafi, M. Wu, et
al., "OptiML: An Implicitly Parallel Domain-Specific Language for
Machine Learning," presented at the Proceedings of the 28th
International Conference on Machine Learning, 2011.

[10] F. Jacob, R. Arora, P. Bangalore, M. Mernik, and J. Gray, "Raising
the level of abstraction of GPU-programming," in Proc. 16th Int.
Conf. on Parallel and Distributed Processing, pp. 339-345, 2010.

[11] T. D. Han and T. S. Abdelrahman, "hiCUDA: a high-level
directive-based language for GPU programming," in Proceedings of
2nd Workshop on General Purpose Processing on Graphics
Processing Units, Washington, D.C., 2009.

[12] D. Dig, J. Marrero, and M. D. Ernst, "Refactoring sequential Java
code for concurrency via concurrent libraries," in Proceedings of
the 31st International Conference on Software Engineering, 2009.

[13] M. Palyart, D. Lugato, et al, "HPCML: A Modeling Language
Dedicated to High-Performance Scientific Computing," in Proc. of
1st Int. Workshop on Model-Driven Engineering for High
Performance and CLoud computing, Innsbruck, Austria 2012.

[14] F. Jacob, D. Whittaker, S. Thapaliya, P. Bangalore, M. Mernik, and
J. Gray, "CUDACL: A tool for CUDA and OpenCL programmers,"
in Proceedings of 2010 International Conference on High
Performance Computing (HiPC), 2010, pp. 1-11.

[15] M. Almorsy, J. Grundy, et al. , "A Suite of Domain-Specific Visual
Languages For Scientific Software Application Modelling," in the
proceedings of 2013 IEEE Symposium on Visual Languages and
Human-Centric Computing, San Jose, CA, USA, 2013.

[16] J. Diaz, C. Munoz-Caro, and A. Nino, "A Survey of Parallel
Programming Models and Tools in the Multi and Many-Core Era,"
IEEE Transactions on Parallel and Distributed Systems, vol. 23,
pp. 1369-1386, 2012.

