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Abstract recommendation systems support users and developers of various com-
puter and software systems to overcome information overload, perform information
discovery tasks and approximate computation, among others. They have recently
become popular and have attracted a wide variety of application scenarios from
business process modelling to source code manipulation. Due to this wide variety of
application domains, different approaches and metrics have been adopted for their
evaluation. In this chapter, we review a range of evaluation metrics and measures as
well as some approaches used for evaluating recommendation systems. The metrics
presented in this chapter are grouped under sixteen different dimensions, e.g., cor-
rectness, novelty, coverage. We review these metrics according to the dimensions to
which they correspond. A brief overview of approaches to comprehensive evalua-
tion using collections of recommendation system dimensions and associated metrics
is presented. We also provide suggestions for key future research and practice direc-
tions.
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Germany e-mail: lars.grunske@informatik.uni-stuttgart.de

John Grundy
Faculty of ICT, Centre for Computing and Engineering Software and Systems (SUCCESS), Swin-
burne University of Technology, Hawthorn, Victoria 3122, Australia e-mail: jgrundy@swin.
edu.au

1

iavazpour@swin.edu.au
Chapter 12 in Recommendation Systems in Software Engineering (c) Springer 2014

iavazpour@swin.edu.au
teerat.pitakrat@informatik.uni-stuttgart.de
lars.grunske@informatik.uni-stuttgart.de
jgrundy@swin.edu.au
jgrundy@swin.edu.au


2 Iman Avazpour, Teerat Pitakrat, Lars Grunske and John Grundy

1 Introduction

Due to the complexity of today’s software systems, modern software development
environments provide recommendation systems for various tasks. These ease the
developers’ decisions or warn them about the implications of their decisions. Exam-
ples are code completion, refactoring support or enhanced search capabilities during
specific maintenance activities. In recent years, research has produced a variety of
these recommendation systems and some of them have similar intentions and func-
tionalities [23, 58]. One obvious question is, therefore, how can we assess quality
and how can we benchmark different recommendation systems?

In this chapter, we provide a practical guide to the commonly used quantitative
evaluation techniques used to compare recommendation systems. As a first step, we
have identified a set of dimensions, e.g., the correctness or diversity of the results
that may serve as a basis for an evaluation of a recommendation system. The dif-
ferent dimensions will be explained in detail and different metrics are presented to
measure and quantify each dimension. Furthermore, we explore interrelationships
between dimensions and present a guide showing how to use the dimensions in an
individual recommendation system validation.

The rest of the chapter is organized as follows: Section 2 introduces the eval-
uation dimensions for recommendation systems and presents common metrics for
them. Section 3 explores relationships between the different dimensions. Section 4
provides a description of some evaluation approaches and their practical application
and implications. Finally, conclusions are drawn in Section 5.

2 Dimensions

The multi-faceted characteristics of recommendation systems lead us to consider
multiple dimensions for recommender evaluation. Just one dimension and metric for
evaluating the wide variety of recommendation systems and application domains is
far too simplistic to obtain a nuanced evaluation of the approach as applied to the
domain.

In this chapter, we investigate a variety of dimensions that may be used to play
a significant role in evaluating a recommendation system. We list these dimensions
below according to our view of their relative evaluative importance, along with the
characteristics that each dimension is used to measure. Some of these dimensions
describe qualitative characteristics while others are more quantitative. Below we list
the key dimensions we describe in detail in this chapter:

• Correctness - how close are recommendations to a set of recommendations as-
sumed to be correct?

• Coverage - to what extent does the recommendation system cover a set of items
or user space?

• Diversity - how diverse (dissimilar) are the recommended items in a list?
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• Trustworthiness - how trustworthy are the recommendations?
• Recommender confidence - how confident is the recommendation system in its

recommendations?
• Novelty - how successful is the recommendation system in recommending items

that are new or unknown to users?
• Serendipity - to what extent has the system succeeded in providing surprising

yet beneficial recommendations?
• Utility - what is the value gained from this recommendation for users?
• Risk - how much user risk is associated in accepting each recommendation?
• Robustness - how tolerant is the recommendation system to bias or false infor-

mation?
• Learning rate - how fast can the system incorporate new information to update

its recommendation list?
• Usability - how usable is the recommendation system? Will it be easy for users

to adopt it in an appropriate way?
• Scalability - how scalable is the system with respect to number of users, under-

lying data size and algorithm performance?
• Stability - how consistent are the recommendations over a period of time?
• Privacy - are there any risks to user privacy?
• User preference - how do users perceive the recommendation system?

We have grouped these dimensions into four broad categories, depending on dif-
ferent aspects of the recommendation system they address. The categories we use
are: Recommendation-centric, User-centric, System-centric and Delivery-centric.
Table 1 summarizes how each of the above dimensions can be grouped inside each
category.

Recommendation-centric dimensions primarily assess the recommendations gen-
erated by the recommendation system itself: their coverage, correctness, diversity
and level of confidence in the produced recommendations. On the other hand, user-
centric dimensions allow us to assess the degrees to which the recommendation sys-
tem under evaluation fulfils its target end-user needs. This includes how trustworthy
are the recommendations produced, degree of novelty, whether serendipitous recom-
mendations are a feature, the overall utility of the recommendations from the users’
perspective, and risks associated with the recommendations produced, again from
the users’ perspective. System-centric dimensions in contrast principally provide
ways to gauge the recommendation system itself, rather than the recommendations
or user perspective. These include assessment of the robustness of the recommen-
dation system, its learning rate given new data, its scalability given data size, its sta-
bility under data change, and degree of privacy support in the context of shared rec-
ommendation system datasets. Finally, delivery-centric dimensions primarily focus
of the recommendation system in the context of use, including its usability (broadly
assessed) and support for user configuration and preferences.

The following subsections describe each of these dimensions in detail.
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Table 1: Categorization of dimensions

Recommendation-centric User-centric

Correctness Trustworthiness
Coverage Novelty
Diversity Serendipity

Recommender confidence Utility
Risk

System-centric Delivery-centric

Robustness Usability
Learning rate User preference

Scalability
Stability
Privacy

2.1 Correctness

In order to be of real value, recommendation systems must provide useful results that
are close to users’ interests, intentions or applications without overwhelming them
with unwanted results. A key measure of this is the correctness of the set of rec-
ommendations produced. Correctness provides a measure of how close the recom-
mendations given to a user are to a set of expected predefined, or assumed correct,
recommendations. This pre-defined set of correct recommendations is sometimes
referred to as the gold standard. The correctness of a recommendation may refer to
its alignment with a benchmark (e.g., each recommended link is in the predefined
set of correct links), or how well it adheres to desired qualities (e.g., increase in
developer productivity).

Depending on the type of recommendations the system is generating, different
methods can be used for measuring correctness. A recommender might predict how
users rate an item, the order (ranking) of most interesting to least interesting items
for a user in a list, or which item (or list of items) is of interest to the user. In
the following subsections, we describe most frequently used metrics for evaluating
recommendation approaches for correctness in each scenario.

2.1.1 Predicting user ratings

If the recommendations produced are intended to predict how users rate items of
interest then Root Mean Squared Error (RMSE) or Mean Absolute Error (MAE)
metrics are often used (examples are [6, 33, 42, 65, 73]). When calculating RMSE,
the difference between actual user ratings and predicted ratings (often called Resid-
ual) should be determined. If rui is the actual rating of user u for item i, and r̂ui is
the predicted value, (r̂ui � rui) will determine the residual of the two ratings. De-
pending on whether the recommendation system has over or under estimated the
rating, residuals can be positive or negative. Assuming N is the number of all rat-
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ings, RMSE can be calculated by squaring the residuals, averaging the squares and
taking the square root.

Root Mean Squared Error =

s
S(u,i)2T (r̂ui � rui)2

N
(1)

MAE, on the other hand, measures the average absolute deviation of predicted
ratings from user ratings.

Mean Absolute Error =
S(u,i)2T | r̂ui � rui |

N
(2)

Where T is the test set of user item pairs (u, i). All individual residuals in MAE
are equally weighted while in RMSE large errors get penalized more than small
errors. This is because the errors are squared before they are averaged. Therefore,
if large errors are undesirable, RMSE is a more suitable metric than MAE. Lower
values of both RMSE and MAE indicate greater correctness. RMSE is generally
larger than or equal to the MAE. If both metrics are equal, then all errors have the
same magnitude.

Both RMSE and MAE can be normalized according to the rating range to repre-
sent scaled versions of themselves.

normalized RMSE =
RMSE

rmax � rmin
(3)

normalized MAE =
MAE

rmax � rmin
(4)

If the items to be tested represent an unbalanced distribution, RMSE and MAE
can be used in averaged form, depending on the evaluation (e.g., per-user or per-
item). If the RMSE of each item can be calculated separately, then the average of all
calculated RMSEs represents the Average RMSE of the recommendation system.

Example . Consider the problem of ranking Java files returned by a recommen-
dation system for code search. Assume three files are recommended to a user
with predicted ratings of 3, 5, 5 in a 1 to 5 scale scoring system while the actual
ratings provided by the user are 4, 3, 5 respectively. The above metrics can be
calculated as follows.

RMSE =

r
(3�4)2 +(5�3)2 +(5�5)2

3
⇡ 1.291 (5)

MAE =
(3�4)+(5�3)+(5�5)

3
⇡ 0.334 (6)

normalized RMSE =
RMSE
5�1

⇡ 0.323 (7)
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normalized MAE =
MAE
5�1

⇡ 0.08 (8)

/

2.1.2 Ranking items

Ranking measures are used when an ordered list of recommendations is presented
to users according to the their preferences. This order can be as the most impor-
tant, or ‘most relevant’, items at the top and the least important, or ‘least relevant’
items at the bottom. For example, when recommending links between architecture
documents and code artifacts in a source code traceability recommendation system,
the most closely related links should be shown first. Similarly, when recommending
code snippets for reuse from a source code repository in a code reuse recommenda-
tion system, the code snippet most appropriate to the current reuse context should
be shown first.

When checking for correctness of ranking measures, if a reference ranking
(benchmark) is available, the correctness of the ranking can be measured by Nor-
malized Distance-based Performance Measure (NDPM) [78].The value returned by
NDPM is between 0 and 1 with any acceptable ranking having a distance of 0. A
ranking farthest away from an ideal ranking would have a normalized distance of 1.

NDPM penalizes a contradicting prediction twice as much as when it does not
predict an item in the ranking. It also does not penalize the system for ranking one
item over another when they have ties. Having a tie in some situations, however, in-
dicates that the value of the items having tie is equal to the user. Therefore, ranking
one item higher than the other in a tie will produce inaccurate ranking. In situa-
tions where ties between recommended items are to be considered, rank correlation
measures, such as Spearmans r or Kendall’s t can be used [29, 30].

For some cases, the position of recommended items in the list is important for
the application of the recommendation. For example, in a software documentation
retrieval environment, since all documentation artifacts are not of equal relevance to
their users, highly relevant documents, or document components, should be identi-
fied and ranked first for presentation [27]. Therefore, the correctness of an item in
the ranking list should be weighted by its position in the ranking. A frequently used
metric for measuring ranking correctness, considering item ranking position, is Nor-
malized Discounted Cumulative Gain (NDCG). It is calculated based on measuring
Discounted Cumulative Gain (DCG) and then comparing that to the ideal ranking.
DCG measures the correctness of a ranked list based on the relevance of items dis-
counted by their position in the list. Higher values of NDCG indicate better ranked
lists and therefore better correctness. Various approaches have been introduced to
optimize NDCG and ranking measures. Examples of these approaches can be found
in Weimer et al. [77] and Le and Smola [40].
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2.1.3 Recommending interesting items

If a recommendation system is providing the items that users may like to use, a
common approach to evaluate it is to use classification metrics like precision, recall,
accuracy and false positive rate. These metrics have been used excessively across
different domains [15, 17, 41, 43, 47, 79] and classify produced recommendations
into groups indicated by Table 2. Once categories are defined, metrics will be cal-
culated according to the following formulae:

Table 2: Categorisation of all possible recommendations.

Recommended Not Recommended Total

Used True-Positive (TP) False-Negative (FN) Total Used
Not Used False-Positive (FP) True-Negative (TN) Total Not Used

Total Total Recommended Total Not Recommended Total (T)

Precision =
T P

T P+FP
(9)

Recall (True Positive Rate) =
T P

T P+FN
(10)

False Positive Rate =
FP

FP+T N
(11)

Specifity (True Negative Rate) =
T N

FP+T N
= 1�False Positive Rate (12)

Accuracy =
T P+T N

T P+T N +FP+FN
(13)

When testing for these metrics off-line and on test data, a common assumption
is that items that the user has not selected are uninteresting, or useless, to other
users. This assumption can often be incorrect [70]. A user might not select an item
because they are not aware of such an item. Therefore, there can be a bias in the
categories defined by Table 2. Also, there exists an important trade-off between
these metrics when measuring correctness. For instance, allowing for a longer list
of recommendations improves recall but is likely to reduce precision. Improving
precision often worsens recall [62]. F-measure is introduced as a measure of the
harmonic mean of precision and recall according to Equation 14.

F-Measure = 2 · Precision ·Recall
Precision+Recall

(14)



8 Iman Avazpour, Teerat Pitakrat, Lars Grunske and John Grundy

It is also noteworthy to mention the cost associated with identification of False-
Positives (FP) and False-Negatives (FN). For example, it could be relatively easier
to identify FP for a user. If this is the case, calculating recall would be less costly
and hence more preferred than precision. F-measure assumes equal cost for both FP
and FN as defined by Equation 14.

Sometimes it is desirable to provide multiple recommendations to users. In this
case, these metrics can be altered to provide correctness measured for the number
of N items being provided to user. For example, consider a code completion rec-
ommender that can recommend hundreds of items while the user is typing program
code. Showing one item at a time would be too limited, similarly showing all recom-
mendations would not be useful. If for each recommendation five items are shown to
the user, to calculate precision of this code completion recommender for example,
precision at 5 can be used.

If using recommendations over a range of recommendation list lengths, plotting
the precision to recall (Precision-Recall curve) or true-positive rate to false-positive
rate (Receiver Operating Characteristics or ROC) can be used [25]. Both curves
measure the proportion of preferred items that are actually recommended. Precision-
recall curves emphasize the proportion of recommended items that are preferred
while ROC emphasizes the items that are not preferred but are recommended.

Example . Assuming an API function list contains 100 items in total, and 20 of
them are of interest to a certain user in an API reuse recommendation system.
Given the user is presented with a list of ten recommended items, with six being
of interest and four otherwise, the precision, recall and F-measure metrics can be
calculated as follows:

T P = 6, FP = 4, FN = 14, T N = 76 (15)

Precision =
6

6+4
= 0.6 (16)

Recall (True Positive Rate) =
6

6+14
= 0.3 (17)

False Positive Rate =
4

4+76
= 0.05 (18)

Specifity (True Negative Rate) =
76

4+76
= 0.95 (19)

Accuracy =
6+76

6+76+4+14
= 0.82 (20)

F-Measure = 2 · 0.6 ·0.3
0.6+0.3

= 0.4 (21)

/
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2.2 Coverage

Recommendation systems make recommendations by searching available informa-
tion spaces. This recommendation is not always possible, for example when new
items or users are introduced, or insufficient data is available for particular items or
users. Coverage refers to the proportion of available information (items, users) that
recommendations can be made for.

Consider a code maintenance recommendation system which guides developers
on where to look in a large code base to apply modifications (e.g., [59]). If such a
recommender is not capable of covering the whole code base at hand, developers
might not be able to find the actual artifact that requires alteration. Hence, the in-
formation overload problem and complexity of finding faults in the code base will
still exist to a greater or lesser degree. Sometimes this is acceptable, such as when
alternative techniques, like visualization, can assist users. Sometimes this is unac-
ceptable, for example when the search space is too large for developers or important
parts of the code base remain unsearched, thus hindering maintenance effort.

Coverage usually refers to catalogue coverage (item-space coverage) or predic-
tion coverage (user-space coverage) [25]. Catalogue coverage is the proportion of
available items that the recommendation system recommends to users. Prediction
coverage, on the other hand, refers to the proportion of users or user interactions
that the recommendation system is able to generate predictions for.

A straightforward way to measure catalogue coverage is by calculating the pro-
portion of items able to be recommended in a single recommendation session where
multiple recommender algorithms would be executed a number of times. Therefore,
if the set of items recommended to a user over a particular recommendation session
is Sr and Sa is the set of all available items, catalogue coverage can be calculated by
the following formula:

Catalogue Coverage =
| Sr |
| Sa |

(22)

The items available for recommendation may not all be of interest to a user. Con-
sider a recommendation system that finds relevant expertise to perform a collabo-
rative software engineering task (e.g., [50]). In such a system, if users are looking
for expertise in file processing for a Java-based project, recommending an expert in
Prolog will not be useful and should be filtered out. Ge et al. propose weighted cat-
alogue coverage for balancing the decrease in recommender coverage by usefulness
for users [19]. As a result Equation 22 will be updated to:

Weighted Catalogue Coverage =
| Sr \Ss |
| Ss |

(23)

where Ss is the set of items that are considered useful to users.
Similar to catalogue coverage, prediction coverage can be calculated by measur-

ing the proportion of users that prediction can be made for (Sp) to a set of available
users (Su).
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Prediction Coverage =
| Sp |
| Su |

(24)

Accordingly, by considering the usefulness of recommended items for the user
as a function f(x) we have:

Weighted Prediction Coverage =
Si2Sp f (i)
S j2Su f ( j)

(25)

Ge et al. suggest using correctness and novelty metrics to calculate usefulness func-
tion f(x) in Equation 25 and set of useful items Ss in Equation 23 [19].

Situations where a new item is added to the system and sufficient information
(like ratings by other users for that item) does not exist is referred to as Cold start
problem. Cold start can also refer to situations where new users have joined the sys-
tem and their preferences are not yet known. For example, consider a recommenda-
tion system that recommends solutions to fixing a bug similar to DebugAdvisor [5].
In such a recommender the developer submits a query describing the defect. The
system then searches for bug descriptions, functions or people that can help the de-
veloper fix the bug. If the bug, or a similar bug, has not been previously reported,
there is no guarantee that the returned results will help resolve the situation. Simi-
larly, if the system has been newly implemented in a development environment with
few bug reports or code repositories, the recommendation would not be very helpful.

Cold start is seen more often in collaborative filtering recommenders as they
rely heavily on input from users. Therefore, these recommenders can be used in
conjunction with other non-collaborative techniques. Such a hybrid mechanism was
proposed by Schein et al. [66]. They used two variations of ROC curve to evaluate
their method, namely Global ROC (GROC) and Customer ROC (CROC). GROC
was used to measure performance when the recommender is allowed to recommend
more often to some users than others. CROC was used to measure performance
when the system was constrained to recommend the same number of items to each
user [66].

2.3 Diversity

In some cases, having similar items in a recommendation list does not add value
from the users’ perspectives. The recommendations will seem redundant and it takes
longer for users to explore the item space. For example, in an API recommendation
system, showing two APIs with the same non-functional characteristics may not be
useful unless it helps users gain confidence in the recommendation system. Showing
two APIs with diverse performance, memory overheads and providers, for example,
could be more desirable for the programmer.

A recommendation list should display some degree of diversity in the presented
items. A recent case study on recommending documents to users showed that users
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prefer a system providing document diversity. This allows them to get a more com-
plete map of the information [11].

Diversity could be also considered to be the opposite of similarity. If items pre-
sented to users are too similar, they do not present diverse items and so may not be of
interest. Thus, Smyth and McClave defined diversity in a set of items, c1..cn, as the
average dissimilarity between all pairs of items in the itemset [72]. They introduce
the following formula for measuring diversity:

Diversity (c1..cn) =
Si=1..nS j=i..n(1�Similarity(ci,c j))

n
2 ⇤ (n�1)

(26)

Where similarity is calculated by the weighted-sum metric below for item c and
target query t:

Similarity (t , c) =
Si=1..nwi ⇤ sim(ti,ci)

Si=1..nwi
(27)

Sim can be a similarity heuristic based on sum, average, minimum or maximum
distance between item pairs, and w is the associated weight. Higher values in Equa-
tion 26 indicate more diversity and consecutively less similarity. In a fixed size rec-
ommendation list, improving diversity results in sacrificing similarity. Therefore, a
strategy that optimizes this similarity-diversity trade-off is often beneficial. Thus, a
quality metric was introduced to combine both diversity and similarity [72].

Quality (t,c,R) = Similarity(t,c)⇤RelDiversity(c,R) (28)

This basically specifies that the quality of item c is proportional to its similarity
with the current target query t, and to the diversity of c relative to those items so far
selected R = {r1 . . .rm}. As a result a variation of Equation 26 can be provided as
Relative Diversity.

RelDiversity (t,R) =
⇢

0 , if R = {}
Si=1..m(1�Similarity(c,ri))

m , otherwise
(29)

To measure diversity in a recommendation list, an alternative approach is to com-
pute the distance of each item from the rest of the list and average the result to ob-
tain a diversity score. For such an average, however, a random recommender may
also produce diverse recommendations. Therefore, this needs to be accompanied
by some measure of precision. Plotting precision-diversity curves helps in selecting
the algorithm with the dominating curve [70]. Having correctness metrics combined
with diversity has an added advantage as correctness metrics do not take into account
the entire recommendation list. Instead, they consider the correctness of individual
items. For instance, the intra-list similarity metric can help to improve the process
of topic diversification for recommendation lists [80]. In this way, the returned lists
can be checked for intra-list similarity and altered to either increase or decrease the
diversity of items on that list as desired or required. Increasing diversity this way
has been shown to perform worse than unchanged lists, according to correctness
measures, but users preferred the altered lists [44].
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Diversity of rating predictions can be measured by well-known diversity mea-
sures being used in ensemble learning [36]. These approaches try to increase di-
versity for returned classification of individual learning algorithms in order to im-
prove the overall performance of ensemble learning. For example, Q-Statistics can
be used to find diversity between two recommender algorithms. Q-statistics is based
on a confusion matrix concept. It confronts two classifiers, based on binary eval-
uation strategy, of correctly classified versus incorrectly classified. The confusion
matrix displays the overlap of those itemsets. Then using Q-statistic measures, di-
versity of the two recommender algorithms can be measured. Kille and Albayrak
used this approach and introduced a difficulty measure which helps with personal-
izing recommendations per user [31]. They measured a user’s difficulty by means
of the diversity of rating predictions (RMSE) and item rankings (NDCG), and used
diversity metrics by pair wise Q-Statistics to fit the item ranking scenario [31].

Lathia et al. introduced a measure of diversity for recommendations in two lists
of varying lengths [39]. In their approach, given two sets L1 and L2, the items of
L2 that are not in L1 are first determined as their set theoretic difference. Then, the
diversity between the two lists (at depth N) is defined as the size of their set theoretic
difference over N. This way, diversity returns 0 if the two lists are the same, and 1
if the two lists are completely different at depth N.

2.4 Trustworthiness

A recommendation system is expected to provide trustworthy suggestions to its
users. It has been shown that perceived usefulness correlated most highly with good
and useful recommendations [74]. If the system is continuously producing incorrect
recommendations, users’ trust in the recommender will be lost. Lack of trustworthi-
ness will encourage users to ignore recommendations and so decrease the usefulness
of the recommendation system. For example, in an IDE being used for a refactor-
ing scenario, a wrong suggestion made by the refactoring task recommender may
adversely impact large amounts of application code. If users of such a refactoring
recommendation system use a faulty recommendation and experience the conse-
quences, they will be less likely to choose among its recommendations again.

Some users will not build trust in the recommendations unless they see a well-
known item, or an item they were already aware of, being recommended [74]. Also,
explanations regarding how the system comes up with its recommendations can
encourage users to use them and build trust [71, 76].

A common approach to measure trust is asking users whether the recommenda-
tions are reasonable in a user study [7, 14, 24]. Depending on the usage scenario of
the recommendation system, it might be possible to check how frequently users use
recommendations to gain understanding of their trust [52]. For example, in a code
reuse recommender, how often the user selects and applies one of the recommended
code snippets. Or similarly, how often do users select recommendations of a code
completion recommender.
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2.5 Recommender confidence

Recommender confidence is the certainty the system has in its own recommenda-
tions or predictions. In online scenarios, it is possible to calculate recommender
confidence by observing environmental variables. For example, a refactoring recom-
mendation system can build confidence scores by observing how frequently users
use and apply suggested refactoring recommendations to their application.

Some prediction models can be used in calculating confidence scores. For exam-
ple, Bell et al. used a neighborhood-aware similarity model that considers similar-
ities between items and users for generating recommendations [6]. In their model,
a recommendation that maximizes the similarity between the item being recom-
mended and similar items, and the user this recommendation is to be represented
to and similar users, defines the most suitable recommendation. They showed how
such a metric can help identify most suitable recommendations, according to RMSE
of the predicted rating and the user’s true rating [6].

Cheetham and Price provided an approach for calculating confidence in Case-
Based Reasoning (CBR) systems [13]. They proposed to identify multiple indicators
such as ‘sum of similarities for retrieved cases with best solution’ or ‘similarity of
the single most similar case with best solution’. Once possible indicators are defined,
their effect on CBR process was determined using ‘leave-one-out’ testing. Finally,
they used Quinlan’s C4.5 algorithm on the ‘leave-one-out’ test results to identify
indicators that are best at determining confidence [13, 55].

Recommender confidence scores can be used in the form of confidence intervals
(e.g. in [60]) or by the probability that the predicted value is true [70]. Also, they
have been used in hybrid recommendation systems for switching between recom-
mender algorithms [8].

2.6 Novelty

A novel recommender recommends items that the users did not know about. Novelty
is very much related to the emotional response of users to a recommendation, as a
result, it is a difficult dimension to measure [44].

A possible approach for building a novel recommender is to remove items that the
user has already rated or used before in a recommendation list. If this information is
available, novelty of the recommender can be measured easily by comparing recom-
mendations against already used or rated recommendations. This requires keeping
user profiles so that it is possible to know which user chose and rated which items.
User profiles can then be used to calculate the set of familiar items. For example,
CodeBroker is a development environment that promotes reuse by enabling soft-
ware developers to reuse available components [79]. It integrates a user model for
capturing methods that the developer already knows and thus does not need to be
recommended again.
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An alternative approach for measuring novelty is to count the number of popular
items that have been recommended [70]. This metric is based on the assumption
that highly rated and popular items are likely to be known to users and therefore
not novel [48]. A good measure for novelty might be to look more generally at how
well a recommendation system made the user aware of previously unknown items
that subsequently turn out to be useful in context [25].

2.7 Serendipity

Serendipity by definition is ‘the occurrence and development of events by chance in
a happy or beneficial way’ [69]. In the context of recommendation systems this has
been referred to as an unexpected and fortuitous recommendation [44]. Serendipity
and novelty are different considering the fact that there is an element of correctness
present in serendipity which prevents random recommenders from being serendipi-
tous. Novel unexpected items may, or may not, turn out to be serendipitous. While a
random recommender may be novel, if a surprising recommendation does not have
any utility to the user it will not be classified as serendipitous, but rather as erro-
neous and distracting. Therefore it is required that correctness and serendipity be
balanced and considered together [70].

Like novelty, to have a serendipitous recommender, similar recommendations
should be avoided since their expected appearance in the list will generally not ben-
efit the user [44]. Therefore, user profiles or an automatic or manual labelling of
pairs of similar items can help filter out similar items. The definition of this sim-
ilarity, however, should be dependent on the context in which the recommender
is being used. For example, an API recommender presenting completely unusable
APIs in the current code context is highly unlikely to promote serendipitous reuse.
A document recommender, showing unlikely but still possibly related artifacts in a
traceability recommender, may very well present with serendipitously useful arti-
facts.

Ratability is a feature defined in accordance to serendipity and mostly regarded
in machine learning approaches. Given the system has some understanding of the
user profile, ratability of a recommended item to a user is the probability that the
item will be the next item the user will consume [44]. It is assumed that items with
higher ratability are the items that the user has not consumed yet but is likely to
use in future, or the items the user has consumed but has not been added to the
user profile [45]. In other words, ratability defines the obviousness of a ‘user rating
an item’. Since machine-learning approaches calculate the probability of the item
being chosen next, if the recommendation system is using a leave-one-out approach
to train the learning procedure, it is possible to calculate the ratability based on that
probability.
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2.8 Utility

Utility is the value that the system or user gains from a recommendation. For ex-
ample, Parseweb helps developers find sequences of method calls on objects of a
specific type. This helps to match that object with a specific method sequence [75].
In that context, the evaluation can be based on the amount of time saved for finding
such a method sequence using recommendations. Therefore, the value of a correct
recommendation is based on the utility of that item. A possible evaluation in this
context is to consider utility from a cost/benefit ratio analysis [25].

It is noteworthy that precision cannot measure the true usefulness of a recom-
mendation. For example, recommending an already well-known and used API call,
document link, code snippet, data map or algorithm will increase precision but has
very low utility [48] since such an item will probably already be known to the user.
On the other hand, for memory intensive applications, it is sometimes beneficial
to recommend well-known items. Thus, it is fair to align the recommender evalua-
tion framework with utility measures in real world applications rather than perhaps
over-alignment for correctness.

Depending on the application domain of the recommendation system, the utility
of a recommendation can be specified by the user (e.g., in user-defined ratings)
or computed by the application itself (e.g., profit-based utility function) [1]. The
utility might be calculated by observing subsequent actions of the user, for example,
interacting with the recommendation or using recommended items.

For some applications, the position of a recommendation in a list is a deciding
factor. For example, Rascal uses a recommender agent to track usage histories of a
group of developers and recommends components that are expected to be needed
by individual developers [43]. The components that are believed to be most use-
ful to current developers will appear first in the recommendation list. If we assume
that there is a higher chance for developers to choose a recommendation among top
recommended items rather than exploring the whole list, the utility of each recom-
mendation is then the utility of the recommended item in relation to its position in
the list of recommendations [70].

2.9 Risk

Depending on where the recommendation system is being used and what its applica-
tion domain is, the recommendations can be associated with various potential risks.
For example, recommending a list of movies to watch is usually less risky than rec-
ommending refactoring solutions in complex coding situations (unless the movies
might include inappropriate material for some audiences). Therefore, high-risk rec-
ommendation systems must obey a set of constraints on a valid solution. This is
because false-positive recommendations are less tolerable and users must be more
convinced to use a recommendation [9].
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Consequently users may approach risk differently. For example, different users
might be prepared to tolerate different levels of Risk. One user might prefer using
a component which is no longer maintained but has all required features. Another
user might prefer a component that has less features but is under heavy develop-
ment. In such cases, a standard way to evaluate risk is to consider utility variance
in conjunction with the measures of utility and parameterise the degree of risk users
are seeking in the evaluation [70].

Another aspect of risk involves privacy. If the system is working according to
user profiles, collecting information from users to create that profile introduces the
risk of breaching users’ privacy [56]. Therefore, it should be ensured that users are
aware and willing to take that risk. For example, when recommending developers
based on expertise for outsourcing tasks, many other factors will also need to be
considered. Privacy will be more discussed in Section 2.15.

2.10 Robustness

Robustness is the ability of a recommendation system to tolerate false information
intentionally provided by malicious users or, more commonly, to tolerate mistaken
information accidentally provided by users. Mistakes made by users may include
asking recommender to analyze documents in incorrect formats, mistakenly rating
items, making mistakes in the user profile specification and using the recommender
in the wrong context or for the wrong tasks.

In order to evaluate the robustness of a system against attacks, O’Mahony et al.
compared prediction ratings before and after false information is provided and an-
alyzed the prediction shift that reflects how the prediction changed afterwards [53].
The prediction shift of item i (Di) and its average (D ) can be defined as

Di = Â
u2U

ˆ̂rui � r̂ui

|U | (30)

D = Â
i2I

Di

|I| (31)

where r̂ and ˆ̂r are the predicted ratings before and after false information, respec-
tively, U is a set of users, and I is a set of items.

A large shift, however, may not always affect performance of the system if the
false information does not alter the items recommended to users. This situation may
occur if actual rating of particular items are ranked so low that the mistakes still
cannot push them to the top of recommended items. Many studies, e.g., [49, 63, 68],
have also discussed and employed other metrics, including average hit ratio and
average rank, to evaluate robustness. Average hit ratio measures how effective the
misleading information is to push items into a recommended list while average rank
measures the drop of item ratings outside the recommended list. Hit ratio and rank
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for item i, and their averages can be defined using following equations.

HitRatioi = Â
u2U

Hui

|U | (32)

Ranki = Â
u2U

Rankui

|U | (33)

HitRatio = Â
i2I

HitRatioi

|I| (34)

Rank = Â
i2I

Ranki

|I| (35)

where Hui is 1 if item i appears in the list of recommended items of user u and 0
otherwise. Rankui is the position of item i in the unrecommended list of user u sorted
in a descending order.

2.11 Learning rate

Learning rate is the speed at which a recommendation system learns new informa-
tion or trends and updates the recommended item list accordingly. A system with
high learning rate will be able to adapt to new user preferences or interests of ex-
isting users to provide useful recommendations within a short period of learning
time. For example, an API recommendation system may have a high learning rate
if every time a user rates a recommended item the ranking index and calculations
are immediately updated. In comparison, a code recommendation system may have
a low learning rate if the indexing of the code repository can only be undertaken
sporadically due to high overheads.

Although a fast learning rate can cope with quick shifts in trends, it may also give
up some prediction correctness since the new trend that the system recommends
might not perfectly match a user’s interests. A slow learning rate can also affect the
system utility if it fails to catch up with trends and cannot provide a new set of useful
recommendations.

The evaluation of learning rate can be done by measuring (1) the time that takes
the system to regain its prediction correctness when user interests drift, the time to
reach a certain level of correctness for new users or (2) the prediction correctness
that the system can achieve within a limited learning time. Koychev and Schwab
measured and plotted the prediction correctness of a recommendation system over
time and assessed how fast their algorithm adapted to changes [34]. To evaluate
the learning rate for new users,Rashid et al. evaluated different algorithms that learn
user preferences during the sign-up process [57]. Each algorithm presents users with
a list of initial items to be rated and learns from the given ratings. After the sign-up
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process and the learning phase is completed, predictions for other items are made
and the accuracies of the algorithms are measured and compared.

2.12 Usability

In order for recommendation systems to be effective, their target end users must be
able to use them in appropriate ways. They must also adhere to the general principles
of usability. They must be effective, efficient and provide some degree of satisfaction
for their target end users [51].

Recommendation systems typically manifest in some way via a user interface.
The contents presented by this user interface plays an important role in acceptance
of the recommendation [54]. This user interface may simply be a suggestion to
the user in-situ in the containing application. More commonly, a list of recommen-
dations, often ranked, is provided to the user on demand. Additionally, many rec-
ommendation systems require configuration parameters, user preferences and some
form of user profile to be specified. All of these interfaces greatly impact on the
usability of the recommendation system as a whole. For example, presenting the
user with an overwhelmingly large list of unranked or improperly ordered items is
ineffective and inefficient. Presenting the user with very complicated or hard to un-
derstand information is also ineffective and impacts satisfaction. Satisfaction and
efficiency are reduced if users are not allowed to interact with recommended items,
for example go to target document adversely, or if the system is slow in producing
a set of recommendations. These factors of recommendation systems are generally
evaluated through user studies [54, 71, 74].

2.13 Scalability

One of the most important goals of a recommendation system is to provide on-line
recommendations for users to navigate through a collection of items. When the sys-
tem scales up to the point where there are thousands of components, bug reports,
or software experts to be recommended, the system must be able to process and
make each recommendation within a reasonable amount of time. If the system can-
not handle a large amount of data, other dimensions will have to be compromised.
For instance, the algorithm might generate recommendations based on only a sub-
set of items instead of using the whole database. This reduces the processing time
but consequently also reduces its coverage and correctness. Many examples exist of
recommendation systems that work well on small data sets but struggle with large
item sets or large numbers of users. These include most early API and code recom-
menders, many existing code or database search and rank result recommenders and
complex design or code refactoring recommenders.
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The scalability problem can be divided into two parts: (1) the training time of
the recommendation algorithm and (2) the performance of the system or throughput
when working with a large item database. The time that is required to train the
algorithm can be evaluated by training different algorithms with the same dataset
or by training them until they reach the same level of prediction correctness [20,
28]. The performance of the system can be evaluated in terms of throughput — the
number of recommendations that the system can generate per second [16, 22, 64].
Performance (in terms of number of recommendations) can also adversely impact
the usability of the recommendation system as response time may become too slow
to be effective for its users.

2.14 Stability

Stability refers to the prediction consistency of the recommendation system over a
period of time, assuming that new ratings or items added during that period are in
agreement with the ones already existing in the system. A stable recommender can
help increase user trust as users will be presented with consistent predictions. The
prediction that changes and fluctuates frequently can cause confusion to the users
and, consequently, distrust in the system.

Stability can be measured by comparing a prediction at a certain point in time
with a point when new ratings are added. Adomavicius and Zhang carried out a
stability evaluation by training the recommendation algorithm with the existing rat-
ings and making a first prediction [2, 3]. After new ratings during the next period
are added, the algorithm is retrained with this new dataset. It then makes a second
prediction. Similar to robustness, Equations 30 and 31 can be used to calculate the
prediction shift after a new set of ratings are added.

2.15 Privacy

Recommendation systems often record and log user interaction into historical user
pro-files. This helps personalize recommendations and improve understanding of
user needs. Recording this information introduces a potential threat to users’ privacy.
Therefore, some users might request their personal data to be kept private and not
disclosed. To secure data, some approaches have proposed cryptographic solutions,
or removing the single trusted party having access to the collected data (see, e.g., [4,
12]). Despite these efforts, it has been demonstrated that it is possible to infer user
histories by passively observing a recommender’s recommendations [10].

Indeed, introducing a metric for measuring privacy is a difficult task. A feasible
approach is to measure how much information has been disclosed to third parties as
used in web browsing scenarios [35]. The Differential Privacy measure is a privacy
definition based on similar principles [18]. It indicates that the output of a computa-
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tion should not let inference know about any record’s presence in, or absence from,
the computation’s input. This is calculated as follows.

Consider a randomized function K with its input as the data set and its output as
the released information. Also consider data sets D1 and D2 differing on at most one
element. Then function K satisfies differential privacy (e) for all S ✓ Range(K) if:

Pr[K(D1) 2 S] exp(e)⇥Pr[K(D2) 2 S] (36)

In the context of recommendation systems, however, privacy should be measured
in conjunction with correctness since keeping information from the system, or third
party recommendation system, has a direct effect on correctness of the recommen-
dation system. This difference can be shown by plotting correctness against the op-
tions available for preserving privacy. For example, McSherry and Mironov demon-
strated their privacy preserving application by plotting RMSE versus Differential
Privacy [46].

There are still open questions and areas to explore regarding how privacy can af-
fect recommendation systems and how to measure its effects [38]. Consider multi-
user and multi-organizational situations such as open source applications where
API, bug triage, code reuse, document/code trace and expertise recommenders may
share repositories. Capturing user recommender interactions may enhance recom-
mender performance for all of these domains, however, exposing the recommended
items, user ratings and recommender queries all have the potential to seriously com-
promise developer and organizational privacy.

2.16 User Preferences

We have presented a number of measures to evaluate the performance of recommen-
dation systems. The bottom line of any recommendation system evaluation is the
perception of the users of that system. Therefore, depending on application domain,
an effective evaluation scenario could be to provide recommendations regarding the
selection of algorithms and ask users which one they prefer. Moreover, it has been
shown that some metrics (although useful for comparison) are not good measures of
user preference. For example, what MAE measures and what really matters to users
contrast since, due to the decision supportive nature of recommendation systems,
the exact predicted value is of far less importance to a user than the fact that an
item is recommended [38]. A number of recent document/code link recovery rec-
ommenders incorporate concurrently used algorithms that generate multiple sets of
recommendations that can be presented either separately or combined. Many sys-
tems allow users to configure the presentation of results, ranking scales, filters on
results, number of results provided and relative weightings of multiple item features.

It should be taken into consideration, however, that user preferences are not bi-
nary values. Users might prefer one algorithm to another [70]. Therefore, if testing
user preferences regarding a group of algorithms, a non-binary measure should be
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used before the scores are calibrated [32]. Also, new users should be separated in
the evaluation from more experienced users. New users may need to establish trust
and rapport with a recommender before taking advantage of the recommendations
it offers. Therefore, they might benefit from an algorithm which generates highly
ratable items [44].

3 Relation between dimensions

To have an effective evaluation, relationships between dimensions should also be
considered. These relationships describe whether changing a dimension affects
other dimensions. We have captured these relationships in Table 3, depicting the
relationships between dimensions for overall performance of the recommendation
system. Each cell in this table depicts relationships between one dimension when
compared to another. If changes to a dimension are in accordance with another di-
mension, i.e., if improving that dimension improves the other, it has been shown by
�. If a dimension tends to adversely impact another, it is shown as a ⇥. Dimensions
that tend to be independent are shown with blank cells. Below we summarize some
of these recommender dimension interrelations that are not already mentioned in
previous sections.

Table 3: Relation between metrics. � indicates direct relation, while ⇥ indicates
adverse relation.
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Coverage � � - � � � � ⇥ �
Confidence -
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Novelty ⇥ � - � � ⇥ �
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Robustness ⇥ � � - � ⇥
Privacy ⇥ ⇥ � -
Usability � � � � -
Stability � � � -
Scalability � � -
Learning rate � � ⇥ -
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Coverage can directly affect correctness since the more data available for gen-
erating recommendations, the more meaningful the recommendations are. Hence
correctness increases [21]. Coverage is also closely related to serendipity. Not ev-
ery increase in coverage increases serendipity, however, an increase in serendipity
will lead to higher catalogue coverage. On the other hand, more correctness dictates
more constraints and therefore decreases serendipity [19]. The same is true for risk,
i.e., if recommendations are being used in high risk environments, more constraints
should be considered. This decreases serendipity, novelty and diversity but increases
correctness, trust and utility.

High usability increases the amount of trust users have in the recommended sys-
tem, especially when recommendations are transparent and accompanied by expla-
nations. Improving privacy forces recommendation systems to hide some user data
and hence affects the correctness of the recommendation.

Novel recommendations are generally recommendations that are not known to
the user. It is not always a requirement for a novel recommendation to be accurate.
Improving novelty by introducing randomness may decrease correctness. Also, im-
proving novelty by omitting well-known items will affect correctness. Therefore,
increasing novelty may decrease correctness. The same is true for diversity.

Scalability and learning rate directly affect correctness since improving them
allows faster adaptation of new items and users, thus resulting in better correctness.
Improving Scalability at the same time also improves coverage.

Improving robustness prevents mistaken information from affecting recommen-
dations and hence improves user trust [37]. It will, however, result in true recom-
mendations being adopted more slowly, therefore reducing short time correctness.

It is noteworthy that from the metrics presented in this table, risk could have
been categorized separately. Regardless of how the recommendation system per-
forms, risks involved with the application are the same, i.e., although having a better
performing recommendation system helps minimising the risk associated with ‘se-
lecting a recommendation’, it does not change the fact that risks for that particular
application exist in general.

The true relationships between metrics is beyond a two dimensional table. For
example, improving coverage directly improves correctness and increasing novelty
might decrease the effect of long tail and hence improve coverage. Thus, improv-
ing novelty can be considered to indirectly improve correctness that is in contrast
with our table, since it has been mentioned that improving novelty may decrease
correctness. Therefore, a better framework or standard for understanding these rela-
tionships is a necessity and should be considered for future research.

4 Evaluation approaches and frameworks

Table 4 summarizes the set of evaluation metrics and techniques dimensions de-
scribed earlier according to their corresponding dimension and type(s). Some of the
dimensions are qualitative assessments while others are quantitative.
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Table 4: Summary of metrics.
Dimension Metric/Technique Type(s)

Correctness Ratings: Root Mean Square Error (RMSE), Normalized RMSE
(NRMSE), Mean Absolute Error (MAE), Normalized MAE
(NMAE)

Quantitative

Ranking: Normalized Distance-based Performance Measure
(NDPM), Spearman correlation, Kendall correlation, Normal-
ized Discounted Cumulative Gain (NDCG)

Classification: Precision, Recall, False Positive Rate, Specifity,
F-Measure, Reciver Operating Characteristics (ROC)

Coverage Catalogue Coverage, Weighted Catalogue Coverage, Prediction
Coverage, Weighted Prediction Coverage

Quantitative

Diversity Diversity Measure, Relative Diversity, Precision-Diversity
Curve, Q-Statistics, Set theoretic difference of recommenda-
tion lists

Quantitative

Trustworthiness User studies Qualitative
Confidence Neighborhood-aware similarity model, Similarity indicators Qualitative/

Quantitative
Novelty Comparing recommendation list and user profiles, Counting

popular items
Qualitative/
Quantitative

Serendipity Comparing recommendation list and user profiles, ratability Qualitative/
Quantitative

Utility Profit based utility function, study user intention, user study Qualitative/
Quantitative

Risk Depending on application and user preference Qualitative
Robustness Prediction shift, average hit ratio, average rank Quantitative
Learning rate Correctness over time Quantitative
Usability User studies (survey, observation, monitoring) Qualitative/

Quantitative
Scalability Training time, recommendation throughput Quantitative
Stability Prediction shift Quantitative
Privacy Differential privacy, RMSE vs. Differential privacy curve Qualitative/

Quantitative
User preference User studies Qualitative/

Quantitative

The most basic evaluation of a recommendation system is to use just one or two
metrics covering one or two dimensions. For example, one may choose to evalu-
ate and compare a recommender using correctness and diversity dimensions. When
possible, the selected dimensions can be plotted to allow better analysis. The selec-
tion of dimensions can be according to a particular recommender application. As
mentioned in Section 3, however, there is always a trade-off present between the
dimensions of a recommendation system that should be considered when evaluating
the effectiveness of recommendation systems. Also, the multi-faceted characteristics
of these systems, and unavailability of a standard framework for evaluation, and in
many case suitable performance benchmarks, has directly affected the evaluation of
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different systems by dimensions. In addition, many metrics require significant time
and effort to properly design experiments, capture results and analyse results. Avail-
ability of end users, suitable datasets, suitable reference benchmarks, and multiple
implementations of different approaches are all often challenging issues.

However, some new approaches are beginning to emerge to help developers and
users decide between different recommender algorithms and systems. An example
of this is an approach that helps users define which metrics can be used for evalua-
tion of the recommendation system at hand [67]. It proposes to consider evaluation
goals to ensure the selection of an appropriate metric. An analysis of a collection of
correctness metrics is provided as evidence regarding how different goals can affect
the outcome of the evaluation [67].

Hernández del Olmo and Gaudioso propose an objective-based framework for
the standardization of recommendation system evaluations [26]. Their framework
is based on the concept that a recommendation system is composed of interactive
(guide) and non-interactive subsystems (filter). The guide decides when and how
each recommendation is to be shown to users. The filter selects interesting items
to recommend. Accordingly, a performance metric P has been introduced as the
quantification of the final performance of a recommendation system over a set of
sessions. P is defined as the number of selected relevant recommendations that have
been followed by the user over a recommendation session [26].

A more recent approach introduced a multi-faceted model for recommender eval-
uation that proposes evaluation along three axis - users, technical constraints and
business models [61]. This approach considers users, technical and business aspects
together and evaluates the recommender accordingly. However, considerable fur-
ther work is needed to enable detailed evaluation of recommendation system against
many of the potential metrics itemised in Table 4.

5 Conclusion

In this chapter, we have presented and explained a range of common metrics used
for the evaluation of recommendation systems in software engineering. Based on a
review of current literature, we derived a set of dimensions that are used to evalu-
ate individual recommendation systems or in comparing it against the current state
of the art. For the dimensions, we have provided a description as well as a set of
commonly used metrics and explored relationships between the dimensions.

We hope that our classification and description of this range of available evalua-
tion metrics will hep other researchers to develop better recommendation systems.
We also hope that our taxonomy will be used to improve the validation of newly
developed recommendation systems and clearly show in specific ways how a new
recommendation system is better than the current state of the art. Finally, the content
of this chapter can be used by practitioners in understanding the evaluation criteria
for recommendation systems. This can thus improve their decisions when selecting
a specific recommendation system for a software development project.
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