
ARF: Automatic Requirements Formalisation Tool

1st Aya Zaki-Ismail ∗, 2nd Mohamed Osama ∗, 3rd Mohamed Abdelrazek ∗, 4th John Grundy †, and 5th Amani Ibrahim ∗

Information Technology
∗ Deakin University , † Monash University

Melbourne, Australia
∗ {amohamedzakiism, mdarweish, mohamed.abdelrazek, amani.ibrahim}@deakin.edu.au , †<john.grundy@monash.edu>

Abstract—Formal verification techniques enable the detection
of complex quality issues within system specifications. However,
the majority of system requirements are usually specified in
natural language (NL). Manual formalisation of NL requirements
is an error-prone and labor-intensive process requiring strong
mathematical expertise and can be infeasible for a large number
of requirements. Existing automatic formalisation techniques
usually support heavily constrained natural language relying
on requirement boilerplates or templates. In this paper, we
introduce ARF: An Automatic Requirements Formalisation Tool.
ARF can automatically transform free-format natural language
requirements into temporal logic based formal notations. This
is achieved through two steps: 1) extraction of key requirement
attributes into an intermediate representation (we call RCM),
and 2) transformation rules that convert requirements in RCM
format into formal notations.

Index Terms—Requirements engineering, Requirements For-
malisation, Requirements Extraction

I. INTRODUCTION

Errors in requirements affect the quality of the system and
increase the time, effort and cost of system development [1].
In addition, they can also lead to catastrophic consequences in
safety critical systems. Quality standards typically recommend
the requirements to be specified in formal notations to be
able to apply formal methods [2]. However, the majority of
system requirements are specified in Natural Language (NL)
[3]. Thus, it is pivotal to be able to accurately transform NL
requirements into formal notations.

Manually formalising the requirements requires strong ex-
pertise in mathematics and is an error prone process. Au-
tomated formalisation tools encourage organisations to per-
form formal checking and translation. However, most existing
(semi-)automated formalisation approaches are limited to: (1)
(very) constrained requirements templates/formats [4] or (2)
variations of requirements utilising constrained language [5].
In addition, most of these approaches provide only one formal
notation as output although different formal notations have
advantages and disadvantages. According to recent work [6],
there is still a great need for better automated requirements
formalisation approaches for free format textual requirements.

To address this problem we developed ARF: Automatic
Requirements Formalisation tool. ARF is capable of trans-
forming NL requirements into multiple formal notations (i.e.,
versions of temporal logic) providing users with more trans-
formation flexibility. ARF can process input requirements

with a much wider range of requirement formats compared
to existing approaches. This is done by extracting the key
requirements properties instead of relying on the rigid struc-
ture and semantics of defined templates. ARF supports the
transformation into multiple formal notations by isolating the
extraction layer from the transformation layer (i.e., utilising a
reference model). Thus, only the transformation layer shall be
adjusted/customised to support other formal notations. Further
details about ARF is available here 1.

II. ARF ARCHITECTURE

The main goals of ARF are to enable the automatic
formalisation of a wide range of requirements formats and
structures, and be extensible to multiple formal notations.
To achieve this, we designed the tool by separating the
natural language processing part (extraction layer) from the
formalisation mapping rules (formalisation layer). Between the
two layers, the requirements are represented in a semi-formal
model – requirement capturing model (RCM) [7]. RCM is
a comprehensive model supporting the key properties to be
extracted based on analysis of the state of the art requirements
representation models. In addition, it is used to enable issues
detection in [8]. The extraction layer follows an NLP-based
extraction technique that can extract the requirements proper-
ties and construct the corresponding RCM [9]. The mapping
rules utilised in the formalisation layer are derived from the
transformation techniques in [7] that enables the conversion of
requirements from the RCM format into metric temporal logic
(MTL) and computational tree logic (CTL). The architecture
of ARF is shown in Figure 1.

Formal
notation

Require
ments

RCMs
Extraction layer Transformation layer

Comps
Extraction

Sub-Comps
Extraction

Classification
Arguments
Extraction

Comp
formalisation

Comps
Aggregation

Scope
Annotation

Formula
Generation

Fig. 1: ARF Processes

1ARF UI: https://github.com/ABC-7/ARF/blob/main/ARF_Annex.pdf

https://github.com/ABC-7/ARF/blob/main/ARF_Annex.pdf
John Grundy
29th IEEE International Requirements Engineering Conference (RE2021), 20-24 Sept 2021, South Bend, USA

A. Intermediate Representation (RCM)

RCM represents requirements in a unified structured format
detailing the breakdown of all properties within the require-
ment. Requirements consisting of more than one sentence are
stored together in the same RCM structure to maintain sen-
tences correlation. Each requirement sentence is represented
as a primitive requirement that can hold all the extracted
properties within the given sentence. Figure 2 shows the RCM
representation of a requirement example.

REQ: If <cal: A_sig> after sailing termination is [TRUE], the inhibitor
shall transition to [true] before <B_sig> is [TRUE].

RCM of REQ

Req-Scope
vPre-conditional Scope
ØScopeType = StartUpPhase
ØTimekeyword = after
ØPredicate
üpredicateText = “After every
sailing termination ”
üRelation = equals
üOp1
qText = sailing termination

üOp2
qText = RCMVAL_TRUE

üneg_flag = false

Req-Scope
vAction-Scope
ØScopeType = EndUpPhase
ØTimekeyword = before
ØPredicate
üpredicateText = “before
RCMVAR_B_sig is RCMVAL_TRUE”
üRelation = is
üOp1
qText = RCMVAR_B_sig

üOp2
qText = RCMVAL_TRUE

üneg_flag = false

Conditions
vPredicate
üpredicateText = “If
RCMVAR_A_sig is RCMVAL_TRUE”
üRelation = is
üOp1
qText = RCMVAR_A_sig

üOp2
qText = RCMVAL_TRUE

üneg_flag = false

Action
vPredicate
üpredicateText = “the inhibitor shall
transition to RCMVAL_TRUE”
üRelation = shall transition to
üOp1
qText = the inhibitor

üOp2
qText = RCMVAL_TRUE

üneg_flag = false

TL: G(B → (C → F((S) → (F(A v S)U S))))

B S

C A

Fig. 2: RCM High Level Structure [9]

B. Extraction Layer

In the extraction layer [9], the input requirements are first
pre-processed to overcome inherent natural language issues
and enable more reliable interpretations (e.g., closed word
unification and foreign word substitution). ARF then utilises
the Stanford CoreNLP library alongside WordNet and Prolog
inference engine to analyse the input sentence. Identified prop-
erties of a requirement sentence are extracted along with their
breakdowns. A primitive requirement is created in compliance
with the extracted properties (i.e., structure adapting to the
identified properties in the sentence). First, components of
a given sentence are extracted (i.e., each representing one
clause). Then, the sub-components within each component
are located utilising syntactic and semantic analysis – by
identifying (1) the head (has a defined grammatical role) and
(2) the body (linked to the head through syntactic/semantic
relations) of each sub-component. After that, each extracted
component and sub-component are classified into one of the
RCM’s classes. Finally, the arguments breakdowns of the sub-
components are identified.

C. Transformation Layer

Each primitive requirement is converted to the target formal
formula of temporal logic (TL) utilising meta-models that
map RCM elements to the target formal language. A bottom
up approach is utilised to formulate TL-formula with the
support of the meta-models mapping. First, a formal predicate
is created for each component while attaching the formal

notations of its related sub-components (e.g., time notations
in temporal logic). Then, components with the same type are
aggregated through traversing the coordinating relations. After
that, scopes are attached to eligible preconditions/actions (if
any) expressing temporal modality in temporal logic. Finally,
the entire formula is generated.

III. EVALUATION

We evaluated both layers of ARF (extraction and transfor-
mation layers) on a set of curated requirements from existing
case studies in the literature. The dataset consists of 162
requirement sentences and is available online in 2.

We used precision, recall and F-measure to assess the
soundness of the extraction layer. The extraction achieves a
promising performance achieving 79% recall 95% precision
and 86% F-measures [9]. On the other hand, having a correct
RCM ensures the correctness of the generated formulas. To
assess the correctness of the transformation layer, we tested
it on the correct RCMs of the 162 requirements and the
manual assessment of the output shows the reliability of
the transformation layer [7]. The output of extraction and
formalisation are available in 3 and 4 respectively.

IV. CONCLUSION AND FUTURE WORK

We presented ARF, a tool supporting the extraction of key
requirements properties and formalisation of NL requirements
into both MTL and CTL formal notations. Our planned future
work includes: (1) Supporting visual graphs for each primitive
requirements. (2) Conducting a formal user evaluation on an
industry case study to assess the usability and reliability of the
tool. (3) Integrating more formal notations .

REFERENCES

[1] A. Zaki-Ismail., M. Osama., M. Abdelrazek., J. Grundy., and A. Ibrahim.,
“Requirements formality levels analysis and transformation of formal
notations into semi-formal and informal notations,” in SEKE, 2021.

[2] I. ISO, “26262: Road vehicles-functional safety,” International Standard
ISO/FDIS, vol. 26262, 2011.

[3] M. Osama, A. Zaki-Ismail, M. Abdelrazek, J. Grundy, and A. Ibrahim,
“Score-based automatic detection and resolution of syntactic ambiguity
in natural language requirements,” in ICSME. IEEE, 2020, pp. 651–661.

[4] R. Yan, C.-H. Cheng, and Y. Chai, “Formal consistency checking over
specifications in natural languages,” in DATE. IEEE, 2015.

[5] S. Ghosh, N. Shankar, P. Lincoln, D. Elenius, W. Li, and W. Steiener,
“Automatic requirements specification extraction from natural language,”
SRI INTERNATIONAL MENLO PARK CA, Tech. Rep., 2014.

[6] A. Brunello, A. Montanari, and M. Reynolds, “Synthesis of ltl formulas
from natural language texts: State of the art and research directions,” in
26th International Symposium on Temporal Representation and Reason-
ing. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[7] A. Zaki-Ismail., M. Osama., M. Abdelrazek., J. Grundy., and A. Ibrahim.,
“Rcm: Requirement capturing model for automated requirements formal-
isation,” in MODELSWARD, 2021.

[8] M. Osama, A. Zaki-Ismail, M. Abdelrazek, J. Grundy, and A. Ibrahim,
“Srcm: A semi formal requirements representation model enabling system
visualisation and quality checking,” in MODELSWARD, 2021.

[9] A. Zaki-Ismail., M. Osama., M. Abdelrazek., J. Grundy., and A. Ibrahim.,
“Rcm-extractor: Automated extraction of a semi formal representation
model from natural language requirements,” in MODELSWARD, 2021.

2Dataset: https://github.com/ABC-7/RCM-Extractor/tree/master/Datasets
3Extraction-Output: https://github.com/ABC-7/RCM-Extractor
4Formalisation-Output: https://github.com/ABC-7/RCM-Model/tree/

master/RCM-Auto-Transformation

https://github.com/ABC-7/RCM-Extractor/tree/master/Datasets
https://github.com/ABC-7/RCM-Extractor
https://github.com/ABC-7/RCM-Model/tree/master/RCM-Auto-Transformation
https://github.com/ABC-7/RCM-Model/tree/master/RCM-Auto-Transformation

	Introduction
	ARF Architecture
	Intermediate Representation (RCM)
	Extraction Layer
	Transformation Layer

	Evaluation
	Conclusion and Future Work
	References

